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Abstract 

Non-Alcoholic Fatty Liver Disease (NAFLD) is a chronic and dangerous condition which has 

grown in prevalence over recent decades due to increasing rates of obesity, affecting roughly 

a quarter of adults globally. This thesis develops a useable NAFLD definition which can be 

applied to large retrospective data sets consisting of medical records for selected cohorts. The 

morbidity and mortality associated with NAFLD is investigated, especially related to 

extrahepatic cancer. This thesis also aims to identify genetic modifiers of NAFLD risk in 

Scottish and South Indian populations. 

Data from three retrospective Scottish cohorts with electronic health records (EHRs) were 

analysed in the current thesis. These were the GoDARTS, SHARE and Tayside and Fife 

Diabetics cohorts. Genotypic data was available for a number of patients in GoDARTS and 

SHARE. Data from the Dr Mohan’s Diabetes Speciality Clinic (DMDSC) were also 

analysed, which consisted of clinical measurements from clinic visits, and genotypic data. 

An accurate and practical NAFLD definition based on two raised ALT levels was developed, 

which had a sensitivity of 97.4% in the GoDARTS cohort. This definition was used for 

subsequent NAFLD analyses. Patients with NAFLD experienced significantly more hospital 

admissions, and earlier death than those without NAFLD. We found NAFLD is associated 

with increased risk of cancer incidence, and cancer death, which accounts for a large portion 

of the excess morbidity and mortality seen in NAFLD patients. GWAS analyses revealed that 

PNPLA3 rs738409 is a major genetic risk factor in both Scottish and South Indian 

populations. Candidate gene studies revealed variants associated with endothelin function and 

with GLP1 receptors had significant effects on NAFLD. 

This thesis applies an accurate and novel NAFLD definition to retrospective cohorts with 

EHRs, and found increased morbidity and mortality in individuals with this phenotype. A 
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large proportion of this is explained by increased cancer incidence and cancer death seen in 

these individuals. A number of genetic risk factors for NAFLD are described, including novel 

loci in endothelin and GLP1R related genes. 
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1 Introduction  

1.1 Introduction to Non-Alcoholic Fatty Liver Disease 

Non-Alcoholic Fatty Liver Disease (NAFLD) is a chronic condition which affects roughly 

25.2% of the adult population globally, and is now the leading cause of liver disease.1 

Prevalence of NAFLD has risen in recent decades, and continues to rise due to increased rates 

of obesity.2 There is currently no recommended pharmacological intervention for NAFLD.3 

The high prevalence of this disease and associated morbidity and mortality make NAFLD a 

key research priority, with the aims of improving assessment of NAFLD risk and informing 

drug discovery.4 

1.2 NAFLD Overview 

NAFLD is a multi-stage disease which can have deadly consequences.5 These stages are 

shown in figure 1-1 below.6 Though each of these stages is associated with NAFLD, they do 

not necessarily occur in a linear fashion, as some patients may have fibrosis with no 

steatohepatitis for example. 

The first stage of NAFLD is simple steatosis, where macrovesicular steatosis is present in 

>5% of hepatocytes.7 Steatosis is the fatty infiltration of hepatocytes, without inflammation 

or fibrosis present. Triglyceride droplets form in the cytoplasm of the liver cells in large 

quantities, outside of normal ranges. There are many mechanisms involved in the build-up of 

steatosis, but these mainly involve dysregulation of lipid metabolism and increased 

availability of lipids, due to conditions such as obesity and diabetes.8 Simple steatosis is the 

Figure 1-1 Stages of NAFLD Progression 
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most common form of NAFLD, with a minority of patients progressing to more severe stages 

per year of disease.7  

Non-Alcoholic Steatohepatitis(NASH) occurs where NAFLD causes inflammation in the 

liver cells.9 It is estimated that 25% of patients progress from simple steatosis to NASH over 

a three year period.5 NASH is characterised by inflammation of the hepatocytes due to fatty 

degeneration, though this inflammation does not correlate closely with the severity of 

steatosis. This causes injury to the hepatocytes and leads to cell death. The triglycerides 

which form the steatosis are not toxic to hepatocytes, therefore it is thought that lipid 

intermediates and oxidative stress are likely to be the cause of the toxicity and therefore 

damage to the cells.10,11 NASH is reversible, and improvements in NASH have been reported 

in patients following bariatric surgery.12 NASH is most accurately diagnosed by biopsy, and 

has distinct properties compared with NAFLD. Histologic features of NASH are mainly 

inflammation, hepatocyte ballooning, and Mallory-Denk bodies.13 There are however issues 

with sampling variability with biopsies for NASH diagnosis, as lesions can be spread 

unevenly throughout the liver, and inter-observer variability can affect diagnosis.14 

Hepatic fibrosis can occur in those with NAFLD.5 This is characterised by the deposition of 

extracellular matrix in the parenchyma of the liver.15 Fibrogenesis in the liver is usually the 

result of a chronic wound healing process, in response to damage caused by NASH in the 

case of NAFLD.15 As part of the response to repair the liver, fibrotic tissue is produced by 

hepatic stellate cells. (HSCs) These cells are usually in a dormant state, and have a role in the 

storage of vitamin A.16 When the wound healing processes are activated in the liver however, 

HSCs are activated and proliferate. They produce large amounts of extracellular matrix, 

which cause major structural changes in the liver. It is estimated that 20% - 30% of patients 

with NAFLD progress to fibrosis over three years.5 Patients with fibrosis progress at one 
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fibrosis stage per decade.17 Initially thought to be irreversible, there is now some evidence to 

show that fibrosis can be reversed to some extent.18 

Cirrhosis occurs in extreme cases of fibrosis, where a portion of the liver is replaced by the 

scar tissue formed by fibrosis, and regenerative nodules of hepatocytes form.19 This 

drastically changes the structure of the liver, causing reductions in function, and portal 

hypertension.20 In cirrhosis, regenerative nodules of hepatocytes form between strands of scar 

tissue (septa), as the liver tries to repair itself.21 Cirrhosis is extremely dangerous, and can 

lead to liver failure. It is thought that up to 38% of patients with fibrosis progress to cirrhosis. 

Hepatocellular carcinoma (HCC) is a complication which can occur in cirrhotic livers. It is 

the 6th most common cancer and is a major cause of cancer death globally.22,23 A number of 

pathological changes occur in cirrhotic livers to provide an environment conducive to 

neoplasia.24 Inflammation is thought to play a large role in this, influencing several genetic 

and epigenetic transformations leading to neoplasia.24 Regenerative nodules in the liver often 

show dysplasia, leading to HCC. A small but significant portion of patients with NAFLD 

develop HCC. The proportion is estimated to be 2.4% - 12.8% in patients with NASH over a 

3.2–7.2 year period.5 Around 20% of HCC occurs in non-cirrhotic patients, though a certain 

amount of this may be due to sampling variability in biopsies and missed cirrhosis 

diagnoses.23 

Though NAFLD is common, it is underdiagnosed in clinical settings.25 This is due to the 

challenges of diagnosing NAFLD, which is often asymptomatic.26 There is evidence that 

NAFLD is a key contributor to cryptogenic cirrhosis.27 The full scale of the risk posed by 

NAFLD, as well as its epidemiology cannot be understood without accurate diagnostic 

techniques. The gold standard technique is biopsy, though this invasive and can have 

complications which can lead to death in some cases.28,29 Imaging and biochemical methods 
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of diagnosis are more commonly used, though vary in accuracy and the validity of some 

measures is debated.30,31 

The concept of NAFLD dates back to the early 80’s when Ludwig et al. first described 

NASH in a landmark paper; though NAFLD research was not undertaken intensively until 

later in the 1990’s.32 Prior to this, it was assumed that all patients who reported zero or low 

alcohol use, and had fatty livers were dishonest about their alcohol intake. NAFLD and its 

alcoholic related counterpart, alcoholic liver disease (ALD) have a large amount of 

pathophysiological overlap, and are indistinguishable in many ways.33 NAFLD is defined as 

the presence of fatty infiltration of the liver in the absence of excess alcohol intake or other 

cause of liver disease. Therefore, upper limits of alcohol intake are set to prevent ALD being 

categorised as NAFLD. Other causes of liver disease including virological and 

immunological insults must also be ruled out too to diagnose NAFLD. 

The use of “Non-Alcoholic” in NAFLD and NASH was used as the definition was being 

presented as an alternative to ALD, and compared to it.32 In recent times, the limitations of 

this definition have been discussed an updated terminology suggested. The term metabolic 

associated fatty liver disease or “MAFLD” has been proposed to more accurately describe the 

condition, as it provides a description of the aetiology of the disease.34 The author thought 

this to be important as the condition can coexist with a number of other liver diseases, 

including ALD, which is an important factor in understanding the disease. Though 

“MAFLD” is a more descriptive and appropriate name, to maintain consistency and clarity, 

the term NAFLD will be used throughout this thesis as this is the terminology used in almost 

all previous literature and is still widely used. 
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1.3 NAFLD Pathogenesis 

A number of factors influence the pathogenesis of NAFLD, shown below in figure 1-2 from 

the 2016 paper by Buzzetti et al, “The multiple-hit pathogenesis of non-alcoholic fatty liver 

disease (NAFLD)”.35 

 

This diagram does not show all pathways involved in the development of NAFLD, NASH 

and fibrosis, but includes many key features. Firstly dietary factors such as high carbohydrate 

and fat intake increase risk of obesity.36 Outside of the liver this leads to increased adipose 

tissue and dysfunction. The adipose tissue releases inflammatory adipokines which can lead 

to mitochondrial dysfunction in the liver, and inflammation.37 In the gut, the microbiome is 

affected, and the gut becomes more porous to factors including endotoxins.38 Obesity and 

insulin resistance increase the free fatty acid (FFA) and cholesterol content of the blood, and 

Figure 1-2 NAFLD Pathogenesis 
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much of these are absorbed by the liver. Hepatic insulin resistance increases de novo 

lipogenesis, which further increases the total FFA content of the liver. Much of this excess 

FFA is converted to triglycerides, stored in the hepatocytes.35 This excess triglyceride storage 

is steatosis. Triglycerides themselves are not hepatotoxic, however it is thought that when the 

liver is no longer able to store FFA’s as triglycerides, the FFA’s can be harmful to 

hepatocytes. FFA’s which are not converted to triglycerides can increase risk of 

mitochondrial dysfunction and endoplasmic reticulum stress. These processes increases 

number of reactive oxygen species and unfolded protein response respectively.39,40 These 

processes lead to inflammation which characterises NASH. Inflammatory adipokines also 

contribute to inflammation of the cell. This cellular damage leads to cell death, and 

subsequent injury response in the form of fibrosis, from activated hepatic stellate cells.13 This 

fibrosis can take over large portions of the liver, becoming cirrhosis. 

A number of other factors contribute to the pathogenesis of NAFLD, many influenced by 

genetics. There is significant heterogeneity in the clinical presentation of patients with 

NAFLD and NASH, as some can have normal BMI for example.41 In these individuals, it is 

likely that dysfunction has occurred in a process downstream of obesity. 

1.4 NAFLD in Clinical Practice 

NAFLD is in the first instance suspected by a physician based on overall clinical presentation 

based on risk factors including age >50, being male, obese, high cholesterol and other lipids. 

NAFLD is usually diagnosed first via elevated liver function tests.42 Alanine transaminase 

(ALT) is an important marker used in the preliminary diagnosis of NAFLD, and is covered in 

more detail in the following chapter.  NAFLD can also be suspected in the first instance by 

incidental findings in ultrasonography.42  The majority of patients who are diagnosed with 

NAFLD are obese, and often have other comorbidities such as T2DM and hypertension. 

Though progression to more severe stages in NAFLD is relatively uncommon, the prevalence 
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of the disease and association with other conditions such as T2DM make diagnosis of 

NAFLD important. No pharmacological treatments are currently suggested, though lifestyle 

modification through diet and exercise have been found to lower liver fat content. 43 NICE 

guidelines state that lifestyle modification is the only evidence based method for treatment of 

NAFLD.44  Physicians encourage these lifestyle modifications in patients, and target the 

lowering of liver enzymes and weight loss.42 This management policy for NAFLD patients is 

sufficient for most, though severe cases can be referred to hepatologists for closer 

monitoring. 

Significant debate exists as to whether blanket screening for NAFLD should be carried out in 

primary care.45 The key concern is balancing practicality, cost and invasiveness against the 

clinical utility and improvement to patient care gained by screening. Screening for NAFLD in 

the population is not recommended in the NICE guidelines, as there is insufficient evidence 

to suggest this would be worthwhile.44 Nascimbeni et al. reviewed NAFLD screening 

guidance from a number of international and national hepatological societies and found none 

recommended screening for NAFLD in the general population .46 Most guidance 

recommends targeted screening for those considered to be at greater risk of NAFLD. 45,47 

Patients with features of metabolic syndrome, and insulin resistance in particular are targeted, 

and some studies have found these techniques to be cost effective.48 

Others suggest that screening for NAFLD is unjustified, and wastes resources and time. The 

majority of NAFLD does not progress to fibrosis or HCC, and appears to be benign in many, 

therefore treatment of NAFLD many not provide benefit.49 Lifestyle modification is at 

present the main intervention, and given the fact obesity, T2DM and other features of 

metabolic syndrome are so highly correlated with NAFLD it is likely patients will be advised 

to lose weight by their clinician regardless of NAFLD status. Rowe suggests in his paper 

“Too much medicine: overdiagnosis and overtreatment of non-alcoholic fatty liver disease”, 
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that screening for NAFLD even in at-risk groups is problematic as it risks incursion of harm 

to patients who are falsely diagnosed.50 Other such as Malnick also suggest over treatment of 

NAFLD is harmful, and that the considerable amount of money being spent of 

pharmacological interventions would be better placed improving public health facilities and 

helping enable lifestyle modifications.51 Others have presented similar economic arguments, 

suggesting it is not cost effective to screen for NAFLD. It may be cheaper and more effective 

to advocate weight loss and lifestyle modification than to screen and treat NAFLD. The risk 

with this approach however is that lean individuals and those without the traditional 

comorbidities of NAFLD may not be diagnosed and therefore progress to more serious stages 

of NAFLD without intervention. 

NAFLD is common, but it is underdiagnosed in clinical settings.25 This is due to the 

challenges of diagnosing NAFLD, which is often asymptomatic.26  Aside from improving 

NAFLD screening and diagnosis techniques to improve patient care, this will also aid 

scientific research, the full scale of the risk posed by NAFLD, as well as its epidemiology 

cannot be understood without accurate diagnostic techniques. This will allow GWAS and 

other genetic analyses to be conducted to find further genetic risk factors for NAFLD. One of 

the gold standard techniques is biopsy, though this invasive and can have complications 

which can lead to death in some cases.28,29 Imaging and biochemical methods of diagnosis are 

more commonly used, though vary in accuracy and the validity of some measures is 

debated.30,31 Different methods of screening may also be employed to increase practicality 

and reduces costs, including applying NAFLD diagnosis algorithms to retrospective medical 

records to determine those at risk of NAFLD. This method is used in the current thesis.  

The concept of NAFLD dates back to the early 80’s when Ludwig et al. first described 

NASH in a landmark paper; though NAFLD research was not undertaken intensively until 

later in the 1990’s.32 Prior to this, it was assumed that all patients who reported zero or low 
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alcohol use, and had fatty livers were dishonest about their alcohol intake. NAFLD and its 

alcoholic related counterpart, alcoholic liver disease (ALD) have a large amount of 

pathophysiological overlap, and are indistinguishable in many ways.33 NAFLD is defined as 

the presence of fatty infiltration of the liver in the absence of excess alcohol intake or other 

cause of liver disease. Therefore, upper limits of alcohol intake are set to prevent ALD being 

categorised as NAFLD. Other causes of liver disease including virological and 

immunological insults must also be ruled out too to diagnose NAFLD. 

The use of “Non-Alcoholic” in NAFLD and NASH was used as the definition was being 

presented as an alternative to ALD, and compared to it.32 In recent times, the limitations of 

this definition have been discussed an updated terminology suggested. The term metabolic 

associated fatty liver disease or “MAFLD” has been proposed to more accurately describe the 

condition, as it provides a description of the aetiology of the disease.34 The author thought 

this to be important as the condition can coexist with a number of other liver diseases, 

including ALD, which is an important factor in understanding the disease. Though 

“MAFLD” is a more descriptive and appropriate name, to maintain consistency and clarity, 

the term NAFLD will be used throughout this thesis as this is the terminology used in almost 

all previous literature and is still widely used. 

1.4.1 Prevalence of NAFLD and Clinically Significant NAFLD 

There are many estimates of the prevalence of NAFLD globally. 25,52–54 Younossi et al. meta-

analysed 86 studies from 22 countries, and calculated a global average of 25.24% prevalence 

of NAFLD in adults. Significant heterogeneity was seen between countries and ethnicities, 

though it is unclear how much of this is due to differences in case ascertainment and 

reporting.55 Particularly high prevalence has been found in South American countries; as high 

as 30.45% based on ultrasound findings.49 Lower prevalence overall is seen in China, 

estimated to be around 15%, although this varies by region and is as high as 27% in some 
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urban populations. These rates are highly correlated with lifestyle factors which can vary 

drastically between different communities. 

The overall prevalence of NAFLD is high, though the more advanced stages are rarer. 

Younossi et al. estimate global prevalence of NASH to be 3% in their meta-analysis.1 They 

also calculated that approximately 41% of patients with NASH will progress to fibrosis. It is 

clear from these figures that a small but significant portion of individuals progress to the 

more harmful stages of NAFLD.  

Simple steatosis in NAFLD is commonly described as a benign condition in the absence of 

fibrosis and cirrhosis.56 In NAFLD, advanced fibrosis is the strongest predictor of disease 

specific mortality.57 Some suggest the majority of NAFLD is not clinically significant, as it is 

unlikely to progress and become harmful, and is relatively harmless on its own. There is 

growing evidence that this is not the case however, as significant excess mortality has been 

found in those with even simple steatosis, and increased incidence of extrahepatic cancer is a 

major cause of this.58–60 Allen et al. found those with NAFLD live on average 4 years shorter 

than those without, and cancer is a large part of this.58 This is covered in detail in a later 

chapter of this thesis. Further to this increased mortality, NAFLD is also a risk factor for 

development of T2DM.61 

These factors complicate the notion of clinically significant NAFLD, as non-progression to 

NASH and fibrosis does not necessarily mean that steatosis is not causing harm. The risk to 

health conferred by NAFLD must be assessed in the context of the intra and extrahepatic 

conditions it is associated with. It is therefore important that further study of NAFLD should 

aid prediction of these conditions, and determine the cause of these associations.  
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1.5 NAFLD Risk Factors 

Despite association with increased age and body fatness, NAFLD can affect almost anyone, 

with paediatric and geriatric cases reported in significant numbers, and in every age group in 

between.62 It can also affect lean individuals as well as those who are overweight and obese.41 

Despite this, there are a number of risk factors associated with NAFLD which increase risk of 

steatosis and the subsequent stages of NAFLD.63 

The key risk factor for NAFLD is excess body fat.37 Studies suggest that NAFLD is over four 

times more prevalent in obese patients.64 In obese patients, the release of free fatty acids 

(FFAs) from visceral fat is increased which leads to an increase in uptake of FFAs by the 

liver leading to steatosis.65 Though overall fatness predicts NAFLD, central obesity is more 

of a risk factor for NAFLD.66 Visceral fat is metabolically active, and insulin resistance forms 

a large part of the relationship between NAFLD and obesity, as steatosis severity correlates 

with hepatic insulin resistance.65 Reduction in bodyweight has been found to be effective in 

reducing NAFLD.67 Exercise has been shown to reduce liver fat, independently of weight 

loss.68 An association between low levels of physical activity and NAFLD has also been 

shown.69 It is however possible for lean individuals (BMI < 25kg/m2) to have NAFLD.41 

Estimates suggest that prevalence of lean NAFLD is as high as 7% in the USA, and 19% in 

parts of Asia.70 

Age is a non-linear risk factor for NAFLD.62 Age is associated with increased steatosis, as 

well as a number of other changes in the liver, including: increased fibrosis, decreased 

regeneration ability, increased inflammatory changes and increased oxidative stress. These 

factors increase the damage to the liver caused by NAFLD. Most studies suggest an inverse U 

shaped curve of NAFLD risk versus age, with peak risk around 50 to 60 then a decline in risk 

thereafter.19,71,7272 Men are likely to get NAFLD 10 years earlier than women, but being post-
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menopausal increases risk in women.62 Paediatric NAFLD is relatively less common than 

NAFLD in adults, though prevalence is rising with increased paediatric obesity.58 

Type 2 diabetes is a large risk factor for NAFLD.73 In the general population, the rate of 

NAFLD globally is ~25%, but in those with T2DM the prevalence is much higher, with 

estimates at 68% in European cohorts.55,74,75 NASH, fibrosis and cirrhosis are also more 

prevalent in those with T2DM.55 The liver contributes to the insulin resistance seen in T2DM, 

and hepatic insulin resistance is a key factor in NAFLD.76 Insulin resistance promotes the 

accumulation of triglycerides in the liver, leading to steatosis. Many studies have investigated 

the causal direction of the association between NAFLD and T2DM, and found NAFLD is a 

risk factor for T2DM; patients with NAFLD are five times more likely to develop T2DM.77,78 

Dyslipidaemia is a condition characterised by abnormal amounts of lipids in the blood, and 

often accompanies T2DM and obesity.79 This can be a risk factor for NAFLD independently, 

as circulating triglycerides and cholesterol are taken up by the liver and are stored, causing 

steatosis.80 

The risk factors outlined above are the main phenotypic risk factors for NAFLD, but a 

number of others also affect NAFLD development. These include hypothyroidism, sleep 

apnoea, hypopituitarism and polycystic ovary syndrome.81,82 Often individuals have several 

of the discussed risk factors, contributing various amounts to NAFLD risk.  

1.6 NAFLD Genetic Background 

NAFLD is complex and multifactorial, and as a result there are many genetic influences 

affecting different pathways associated with the disease. The first risk variant discovered by 

GWAS and most widely replicated result is PNPLA3 rs738409, discovered in 2008.52 This 

variant increases risk of simple steatosis as well as NASH and fibrosis.83 The protein encoded 

by PNPLA3 is adiponutrin, which plays an important part in the breakdown of triglycerides in 
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the liver (lipolysis). As a consequence of this downregulation of lipolysis, triglycerides build 

up to high levels causing steatosis. Further to the increased steatosis, PNPLA3 rs738409 is 

also associated with inflammation and fibrosis, through regulation of NF-κB.84 This PNPLA3 

variant is common, with a MAF of ~0.20 in Europeans and ~0.50 in Hispanics.85 It has been 

the focus of a number of studies as a drug target but so far without success.86 

Subsequently, variants affecting all stages of NAFLD have been discovered through GWAS 

and candidate gene studies. 87 Notable genes are shown in table 1 below, with their effect and 

the pathway which they act on. 

Table 1 Genetic Variants Associated with NAFLD 

Gene SNPID Discovery Primary Effect Role 

PNPLA3 rs738409 GWAS Increased steatosis Decreases lipolysis 

TM6SF2 rs58542926 GWAS Increased steatosis Decreases VLDL 

secretion 

GCKR rs780094 GWAS Increased steatosis Increases hepatic 

glucose uptake 

NCAN rs2228603 GWAS Increased steatosis, 

NASH and fibrosis 

Association with 

TM6SF2 

COL13A1 rs1227756 GWAS Liver enzymes and 

NASH 

Inflammatory response 

MBOAT7 rs641738 GWAS Steatosis and fibrosis Reduced protein 

production, not fully 

understood 
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The majority of genetic variants known to influence NAFLD have been discovered via 

GWAS, though a number of effects have been found through candidate gene studies.88 These 

include the variant MTP rs1800591, which alters the activity of lipid transporters increasing 

steatosis.89 

Heritability estimates for NAFLD vary between 20% and 70%, with a large portion of 

genetic variance shared between NAFLD and fibrosis.90 Despite several genes having 

significant effects, genetic risk scores for NAFLD have been inconsistent in their ability to 

predict NAFLD. Nobili et al. found a genetic risk score based on 4 SNPs predicted NASH 

better than a clinical model.91 Other studies have found genetic models to perform worse than 

those based on clinical parameters, and some that adding genetic data does not improve 

accuracy of clinical models.92,93 

As well as prediction, analysis of genetic influences of disease can aid understanding of the 

pathology of the condition. This in turn can aid drug discovery, as it can elucidate pathways 

which can be up or downregulated to treat the disease.94 This method has been applied to 

NAFLD, with research investigating the efficacy of inhibiting HSD17-B13  for example.95 

1.7 Gaps in Understanding and Research 

A large number of research questions regarding NAFLD remain unanswered in current 

literature and require further research. One of the key questions is why certain individuals get 

NAFLD and others do not. Another clinically important question is why certain individuals 

progress to more severe stages of NAFLD, whereas some do not. Phenotypic and genotypic 

risk factors for NAFLD are known there remains large amounts of thus far unexplained 

variance in the previous two research questions. Factors such as diet, exercise, smoking, 

lifestyle and socioeconomic status have been investigated and found to have significant 
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effects on NAFLD, and must be taken into account when describing a full model of NAFLD 

risk.4,96 

Much of the pathogenesis of NAFLD has been studied, and mechanisms of steatosis, NASH 

and fibrosis have been explained.97 There are numerous pathways involved however, and a 

complete model of NAFLD has not been illustrated. Analysis of correlates of NAFLD, both 

phenotypic and genotypic, are both common methods of elucidating factors which affect 

NAFLD. 

NAFLD is challenging to diagnose, as it lacks outward signs and symptoms in  most cases.25 

This means that NAFLD is underdiagnosed in most clinical settings. This thesis will 

investigate NAFLD diagnosis methods and apply a definition to the GoDARTS, SHARE and 

Tayside and Fife cohorts from Scotland, as well as the DMDSC cohort from Chennai, India. 

This definition will be validated against other known NAFLD definitions and correlates. An 

investigation into the morbidity and mortality of patients with NAFLD will be conducted, 

with particular emphasis on analysing causes of death. Recent studies have found NAFLD to 

be associated with a range of extrahepatic conditions, including cancer.58,59 This thesis will 

investigate whether NAFLD has any association with cancer incidence, as well as the effect 

of this on the shorter lifespans seen in those with NAFLD. 

GWAS methods will be used to investigate genetic modifiers of NAFLD risk in the Scottish 

and Indian cohorts. Studies of the genetics of NAFLD in individuals of European descent are 

plentiful in the literature, though not specifically of Scottish cohorts.98 Genetic studies of 

NAFLD in India have been published, findings significant effects of many known NAFLD 

risk variants.99,100 There have been no reported GWAS studies of NAFLD in Indian 

individuals. This thesis will run GWAS analyses in Scottish and Indian cohorts, and compare 

the effects of different NAFLD risk variants in each population.  
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Co-agonists for GLP1R and GCGR have been deployed with some success for the treatment 

of diabetes, and have been investigated as a NAFLD therapy also.101–103 A number of variants 

in the GCGR and GLP1R genes have significant effects on their namesake receptors, altering 

clinically relevant parameters to NAFLD, such as blood sugar and response to anti-diabetic 

drugs .104,105 Effects of variants in these genes have never been shown in for NAFLD. This 

thesis will investigate the role of variants in these genes in NAFLD, and interactions between 

variants in GLP1R and GCGR. If variants with significant effects are found, this data may be 

effective in the application of personalised medicine to the deployment of GLP1R/GCGR co-

agonists for the treatment of NAFLD. 

Endothelin receptor antagonists (ETRAs) have been used successfully for the treatment of 

pulmonary arterial hypertension (PAH).106–108 A number of pathological overlaps between 

PAH and NAFLD mean that ETRAs have been investigated as a potential treatment for 

NAFLD. It is thought that the downregulation of the endothelin receptors will reduce activity 

of the hepatic stellate cells (HSCs) which are primarily responsible for the production 

extracellular matrix (ECM) which characterises fibrosis.109–111 There are a number of 

common genetic variants in PHACTR1, EDN1, EDNRA and EDNRB which have effects on 

endothelin and endothelin receptor activity.112–115 No studies have previously reported 

associations between variants in these genes, and NAFLD. The current thesis will explore 

these genes and their associations with NASH, fibrosis and a number of related phenotypes. 

Showing effects of these genes on NASH and fibrosis would demonstrate clear effects of 

endothelin on the development of the conditions, and potentially allow for personalised 

medicine in those treated with ETRAs for NAFLD. 

1.8 Aims of the Current Study 

The aims of the current project are as follows: 
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-Develop a NAFLD definition and apply it to the GoDARTS, SHARE and Tayside and Fife 

Diabetics cohorts in Scotland, and the DMDSC cohort in India. 

-Describe NAFLD and related phenotypes, and investigate morbidities and mortalities 

associated with NAFLD in Scottish cohorts. 

-Analyse genetic determinants of NAFLD in Scottish and Indian cohorts using GWAS 

methods. 

-Investigate the effects of specific candidate gene SNPs (related to GLP1R and endothelin) 

on NAFLD and associated phenotypes in Scottish and Indian phenotypes. 
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2 Development of a NAFLD Definition 

2.1 Abstract 

NAFLD is a chronic disease which often goes unnoticed due to the challenges of diagnosis. 

This is due to the lack of apparent signs and symptoms in most patients. A number of 

diagnosis methods exist with varying practicality and accuracy. The aim of this chapter is to 

develop and validate an accurate technique of defining NAFLD in large retrospective cohorts. 

NAFLD diagnosis techniques from previous literature are considered and described. A 

NAFLD diagnosis technique based on elevated alanine transaminase (ALT) levels is used, as 

ALT is a commonly measured marker of liver damage. This definition is applied to the 

GoDARTS, SHARE and Tayside and Fife Diabetics (T&F) cohorts. A similar definition 

based on a single ALT level is applied to the DMDSC cohort. 

A NAFLD definition based on two raised ALT levels measured at least months apart was 

applied, and had good sensitivity in GoDARTS. (97.4%) This definition was also accurate in 

SHARE and T&F, with sensitivities of 75.3% and 94.6% respectively. Thresholds of 19U/L 

and 30U/L (for women and men respectively) were used as upper limits of normal, based on 

recommendations of previous literature. An interval of at least 3 months between raised 

measurements was applied to reduce the likelihood of misclassifying acute liver injuries as 

NAFLD. This measure is practical, as most patients in GoDARTS have had a number of ALT 

measured. (Mean = 32.5 measurements each) 

An accurate and practical NAFLD diagnosis method is developed and validated in this 

chapter. This novel definition may be useful for defining NAFLD in future studies using 

large retrospective cohorts, and analysing the genetics and epidemiology of NAFLD in these. 

This also may serve as a useful clinical risk estimating tool. 
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2.2 Introduction 

The diagnosis of NAFLD can be challenging, as the condition is usually asymptomatic, 

progresses slowly and often has a benign clinical course.116,117 This chapter covers the 

development of a NAFLD case definition based on raised alanine transaminase levels, in 

three large retrospective cohorts which had data for electronic health records (EHRs). The 

aim of this study is to develop a sensitive, accurate and functional NAFLD phenotype which 

can be used clinically and applied in research utilising retrospective cohorts 

NAFLD usually lacks outwardly visible symptoms or signs, making it challenging to 

diagnose.118 NAFLD can cause fatigue and pain in the upper right abdomen, but is usually 

completely symptomless.119 More advanced liver disease in NAFLD, such as cirrhosis, can 

be accompanied by visible signs such as ascites and jaundice.120 These symptoms usually 

occur in advanced liver disease, which only a minority of NAFLD patients progress to.4 

Diagnosis of the condition long before this happens is desirable as early intervention can 

improve disease outcomes.121 

Many diseases don’t present immediately obvious symptoms, and require clinical 

investigation to diagnose. These often have a reliable marker that can be used to infer the 

presence of the disease. An example of this is type 2 diabetes (T2DM). HbA1c is commonly 

used to diagnose T2DM, as it is an indicator of blood glucose levels over the last 2-3 

months.122 HbA1c is a simple blood test, which can be performed routinely and is cost 

effective.123 Although there are a number of methods and tests for NAFLD, currently there is 

not a perfect, universally accepted and practical method for the diagnosis of NAFLD in real 

world cohorts.124 

One of the main motivations for diagnosis of disease is to allow treatment. This is somewhat 

more complex in NAFLD, as there is currently no specific pharmacological intervention 
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recommended for NAFLD.125 Despite this, there is evidence that NAFLD is reversible, even 

at the stage of cirrhosis in some cases.126 Lifestyle modification has been the standard 

recommendation for NAFLD treatment for some time, and is included in NICE guidelines.44 

Weight loss and physical exercise have both been shown to reduce steatosis severity 

independently of each other. 68,127  

Diagnosing NAFLD is useful for research purposes.128 An accurate NAFLD phenotype may 

be key factor in the epidemiological and genetic studies that seek to characterise the disease. 

These studies may aid drug development, pathways highlighted as important in the 

pathogenesis of NAFLD can be targeted. For NAFLD clinical trials, a NAFLD phenotype 

which is sensitive and specific is important in assessing the efficacy of potential treatments. 

These factors mean that despite the lack of a specific pharmacological treatment for NAFLD, 

there is great scientific and medical interest in developing methods to diagnose NAFLD.129 

A key epidemiological phenomenon of NAFLD is underdiagnosis in most populations.25 

There are a number of estimates of global NAFLD prevalence, but the prevalence of 

diagnosed NAFLD lags far behind even conservative estimates. Alexander et al. found that 

the prevalence of NAFLD diagnoses was 1.85% in analysis of four large European cohorts. 

This is in contrast to the estimate of 20% NAFLD prevalence which Alexander et al. suggest, 

which is modest compared to the estimates of other studies such as Younossi et al. provide a 

global estimate of 25% prevalence.49 This is higher in many regions, as Latino individuals 

tend to experience younger onset of NASH compared with Caucasian individuals for 

example.130 

The current chapter considers existing literature on the diagnosis of NAFLD with the use of a 

number of methods. The advantages and disadvantages of each method are compared with 

respect to accuracy and practicality as a method of diagnosing NAFLD in large retrospective 
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cohort studies. A NAFLD case definition based on elevated ALT levels was developed and 

validated in the GoDARTS, SHARE, and T&F cohorts. ALT was selected as it is a specific 

marker of liver damage, and is routinely measured, making it an effective method of NAFLD 

diagnosis in large retrospective cohort studies.131 

2.3 Methods of NAFLD Diagnosis 

A number methods of diagnosing NAFLD have been developed and used, and generally there 

is a trade-off between the accuracy and practicality of measures. The following section 

discusses NAFLD diagnosis methods with their merits and disadvantages. 

2.3.1 Biopsy 

The gold standard method of NAFLD diagnosis is liver biopsy.132 A small core tissue sample 

of the liver is taken with a needle which is then evaluated by a pathologist.133 This method is 

accurate for detecting the presence of steatosis in hepatocytes and for diagnosing later stages 

of NAFLD such as fibrosis and cirrhosis. Liver biopsies are invasive procedures, and can lead 

to serious complications. These include haemorrhage, pneumothorax, biliary peritonitis, and 

even death.134 As well as the risks of biopsy, inter-clinician variability in evaluation can 

influence the accuracy of diagnosis. 14 Steatosis, inflammation and fibrosis can often present 

unevenly throughout the liver, with some areas unaffected while others show severe NAFLD 

progression. This can lead to inaccuracy and false negative results. These factors combined 

with the high prevalence of NAFLD mean that biopsy is an impractical method of diagnosis, 

and often the risk is not worth the reward. Biopsy can be a useful tool for patients who are 

considered at greater risk of advanced stages of NAFLD such as fibrosis and cirrhosis, but 

non-invasive methods are more appropriate for NAFLD diagnosis.125 
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2.3.2 Imaging 

Imaging methods such as ultrasound and MRI can be used for NAFLD diagnosis.135 These 

methods can be accurate in detecting the presence of steatosis in the liver, as well as fibrosis 

and cirrhosis.136 The primary advantage of imaging methods over biopsy is that they are non-

invasive and do not pose the same risk of complications that biopsy does. Eddowes et al. 

found MRI was more cost effective than biopsy for diagnosing NAFLD. In two cohorts from 

NHS hospitals in the UK, the study showed MRI could save £150,218 per 1000 patients.137 

Ultrasound scanning techniques can be used at a patient’s bedside in clinical settings, giving 

immediate results.138 

Ultrasound is used effectively to grade fatty liver disease, and is more cost effective than 

MRI.139 Ultrasound has been shown to accurately detect moderate-severe NAFLD from no 

NAFLD present.140 As well as a binary diagnosis of NAFLD or not NAFLD, the severity of 

steatosis can be assessed by ultrasound. Clinicians often grade NAFLD on a 4 point scale: 

normal, intermediate, moderate and severe. Ultrasound techniques are not as accurate as 

biopsy, but provide more information about the current NAFLD status than a binary 

outcome.141 

Similarly to biopsy however, Hamer et al. found the accuracy of imaging methods can be 

affected by inter-clinician variability.142 Accuracy may also be affected by variation in 

equipment, equipment settings and the specific imaging modality used. Imaging methods 

may not be as accurate as biopsy, nor provide as much information about the status of liver 

disease in some instances. For example, Saadeh et al. found that there was no reliable method 

of discerning NAFLD from NASH using any radiological technique.143 Further to the issues 

of accuracy, imaging techniques may be impractical due to resource limitations and time 

consumption. Patients may experience waiting times of several weeks for diagnostic 

procedures which are in high demand within health services.144 Imaging processes are not 
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usually available at GP surgeries which means they are not practical for NAFLD diagnosis in 

the general population. 

2.3.3 Blood Biomarkers 

Blood based biomarkers are routinely used for quick and accurate diagnosis in many diseases 

including NAFLD.31 These are non-invasive, rapid and usually economical when compared 

with biopsy or imaging.145 Another advantage over biopsy or imaging is that blood can be 

drawn in general practice surgeries or in the community, making this form of testing for 

NAFLD very accessible. Many patients have blood taken routinely, allowing consistent 

monitoring of biomarkers. Multiple biomarkers can be tested at once and results combined to 

make disease scores, as considered below. Common biomarkers used for NAFLD and more 

advanced stages thereof include alanine transaminase (ALT), aspartate transaminase (AST), 

gamma-glutamyltransferase (GGT), ferritin and platelets.146 These are considered liver 

function tests. (LFTs) Among these LFTs, ALT is a commonly used biomarker in NAFLD 

research and clinical practice.131 

2.3.4 Scores and Indices 

Scores and indices to estimate the likelihood and severity of NAFLD have been developed. 

These use a variety of often biochemical and anthropometric measures, and combine them in 

some numerical formula. An example of this is the NAFLD activity score (NAS).147 This 

uses a combination of observed steatosis, lobular inflammation and liver damage to diagnose 

NAFLD and NASH. This is impractical as a method for diagnosis of NAFLD in the general 

population however, due to the pitfalls of biopsy discussed above. 
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FLI 

A non-invasive scoring system for NAFLD is the Fatty Liver Index (FLI).148 This combines 

BMI, waist circumference, GGT and triglycerides using the formula in figure 2-1 below. 

 

Bedogni et al. found that the FLI could detect NAFLD with an accuracy of 0.84. They found 

that ALT was predictive of NAFLD, but GGT performed better in their model. Subsequent 

studies have validated FLI against other NAFLD diagnosis methods such as imaging 

techniques, and found it performs well.149 

This can be applied in the GoDARTS cohort where 4,164 eligible patients had the required 

data to calculate their FLI score. This represents about 30% of the eligible GoDARTS 

population, so is useful for replication and verification of results but the missingness of GGT 

measurements make FLI less useful for NAFLD diagnosis than definitions using more 

commonly taken measures. 

Hepatic Steatosis Index 

Another score for NAFLD diagnosis is the Hepatic Steatosis Index (HSI).150 This uses 

AST(U/L), ALT(U/L), BMI(kg/m2), sex and diabetes in the formula below to rule in or out 

NAFLD. 

 

Figure 2-1 Fatty Liver Index calculation formula 

Figure 2-2 Hepatic Steatosis Index calculation formula 
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This index can also be applied to a subset of GoDARTS where 1,493 patients had the 

requisite data measured before sign up to the study. Like the FLI, this is useful for 

verification of results in GoDARTS and SHARE, but the number of patients without AST 

levels measured make this impractical as a main NAFLD definition. 

APRI 

The APRI (AST to Platelet Ratio Index) score is also used to diagnose hepatic fibrosis.151,152 

APRI is calculated as follows. 

 

The upper limit for normal AST is taken as 40U/L in most studies.151 This index has been 

found to correlate strongly with fibrosis and cirrhosis, but has little predictive value for 

steatosis however.153 

The FLI, HIS and APRI indices are useful markers for steatosis and fibrosis, but the lack of 

availability of certain data, especially AST measurements, make these impractical as a main 

technique for defining NAFLD for the analysis in the current study, as the analytical 

requirements of these measures would result in the exclusion of a significant portion of the 

GoDARTs, SHARE and T&F cohorts. 

2.3.5 Summary of Techniques 

The previous section covers a number of techniques used for the diagnosis of NAFLD in 

clinical and research settings. Based on evidence from previous literature, and the availability 

of relevant data, a NAFLD definition based on elevated ALT levels is selected for the current 

Figure 2-3APRI calculation formula 
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study. The following section describes the association between NAFLD and ALT, covers the 

development of a NAFLD definition based on ALT levels. 

2.4 ALT Based NAFLD Definition 

2.4.1 Biology 

ALT is part of the gluconeogenesis process and plays a major role in metabolic homeostasis. 

It is an enzyme which catalyses the transfer of α-amino acids from alanine to create pyruvic 

acid.154 This process occurs in the liver, and thus ALT is found in its highest concentrations 

in the liver and in low concentrations elsewhere in the body.155 ALT is found in the 

cytoplasm of hepatocytes, and when hepatocellular injury occurs, ALT is released into the 

bloodstream. As a result, ALT levels are commonly used biomarker of liver damage.156 The 

mean half-life of serum ALT is 47 hours, meaning that measured ALT levels can be affected 

by acute events.154  

Elevated ALT levels have been observed in those with NAFLD in numerous studies. 31,157–160 

ALT levels are known to correlate with liver fat percentage; Phillips et al. estimate this 

correlation to have R2= 0.51 for example.161 Other studies have found ALT to be a useful 

predictor of NAFLD in those with steatosis confirmed by MRI.162 Maximos et al. found that 

ALT levels were a strong predictor of hepatic triglyceride content.163 A number of previous 

epidemiological studies have used ALT levels to define their NAFLD cases. Wong et al. 

investigated the showed the link between T2DM and NAFLD with ALT as a surrogate 

marker.164 Cross sectional case-control studies such as Yoo et al. in 2008 used ALT to define 

paediatric NAFLD.165 ALT has been used as a surrogate marker to track resolution or 

progression of NAFLD also. 166,167 
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2.4.2 Practicality 

An ALT based NAFLD definition is a pragmatic choice for defining NAFLD in the cohorts 

used in this project for a number of reasons. A key factor which makes ALT a useful 

biomarker for NAFLD is that ALT levels are commonly measured in both GP and hospital 

settings. The majority of patients in GoDARTS and SHARE have ALT measurements taken, 

and in many individuals a large number of measurements have been taken over many years. 

In GoDARTS for example, patients had a mean number of 32.5 ALT measurements each. 

This allows the assessment of NAFLD over a longitudinal period with some degree of 

regularity, and an interesting analysis of ALT levels over time compared with other clinical 

outcomes. This reflects what is seen in primary care settings in general, as ALT levels are 

monitored as a key indicator of NAFLD.42 

2.4.3 Specificity versus other diseases 

Serum ALT levels are specific markers of liver damage due to their high concentrations in 

the liver under normal circumstances. ALT is a general marker of hepatocellular injury 

however, and is not specific to NAFLD.156 There are a variety of causes of liver damage 

which result in raised ALT levels; therefore to use ALT for NAFLD diagnosis, all other 

causes of liver injury must be ruled out.  

One of the major alternative causes of abnormal ALT levels is alcoholic liver disease 

(ALD).168 Excessive alcohol consumption can cause steatosis of the liver much like 

NAFLD.169 The demarcation between ALD and NAFLD is not clear in a large portion of 

patients, as the two diseases have similar features, and can lead to fibrosis, cirrhosis and liver 

cancer. Patients with fatty liver disease may have their condition attributable to both alcohol 

and metabolic aetiologies.33 The generally accepted upper alcohol consumption limits for 

NAFLD are <20 grams per day for women and <30 grams per day for men.42 It is likely that 

in patients with fatty liver who drink alcohol but below these limits, alcohol may still 
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contribute to the disease. Previous studies have shown that ALT levels are more correlated 

with the non-alcoholic form of fatty liver disease, and AST tends to be higher in ALD.170 

Other liver insults which can raise ALT levels include viral and immunological hepatitis. 

These are usually diagnosed with blood tests, the results of which are reported in 

immunology and virology files in EHRs. Patients with positive serological tests for anti-

smooth muscle antibody, antinuclear antibodies or anti-mitochondrial antibodies, or any 

positive serology for hepatitis B surface antigen or hepatitis C antibody, or mention of cause 

of liver disease in medical records are excluded from the study. 

Aside from other liver disease, factors which do not warrant exclusion can affect ALT levels. 

There is evidence that certain drugs at therapeutic doses, including paracetamol, can raise 

ALT levels in the absence of any clinically evident liver damage.171 

2.4.4 Sensitivity for NAFLD 

Despite the large volume of evidence that NAFLD causes elevations in ALT levels, there 

have been a number of studies that report the complete spectrum of NAFLD in patients with 

normal ALT levels.172 Mofrad et al. found that some patients within the normal ALT range, 

50U/L for women and 75U/L for men, had steatosis, fibrosis and cirrhosis. These thresholds 

are however are considerably higher than those adopted by most modern studies, and may not 

reflect truly “normal” ALT values. Sanyal et al. had similar results, but they too used a high 

ALT threshold, at 40U/L.173 Despite higher thresholds, both studies identified individuals 

with low ALT < 15, with NAFLD. Both of these studies used cross-sectional techniques, with 

a single ALT measurement on the date of the study and this is a potential source of error as 

follows. In severe cases of cirrhosis, ALT levels can decrease as the number of hepatocytes 

diminishes and less ALT is released into the bloodstream.174 Lominadze et al, found many 

patients with cirrhosis had normal ALT levels.175 In GoDARTs there are patients with normal 
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ALT levels at the time of cirrhosis diagnosis, but had previously had raised ALT levels. ALT 

levels have also been found to vary by age, following an inverted U shape over a lifetime.176 

The retrospective application of a NAFLD definition based on ALT levels allows an “ever 

raised” case definition, increasing sensitivity compared with cross-sectional techniques. 

The sensitivity of ALT as a diagnostic marker for NAFLD has been found to differ between 

those with and without T2DM.177 Kotronen at el. found that individuals with T2DM have 

80% more liver fat than comparable non-diabetic individuals, but using ALT as a biomarker 

underestimates the prevalence of NAFLD in those with T2DM. Indeed, diabetic patients with 

comparable ALT levels had between 40% and 200% higher liver fat content than their 

matched non-diabetic counterparts. Given the high proportion of individuals with T2DM in 

GoDARTS, this may mean that an ALT based NAFLD definition will underestimate NAFLD 

in the cohort. 

2.4.5 Thresholds 

For diagnosing disease with ALT levels, a threshold between healthy and unhealthy is 

needed.  There have been many thresholds used clinically and in studies. The most commonly 

used threshold is 40U/L, which was first set in the 1950’s and is still commonly used.178 

There has been a trend towards lowering these limits. Studies in the 1990’s saw the limits of 

30U/L to 50U/L on average.178 

It is believed that many of the cohorts used to define abnormal ALT levels contained 

individuals with undiagnosed liver insults, leading to high ALT levels being used for 

thresholds of the healthy range.179 In 2002, Prati et al. suggested lowering these even further 

to 19U/L for women specifically, based on the results of their study looking at 6,835 

individuals without any viral liver insult.180 Using these values, Kunde et al. investigated the 

effect on the rate and accuracy of NAFLD diagnosis.179 They found that sensitivity was 
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improved, at the cost of decreased specificity. Tomizawa et al. found that using the threshold 

of 19U/L for both male and female patients was a useful marker for screening for NAFLD.157 

The thresholds suggested by Prati et al. (30U/L for men, 19U/L for women) were used for the 

current study. These were chosen as there is good evidence that these thresholds are the true 

ULNs for ALT in healthy individuals, and that these thresholds are useful in screening for 

and predicting NAFLD. 

2.4.6 Temporal Variation in ALT 

ALT levels can vary over time, therefore the time at which blood is drawn for ALT tests can 

affect the result. This can embed another source of variance in ALT levels which cannot be 

accounted for. The time of day at which a blood sample is drawn may affect the ALT 

measurement. In mice it has been found that liver function oscillates daily in response to 

circadian rhythms and ALT levels fluctuate throughout the day.181 Given the 47 hour half-life 

of serum ALT, this fluctuation is represents a delayed representation of ALT secretion into 

the bloodstream. There is some evidence that ALT levels vary by time of day in humans as 

well as mice, and that they are highest in the latter half of the day.182,183 Factors mentioned 

above, such as paracetamol intake or low level alcohol intake, can vary which may cause 

variation in ALT levels. 

Sattar et al. found that sustained increases in ALT levels were predictive of progression to 

T2DM, whereas isolated increases in ALT were not predictive.184 Given the link between 

NAFLD and development of ALT, the ALT level increases appear to be good markers of 

NAFLD in this study.185  Though this study looked at changes in ALT levels and the current 

study uses absolute values, this supports the notion of sustained ALT elevation as a useful 

diagnostic marker for NAFLD. 
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As mentioned above, cross-sectional techniques may underestimate the presence of NAFLD 

if based on ALT levels alone. Mofrad et al. showed all stages of NAFLD in a number of 

patients with healthy ALTs.172 In GoDARTs, there are a large number of patients who 

experience raised ALT levels followed by normal ALT levels. In fact, there is evidence that 

ALT levels decrease in the later stages of fibrosis.174 This could indicate that patients with 

severe fibrosis and normal ALT have previously had raised ALT levels. The sensitivity of the 

NAFLD definition in this study is improved by using longitudinal data, as raised ALT levels 

at any point in time are used to form the NAFLD phenotype.  

When making diagnoses based on biomarker levels, using a sequence of measurements taken 

at different times can be useful in increasing accuracy. This technique is established for 

diagnosis other diseases; for example chronic kidney disease, where changes in glomerular 

filtration rate and urine output over time are used for diagnosis and staging.186 Using several 

ALT measurements to define NAFLD can improve specificity, as acute cases of liver damage 

with raised ALT levels in a short period of time are not categorised as NAFLD events. The 

current study uses any two raised measurements that are a minimum of three months apart to 

define NAFLD. This means that single incidents of raised ALT levels are not counted as 

NAFLD, increasing specificity. The minimum interval of 3 months between raised ALT 

measurements makes this chronically raised ALT levels, consistent with the chronic nature of 

NAFLD cases. 

2.5 NAFLD Definition in the Current Study 

The ALT based NAFLD phenotype for this project is defined as follows; 2 or more raised 

ALT measurements in the absence of alternative cause of liver disease, at least 3 months 

apart. In contrast to previous literature, this adds a higher degree of certainty that the 

condition is chronic. The retrospective application of this definition allows increased 

sensitivity for NAFLD diagnosis, as discussed in the sections above. 
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The thresholds of 30U/L for men and 19U/L for women for the upper limit of normal ALT 

were chosen,  based on recommendations by Prati et al.180 

2.6 Application in GoDARTS, SHARE, and Tayside and Fife 

2.6.1 Introduction to cohorts 

Three large cohorts were available for analysis in this project. These comprised of patients 

within the Tayside and Fife NHS health boards.  

The first cohort used was GoDARTS.187 This was a case-control type 2 diabetes study based 

in Tayside, Scotland. This cohort comprised of electronic health records (EHRs) from 18,306 

individuals, 10,149 of whom have T2DM. On patients’ date of sign up they were phenotyped 

by biochemical and haematological investigations, anthropometric measurements and 

lifestyle questionnaires.  

The second cohort used was SHARE, a cohort of 73,024 individuals who volunteered to 

allow their medical records to be used for scientific research, and is open to anyone in 

Scotland over the age of 16.188 

The third cohort includes patients from the East of Scotland from population-level data on 

individuals with type 2 diabetes across the regions of Tayside & Fife (T&F) in Scotland. 

Clinical data is made available through the Scottish Care Information-Diabetes Collaboration 

(SCI-DC) system. This cohort comprise 89,553 individuals at the time of study. 

2.6.2 Data available: ALT, other necessary data such as immunology and virology 

Medical records from the NHS Tayside and Fife boards are available for patients in each 

cohort. These extend back as far as the beginning of 1987 in some cases, when records were 

digitised. These include admissions, deaths, prescriptions, biochemistry, demography and a 

number of other files for each patient in the cohort.  
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For the GoDARTS cohort, alongside the NHS EHR records, additional data was collected on 

the date of sign up. These records included data for biochemical measurements such as 

triglycerides, cholesterol and HbA1c, anthropometric measures such as BMI, Waist and 

Weight and lifestyle factors including smoking, drinking and exercise. 

2.6.3 Exclusions 

The exclusion of patients with other forms of liver disease which may affect the accuracy of 

NAFLD diagnosis is performed using data from EHRs. For each cohort a smoking and 

alcohol file is available for diabetic patients. This includes a column with patients mean 

alcohol intake per week. Men who drink more than 30g per day on average and women who 

drink over 20g per day on average are excluded. Patients are also excluded if they have any 

alcohol excess related condition reported in their medical records. In GoDARTS, 1,175 

individuals are excluded due to alcohol consumption or alcohol related hospital admission. 

Patients are excluded from analysis if they have features of other chronic liver disease, 

including: any positive serological tests for anti-smooth muscle antibody, antinuclear 

antibodies or anti-mitochondrial antibodies,  any positive serology for hepatitis B surface 

antigen or hepatitis C antibody, or mention of cause of liver disease in medical records. In 

GoDARTS, 1,200 individuals are excluded do to alternate causes of liver disease reported in 

EHRs. 

2.6.4 Prevalence rates in each cohort 

The lifetime prevalence rates were calculated for each cohort using all the data available for 

each patient, after patients with alternative causes of liver disease were excluded from 

analysis. This is calculated as the presence of NAFLD any time between first available 

medical record and last medical record, either due to death or the end of the study follow up 

period.  
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The lifetime NAFLD prevalence rates as assessed using the ALT based NAFLD definition 

outlined above are as follows: GoDARTS: 68.24%, SHARE: 49.26%, T&F: 64.09%. 

2.6.5 Specificity and sensitivity versus ICD10 codes, and NASH 

The NAFLD diagnosed by ALT were analysed compared to ICD10 codes recorded in EHRs’. 

The sensitivity of this definition was 97.4%, and the specificity was 32.0%. Using the same 

method, in SHARE this definition has a sensitivity of 75.3% and specificity of 54.2%, and in 

T&F the definition has a sensitivity of 94.6% and specificity of 38.3%. Due to the 

underdiagnosis of NAFLD in clinical settings, the specificity of the definition is of little 

utility or importance for validating NAFLD in the current study.25 

To further validate this phenotype, positive control tests are run against chronic kidney 

disease in GoDARTS, as this has been shown to associate with NAFLD.189 NAFLD was 

found to associate with increased incidence of chronic kidney disease in a Cox proportional 

hazards model adjusted for sex, T2DM, age, and BMI. (HR = 1.32(1.25 – 1.39), p = 4.8x10-5)   

A positive control test with the well-known NAFLD risk variant PNPLA3 rs738409 was 

conducted in the GoDARTS cohort.190  In a logistic regression with an additive model, 

adjusted for age and sex, PNPLA3 rs738409 was associated with increased NAFLD at the 

beginning of the study. (p = 1.09x10-8, OR = 1.32(1.24-1.41)) This result is similar to other 

results found for the effect of PNPLA3 on NAFLD, such as Wang et al. with an OR of 1.52. 

191 

2.7 Application in GoDARTS Cohort 

The NAFLD definition used in this project was decided upon after consultation of the current 

literature, and analysis of sensitivity and specificity versus NAFLD recorded in medical 

records, as diagnosed by physicians. Several other NAFLD definitions are considered in the 

sections above, using different ALT thresholds, and different temporal rules. The current 
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section outlines some commonly used or suggested alternative NAFLD diagnosis methods, 

and how these definitions performed in GoDARTS.  

2.7.1 Thresholds 

A number of thresholds for ALT were trialled. These are as follows: 

 30U/L for men, 19U/L for women – Prati et al. 180 

 30U/L for men, 30U/L for women – Kunde et al. 179 

 40U/L for men, 35U/L for women – Neuschwander-Tetri et al. 192 

 25U/L for men, 17U/L for women – Miyake et al. 31 

2.7.2 Number and Timings of Measurements 

A single case of a raised ALT is often used to diagnose liver disease, but as discussed above, 

using multiple measurements can improve accuracy. The following methods of using raised 

ALTs to define NAFLD were tested. 

 1 raised ever 

 2 raised ever 

 2 raised at least 3 months apart 

The definitions of NAFLD listed above were compared using a number of metrics. This is 

shown in the table below. This table displays the prevalence rate of NAFLD with each 

definition, stratified by T2DM. It also shows the sensitivity and specificity of the definition 

when compared to NAFLD diagnoses in EHRs coded by ICD10 codes. The sum of 

specificity and sensitivity for each NAFLD definition is included in table 1. Finally, the table 

shows the difference between expected NAFLD rate and actual rate, stratified by T2DM. The 

expected rates in T2DM and non-T2DM were considered to be 70% and 30% respectively. 

193 This calculation shows how much each definition is likely to over or underdiagnose 

NAFLD. This gives a notion of how credible each definition is, where a large difference 
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would suggest a poor definition of NAFLD. The results of this comparison are shown in the 

table below, with the main NAFLD definition for this project of two raised ALT 

measurements a minimum of three months apart highlighted in grey. 
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Table 2 - Comparison of Performance of NAFLD Diagnosis Methods in GoDARTS 

 

Method Male ALTs Female 

ALTs 

Prevalence 

Rate 

Sensitivity Specificity Specificity plus 

Sensitivity 

Diabetic NAFLD 

Rate 

Healthy NAFLD Rate Cumulative 

Difference from 

expected rate 

1 raised 25 17 89.51 100.00 10.54 110.54 96.61 82.21 78.81 

30 19 83.91 100.00 16.17 116.17 93.01 74.54 67.55 

30 30 72.53 98.55 27.60 126.15 85.78 58.90 44.68 

40 35 58.52 98.55 41.68 140.23 72.86 43.76 16.62 

2 raised outside 3 

months 

25 17 78.04 97.10 22.06 119.16 90.93 64.77 55.70 

30 19 68.24 97.40 31.90 127.55 83.01 53.02 36.04 

30 30 51.85 94.20 48.35 142.55 68.97 34.23 5.27 

40 35 35.81 85.51 64.43 149.94 50.77 20.42 28.81 

2 raised ever 25 17 82.30 100.00 17.79 117.79 93.77 70.49 64.26 

30 19 73.90 98.55 26.21 124.76 87.54 59.89 47.43 

30 30 59.57 97.10 40.44 137.54 76.37 42.65 19.01 

40 35 45.28 92.75 54.95 147.70 60.87 29.24 9.89 

2 raised in 1 year 25 17 72.83 98.55 27.30 125.85 89.29 55.89 45.18 

30 19 64.04 97.10 36.13 133.23 81.00 46.58 27.58 

30 30 50.01 94.20 50.14 144.34 67.20 32.46 5.26 

40 35 36.79 91.30 63.48 154.78 51.11 22.05 26.84 
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2.7.3 Comparison of Definitions 

The comparison table above shows the performance of each of the definitions. The common 

trade-off between specificity and sensitivity evident in the results as there is a range of 

overall NAFLD rates as given by the definitions. 

All definitions have fairly high sensitivity, ranging from 85.5% to 100%. Due to the 

relatively low number of cases of NAFLD reported in ICD10 codes, this test lacked the 

power to satisfactorily evaluate differences in sensitivity. However, consideration of ICD10 

codes demonstrated that a high proportion patients with a NAFLD diagnoses in admissions 

data have had elevated ALT measurements at some point. 

The specificity of the definitions is not as informative as the sensitivity, due to 

underdiagnosis of NAFLD in hospital admissions.25 This means that NAFLD defined in 

medical records is specific but not sensitive compared to ground truth. Despite the low 

specificity of ALT based NAFLD definitions when comparing to NAFLD admissions, the 

ALT based definitions are likely closer to the actual NAFLD rate in the population. 

 Definitions based on more than one raised ALT measurement are more specific than one 

single raised ALT level. Using two raised ALTs in a year, or two outside three months both 

gave good sensitivity to NAFLD as phenotyped by hospital admissions. 

The definition selected for this project (highlighted in the table) had good sensitivity but low 

specificity. This definition gave reasonable rates for NAFLD in diabetics and non-diabetics 

of 83.0% and 53.0% respectively. Although these are higher than rates estimated in current 

literature for diabetic and non-diabetic populations, the cohort has a high median age (73 

years), which may account for high prevalence.193 

Whilst some other ALT based NAFLD definitions that were tested have better performance 

metrics such as specificity, the definition for NAFLD of two raised ALTs separated by at 
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least three months was selected for a number of reasons. The thresholds of 30/19UL for men 

and women are chosen as the current literature suggests these are the true ULNs and two 

raised measurements at least three months apart as compared to cross-sectional techniques 

this increases specificity and diminishes risk of aberrant ALT fluctuation affecting the results. 

The measurements being at least three months apart ensures the definition is chronically 

raised ALTs, which adds accuracy as NAFLD is a chronic condition. 

2.7.4 Patient Profiles, Morbidity and Mortality in NAFLD 

The following section contrasts those with and without NAFLD, as defined by two raised 

ALT levels three months apart. Aside from differences in liver enzymes, individuals with 

NAFLD are known to differ from healthy individuals in a number of parameters. These are 

shown in the table 2 below, where the differences between groups for each variable are all 

statistically significant. (p< 0.05) 

Table 3 - Patient Profiles Stratified by NAFLD Status in GoDARTS 

 
Healthy SE NAFLD SE 

N 6731 
 

6950 
 

Diabetic 1662 24.7% 4605 66.3% 

Female 2796 41.5% 3865 55.6% 

BMI (kg/m2) 27.2 4.8 30.9 6.1 

Age (years) 61.9 13.7 64.9 11.5 

Waist (cm) 99.3 11.4 107.1 12.7 

 
87.1 13.3 98.4 14.8 

Weight (kg) 84.4 14.2 92.9 17.1 

 
70.2 14.4 79.6 18.3 

Baseline ALT (U/L) 21.0 8.1 36.3 18.7 

 
16.1 12.9 27.1 19.3 

Triglycerides (mmol/L) 1.6 1.0 2.1 1.4 

HDL (mmol/L) 1.6 0.5 1.4 0.4 
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LDL (mmol/L) 2.8 1.0 2.4 0.9 

Systolic Blood Pressure (mmHg) 137.5 20.1 140.5 19.1 

Diastolic Blood Pressure (mmHg) 78.9 10.7 78.0 11.1 

SIMD10 6.4 2.6 5.9 2.7 

 

Those with NAFLD weighed more, are more likely to be diabetic, had higher BMI, are older, 

and had larger waists and higher triglycerides. These are known risk factors/covariates of 

NAFLD, and demonstrate the wider ranging metabolic correlates of NAFLD.1,63 

2.7.5 Morbidity and NAFLD 

NAFLD is associated with a range of morbidities. These include the range of NAFLD 

outcomes and complications; NASH, fibrosis, cirrhosis and hepatocellular carcinoma.5 These 

more extreme endpoints are relatively uncommonly reported compared with NAFLD itself. 

NAFLD was associated with increased number of hospital admissions in GoDARTS, in a 

linear regression adjusted for sex, age, T2DM, BMI and SCSIMD10. (β = 2.13(0.11 -19.10), 

p < 2x10-16) Although some of these admissions are due to liver conditions, NAFLD is still 

associated with more admissions when these visits are excluded. (β = 2.11(0.11 - 19.34), p < 

2x10-16) This suggests that the majority of the increase in morbidity associated with NAFLD 

is not directly due to liver conditions. 

Previous literature has linked NAFLD with a number of cardiovascular endpoints, and 

suggested this is the predominant cause of morbidity and mortality in NAFLD.194 These 

include ischemic heart disease, myocardial infarction, and atrial fibrillation.58 In GoDARTS, 

NAFLD was significantly associated with increased cardiovascular disease incidence (HR 

=1.35(1.28 - 1.43), p < 2x10-16) and with increased cardiovascular death. (HR = 1.26(1.17 - 

1.37, p = 1.55x10-8) Other conditions such as chronic kidney disease have been associated 

with NAFLD, which was also replicated in GoDARTS. 189 
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2.7.6 Mortality and NAFLD 

NAFLD has been linked to increased mortality by a number of studies.5 Death caused 

directly by NAFLD, through failure of the liver due to cirrhosis or HCC, is the most common 

NAFLD related death cause investigated. These conditions are uncommonly reported in death 

certificates however. In GoDARTS for example, only 2.0% of individuals with NAFLD who 

have died have a NAFLD related condition listed in their causes of death. This is consistent 

with most findings about NAFLD mortality, which is dominated by cardiovascular and 

cancer death.58,120 

This large difference between individuals with and without NAFLD cannot be explained fully 

by NAFLD specific conditions, and is due to other causes. Some studies have found 

associations between NAFLD and cardiovascular death for example.120 To investigate this, 

individuals with NAFLD endpoints recorded in medical records are excluded from analysis. 

In GoDARTS, NAFLD (as diagnosed by ALT levels) still has a significant association with 

lowered death age. (β = -1.95(0.378  -5.15), p =2.74x10-7) This demonstrates that there is 

clear increased mortality among those with NAFLD which is not caused by direct NAFLD 

endpoints. Though some of this may be attributable to the underreporting of NAFLD, it is 

likely that there is another cause or multiple other causes of this difference. 

NAFLD has been associated with cardiovascular death, which is considered by some as the 

predominant cause of early death in NAFLD.58,120 There has been some research into the link 

between NAFLD and extrahepatic cancers, which is the focus of the next chapter in this 

thesis. This investigates the link between NAFLD and cancer incidence, and cancer mortality 

and considers the role these play in the increased morbidity and mortality in NAFLD patients. 
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2.7.7 Genetics and NAFLD 

NAFLD has a number of known genetic risk modifiers, including PNPLA3 rs738409 which 

was analysed with the current NAFLD definition above.52,90 This thesis investigates genetic 

determinants of NAFLD in subsequent chapters, beginning with a genome wide association 

study (GWAS). Candidate gene studies of variants related to GLP1R and endothelin are also 

conducted. The NAFLD definition developed in the current chapter provides an accurate and 

validated phenotype for these studies to produce valid results. 

 

2.8 Application in DMDSC South Indian Cohort 

Further to analysis in the GoDARTS, SHARE and T&F cohorts, access to a fourth cohort 

with clinical and genetic data was available. This cohort contained South Indian individuals, 

allowing for interesting comparison with Scottish cohort. 

2.8.1 Introduction to cohort 

The Indian cohort is from Dr. Mohan’s Diabetes Specialities Centre (DMDSC) based in 

Chennai, India.195 DMDSC is a large, privately-run chain of single-speciality hospitals and 

clinics for the treatment of diabetes and related comorbidities. This cohort comprises of 

75,952 patients from Chennai and the surrounding area, all of whom have T2DM. The 

majority of patients are of South Indian origin. 

2.8.2 Data Availability 

The data from these patients is from a set of measurements taken on their first visit to the 

DMDSC clinic. During this visit, each patient had a series of demographic and phenotypic 

measurements taken. These included; HbA1c, BMI, ALT, HDL, age and sex. 

Of the 75,952 unique patients with baseline biochemistry measurements, 33,194 of these 

patients had ALT measured at their first visit. This single ALT measurement is used to define 
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NAFLD in the DMDSC cohort. ALT measurements are available for patients at the date of 

their visit to the DMDSC centre. This allows a cross sectional analysis of the NAFLD 

prevalence in this cohort. The baseline measurements for most patients were taken within one 

year of their T2DM diagnosis date, allowing for interesting assessments of NAFLD in those 

recently diagnosed. 

A number of these patients had genotypic data available for analysis giving 3,150 patients 

with genotype data and sufficient data for analysis of NAFLD defined by ALT levels, and 

2015 patients had genotypic data and Fatty Liver Grade data. 

2.8.3 Suitability of ALT as NAFLD Surrogate 

The usefulness of ALT in this cohort is lessened due to lack of data providing other possible 

causes of liver disease. Due to the fact this data is from visits to a private clinic, routine 

healthcare similar to that of the GoDARTS and cohort was not available. This meant that it is 

not possible to exclude patients with alternative aetiologies for liver disease such as 

virological, immunological or alcohol related disease in the same manner as is done in 

GoDARTS. There is an alcohol consumption data field, with a binary yes/no whether the 

individual drinks alcohol. From this it is not possible to tell whether the individual drinks at 

levels which could cause ALD, therefore this variable is included as a covariate in the 

analysis.  

The nature of the data also means it is not possible to use more than one ALT measurement 

for NAFLD diagnoses as there was no access to routine measurements. This meant that the 

NAFLD definition was based on one single ALT measurement at the time of enrolment. 

2.8.4 Fatty Liver Grade in DMDSC 

13,367 of patients in the DMDSC cohort have had abdominal ultrasounds administered. In 

the report, each patient was assigned a Fatty Liver Grade. (FLG) This was an index of hepatic 



59 
 

fatty infiltration scored in four ordinal categories. These were no fatty infiltration -0, mild 

fatty infiltration – 1, moderate fatty infiltration – 2 and severe fatty infiltration -3.196 

Ultrasound has been demonstrated as an accurate method of detection for steatosis of the 

liver.157 Ultrasound is more specific for defining NAFLD than ALT levels, as liver fat itself is 

what is evaluated rather than liver enzymes. Where fatty infiltration is greater than 20% of 

hepatocytes, the sensitivity of ultrasound was found to be 90%.197 Ultrasound techniques 

however are less effective in diagnosing the inflammation seen in NASH, as well as 

fibrosis.198 Another caveat is that it is impossible to distinguish between NAFLD and ALD 

using this method, as they both cause steatosis and are histologically similar.199 

Due to the superior performance of ultrasound for NAFLD diagnosis, and the lack of key data 

regarding alternative liver disease, ultrasound defined Fatty liver Score is the optimal method 

for NAFLD phenotyping in this cohort. As a result, the ALT measurements can be used as an 

adjunct, either as an additional phenotype or to aid validation of ALT based NAFLD 

definitions in other cohorts. 

2.8.5 NAFLD Rate and Distribution of Fatty Liver Grade in the DMDSC Cohort 

At the time of baseline measurement, the prevalence of NAFLD was 50.8%. The distribution 

of Fatty Liver Grades is shown in the table 3 below, with additional mean statistics of each 

group.  

Table 4 - Comparison of Patients in DMDSC Cohort Stratified by Fatty Liver Grade 

Fatty Liver 

Grade 

0 1 2 3 

Number (%) 2500 (18.7%) 4559 (34.1%) 

 

5673 (42.4%) 

  

635 (4.75%) 

NAFLD Rate 

(ALT definition) 

20.65% 25.93% 37.27% 41.87% 
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ALT 

(female/male) 

25.24U/L / 

30.70U/L 

24.24U/L / 

34.65U/L 

32.19U/L / 45.19U/L 31.34U/L / 48.47U/L 

BMI 24.30kg/m2 25.90 kg/m2 27.96 kg/m2 30.75 kg/m2 

Sex (% Male) 58.98% 64.99% 68.16% 69.72% 

AST 26.34U/L 26.69U/L 31.90U/L 32.17U/L 

 

There was a strong association between FLG and NAFLD defined by ALT. (OR = 1.10(1.09 

– 1.11), p < 2x10-16) There were also significant associations between FLG and age, BMI, 

and AST. Higher FLG was seen in males. 

2.9 Conclusion and Limitations                                                                                                                                                                                                                                                                                                                                                                                        

To conclude, the current section reviews previous literature on NAFLD diagnosis methods, 

and proposes a NAFLD definition based on chronically raised ALT levels. This definition 

was validated in three large Scottish cohorts, and has good sensitivity when compared to 

NAFLD diagnoses in EHRs. This chapter outlines a practical method for the diagnosis of 

NAFLD in the large retrospective datasets for research purposes.  

This is an important finding, as diagnosing NAFLD remains an obstacle in NAFLD research 

and treatment. This methods uses data from retrospective medical records, thus requires no 

extra clinical measurements or investigations to take place making it cost effective and 

practical. Analysis revealed that patients with NAFLD were found to have greater risk of 

morbidity and mortality. This NAFLD definition is used in subsequent thesis chapters for the 

investigation of genetic modifiers of NAFLD risk. 

This NAFLD definition may be useful in large scale datasets with data for thousands of 

individuals, but it likely results in a small number of false positives and false negatives. It has 

been shown that ALT levels correlate well with liver fat content, and there is evidence that 

the limits of normal ALT used in this study are accurate.26,180 However, we are unable to 
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estimate the severity of the phenotype captured by our current NAFLD definition. This could 

mean that our NAFLD definition classifies those with liver fat <5% as NAFLD, 

overestimating the prevalence. The correlations with NASH as per medical records and other 

NAFLD indices suggests overall NAFLD is being captured reasonably well, but given the 

high prevalence positives cases for our definition in the cohorts, it likely overestimates 

slightly. This makes the definition of limited use on an individual level in clinical settings. 

The increased morbidity and mortality associated with this phenotype demonstrate the 

clinical relevance of the diagnosis method, though further work to stratify and identify those 

at risk may be more useful. The utility of diagnosing NAFLD in primary care settings is 

discussed in depth in the introduction to this thesis.   
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3 NAFLD and Cancer Incidence 

3.1 Abstract 

The aim of this study was to investigate the incidence of cancer in NAFLD patients and non-

NAFLD controls, and the role of BMI in this relationship. 

GoDARTS, SHARE and Tayside and Fife diabetics, three Scottish cohorts of 13,695, 62,438, 

and 16,312 patients respectively were analysed in this study. Participants in GoDARTS were 

a volunteer sample, with half having T2DM. SHARE were a volunteer sample. Tayside and 

Fife diabetics was a population level cohort. Patients with the relevant healthcare data 

available for analysis, and individuals with alternative causes of liver disease were excluded 

from the analysis. 

NAFLD increased cancer incidence with a hazard ratio of 1.31 in a cox proportional hazards 

model adjusted for sex, type 2 diabetes, BMI, and smoking status (95% CI = 1.27 – 1.35, p = 

1.8x10-10). This was replicated in two further cohorts, and similar associations with cancer 

incidence were found for Fatty Liver Index, FIB-4 and NASH. Homozygous carriers of the 

common NAFLD risk variant PNPLA3 rs738409 had increased risk of cancer. (HR = 1.27 

(1.02-1.58), p = 3.1x10-2) BMI was not independently associated with cancer incidence when 

NAFLD was included as a covariate. Finally, NAFLD was associated with increased risk of 

cancer death (HR = 1.40, 95% CI =1.33 - 1.47, p = 3.7x10-6). 

NAFLD is associated with increased risk of cancer incidence and death, as is PNPLA3 

rs738409, suggesting a causative relationship between NAFLD and cancer. NAFLD may be a 

major component of the relationship between obesity and cancer incidence. 

3.2 Introduction 

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease 

globally, affecting around 25.2% of adults worldwide.200 NAFLD, a spectrum of simple 
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steatosis to non-alcoholic steatohepatitis, is traditionally associated with endpoints which 

affect the liver, including fibrosis, cirrhosis and hepatocellular carcinoma (HCC).201 The 

previous chapter in this these developed a definition of NAFLD and found increased numbers 

of hospital admissions and increased mortality in patients with NAFLD. The majority of 

these patients (>98%) had never had any NAFLD or even hepatological condition recorded in 

their admissions or death records. This leaves an unexplained increase in morbidity in 

NAFLD patients, which is caused by alternative conditions. Recent studies have found 

associations between NAFLD and specific extrahepatic cancers, including colon and breast 

cancer, as well as overall cancer risk.59,202 The aim of the current chapter is to investigate the 

relationship between cancer incidence in NAFLD, and how this affects morbidity and 

mortality in NAFLD patients. 

 The relationship between NAFLD and cancer, as well as the synergy between NAFLD and 

other cancer risk modifiers is not fully understood. Hepatocellular carcinoma has long been 

associated with NAFLD and is widely recognised as one of the most severe endpoints of 

NAFLD.201,203,204 The intracellular environment created by the presence of NAFLD has been 

found to contribute to HCC in a number of ways.205 Damage to liver cells via oxidative stress, 

inflammation, and disruption of cytokines, adipokines and lymphokines are among the ways 

in which NAFLD contributes to the development of HCC.206,207 There is evidence that 

NAFLD has effects on cancer incidence that extend beyond the liver. 

Increased incidence of colorectal cancer has been found in patients with NAFLD in multiple 

studies; the first extrahepatic cancer found reliably associated with NAFLD.208–213  A number 

of these studies found increased colorectal cancer risk in those with NASH compared to 

NAFLD.210,214 Other sites linked to NAFLD include pancreas, oesophagus, stomach, breast, 

uterus, lung, ovary, and prostate.59,215–218 A number of these studies have found even in non-
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obese or non-overweight patients, that NAFLD is still associated with specific extrahepatic 

cancers.59 

A small number of studies have found increased incidence of overall cancer risk in those with 

NAFLD. Kim et al. found markers of hepatic fibrosis to be associated with all cancer, and 

NAFLD itself to be associated with specific extrahepatic cancers; including breast and 

colon.202 Allen et al. found increases in all cancer incidence in those with NAFLD.59 The 

evidence for NAFLD being associated with all cancer risk is limited in comparison compared 

with the evidence for association between NAFLD and specific cancer sites. Further, large 

scale study is required to determine the true relationship between NAFLD and extrahepatic 

cancer. 

To investigate the link between NAFLD and overall cancer incidence, it is important to 

disentangle NAFLD from other correlated cancer risk factors. Obesity, commonly defined as 

BMI equal or higher than 30kg/m2, is a major cause of NAFLD, with 51.3% of NAFLD 

patients also being obese.41,219 Obesity has also been linked with cancer incidence at 13 

different sites in the body; a number of which have been reported to be associated with 

NAFLD also.220 Wolin et al. estimate that excess weight or obesity accounts for 20% of all 

cancers.221 Mechanistically, several factors associated with increased fat mass have been 

proposed to cause cancer.222 For example, dysregulation of circulating hormones and 

cytokines including insulin, insulin–like growth factor signalling, adipokines, inflammation 

and sex hormones may disrupt normal cell cycle control and promote tumour formation.  

Indeed, there is significant overlap of many of such pathological abnormalities between both 

overweightness and NAFLD.223  The elements of shared pathophysiology of NAFLD and 

overweightness could potentially mean that the observed increases in cancer risk share a 

common aetiology. The increased risk of cancer incidence attributable with NAFLD and 
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obesity must be quantified to understand the role of each in previous associations observed. 

Allen et al. found that obese patients who did not have NAFLD were at only slightly higher 

risk of cancer incidence than those who were non-obese.59 They also found that patients who 

were not obese, but had NAFLD were at increased risk compared to non-NAFLD controls. 

This led them to conclude that the majority of the observed cancer risk in obese patients is 

due to increased rates of NAFLD. It was found however that the effect of NAFLD compared 

to obesity differed depending on which cancer site was analysed. This may suggest a synergy 

between NAFLD and obesity for cancer risk. 

Leading on from previous research in the area, the aim of this study was to analyse the effects 

of NAFLD on overall and specific cancer incidence. In addition to this, the study aimed to 

investigate the roles of BMI and NAFLD in increased risk cancer incidence. This study also 

investigated whether the relationship between NAFLD and cancer was causal or not. 

3.3 Methods 

3.3.1 Data 

3.3.1.1 GoDARTS 

This study aimed to analyse the incidence of all cancer longitudinally. The first cohort used 

was GoDARTS, a case-control type 2 diabetes study based in Tayside, Scotland. Key 

descriptive statistics and demographic attributes of this cohort are shown in Table 4. 

Table 5 - Mean Characteristics of GoDARTS Patients Stratified by NAFLD Status at Time of Enrolment to GoDARTS 

Characteristic Non NAFLD Number NAFLD p 

Number 6726 6969  

% Diabetic 24.65%(n = 1,658) 66.34%(n = 4,623) < 0.0001 

BMI 27.22kg/m2(SD = 4.76) 30.90kg/m2(SD = 6.07) < 0.0001 

Weight (Males/Females) 84.44kg(SD = 14.18) 92.89kg(SD = 17.04) < 0.0001 
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/70.20kg (SD = 14.38) /79.64kg(SD = 18.30) /< 0.0001 

Female 41.48% (n = 2790) 55.46% (n = 3865) < 0.0001 

Smoker 55.14% (n = 3709) 57.67% (n = 4019) 2.3x10-3 

Age at Signup 61.88 years(SD = 13.72) 64.9 years(SD = 11.54) < 0.0001 

Follow-up Length 9.24years(SD = 2.50) 8.58 years(SD = 2.88) < 0.0001 

 

This cohort was used for discovery and comprised of electronic health records (EHRs) from 

13,695 eligible individuals.224 The mean age at sign up was 63.41 years and participants had a 

mean follow up of 8.95 years. 48.6% of patients were male. On patients’ date of sign up they 

were phenotyped by biochemical and haematological investigations, anthropometric 

measurements and lifestyle questionnaires. This date was used as the beginning of the follow 

up period. 2,794 patients had cancer incidents during the follow-up period.  

3.3.1.2 SHARE 

Two further, independent cohorts were analysed for replication. The second data source was 

SHARE. This is a cohort in which individuals volunteer to allow their medical records to be 

used for scientific research, and is open to anyone in Scotland over the age of 16. The 

characteristics of this cohort are shown in table 5 below. 

Table 6 - Mean Characteristics of SHARE Patients Stratified by NAFLD Status at Age 60 (Beginning of Follow-Up Period) 

Characteristic Non NAFLD NAFLD p 

Number 19035 7856  

% Diabetic 1.65% (n = 314) 8.17% (n = 6418) < 0.0001 

Female 52.45% (n = 9984) 65.10% (n = 5114) < 0.0001 

Follow-up Length 13.92 years(SD = 7.45) 6.91 years(SD = 4.31) < 0.0001 
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This comprised 62,438 patients with EHRs available once patients with exclusions for 

alternate causes of raised ALT livers were removed.188 This cohort was used for replication 

of findings in GoDARTS. The mean age in SHARE was 57.0 years, and 61.6% were female.  

3.3.1.3 Tayside and Fife 

Replication of results was also undertaken in Tayside and Fife diabetics (T&F). This cohort 

comprises all patients in the Tayside and Fife NHS region who had a diagnosis of T2DM at 

some point in their lives. Many of the patients received a diagnosis of T2DM during the 

follow up period, therefore the T2DM rate is not 100% at baseline. The characteristics of this 

cohort are shown in table 6. 

Table 7 - Mean Characteristics of Tayside and Fife Diabetics Patients Stratified by NAFLD Status at Age 60 (Beginning of 

Follow-Up Period) 

Characteristic Non NAFLD NAFLD p 

Number 5,102 6039  

% Diabetic 40.53% (n = 2068) 60.37% (n = 3646) < 0.0001 

BMI 30.55kg/m2 (SD = 6.12) 33.15kg/m2 (SD = 6.78 <0.0001 

Female 45.84% (n = 2339) 53.27% (n = 3217) < 0.0001 

Smoker 58.57% (n = 2988) 65.01% (n = 3926) <0.0001 

Follow-up Length 11.08 years (SD = 6.07) 6.21 years (SD = 4.03) < 0.0001 

 

 Like the two previous cohorts, medical records from the NHS are available for these 

patients. The cohort 16,312 patients eligible after exclusions for other hepatic insults were 

made. The mean age of these patients was 65.0 years, and 48.1% were female.  

The results from T&F were not meta analysed with GoDARTS and SHARE, as this is a 

primarily diabetic cohort, therefore does not capture those who do not go on to get diabetes. 
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The ascertainment bias in this cohort that only contains individuals who did eventually get 

diabetes is likely to have resulted in the lower point estimate for NAFLD in cancer risk that 

we have observed. To ensure there was no overlap in participants between cohorts, patients in 

SHARE who are also in GoDARTS were excluded from SHARE, and participants in 

GoDARTS or SHARE were excluded from analysis in T&F, meaning each cohort is 

completely independent. 

To allow comparison with the GoDARTS cohort, a baseline point had to be chosen from 

which to begin the follow up period in which to analyse cancer incidence in SHARE and 

T&F. The age of 60 was chosen as it is close to the mean baseline age of GoDARTS, and 

importantly close to the mean age of NAFLD diagnosis in GoDARTS (60.8 years) and in the 

literature.1 This allowed a more robust replication of findings in GoDARTS in the two 

replication cohorts, ensuring age wasn’t a source of heterogeneity in analysis. These criteria 

left 26,891 patients in SHARE and 11,141 patients in T&F suitable for analysis with a 

median follow up time of 11.0 years and 8.0 years respectively. The EMRs available for 

patients in all cohorts are from the NHS Tayside and Fife authorities.  

3.3.2 Outcomes 

All outcomes were defined using NHS medical record data, made available for participants in 

each of the three cohorts. As such, all data was recorded in the same format; all disease was 

recorded in ICD10 codes and biochemical measures in the same, relevant units.225 (E.g. Units 

per litre for ALT measurements) 

3.3.2.1 NAFLD Phenotype 

NAFLD cases and controls were defined using the liver function test alanine transaminase 

(ALT), a commonly used marker of liver damage, and a useful surrogate for NAFLD.131 A 

full description of this phenotype is given in a previous chapter. This was chosen as it is 
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commonly measured, and a large portion of the population have multiple measurements. 

Elevated ALT levels were considered to be over 30U/L for men, and over 19U/L for women 

(Normal ALT reference ranges: Males - 5-30U/L; Females – 5-19U/L.). These upper limits 

are those suggested by Prati et al. as the maximum normal values of ALT in healthy adult 

men and women.180 Raised ALT levels correlate with NAFLD and are an appropriate 

surrogate marker for the disease, provided other causes of liver disease are ruled out.131,226 

There is substantial evidence that raised ALT levels in the absence of any apparent liver 

insult are extremely likely to be caused by NAFLD.227 All samples from GoDARTS, SHARE 

and T&F were analysed in the same laboratory.  

NAFLD cases were defined as any patient who had experienced at least 2 raised ALT 

measurements, at least 3 months apart. This time scale was chosen as 3 months is a 

commonly used definition of chronic and most cases of acute hepatitis, such as drug induced, 

will have resolved.228 This also increases the specificity of the definition. 

3.3.3 Exclusions 

Patients were excluded from analysis if they had features of other chronic liver disease 

recorded in their medical records. These included: any positive serological tests for anti-

smooth muscle antibody, antinuclear antibodies or anti-mitochondrial antibodies, any positive 

serology for hepatitis B surface antigen or hepatitis C antibody, or mention of cause of liver 

disease in medical records. In GoDARTS, 1,157 patients had both immunological and 

virological screens at some point which were negative, therefore they were included in 

analysis. Patients with alcohol dependence or any documentation of alcoholic liver disease in 

their EHRs were excluded using ICD codes: “K70” and “F10”. In addition, patients who self-

reported drinking more than 20g (2.5 units) a day for women and more than 30g (3.75 units) 

a day for men were excluded. Allen et al. concluded that alcohol was not likely to explain the 

increase in cancer incidence seen with NAFLD in their study.59 
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3.3.4 Validation of Phenotype 

To validate this NAFLD phenotype, sensitivity and specificity analyses were conducted in 

GoDARTS comparing this to cases of NAFLD confirmed in EHRs with the “K76.0” ICD10 

code. Full validation of this phenotype is included in the previous chapter. The sensitivity of 

this definition was 97.4%, and the specificity was 32.0%. These analyses were also 

conducted in SHARE using the same method, with a sensitivity of 75.3% and specificity of 

54.2%, and in T&F with sensitivity of 94.6% and specificity of 38.3%. The SHARE cohort 

has lower sensitivity compared to the other two cohorts, likely due to the lower average age 

of the cohort and the lower prevalence of diabetes resulting in lower healthcare interaction, 

morbidity and mortality. Also, due to the relatively low numbers of confirmed NAFLD in 

EHRs, small differences in numbers can have large effects on sensitivity and specificity. 

To further validate this phenotype positive control tests were run against chronic kidney 

disease (CKD) in GoDARTS, as it has been shown to associate with NAFLD.189 During the 

follow up, 1,131 patients had incidence of CKD. NAFLD was found to associate with 

incidence of CKD in a cox proportional hazards model adjusted for sex, T2DM, age, and 

BMI. (HR = 1.32(1.25 – 1.39), p = 4.8x10-5)   

A positive control test with the well-known NAFLD risk variant PNPLA3 rs738409 was 

conducted. 190 In GoDARTS, 8,399 eligible participants had been genotyped for this variant. 

In a logistic regression with an additive model, adjusted for age and sex, PNPLA3 rs738409 

was associated with increased NAFLD at the beginning of the study. (OR = 1.32(1.12-1.36), 

p = 1.09x10-8) 

3.3.5 NAFLD Related Phenotype Definitions 

As well as our ALT based NAFLD definition, some patients had NAFLD confirmed in 

hospital admissions data with the ICD10 code “K76.0”. This is referred to as “NAFLD 
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hospitalisation” in subsequent sections. In GoDARTS, 0.36% of participants had this code 

reported in their medical records at any point. 

Non-Alcoholic Steatohepatitis (NASH) was phenotyped by searching admissions, deaths and 

biopsy files for cases of NASH, defined using the ICD10 codes for NASH, fibrosis and 

cirrhosis. This may have been a main cause of hospitalisation or concomitant morbidity. 

Another method of detecting NAFLD non-invasively is the Fatty Liver Index (FLI).148 This 

uses BMI, waist circumference, triglycerides and gamma-glutamyl transferase (GGT) to 

define NAFLD, and has been validated in a number of cohorts as an accurate surrogate of 

NAFLD. 4,164 patients in GoDARTS had the required data available for this measure. In 

GoDARTS, FLI correlated significantly with NAFLD as diagnosed by ALT levels. (Pearson 

correlation coefficient = 0.33 (0.31-0.36), p < 0.0001) 

The FIB-4 scoring system was also used in the GoDARTS study.153 A FIB-4 score of greater 

than 3.25 has been shown to predict advanced hepatic fibrosis, therefore this score was used 

as the cut off. This was calculated using the highest recorded AST and ALT measurements 

and platelet count before the beginning of the GoDARTS for each individual to calculate the 

highest FIB-4 score they had experienced.  

3.3.6 Mendelian Randomisation 

Mendelian randomisation methods were used to assess whether the relationship between 

NAFLD and cancer incidence was causative.229 The missense variant PNPLA3 rs734809, 

which is strongly associated with the development and progression of fatty liver disease, was 

chosen as it has been shown in a large number of studies to associate with NAFLD, and has 

been used in previous Mendelian randomisation studies on NAFLD. The ratio method was 

used to conduct this analysis.190  In GoDARTS, 7,715 patients had been genotyped for this 

variant, and 343 of these were homozygous carriers. (Minor Allele Frequency (MAF) = 



72 
 

20.6%) In SHARE, 1,755 patients had been genotyped for this variant, with 50 being 

homozygous carriers. (MAF = 23.0%)  

3.3.7 Overweight and Obesity Definitions 

In this study, overweight is defined as a BMI greater than 25kg/m2 and less than 30kg/m2. 

Obesity is defined as a BMI equal or over 30kg/m2.230 

3.3.8 Cancer Phenotype 

Cancer incident data was obtained from the Scottish cancer register, part of the Scottish 

Morbidity Record.231 This contains all diagnoses of cancer made in Scotland in NHS care, in 

ICD10 code format. This data was available for patients in GoDARTS, SHARE and T&F. 

Cases were cross checked with recorded cases in hospital admissions and death records files. 

The cancer records were identified by the relevant ICD10 codes for malignant neoplasms or 

neoplasms of unknown behaviour. These were any code including "C", "D0", "D37", "D38", 

"D39", or "D4". Obesity related cancer incidents were phenotyped similarly, but specifically 

for the 13 reported obesity related cancer sites. 220 

Cancer deaths were phenotyped based on death certificate files in EHRs. These list a main 

cause of death and contributing causes of death for each patient who has died. These were 

also cross checked with the Scottish cancer register file.  

3.3.9 Statistical Methods 

All data analysis was carried out in the statistical package R. The effects of NAFLD and 

other independent variables on cancer incidence were analysed using a Cox proportional 

hazards model (CPH). Patients were censored at the point at which they had a cancer incident 

recorded, death, or September 2016 when the follow-up period ended. Patients with missing 

data were excluded from analysis. 
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To assess whether NAFLD affected cancer death risk in the presence of non-cancer death as a 

competing risk regressions (CRR) using Fine and Gray’s method were run. Logistic 

regression (LR) models were used to evaluate the effect of NAFLD on death cause.  

In the GoDARTS cohort models were adjusted for sex, age, BMI, T2DM, and smoking 

status. In GoDARTs, models with BMI replaced by weight or waist measurement were also 

run, as these are slightly different measure of obesity and may have provided further insight 

into the associations. Hypertension, activity level, alcohol consumption and deprivation level 

were not included in the models as they did not have a significant effect on cancer incidence 

in the adjusted model. In the SHARE cohort, models were adjusted for sex and T2DM. 

Smoking and BMI data were not widely available for individuals in the SHARE cohort, 

therefore this was not controlled for in most analyses.  

3.4 Results 

3.4.1 NAFLD and Cancer Incidence 

In the GoDARTS cohort, NAFLD was associated with increased cancer incidence. During 

the follow up period, 18.5% of controls compared to 22.2% of patients with NAFLD 

Figure 3-1Forest Plot of Effects of Variables on Cancer Incidence in GoDARTS and SHARE 
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developed cancer. In controls, 1244 patients had cancer incidents and 1550 patients had 

incidents in NAFLD cases. Patients who had NAFLD at enrolment to GoDARTS had 

increased cancer incidence independent of sex, age, BMI, smoking status, and diabetes status 

(HR = 1.31(1.27 – 1.35), p = 1.8x10-10). These results are shown in Figure 3-1 below. 

 

Using the same covariates, the Fatty Liver Index was associated with increased cancer 

incidence (HR = 1.004(1.00-1.008), p = 5.0x10-2) and FIB-4 score over 3.25 was associated 

with increased cancer risk. (HR= 1.31, 95% CI =1.29 – 1.53, p = 3.2x10-3).  

When NAFLD was not taken into account, BMI was associated with increased cancer 

incidence (HR = 1.09(1.01 – 1.18), p = 3.1x10-2). This association was completely abrogated 

when adjusted for the presence of NAFLD. Similar results were found for other markers of 

adiposity, weight and waist measurements. 

When analysis was limited to obesity related cancers, BMI was associated with increased 

cancer incidence. (HR = 1.01(1.00 – 1.03), p = 3.3x10-2) Similarly to the analysis of all 

cancer incidence, BMI was not associated with cancer incidence when NAFLD was added as 

a covariate.  

Similar results were found in the SHARE cohort. Out of 26,891 patients analysed, 5,728 had 

cancer incidents in the follow up period. NAFLD was associated with increased cancer 

incidence (HR = 1.56, (1.45- 1.67), p < 2x10-16). NAFLD hospitalisation prior to baseline 

was associated with increased cancer risk, with a hazard ratio of 2.54. (95% CI = 1.14 – 5.65, 

p = 2.3x10-2).  NASH was also associated with increased cancer incidence. (HR = 4.18(1.74- 

10.0), p = 1.4x10-3) Among the patients in SHARE, 1,912 had BMI data available. In these 

patients, when NAFLD was accounted for, BMI was not significantly associated with overall 

cancer incidence, or with obesity related cancer incidence. 
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Similar results were found in the population based diabetes cohort from Tayside & Fife. Out 

of the 11,141 patients analysed, 1,819 had cancer incidents in the follow up period after the 

age of 60. NAFLD was associated with cancer incidence in the follow up period. (HR = 

1.16(1.04-1.29), p =5.9x10-3)  

As well as increasing all primary cancer incidence, NAFLD was associated with increased 

incidence of specific cancers in GoDARTS and SHARE, shown in Figure 3-2 below.  

 

Due to lower numbers of cases, the confidence intervals for these are wider than for all 

primary cancers combined. Breast and uterine cancer analyses were limited to females, with 

prostate cancer analyses limited to males. T&F was not meta analysed in this analysis due to 

the primarily diabetic composition of the cohort, which did not capture those over 60 who did 

not go on to get T2DM. The ascertainment bias in this cohort that only contains individuals 

who did eventually get diabetes is likely to have resulted in the lower point estimate for 

NAFLD in cancer risk that we have observed. 

Figure 3-2 Hazard Ratios for Effect of NAFLD on Specific Cancer Sites in GoDARTS and SHARE Meta-Analysis 
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In the T&F cohort of the 11,141 patients analysed, 1,819 had cancer incidents in the follow 

up period after the age of 60. NAFLD was associated with cancer incidence in the follow up 

period in an adjusted cox proportional hazards model. (HR = 1.16(1.04-1.29), p =5.9x10-3) 

NAFLD hospitalisations were significantly associated with cancer incidence in the same 

model. (2.04(1.12-3.71), p = 1.9x10-2) BMI was not associated with cancer incidence when 

NAFLD was included in the analysis. When analysis was limited to obesity related cancers, 

BMI did not show any significant association with cancer incidence when NAFLD was 

adjusted for. 

3.4.2 NAFLD and Cancer Death 

The relationship between NAFLD and cancer death was analysed in GoDARTS. In a CPH 

model adjusted for age, sex, diabetes, BMI and smoking, it was found that NAFLD is 

associated with increased risk of cancer death. (HR = 1.40(1.21-1.61), p = 8.8x10-4) FLI was 

associated with increased cancer death risk in the same CPH model. . (HR = 1.009(1.002 - 

1.015), p =9.8x10-3) 

NAFLD was associated with increased risk of non-cancer death in the same model. (HR = 

1.23(1.12-1.35), p < 0.0001) To estimate the effects of NAFLD specifically on cancer death 

more accurately, competing risks analyses were run. 

A CRR using Fine and Grays’s method was run to analyse the association between NAFLD 

and cancer death with non-cancer related death as a competing risk. In a model with sex, 

T2DM, smoking, obesity and age, NAFLD increased risk of cancer with a subdistribution 

hazards ratio (SHR) of 1.28 (95% CI =1.11 - 1.47, p = 8.8x10-4).  

In SHARE, a CRR adjusted for sex and T2DM with non-cancer death as a competing risk 

was run. Patients with NAFLD had a significantly higher risk of cancer death. (SHR = 3.12 

(2.38– 4.10), p <2x10-16) 
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In T&F, in an adjusted competing risks regression with non-cancer death as a competing risk, 

NAFLD was associated with increased cancer death. (SHR = 1.40(1.20-1.63), p = 9.6x10-11) 

In those patients who died during the follow up period of GoDARTS, NAFLD was associated 

with increased chance of cancer being the main cause of death in a logistic regression 

adjusted for age, sex, T2DM, smoking and BMI (OR = 1.33 (1.10 – 1.62), p = 3.6x10-3). This 

was also found in SHARE in a logistic regression adjusted for sex and T2DM. (OR = 

1.54(1.17 – 2.03), p = 2.0x10-3)  

The same result was found in T&F, with patients with NAFLD more likely to die with cancer 

as the main cause of death. (OR = 1.44(1.32 – 1.58), p = 1.3x10-3) 

3.4.3 Cancer as a Driver of Shorter Lifespans in NAFLD Patients 

Further analysis showed that this association between NAFLD and cancer death is one of the 

major drivers of the shorter life expectancies of NAFLD patients. This is shown in the table 7 

below.  

Table 8- Proportion of All Deaths Due to Cancer Stratified by NAFLD and Type 2 Diabetes Status in GoDARTS 

 

Table 7 shows the proportion of all deaths which are attributable to cancer. For example, in 

patients with NAFLD and not diabetes, 41.25% of deaths had cancer a the main cause, and 

45.26% of all deaths in this group had cancer as a main or contributing cause. 

Group 

Cancer as Main Cause of 

Death Rate 

Cancer as Contributing Cause 

of Death Rate 

Total Number in Group 

No NAFLD or T2DM 31.33% 35.34% 382 

T2DM 
24.28% 30.29% 449 

NAFLD 41.25% 45.26% 559 

Both NAFLD and  T2DM 27.80% 31.73% 1853 
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In GoDARTS, when stratified by cancer death and non-cancer death, NAFLD had no effect 

on age of death in the non-cancer group. NAFLD was associated with lower death age in 

those patients who died with cancer as a main cause. (p = 6.1x10 -5, β = -2.91, 95% CI= (-

2.18, -3.63), adjusted R2 = 0.05) NAFLD did not have an effect on age of death in those who 

never had a cancer diagnosis, but associated with lower age of death in those who had a 

cancer diagnosis at some point. (β = -2.07, 95% CI= (-1.54, -2.60), adjusted R2 = 0.07, p = 

1.8x10-4) 

 

Mean age of death is presented in table 8 below. This is stratified by NAFLD, T2DM and 

cancer death. 

Table 9 - Mean Death age versus Cancer Death, NAFLD and Type 2 Diabetes. (● indicates condition is present) 

Cancer as Main Cause of Death NAFLD T2DM Mean Death Age N 

   
82.7 263 

● 
  

79.2 119 

 
● 

 
83.0 328 

● ● 
 

75.9 231 

  
● 80.8 340 

● 
 

● 79.9 109 

 
● ● 79.4 1340 

● ● ● 76.6 513 

 

Similar results were found in SHARE, although these were less comparable due to the 

younger age of the SHARE cohort therefore lower numbers. NAFLD was associated with 

lower age of death in those who had a cancer diagnosis at some point in their life (β = -2.04, 

95% CI= (-0.25, -3.84), adjusted R2 = 0.07, p = 0.026), but not in those who never had a 

cancer diagnosis. This is shown in table 9 below. 
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Table 10 - Mean Death age versus Cancer Death, NAFLD and Type 5 Diabetes. (● indicates condition is present) 

Cancer as Main Cause of Death NAFLD T2DM Mean Death Age N 

   
75.5 116 

● 
  

73.2 103 

 
● 

 
76.4 270 

● ● 
 

69.8 332 

  
● 72.4 11 

● 
 

● 70.7 5 

 
● ● 73.6 89 

● ● ● 71.6 54 

 

 

3.4.4 PNPLA3 and Cancer Incidence 

 

The effects of PNPLA3 on cancer incidence during the follow up period in GoDARTS and 

SHARE were evaluated. Homozygous carriers of PNPLA3 rs738409 had increased risk of 

cancer incidence (HR = 1.27 (1.02-1.58), p = 3.1x10-2). These results were meta-analysed 

with results from SHARE, shown in Figure 3-3. 
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This association was also observed in GoDARTS when patients with liver cancer were 

excluded from analysis, as PNPLA3 rs738409 has been shown to increase liver cancer risk.232 

(HR = 1.26(1.01-1.58), p = 3.8x10-2) Similar results were found in an adjusted CRR with 

death as a competing risk. (SHR =1.24(1.00-1.54), p = 4.9x10-2) 

Mendelian randomisation analysis was conducted to estimate the effect of NAFLD on cancer 

incidence. Using the ratio method in a meta analysis of GoDARTS and SHARE, NAFLD was 

found to be significantly associated with cancer incidence, with a β estimate of 1.33(95% CI 

= 0.18 - 2.49, p = 0.023) 

Figure 3-3 Forest Plot of Effects of PNPLA3 rs738409 on Cancer Incidence in GoDARTS, SHARE and Meta-Analysis 
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3.5 Discussion 

In this study, it is shown that a significant increase in cancer incidence exists in patients with 

NAFLD. Cancer incidence and death was higher in those who had NAFLD in GoDARTS, 

SHARE, and T&F using the raised ALT definition as a surrogate of NAFLD. This 

demonstrates the generalisability of this result. This is the first truly large scale observational 

study to show these associations, as well as the first to show the effect of BMI on cancer 

incidence is driven to null when NAFLD is accounted for. In SHARE and T&F, NAFLD 

admissions were associated with increased cancer incidence. NASH also increased cancer 

incidence, with a larger effect size than NAFLD. Other non-invasive biomarkers including 

Fatty Liver Index and FIB-4 score prior to enrolment to the GoDARTS study were also found 

to increase risk of cancer during the follow-up period. These results support findings from 

other published studies that link NAFLD to cancer of all types. 59,202 It also suggests that the 

more pro-inflammatory form of NAFLD, NASH, may have more of an effect and this may 

give clues to the biological mechanism(s). 

There is emerging evidence that the association between NAFLD and cancer extends beyond 

the liver to other parts of the body. Kim et al. found in a cohort follow-up study that, in 

addition to an increased risk of liver cancer, NAFLD dramatically increased rates of 

extrahepatic cancers, including breast and colon in those who were diagnosed with NAFLD 

prior to the 10 year follow-up period.202 Allen et al similarly showed that NAFLD was 

associated with increased extrahepatic cancer risk, in sites such as the colon, lung and 

prostate.59 In the current study, an increase in cancer incidence was found in many of these 

specific sites, including breast, colon, liver, lung and prostate. Collectively, these data, 

including the results that we describe, supports the notion that NAFLD increases incident 

cancer risk. 
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NAFLD is associated with increased risk of cancer death in the follow up period in both 

GoDARTS, SHARE and T&F. This data correlates with our earlier findings that NAFLD is 

associated with increased cancer incidence, as increased incidence is naturally linked to 

increased mortality. Analysis of causes of death as reported by ICD10 codes in medical 

records showed that the deaths of patients with NAFLD were more likely to be due to cancer. 

Cancer was a key factor in the shorter lifespans of patients with NAFLD, as there was no 

significant effect of NAFLD on age of death when patients with a cancer diagnosis were 

excluded. This increase in cancer incidence and death accounts for a large proportion of the 

increase in morbidity and mortality shown in NAFLD patients in the previous chapter. 

Similar results were found in a recent study in a large Swedish cohort with biopsy confirmed 

NAFLD.60 In this study, Simon et al. found that excess death in NAFLD patients was 

primarily driven by extra-hepatic cancers and cirrhosis, while other causes such as 

cardiovascular disease and HCC had only a small effect. These findings agree with those of 

the current study, further implicating NAFLD in the development of extrahepatic cancer. 

We showed that homozygous carriers of the PNPLA3 NAFLD risk variant, rs738409, had an 

increased risk of cancer incidence. In a Mendelian randomisation analysis, we showed 

PNPLA3 rs738409 increased NAFLD incidence, NAFLD increased cancer incidence, and 

PNPLA3 rs738409 increased cancer incidence. This novel finding is supporting evidence that 

NAFLD is causally associated with increased cancer incidence.  

Substantial evidence links cancer to hyperinsulinemia. For example, hyperinsulinemia has 

been found to be a risk factor for colon cancer.233 It is also a risk factor for cancer death, 

independent of obesity.234 Patients with NAFLD are more likely to have hyperinsulinemia, 

and this is associated with reduced insulin clearance.235 This insulin excess may underlie, at 

least in part, the mechanistic basis by which NAFLD increases cancer incidence, as 

insulin/Igf-1 may promote tumour formation through mitogenic pathways downstream of 
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their receptors.236 No association was seen between T2DM and cancer when NAFLD was 

accounted for however, which suggests factors other than hyperinsulinemia are causing the 

increased cancer. 

Damage to liver cells via oxidative stress, inflammation, and disruption of cytokines, 

adipokines and lymphokines may contribute to the pathogenesis of cancer in those with 

NAFLD.205 NAFLD is a pro-inflammatory state, which may create an environment 

favourable to the development of cancer.237 Cancer has been previously linked to chronic 

inflammation, via increases in mutations, reduced apoptosis and other environmental 

changes.238 Inflammatory mediators suck as arachidonic acid, cytokines, chemokines, and 

free radicals are increased in NAFLD, and may contribute to cancer risk.238 Adipokines and 

cytokines for example are found in higher concentrations in the serum of NAFLD patients, 

which may  be factor in extrahepatic cancer development.239 Pro-inflammatory cytokines 

TNF-α (Tumour Necrosis Factor alpha) and IL-6 (Interleukin-6) are key factors in NAFLD 

inflammation, and may encourage development of neoplasia.238 Due to the diverse nature of 

cancer at different sites, it is likely that a number of different factors have effects. The larger 

effect sizes of NASH and FIB-4 on cancer incidence observed in this study are consistent 

with the notion of inflammation driving a proportion of cancer risk, as compared to simple 

steatosis. 

In a model adjusted for age and sex, BMI was found to be associated with increased cancer 

incidence. Many studies have shown increased cancer risk with increasing BMI, therefore 

this finding is consistent with previous literature. We found that BMI was not associated with 

overall cancer incidence when NAFLD was taken into account, and the same was found for 

waist and weight measurements. We also found that individuals who were obese but did not 

have NAFLD were not at increased risk of cancer incidence compared to those of a healthy 

weight. This finding supports those of Allen et al.59 When analyses were limited to so-called 
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obesity related cancers, similar results were found, as BMI was associated with cancer 

incidence, but not when NAFLD was adjusted for. This was found in all three cohorts 

analysed. The lack of independent association between BMI and cancer incidence in our 

study may suggest that NAFLD is a major component in the increased risk of cancer 

observed in overweight and obese patients.  

These findings have a number of implications for different stakeholders. For patients, 

especially those who are overweight or have T2DM, this has the most impact. The 

association between ALT and future cancer incidence may be useful as a screening tool to 

identify those with increased cancer risk. Methods of screening for cancer can be invasive 

and uptake is often low, therefore a blood based biomarker which is routinely measured in 

many individuals could be an effective adjunct to current screening methods such as 

mammograms and colorectal screening.240–242  

This finding increases the importance of creating a pharmacological intervention for NAFLD. 

The findings of this study combined with other studies linking NAFLD to extrahepatic cancer 

may also aid cancer research in pinpointing the pathways and pathologies which link excess 

body weight to cancer incidence. 

3.5.1.1 Limitations 

NAFLD Phenotype 

The NAFLD phenotype may be a limitation of this study, and this is discussed in detail in the 

previous chapter. There is substantial evidence linking ALT levels to NAFLD, but also 

evidence that NAFLD can exist in patients with normal ALT levels. Furthermore, non-

sensitive NAFLD phenotype would drive the association towards null, and therefore we 

cannot exclude the fact that the true association may be stronger than that we have observed. 

While we acknowledge that ALT levels may have a limited sensitivity for defining mild 
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NAFLD, we have shown that our ALT based definition is highly sensitive for more advanced 

cases, such as those with the Fatty Liver Index measured and those hospitalised with 

steatosis. In GoDARTS, SHARE and T&F, we estimated sensitivity to be 97.4%, 75.3% and 

94.6% respectively for such advanced cases.   

Genetic evidence for the suitability of our phenotype ascertainment is demonstrated by the 

observation that the major NAFLD susceptibility variant in PNPLA3, rs738409, was 

associated with our NAFLD phenotype with a very similar magnitude to that previously 

reported. 191 The high sensitivity of the phenotype and similar effects of other NAFLD related 

phenotypes on cancer incidence, plus previous literature linking NAFLD to cancer support 

the validity of the ALT based NAFLD phenotype. 59,202  

Whilst we show that our NAFLD phenotype is accurate, even if part of the aetiology of the 

raised ALT levels is alcohol or another cause, this is still an important and interesting result. 

The observation that when ALT levels are taken into account, BMI no longer associates with 

cancer incidence changes current understanding of the link between cancer and obesity. The 

association between raised ALT levels and future cancer incidence, even agnostic of the 

aetiology, is a valuable finding which may be used for cancer risk screening and prediction. 

We found NASH to be associated with increased cancer incidence, and suggest its associated 

hepatic inflammation may contribute to cancer risk. The majority of patients with NASH 

however also have a diagnosis of fibrosis, which could mean the effect is fibrosis rather than 

inflammation driven. 

Covariate Data Missingness 

The missingness of BMI and smoking data for patients in SHARE is a possible limitation of 

the current study.  In the analysis of cancer incidence in GoDARTS, T&F and the sub-group 

of SHARE patients with BMI data available, the inclusion of BMI as a covariate did not 
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modify the association between NAFLD and cancer. In GoDARTS also, NAFLD was not 

associated with rates of smoking when age and sex were adjusted for. Due to this, the 

analysis of NAFLD and cancer without BMI and smoking as covariates is still valid, and 

comparable with the analyses undertaken in GoDARTS. Allen et al, used similar 

methodology, as they did not correct for smoking and found that BMI played a relatively 

small part in cancer risk compared to NAFLD.59 The self-reported nature of alcohol intake in 

GoDARTS, and missingness of this data in SHARE and T&F, as well as the ubiquitous 

nature of alcohol consumption at the sub clinical level, does not allow us to exclude the 

possibility that general alcohol consumption may play a role in the relationship between 

NAFLD and cancer, however this is likely to be a limitation of the concept of NAFLD in 

general. 

BMI as a marker of Obesity 

BMI is an accurate and useful marker of obesity, although is not perfectly correlated with 

abnormal body fatness as factors such as muscle mass can impact the result.243 To assess 

whether this was a factor in the lack of association between BMI and cancer incidence, other 

measures of body fatness including waist measurement and weight were analysed. These also 

did not associate with cancer incidence when NAFLD was considered. Though other markers 

of excess body fatness exist, such as waist to hip measurements can be useful techniques, the 

fact BMI, weight nor waist measurement associated with cancer risk when NAFLD was 

considered suggests that this did not significantly impact findings. 

3.6 Conclusion 

In the current study we have shown that NAFLD is associated with increased risk of cancer 

incidence. There is also an association between NAFLD and cancer death, and cancer is a key 

factor in the shorter life expectancies associated with NAFLD patients. Furthermore, we are 
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first to show the association between BMI and cancer is driven to null when NAFLD is 

included in the model. This is further replicated in two additional, large cohorts, 

demonstrating the robust nature of this relationship. Given the large numbers of participants, 

these findings are likely generalisable to the general population. A key, novel finding of the 

study was that the missense variant PNPLA3 rs738409 is associated with increased cancer 

incidence. These findings suggests that the effect of NAFLD on cancer incidence may be 

causative, and that a major component of the association between body weight and cancer 

may be driven by NAFLD. 
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4 GWAS of NAFLD in Scottish and Indian Populations  

4.1 Abstract 

NAFLD is a common cause of liver disease and affects roughly a quarter of adults globally. 

There is a significant genetic component of NAFLD risk. The aim of this study was to find 

genetic determinants of NAFLD, and explore the effects of NAFLD variants in two Scottish 

and Indian study populations.  

In this cross-sectional cohort study, genome wide analysis studies (GWAS) were run to find 

genetic determinants of NAFLD. The GoDARTS and SHARE cohorts from Scotland, and the 

DMDSC cohort from India were the sources of data. NAFLD was defined by the presence of 

elevated ALT levels. Fatty Liver Index (FLI) and Fatty Liver Grade defined by ultrasound 

(FLG) were also available in the GoDARTS and DMDSC cohorts respectively. 

In both DMDSC and GoDARTs, PNPLA3 rs738409 was associated with increased NAFLD 

risk, with an odds ratio (OR) of 1.34 (p < 1x10-15). In GoDARTS, variants in the 

CHUK/ERLIN1 locus were genome wide significant for NAFLD (OR = 0.89(p = 2.1x10-8). 

In GoDARTS, variants in FAM19A4, EOGT, DNAH11, and TCF7L2 were genome wide 

significantly associated with FLI. 

We found that genetic variation had a significant contribution to NAFLD risk in both cohorts. 

PNPLA3 rs738409 increased risk of NAFLD in both GoDARTS and DMDSC, concurring 

with previous research that this locus is a key component of genetic NAFLD predisposition 

globally. 

4.2 Introduction 

Non-Alcoholic Fatty Liver Disease is a common cause of liver disease and is rising in 

prevalence globally.244 Research has revealed a number of genetic modifiers of NAFLD 

risk.190,245 Study of the genetics of NAFLD are a key component in the investigation to 
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understand the disease, and may provide insights that aid drug discovery and the application 

of personalised medicine.246,247 

Genetic studies of NAFLD have been undertaken extensively in European cohorts. The first 

GWAS of NAFLD by Romeo et al. found that the SNP PNPLA3 rs738409 was associated 

with increased NAFLD risk, and this has been replicated a number of times.190,248,249 Several 

other GWAS since have revealed many genetic loci which influence NAFLD, and many have 

found variants which have effects on steatosis, NASH, fibrosis and cirrhosis 

individually.245,250–252 

A number of studies have investigated the genetics of NAFLD in Indians, but a search of 

GWAS catalogue found no results for GWAS studies in Indian subjects.253 A number of 

candidate gene studies in Indian populations have found NAFLD related genetic 

variants.254,255  Due to the large and diverse nature of the population of India, many studies 

have analysed differences in genetic modifiers between different groups and regions within 

the country.256 Chatterjee et al. investigated the frequency of 34 known NAFLD risk variants, 

finding that they were overall more common in caste populations than tribal populations.99 

Diversity of phenotypes and genetic predisposition to disease has been found between Indian 

and European populations previously. For example, risk of type two diabetes (T2DM) is 

known to be heterogeneous between Europe and India, and recent findings have suggested 

this may be due to genetics.257,258 Studies have shown differences in a number of clinical 

parameters including obesity and heart disease risk.259 Investigations into whether NAFLD is 

different between white Europeans and Asian Indians have been conducted, and suggested 

that increased NAFLD risk accompanies increased insulin resistance in Indian men.260,261 

The aim of the current study was to identify genetic influences of NAFLD and NAFLD 

related phenotypes in Scottish and South Indian populations using data from electronic health 
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records. (EHRs) Further to this, the study aimed to compare the genetic modifiers in each 

cohort and evaluate differences in frequency between risk variants in each population. 

4.3 Methods 

4.3.1 Data 

The analysis for this study was conducted in the GoDARTS and DMDSC cohorts, which are 

described fully earlier in the current thesis. 

The first GWAS was conducted in Scottish data from the GoDARTS study.187 This is a 

T2DM case-control cohort with electronic health record data available for the 18,306 

participants. After exclusions were made for other causes of liver disease, there were 7,629 

individuals eligible for analysis with sufficient clinical and genotype data available. 

Further GWAS analyses were conducted in the Dr Mohan's Diabetes Specialities Centre 

(DMDSC) cohort.195 This cohort comprised 75,952 individuals who were patients of the 

DMDSC and had T2DM. These individuals were predominantly South Asian. From this 

cohort, there were 3,154 individuals who had been genotyped and had sufficient data 

available for analysis. 

4.3.2 Data Quality Control 

A number sequential steps to ensure the validity and accuracy of the genetic data was 

undertaken. These were the same for all cohorts and genotyping platforms.262 All steps were 

completed using Plink 1.9 software.263 

Firstly, individuals with missingness of genetic data greater than 0.02 were excluded. SNPs 

with missingness greater than 0.02 were also excluded. SNPs with minor allele frequency 

(MAF) lower than 0.01 were excluded. SNPs which were not in Hardy-Weinberg equilibrium 

were excluded.264 A p value threshold of 1x10-5 was used for this. Individual participants 

were excluded if they had a heterozygosity rate greater than three standard deviations from 
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the mean.265 The SNPs were pruned for linkage disequilibrium (LD) using a sliding window 

technique. This window was 50 SNPs wide, moved 5 SNPs each step and variants with 

correlation greater than 0.2 in this window were excluded.266 The cohorts were checked for 

relatedness between individuals and, those with pihat greater than 0.2 were excluded.267 

Ethnic outliers were excluded from each cohort. Using multidimensional scaling of the 

genetic data, 20 principle components were calculated.262 This was conducted for each 

cohort, plus the 1000 Genome cohort (1000G).268 Each cohort was plotted with respect to the 

first two principle components against the 1000G cohort, which was labelled with ethnicity. 

Ethnic outliers were then removed from each cohort. 

4.3.3 Measures 

An in depth analysis and description of the phenotypes used in the current analysis is 

included in a previous chapter of the current thesis. A brief outline of each is included below. 

In GoDARTS, two phenotypes were analysed. These are described in detail in the NAFLD 

phenotype chapter earlier in the thesis. The first was NAFLD, which was defined by two 

raised ALT measurements (>19U/L for women and >30U/L for men) at least 3 months 

apart.180 The sign up date to GoDARTS was taken as baseline, therefore any patient with 2 

raised ALT levels at least 3 months apart before this date was considered a case. 

The second phenotype analysed in GoDARTS was the Fatty Liver Index.148 This combines 

BMI, waist circumference, GGT and triglycerides using the formula below. This was 

calculated using measurements for each patient which were taken closest to their sign up 

date. A full description of FLI is given in a previous chapter. 

In the DMDSC cohort, NAFLD was also defined using ALT levels, which is also discussed 

previously in this thesis. Due to the lack of longitudinal data a single raised ALT rather than 

two raised measurements three months apart was used to define NAFLD. Fatty Liver Grade 
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(FLG) was also available for a number of patients in the DMDSC cohort. This was an ordinal 

scale of fatty infiltration of the liver, from 0-3; none, mild, moderate and severe fatty 

infiltration respectively.143 This was measured by abdominal ultrasound, a commonly used 

and accurate method of detecting steatosis.30 

4.3.4 Statistical Analyses 

Data were analysed using GWAS methodology, in the Plink 1.9 software program.263 

Genome wide significance was considered to be p < 5x10-8. Any p values below 5x10-6 were 

considered suggestive signals. 

Data were analysed separately by cohort, with meta analyses conducted of all cohorts for the 

NAFLD phenotype. Where NAFLD was the outcome variable, this was analysed in an 

adjusted binary logistic regression. Adjusted linear regression was used for continuous 

outcome variables.  

Each model was adjusted for a number of covariates, depending on the data available. Ten 

principle components for the genetic data were calculated for each cohort, and these were 

included as covariates in the statistical models. 

Where many significant results from the same gene were found, LD pruning was performed 

for the display of the results. Results were pruned with SNPs with Pearson’s R2 > 0.8 being 

omitted from results tables.  

 The analysis in GoDARTS was adjusted for 10 principal components, age, sex, T2DM and 

BMI. The individuals in GoDARTS have been genotyped in phases and on different GWAS 

chips. Individuals genotyped on each chip were analysed together, then the results from the 

meta-analysed. Analysis of FLI was not adjusted for BMI as the calculation of the FLI score 

already includes BMI. 
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In analysis of NAFLD conducted in DMDSC, the logistic regression model was adjusted 10 

PCs, sex, age and BMI. All patients in this cohort had T2DM, so this was not included in the 

model. GWAS of FLG in the DMDSC cohort was adjusted for the same covariates. 

Manhattan plots and QQ plots were generated for each GWAS analysis using the “calibrate” 

and “qqman” R packages.269–271 

4.4 Results 

4.4.1 GoDARTS Data 

A GWAS of NAFLD in GoDARTS was run. The Manhattan plot for this analysis is shown 

below in figure 4-1 with the quantile-quantile (Q-Q) plot for this analysis in figure 4-2. 

 

 

 

 

 

Figure 4-1Manhattan Plot of GoDARTS NAFLD GWAS 
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A number of variants in ERLIN1, BLOC1S2 and PNPLA3 were genome wide significant for 

NAFLD, shown in table 10 below. All of the genome wide significant variants in 

chromosome 10 were in high LD (Pearson’s R2 > 0.8), as were the variants in chromosome 

22 in PNPLA3. (Pearson’s R2 > 0.9) An LD pruned table of results is shown below. (Table 

10) 

Table 11 - Genome wide significant variants for NAFLD in GoDARTS 

Chromosome Gene Chromosome 

Position 

SNPID Effect 

Allele 

Effect 

Allele 

Frequency 

p-value Odds Ratio Cochrane's 

Q 

I2 

10 ERLIN1 10:101,880,479 rs11594323 A 0.421 3.19E-08 0.816 0.333 11.96 

22 PNPLA3 22:44,324,727 rs738409 G 0.203 1.09E-08 1.3207 0.2074 36.43 

 

Figure 4-2 Q-Q Plot of GoDARTS NAFLD GWAS 
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A GWAS of FLI was run in the GoDARTS cohort. The QQ plot and Manhattan plot for this 

analysis are shown below in figure 4-3 and figure 4-4. 

 

 

DNAH11 rs117146188 reached genome wide significance, and several variants reached 

suggestive significance, shown in table 11 below. 

Figure 4-3 Manhattan Plot for GoDARTS FLI GWAS 

Figure 4-4 Q-Q Plot for GoDARTS FLI GWAS 
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Table 12 Genome wide significant and suggestive significance reaching variants in GWAS of FLI in GoDARTS. 

Chromosome Gene  Chromosome 

Position 

SNPID Effect 

Allele 

Effect 

Allele 

Frequency 

P Beta Cochrane's 

Q 

I2 

4 FSTL5  4:162,824,685 rs190994066 T 0.025 4.19E-07 -7.0671 0.2391 28.83 

6 HLA-

DOB 

6:32,756,390 rs114032730 A 0.028 1.17E-07 -6.6811 0.2026 34.95 

6 PSMB9 6:32,859,137 rs7761882 A 0.030 3.02E-07 -6.5979 0.5054 0 

7 DNAH11  7:21,883,902 rs117146188 G 0.0138 2.71E-08 -9.3876 0.1968 35.89 

22 GGT1 22:24,994,708 rs2017188 C 0.0352 1.94E-07 2.3655 0.3577 2.74 

 

A number of variants in GGT1 were close to genome wide significance for association with 

increased FLI. These were all in extremely high LD (> 0.99 Pearson’s R2), therefore likely 

represent one signal. Serum GGT levels have a moderate level of heritability, and some 

known genetic influences.272  The GGT1 variants which were close to genome wide 

significance in the present study are at a locus which has previously been associated with 

serum GGT levels.273 The liver enzyme GGT is a component of the FLI, therefore this GGT1 

locus may represent a confounding variable.148 This may cause individuals to have higher FLI 

scores simply because they carry genetic variation in GGT1, rather than due to increased 

levels fatty liver itself. 



97 
 

To overcome this and increase the sensitivity of the analysis, a GWAS of FLI was run again, 

with GGT1 rs2017188 included as a covariate. The Manhattan plot and QQ plots for this 

analysis are shown in figures 4-5 and 4-6 below. 

 

 

Genome wide significant results were found in four different genes, shown in table 12 below. 

Figure 4-5 Manhattan Plot for GoDARTS FLI GWAS with GGT1 covariate 

Figure 4-6 Q-Q Plot for GoDARTS FLI GWAS with GGT1 covariate 
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Table 13 - Genome wide significant variants for FLI in GoDARTS 

 

  

Chromosome Gene Chromosome 

Position 

SNPID Effect 

Allele 

Effect 

Allele 

Frequency 

p-value Beta Cochrane's 

Q 

I2 

3 FAM19A4 3:68,998,611 rs1898616 G 0.608 4.00E-08 3.5115 0.369 0 

3 FAM19A4 3: 69,008,245 rs7427984 A 0.581 2.79E-08 3.4907 0.7684 0 

3 EOGT 3:69,014,707 rs1506986 A 0.624 7.74E-09 3.7184 0.4439 0 

3 EOGT 3:69,020,937 rs9853718 G 0.594 2.74E-08 3.5525 0.6323 0 

7 DNAH11 7:21,883,902 rs117146188 G 0.0138 1.12E-08 -14.0018 0.0786 60.69 

7 DNAH11 7:21,924,439 rs76307823 C 0.126 1.14E-08 -14.9095 0.3062 15.51 

7 DNAH11 7:21,930,208 rs77888218 T 0.128 7.70E-09 -15.0827 0.2727 23.04 

10 TCF7L2 10:114,754,071 rs34872471 C 0.333 2.69E-08 -3.7337 0.1759 42.46 

10 TCF7L2 10:114,754,784 rs35198068 C 0.334 4.80E-08 -3.662 0.148 47.65 
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4.5 DMDSC Data 

A GWAS was run for the NAFLD phenotype in the DMDSC cohort, with 3,123 eligible 

participants. The Manhhattan plot for this analysis is shown below in figure 4-7, and the Q-Q 

plot below in figure 4-8. 

 

Figure 4-7 Manhattan Plot for DMDSC NAFLD GWAS 

Figure 4-8 Q-Q Plot for DMDSC NAFLD GWAS 
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A number of variants in PNPLA3 were genome wide significantly associated with NAFLD, 

all of which were in very high LD (Pearson’s R2 > 0.99). The PNPLA3 rs738409 variant was 

among these with an OR of 1.39, and is likely to be the cause of the signal. The results for 

PNPLA3 SNPs rs738409 and rs12485100 (which had the lowest p-value out of the SNPs in 

high LD) are shown in table 13 below. 

Table 14- Genome wide significant variants for NAFLD in DMDSC 

Chromosome Gene Chromosome 

Position 

SNPID Effect 

Allele 

Effect 

Allele 

Frequency 

p-value Odds Ratio 

22 PNPLA3 22:44,325,516 rs12485100 T 0.242 5.5E-08 1.39 

22 PNPLA3 22:44,324,727 rs738409 G 0.252 3.0E-08 1.40 

 

Further to the GWAS on NAFLD, a GWAS was run with FLG as the phenotype, with 2,013 

eligible participants included in analysis. The Manhattan plot and Q-Q plot for this analysis is 

shown below in figure 4-9 and 4-10 respectively. 

 

Figure 4-9 Manhattan Plot for DMDSC FLG GWAS 
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No variants reached genome wide significance for this phenotype, though two variants 

reached suggestive significance. These are shown in table 14 below. 

Table 15 - Suggestive significance reaching SNPs for FLG in DMDSC cohort 

Chromosome Gene Chromosome 

Position 

SNPID Effect 

Allele 

Effect Allele 

Frequency 

Beta SE p-value 

6 POU5F1 6:31,148,349 rs114773933 

 

G 0.0176 -0.4205 0.08824 2.02E-06 

7 PDE1C 7:32,063,068 rs13239020 C 0.0127 -0.48 0.1037 3.92E-06 

Figure 4-10 Q-Q Plot for DMDSC FLG GWAS 
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4.6 Meta Analysis of Scottish and Indian Cohorts 

The results of GWAS analyses in the Scottish and Indian cohorts were meta analysed. The 

results for the meta analysis of NAFLD in the GoDARTS and DMDSC cohorts are displayed 

in the Manhattan plot and QQ plot in figures 4-11 and 4-12 below. 

 

Genome wide significant signals were found in PNPLA3 around the rs738409 locus, the same 

as was in individual GWAS of GoDARTS and DMDSC. SNPs around ERLIN1 rs10883447 

were also genome wide significant, although these SNPs were not analysed in the DMDSC 

GWAS as they were excluded during the QC process. The significant variants were pruned 

for LD greater than 0.8. This shown in table 16 below. 

Figure 4-11 Manhattan Plot of DMDSC NAFLD GWAS 

Figure 4-12 Q-Q Plot of DMDSC NAFLD GWAS 
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Table 16 - Genome wide significant SNPs for NAFLD in meta analysis of GoDARTS and DMDSC 

Chromosome Gene Chromosome 

Position 

SNPID Effect 

Allele 

P OR Cochrane's Q I2 

10 ERLIN1 10:101,903,906 rs10883447 G 3.19E-08 0.816 0.333 11.96 

22 PNPLA3 22:44,324,727 rs738409 G 5.37E-16 1.3423 0.4636 0 

 

A forest plot of the association between PNPLA3 rs7384098 and NAFLD in the GoDARTS 

and DMDSC cohorts, as well as the meta analysis, is shown below in figure 4-13. 

 

Further investigation in ERLIN1 SNPs in the meta analysis was conducted, as the genome 

wide significant SNPs were not found in the DMDSC cohort. A number of ERLIN1 SNPs 

were analysed both in GoDARTS and DMDSC, though these did not reach genome wide 

significance. These variants were not nominally associated with NAFLD in DMDSC, 

although showed the same direction of effect as in GoDARTS. Similarly to GoDARTS, these 

Figure 4-13 Forest plot for PNPLA3 rs738409 in GoDARTS, DMDSC and 

meta-analysis 
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were in high LD, with R2 >0.93. The SNP ERLIN1 rs11594323 is shown as an example in 

table 16 below, with results from GoDARTS and DMDSC. 

Table 17 - ERLIN1 rs1077821 in GoDARTS and DMDSC NAFLD GWAS 

  

A forest plot of the rs1077821 variant in ERLIN1, in the GoDARTS, DMDSC and meta-

analyses is shown in figure 4-14 below. 

 

4.7 Analysis of Known NAFLD Risk Variants 

Following the GWAS analysis, the results were probed for the associations between the 

relevant phenotype and known NAFLD risk altering variants. Genetic variants with robust 

and validated associations with NAFLD were selected from previous literature. The 

Cohort Chromosome Gene Chromosome 

Position 

SNPID Effect 

Allele 

P OR Cochrane's 

Q 

I2 

GoDARTS 10 ERLIN1 10:101,888,520 rs1077821 T 2.096e-08 0.8138 0.3584 6.93 

DMDSC 10 ERLIN1 10:101,888,520 rs1077821 T 0.5031 0.9577 / / 

Figure 4-14 Forest Plot for ERLIN rs1077821 in GoDARTS, DMDSC and meta-analysis 
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associations between these variants, and the phenotypes analysed in the current study are 

shown in table 17 below. 

Table 18 Associations between known NAFLD risk variants and NAFLD phenotypes in GoDARTS, DMDSC and meta-

analysis 

 

A number of known NAFLD risk variants, which were not genome wide significant in the 

GWAS results, reached nominal significance. (p < 0.05) These are highlighted in yellow. 

 

4.8 Discussion 

The GWAS analyses in the current study revealed several genetic loci which have significant 

effects on NAFLD in both GoDARTS and DMDSC cohorts. 

  
GoDARTS 

NAFLD 

GoDARTS FLI DMDSC 

NAFLD 

DMDSC FLG Meta NAFLD 

Gene  SNP p OR p Beta p OR p Beta p OR 

PNPLA3 rs738409 1.09E-

08 

1.3207 0.2477 0.8816 2.46E-

11 

1.352 0.0137 0.0663 5.37E-

16 

1.3423 

ERLIN1 rs1077821 2.096E-

08 

0.8138 0.412 0.524 0.5031 0.9577 0.519 0.01936 2.25E-

4 

0.90 

LYPAL1 rs12137855 0.1195 0.9363 0.93 0.0645 / / / / 0.1195 0.936 

HSD17B13 rs6834314  0.2191 0.8522 0.337 -0.671 0.995 0.936 0.918 0.00367 0.237 0.959 

TM6SF2 rs58542926 0.3251 1.075 0.843 -0.233 0.16 1.092 0.000194 0.141 0.0405 1.115 

NCAN rs2228603 0.972 1.003 0.176 -1.58 0.0342 1.21 0.001236 0.174 0.229 1.074 

PPP1R3B rs4240624 0.866 1.01 0.18 -2.305 0.241 1.089 0.161 -0.063 0.428 1.027 

GCKR  rs780094  0.367 1.035 0.12455 0.998 / / / / 0.367 1.035 

FDFT1 rs2645424  0.7544 1.012 0.4713 -0.455 / / / / 0.7544 1.012 
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4.8.1 NAFLD in GoDARTS 

Two genome wide significant variants were found for NAFLD in GoDARTS. These were in 

PNPLA3 and ERLIN1. Both of these genes have previously been reported as having 

significant effects on NAFLD risk in GWAS and candidate gene studies. 

The PNPLA3 rs738409 locus showed the strongest association with NAFLD, with an OR of 

1.32. This SNP was the first NAFLD risk variant discovered by GWAS; a finding which has 

been replicated in numerous studies in a variety of populations and ethnicities.190,274,275 These 

GWAS and candidate gene studies have found rs738409 to be associated with a range of 

NAFLD phenotypes, including serum ALT,  fibrosis, cirrhosis and hepatocellular 

carcinoma(HCC).274,276Studies have sought to elucidate the mechanism by which PNPLA3 

rs738409 increase NAFLD risk, highlighting several effects.  

PNPLA3 is the gene which codes for the protein adiponutrin, which is mainly found in 

adipocytes and hepatocytes.277 Its functions include the production and breakdown of fats in 

hepatocytes.278 PNPLA3 rs738409 is a missense variant which interrupts the lipolysis of 

triglycerides in the liver.279 It is also associated with decreased release of very-low-density-

lipoproteins from the liver.248 These effects cause disruption in the lipid homeostasis of the 

liver, increasing the amount of fats stored which becomes steatosis. 

The PNPLA3 rs738409 variant is also associated with increased NASH risk, and histological 

severity of liver disease.280 It is also associated with increased risk of fibrosis, cirrhosis and 

HCC, which has prompted research into whether these associations are driven simply by 

increased steatosis or another mechanism of PNPLA3.281 In a meta analysis, Singal et al. 

found that PNPLA3 increased risk of progression to fibrosis in patients with steatosis 

regardless of cause.276 They showed rs738409 increased fibrosis risk in patients with hepatitis 

C virus (HCV), and others have found increased risk of alcoholic liver disease in those who 
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carry the rs738409 variant.282 PNPLA3 is highly expressed in hepatic stellate cells (HSC), 

which are the responsible for the production of the extracellular matrix which characterises 

fibrosis.283 The rs738409 variant increases the HSC’s pro-inflammatory and pro-fibrogenic 

properties when in an activated state due to hepatocellular injury.284 

The association between NAFLD and PNPLA3 rs73809 in GoDARTS is not novel, but acts 

as a good positive control and validation of the phenotype. An ALT based NAFLD definition 

is unable to provide any classification of the severity of the disease, but individuals with the 

full spectrum of NAFLD were included in the study. It is probable that this signal reflects 

both steatogenic and fibrogenic effects of PNPLA3, but simple steatosis in NAFLD is many 

times more common than the more advanced stages such as fibrosis and cirrhosis.5 A larger 

proportion of this signal therefore likely represents increased frequency of steatosis in carriers 

of the rs738409 variant.54 

We found that PNPLA3 rs738409 is associated with NAFLD with an OR of 1.32, in an 

additive model. This OR is lower than some previously published estimates, some of which 

are as high as 2.40.274 The effects of PNPLA3 rs738409 on NAFLD have been described a 

number of times in European cohorts.232,285 These studies have used a number of different 

NAFLD definitions and related phenotypes however which makes comparison of point 

estimate of PNPLA3 effects difficult. Sookoian et al. performed a meta analysis of studies 

investigating PNPLA3 rs738409 and NAFLD, finding an overall odds ratio of 3.26 for 

homozygous wild type versus heterozygotes (CC versus CG).83 They also found significant 

association between PNPLA3 rs738409 and ALT levels across a number of studies. Dai et al. 

found a lower OR of 2.27 for CC versus CG genotypes in their analysis.275 The inclusion 

criteria for this study required that NAFLD be diagnosed by MRI, ultrasound or liver biopsy, 

which are more accurate than LFTs for NAFLD diagnosis, but are predominantly performed 

only when liver disease is suspected.30,135,286 This means that asymptomatic cases are likely to 
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be untested and therefore misclassified. The differences in phenotypes may explain some of 

the variability in odds ratios. 

Variants in ERLIN1 were found to reduce NAFLD risk with odds ratios of ~0.81 in 

GoDARTS. ERLIN1 (Endoplasmic Reticulum lipid raft protein 1) encodes a prohibitin 

protein that defines lipid-raft-like domains of the endoplasmic reticulum.287 Lipid rafts are 

structures made of lipids and proteins which are represent in plasma membranes, in this case 

of the endoplasmic reticulum(ER). Disordering of the ER lipid raft can disrupt the function of 

the ER, including cell signalling.288 ER function is a key factor in NAFLD, as ER stress can 

contribute to several mechanisms which increase hepatic steatosis, fibrosis and cell death.289  

The protein encoded by ERLIN1 binds to cholesterol and regulates the SREBP signalling 

pathway.290 ERLIN proteins restrict the release of SREBP from the ER, and it has been 

shown that in the absence of ERLIN proteins, SREBP activity is increased.290 SREBPs are 

transcription factors which bind to sterol regulatory elements and upregulate them to produce 

more enzymes which are required for sterol biosynthesis.291,292  SREBPs are key regulators of 

cell lipid homeostasis, involved in a number of processes including; global lipid synthesis and 

growth, fatty acid synthesis, energy storage and cholesterol regulation.293 SREBPs are 

associated with NAFLD through several pathways, increasing steatosis and inflammation, 

partially through increased ER stress.294 Genetic variants in the genes which encode SREBPs 

have been linked to NAFLD.295 

ERLIN1 is part of a cluster involving the genes CHUK-CWF19L1-ERLIN1, and a number of 

variants in these genes are in LD. The variants in CHUK and CWF19L1 form one haplotype 

block in very high LD (>0.99), and the variants in ERLIN another haplotype block with high 

LD with each other (>0.82 -0.99). These two haplotype blocks are also in high LD, with 

Pearson’s R2 ~0.80 between variants in each block. This cluster has been linked to NAFLD 
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previously, with associations with ALT, NAFLD defined by CT scan and NASH.287,296,297 

Three variants in ERLIN1; rs10883451, rs1408579 and rs2862954; were found to be genome 

wide significantly associated in a meta-analysis of ALT and NAFLD.296 

It is unclear whether both of these gene haplotype blocks have independent effects on 

NAFLD, or if just one of the genes is the causative source of the association. No previously 

published studies have reported analysis of this. The CHUK gene encodes a protein kinase 

which inhibits the essential transcription nuclear factor-kappa-beta (NF-κB) complex.131 NF-

κB is associated with the regulation of cell activities including inflammation and cell death.298 

Given what is known about the function of each gene, it is plausible that both CHUK and 

ERLIN1 have independent effects on NAFLD, although further research is required to 

characterise their relationship to NAFLD clearly. 

Furthermore, there is evidence that these variants in ERLIN1 are expression trait quantitative 

loci (eQTL).299 ERLIN1  is a cis-eQTL for, a neighbouring gene.296 CWF19-like 1 cell cycle 

control (CWF19L1) variants were found to be associated with NAFLD and ALT levels in the 

study by Feitosa et al.296 In the UK BioBank cohort, the CWF19L1 rs17729876 variant is 

associated with T2DM, and chronic liver disease.300 Data from The Human Protein Atlas 

show CWF19L1 is associated with increased liver cancer 

mortality(http://www.proteinatlas.org).301 This locus is also linked to increased cholesterol 

levels.302 These findings may suggest that the association between ERLIN1 and NAFLD is 

due through expression of CWF19L1. 

4.8.2 FLI in GoDARTS 

A GWAS analysis of Fatty Liver Index in GoDARTS found one genome wide significant 

signal, DNAH11 rs117146188 and showed a number of variants which were close to genome 

wide significance. Ten of these variants were in the GGT1 gene, in high LD. (R2 > 0.99) This 
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result was germane as gamma-glutamyltransferase (GGT) is a biomarker which is used in the 

calculation of FLI. The GGT1 gene encodes GGT, and variants in this gene have been 

reported to influence serum GGT levels. The GGT1 variant rs2006227 is among those 

reported to influence serum GGT levels, and was among the ten GGT1 SNPs which were 

close to genome wide significance in the current study.303 It is therefore likely that the 

association between GGT1 variants and FLI is driven by the association with serum GGT 

levels, and not by altered NAFLD risk. 

To control for this genetic risk factor for GGT, and thus higher FLI, a second GWAS of FLI 

was run in GoDARTS with GGT rs2006227 included as a covariate. This produced stronger 

results, and a number of genome wide significant hits.  

DNAH11 rs117146188 was significantly associated with FLI in both analyses, adjusted and 

non-adjusted for GGT1. Two more variants in DNAH11 were also genome wide significantly 

associated with FLI; rs76307823 and rs77888218; which were in almost perfect LD (R2 = 

0.99). These two variants were in high LD with rs117146188, with a Pearson’s R2 of 0.87. 

The β estimate for rs117146188 was -14.0 per allele, a strong protective effect against high 

FLI. This effect size is large, given that FLI extends from 0 to 100.148 DNAH11 (Dynein 

Aaxonemal Heavy Chain 11) encodes a ciliary outer dynein arm protein, and is involved in 

the movement of respiratory cilia.304 It has not previously been linked to NAFLD or related 

conditions. 

In the analysis adjusted for GGT1 three more variants were significantly associated with FLI; 

FAM19A4, EOGT and TCF7L2. Two variants in FAM19A4 (Family with Sequence Similarity 

1 member A4) which were in high LD (R2= 0.93) were genome wide significantly associated 

with FLI; rs1898616 and rs7427984. The function of FAM19A4 is not clear, though it has 

been found to have a role in regulation of macrophages in response to inflammation.305 
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FAM19A4 is an eQTL of EOGT, which may explain the association seen between FAM19A4 

and FLI.306  

Two variants in EOGT (rs1506986 and rs9853718) were significantly associated with FLI in 

the GWAS adjusted for GGT1, and were in high LD.(R2 > 0.99) EOGT(EGF Domain 

Specific O-Linked N-Acetylglucosamine Transferase) encodes a protein which is active in the 

ER of the cell and catalyses the transfer of N-acetylglucosamine (GlcNAc) to extracellular 

proteins.307 The adding of GlcNAc (O-GlcNAcylation) activates or deactivates enzymes and 

transcription factors, and is a mechanism of regulation. In the liver, this process is a key 

factor in regulation of metabolism.308 O-GlcNAcylation is associated with hepatic insulin 

resistance and disruption of a number of processes in the liver, including gluconeogenesis, 

glycolysis and glycogenesis. 309,310 Studies have suggested that this is in some part through 

regulation of the FXR gene, which regulates SREBP-1c, a key regulator of hepatic lipid 

homeostasis.293 The variants in EOGT which were significant in the current study have no 

reported associations with clinical outcomes in published literature, though data from the IEU 

OpenGWAS system shows EOGT rs1506986 is associated with microalbumin in urine and 

eosinophil count.311 In the UK Biobank data, EOGT rs9853718 is associated with abdominal 

aortic aneurysm.300,312 

TCF7L2 (Transcription Factor-7–Like 2) rs34872471 and rs35198068 were both genome 

wide significantly associated with FLI in the GWAS adjusted for GGT1. These variants are in 

high LD. (R2 > 0.99) TCF7L2 influences the transcription of a number of genes, and notably 

regulates glucose metabolism in the pancreas and liver.313 rs34872471 is associated with 

increased T2DM risk, which has been shown in a number of populations.314,315 It is also 

associated with decreased blood pressure.312 This locus is in almost perfect LD with the 

common T2DM risk variant rs7903146 (R2 > 0.99), which likely explains these associations. 

This variant increased diabetes risk by altering incretin action, and is associated with 
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cardiovascular disease.316,317 It has been reported to increase NAFLD risk independently of 

diabetes in several studies.254,318 The current study concurs with these results, and confirms 

that there is increases steatosis in carriers of the TCF7L2 rs7903146 variant. 

4.8.3 NAFLD in DMDSC 

Variants in the PNPLA3 gene around the rs738409 locus were genome wide significantly 

associated with NAFLD. All significant variants were in almost perfect LD (R2 > 0.99). The 

OR for NAFLD was 1.39 for rs738409. This variant has previously been reported to be a risk 

factor for NAFLD in Indians, as well as South Indians specifically.255,256,319 Bale et al. found 

that PNPLA3 was associated with NAFLD risk for North Indians compared to South 

Indians.256 The findings of the current study confirm the relationship between PNPLA3 

rs738409 and NAFLD, and act as a positive control, validating the NAFLD phenotype. 

4.8.4 FLG in DMDSC 

No variants were genome wide significantly associated with Fatty Liver Grade in the 

DMDSC cohort. Two variants however reached suggestive significance. POU5F1 

rs114773933 showed suggestive significance for negative association with FLG. POU5F1 

(POU Domain, Class 5, Transcription Factor 1) encodes a transcription factor protein which 

regulates cell differentiation.320 This variant has not been linked to clinical outcomes in any 

published literature. This pathway has been linked to NASH, as Chien et al. showed that 

POU5F1 could improve effectiveness transplanting pluripotent stem cells to treat both 

steatosis and steatohepatitis.321 Park et al. showed similar results, with stem cells induced by 

POUF51 and HNF1α improved chronic liver injury.322 It has also been implicated in liver 

cancer, as  POU5F1 drives self-renewal of liver cancer cells.323 The current study suggests a 

role of the POUF51 transcription factor and a variant of its associated gene in the 

development of steatosis.  
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PDE1C rs13239020 was negatively associated with FLG, with a suggestive p value. PDEC1 

(Phosphodiesterase 1C) encodes an enzyme regulates proliferation and migration of vascular 

smooth muscle cells.324 The PDE1C enzyme downregulates glucose dependent insulin 

secretion, and inhibition of PDE1C upregulated insulin secretion.324 Patients with NAFLD 

have impaired incretin effect.325 The association between PDE1C and FLG in the current 

study may be a result of this alteration of insulin secretion.  

4.8.5 Meta-Analysis 

The PNPLA3 variant rs738409 was found to be genome wide significantly associated with 

NAFLD in both the GoDARTS and DMDSC cohorts, as well as the meta analysis. Both had 

similar odds ratios with GoDARTS = 1.32 and DMDSC = 1.39, and both European and 

South Asian populations are reported to have a MAF of ~0.22 for this variant.326  

The association between this locus and NAFLD has been demonstrated in both European and 

South Indian populations in previous literature.42,327 Previous literature has found that there 

are ethnic differences in the magnitude of the NAFLD risk associated with PNPLA3 

rs738409. In a meta analysis of 13 articles, Dai et al. showed that this variant had a larger 

effect in Caucasian individuals compared to Asian individuals. However, the Asian cohorts 

meta analysed in this study were predominantly Chinese, and may be different to Indian 

populations with respect to PNPLA3. Gnomad reports differences in MAF for rs738409, with 

MAF = 0.3816 in East Asians and MAF = 0.22 in South Asians.326 The estimate for Asian 

individuals in the Dai et al study therefore may not be applicable to the DMDSC cohort. Due 

to the differences in NAFLD case ascertainment, and overall differences in the data, we are 

unable to draw any conclusions about the relative magnitude of the PNPLA3 rs738409 effect 

in each of the cohorts. 
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The ERLIN1 locus near rs10883447 was significantly associated with NAFLD in GoDARTS, 

but were not significantly associated with NAFLD in DMDSC. Though ERLIN1 rs10883447 

was excluded in the QC process in DMDSC due to missingness > 0.02, some ERLIN1 

variants in high LD were analysed. ERLIN1 rs1077821 showed the same, protective direction 

of effect as rs10883447 did in GoDARTS. Significant heterogeneity was found between the 

results for rs1077821 in DMDSC and GoDARTS, with an I2 value of 79.37%.328 This statistic 

may suggest a difference in the effect of ERLIN1 between the cohorts, though this could be 

due to lack of experimental power. Variance at this locus is rare in the DMDSC cohort 

compared with GoDARTS, as for rs1077821, the MAFs are 0.22(DMDSC) and 0.42 

(GoDARTS). Similar differences in frequency between Europeans and South Asians are also 

reported in previous studies such as 1000 Genomes.268 The relative rarity of the effect allele 

combined with the lower number of individuals analysed (N = 3,133), could mean that the 

analysis in DMDSC was not adequately powered to detect an association. The experimental 

power was calculated with an alpha level of 0.05, giving a power of 3.1%.329  

4.8.6 Known NAFLD Variants Analysis 

Following the GWAS analysis the association results for a number of known NAFLD risk 

variants were compiled. These variants were selected based on their identification as NAFLD 

risk variants in previous literature. In the GoDARTS NAFLD phenotype, aside from the 

genome wide significant signals in PNPLA3 and ERLIN1 none of the tested variants reached 

nominal significance. Further investigation was conducted to find why many known NAFLD 

variants were not significantly associated with NAFLD in GoDARTS was undertaken. It was 

found none of the variants had significant heterogeneity of effect between individuals 

genotyped on each of the three platforms used. This non-significance of many SNPs may be a 

reflection of the phenotypes chosen. Certain NAFLD variants are associated with particular 

features and stages of NAFLD, and these may not have been picked up by our phenotype. 
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Failed replication of genetic studies is common, as Wu et al. found no association between 

NAFLD and NCAN rs2228603 in a Han Chinese population, where others had shown an 

association in previous studies.330 

Issues of statistical power may have altered the chances of seeing significant replication 

results. In GoDARTS for example, for the TM6SF2 rs58542926 variant which has a MAF of 

0.068, the statistical power for the analysis was 56.2% with an alpha level of 0.05. This 

power level is below threshold of 80%, which is the most commonly used level in medical 

studies.331 

Further to this an additive model was used, which is not the model used in the discovery of 

all of these variants. This is applicable to many of the variants tested, but this may have 

underestimated the effects of a number of SNPs as they behave in dominant, recessive or 

overdominant ways rather than additively.332,333 Other models were tested for a number of 

variants and it was found that NCAN rs2228603 was significantly associated with NAFLD in 

a recessive model in GoDARTS. (OR =2.08(1.08 - 4.16), p = 0.031) 

 GWAS analyses reported in previous literature have also included different covariates in 

their analyses, and this may have had an influence on the lack of replication in the current 

GWAS.252,334 For example, the NAFLD risk variant TM6SF2 rs58542926 was not 

significantly associated with NAFLD in the GWAS in GoDARTS, but was when run in an 

unadjusted model. (1.13(1.01 - 1.26), p = 0.035) These factors, as well as differences in 

phenotype, data collection, cohort, ethnicity and genotyping platform, can make the 

interpretation of negative results in GWAS analyses challenging. 

In the DMDSC cohort, a number of known NAFLD variants were associated with NAFLD. 

PNPLA3 rs738409 was found to be genome wide significantly associated with NAFLD, 

though ERLIN1 variants were not tested in this analysis as they were excluded during the QC 
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process. The NCAN variant rs2228603 was associated with NAFLD with an OR = 1.21. 

NCAN is involved in cell adhesion and migration in the nervous system, which is increasingly 

thought to play a role in metabolism.335 This variant has been reported to increase NAFLD 

risk in a number of studies primarily among Europeans.335,336 A study in a Han Chinese study 

failed to replicate this finding.330 A study in an Indian population found associations between 

this variant and ALT levels, as well as NAFLD although this was not adjusted for multiple 

testing.100 The current study confirms the association with ALT levels, and suggests further 

that there may be an association with NAFLD. 

A number of known NAFLD variants were nominally associated with FLG in the DMDSC 

cohort. PNPLA3 rs734409 was associated with increased FLG, with a β estimate of 0.0663. 

Though the effect size was modest, the same direction of effect for this variant on NAFLD 

and related phenotypes is present. 

TM6SF2 rs58542926 was significantly associated with increased FLG, with a β of 0.141. 

TM6SF2 (Transmembrane 6 Superfamily Member 2) is a key regulator of liver fat 

metabolism.337 This variant has been linked with NAFLD and NAFLD progression to NASH 

in a number of studies.191,338,339 The NCAN variant rs2228603 was also associated with 

increased FLG in the current study. 

In the meta-analysis of NAFLD between DMDSC and GoDARTS data, other than the 

genome wide significant variants in PNPLA3 and ERLIN1, none of the tested variants 

reached nominal significance.  

4.8.7 Limitations and Comparability of Results 

The definition of NAFLD in GoDARTS and DMDSC may be a weakness of the current 

study. This is discussed in depth in a previous chapter of this thesis outlining the NAFLD 
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definition. Despite some patients presenting with NAFLD without raised ALTs, we 

demonstrated that the NAFLD definition in GoDARTS is sensitive and reliable.340 

The Fatty Liver Grade phenotype in the DMDSC cohort was based on abdominal ultrasound 

scans, a non-invasive and accurate method of diagnosis.196,341 It has been shown that grading 

of steatosis level can predict the histologic severity of liver disease with some accuracy, but 

intra-observer variability can affect the reliability of this phenotype.342 This issue is apparent 

in all measures which require assessment from an observer, and are not fully quantitative. It 

was shown in an earlier chapter that the FLG phenotype correlated well with ALT, as well as 

other known metabolic and anthropomorphic features such as HbA1c, BMI and Waist. In the 

analysis of known NAFLD variants, SNPs from PNPLA3, NCAN and TM6SF2 were 

nominally associated with FLG, which is further validation of the accuracy of this phenotype. 

The NAFLD phenotype based on raised ALT levels in the DMDSC cohort was less specific 

than the NAFLD phenotype in GoDARTS due to the unavailability of certain data. This 

NAFLD phenotype is developed and discussed in depth in a previous chapter, along with 

some of its limitations.  In DMDSC, data about alcohol intake is unavailable, which increases 

risk of alcoholic liver disease (ALD) cases being classified as NAFLD. In GoDARTS, access 

to EHRs for enrolled participants allowed the exclusion of other causes of liver disease, such 

as immunological or viral insults. This was not possible in the DMDSC cohort, meaning that 

the NAFLD and FLG phenotypes likely included patients with non-NAFLD related liver 

disease as cases. 

Comparison of results may yield insights about the drivers of NAFLD in each population. 

However, the GWAS studies run in the GoDARTS and DMDSC cohorts have a number of 

differences which make the direct comparison of results challenging. Differences in the data 

availability and source mean that comparing the variants discovered by GWAS between each 
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cohort is not a reliable way of determining differences in which variants affect NAFLD in 

each cohort. 

There were large inconsistencies in the amount of data available for individuals in each 

cohort. In the GoDARTS cohort EHRs from the NHS were used as the source of data. This 

gave us access to longitudinal measurements for ALT, allowing a NAFLD definition with 

increased specificity and sensitivity. The DMDSC data had ALT measurements from clinic 

visits, and the NAFLD definition was based on a single measurement taken at the beginning 

of the study period. The heterogeneity between these phenotypes could cause differences in 

the variants which are found to be significant by the GWAS, which reduces the validity of 

direct comparison. 

Related to the differences in the data available, is the source of data and way in which it was 

collected. These were longitudinal datasets and contained many years’ worth of 

measurements for each patient, pre and post study commencement. The DMDSC data on the 

other hand was from EHRs from private clinic visits. Individuals had measurements taken on 

their first and subsequent visits to the clinics, most of which were at time of T2DM diagnosis. 

This disparity in the way the data was collected could have affected the NAFLD phenotype 

and therefore the results of the GWAS. 

The GoDARTS cohort comprises both T2DM patients and healthy controls whereas the 

DMDSC cohort is solely individuals with T2DM. This is another factor which may impact 

the prevalence and presentation of NAFLD in the cohort under analysis, thus altering results 

and inferences drawn from them.  

The analysis of known NAFLD variants in the GWAS results had some issues which may 

have caused many of the non-significant results for each SNP. A number of these issues are 
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discussed above some of these issues are discussed above, and outline why interpretation of 

negative results from GWAS can have limited usefulness due to these factors. 

 

4.9 Conclusion 

A number of genetic loci which influence NAFLD risk were found in GWAS analyses. 

PNPLA3 rs738409 was a significant risk factor for NAFLD in both the Scottish and Indian 

cohorts, with similar effect size and similar minor allele frequency. This demonstrates that 

both populations share a common genetic risk factor, and that the NAFLD seen in Scotland 

and India is in many ways the same. This combined with previous research demonstrate that 

PNPLA3 rs738409 is a key NAFLD risk variant in populations across the world. The 

ERLIN1 locus around the missense variant rs10883447 was also associated with increased 

NAFLD risk in the Scottish population, but not the Indian population. Differences in 

phenotype, as well as lack of statistical power are likely to have contributed to this difference 

between cohorts. 
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5 GLP1R, GCG and GCGR Genes and NAFLD 

5.1 Abstract 

Dual agonist medications for glucagon-like peptide-1 receptor/glucagon receptor (GLP-

1R/GCGR) have shown promising results in treatment of obesity and type 2 diabetes mellitus 

(T2DM). Given the overlap in pathophysiology and epidemiology of these conditions and 

non-alcoholic fatty liver disease (NAFLD), dual agonists are being considered for treatment 

of NAFLD. The aim of this study was to investigate the effects of GLP1R, GCG and GCGR 

genetic variants on NAFLD rate. 

Analyses for this cohort study were conducted in the GoDARTS and SHARE cohorts, two 

Scottish cohorts of 13,695, and 62,438 individuals respectively. Meta-analysis of these 

cohorts was also conducted. Further replication was conducted in the DMDSC cohort, 

consisting of 3,154 South Indian individuals with T2DM. The NAFLD phenotype was 

defined as at least 2 elevated ALT measurements recorded at least 3 months apart. Common 

variants (>1% MAF) from GLP1R, GCG and GCGR were selected for analysis, some of 

which are known to affect T2DM and metabolic factors. 

Two variants from GLP1R were associated with NAFLD rate. In the meta-analysis, 

rs6923761 recessively increased NAFLD risk in a model adjusted for sex, age and T2DM. 

(OR = 1.15(1.01 - 1.31), p = 0.032) Another missense variant in GLP1R, rs1042044, 

decreased NAFLD risk. (OR = 0.88, p = 0.018) The GCGR variant rs140065949 was 

associated with increased NAFLD. (OR = 1.40, p = 0.029) A number of statistically 

significant gene/gene interactions were found. 

These findings demonstrate that GLP1R and GCGR variants are associated with NAFLD risk. 

This combined with previous literature on these SNPs support the notion that co-agonism for 

GLP1R and GCGR may be effective treating NAFLD. 
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5.2 Introduction 

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease 

globally, affecting around 25.2% of adults worldwide.1 It is a prevalent comorbidity of 

obesity, and frequently occurs in individuals with and type 2 diabetes (T2DM).343 There is 

currently no specific pharmacological intervention recommended for NAFLD. 

Dual agonist medications for glucagon-like peptide-1 receptor/glucagon receptor (GLP-

1R/GCGR) have had promising results in treatment of obesity and T2DM.344 GLP-1 is an 

incretin which increases secretion of insulin, lowering blood glucose levels.345 Glucagon, 

conversely, raises blood glucose levels; stimulating the liver to convert glycogen to glucose 

and release this into the bloodstream.346 Despite this, glucagon has thermogenic and catabolic 

effects which are desirable for the treatment of obesity and diabetes, and is therefore a 

promising treatment target.344 Another desirable effect of glucagon is the reduction in food 

intake. 

These effects are combined into GLP1/GCGR co-agonists. These upregulate GLP1 and GCG 

receptors, and have been shown to reduce obesity, and enhance insulin secretion.347 Although 

some of the effects of these receptors are diametrically opposed with regards to blood glucose 

levels, it appears that the increased   activation counteracts the undesirable gluconeogenesis 

and glycogenolysis stimulating effects of glucagon.344 

344 The effects of increased GCGR and GLP1R activation, as well as the effects of 

GLP1R/GCGR coagonists are shown in figure 5-1 below. 
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Given the overlap in pathophysiology between obesity and T2DM, and NAFLD, dual agonist 

medications for GLP1R and GCGR have been investigated as a potential therapy for 

NAFLD. Preliminary studies have shown a reduction in hepatic steatosis and inflammation as 

a result of GLP1R/GCGR co-agonists.97 It is thought that the action of GLP1R and GCGR 

together will decrease the amount of triglycerides stored in the liver, and improve hepatic 

insulin resistance. 

Investigation of genetic variants associated with the mechanisms by which diseases and 

medications work can reveal important information. This can be used to develop medications, 

and to stratify individuals. GLP1R and GCGR each have a gene which codes for them.348,349 

Variations in these can affect the function of the receptors; for example rare defects in GCGR 

can cause non-insulin-dependent diabetes mellitus.349 Variants in GLP1R have been found to 

influence drug response.350 

The aim of this study was to investigate the effects of common genetic variants in GLP1R, 

GCG and GCGR on NAFLD. This will aid the investigation into GLP1R/GCGR co-agonists 

Figure 5-1Effects of increased GLP1R and GCGR activation, and role of GLP1R/GCGR coagonists. 
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for NAFLD, and help achieve personalised medicine through genetic stratification for 

individuals if these co-agonists become a mainstream therapy for NAFLD. 

5.3 Methods 

The GoDARTS study was used as a discovery cohort.187 This is a T2DM case-control cohort 

with electronic health record data available for the 18,306 participants and genetic data 

available for many of these. Of these individuals, 10,021 had at least one of the variants of 

interest genotyped and were suitable for analysis once exclusions for alternate causes of liver 

disease were made. 

The analyses were also conducted in the SHARE cohort for validation, and meta-analysis of 

results.188 This cohort comprised 73,024 individuals, 3,068 of whom had been genotyped and 

were suitable analysis. 

Supplementary validation was conducted T2DM cohort from Dr Mohan's Diabetes 

Specialities Centre (DMDSC).195 This cohort comprised 75,952 individuals who were 

patients of the DMDSC and had T2DM. These individuals were predominantly South Asian. 

From this cohort, there were 3,154 individuals who had been genotyped and had sufficient 

data available for analysis. 

5.3.1 Measures 

The main outcome measure of this study was NAFLD. This phenotype was defined by raised 

alanine transaminase levels, a simple and reliable biomarker for NAFLD.31,158 Any serum 

ALT measurement greater than 30 U/L for men and greater than 19 U/L per litre for women 

was considered elevated, based on the values suggested by Prati et al.180 

In the DMDSC cohort, longitudinal measures of ALT levels were not available, so a single 

raised ALT measure was used to define NAFLD. This was measured at patients’ first visit to 

the DMDSC T2DM clinic. 
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5.3.2 Exclusions 

To ensure the specificity of the NAFLD definition individuals with features of alternate 

causes of liver disease were excluded. any positive serological tests for anti-smooth muscle 

antibody, antinuclear antibodies or anti-mitochondrial antibodies,  any positive serology for 

hepatitis B surface antigen or hepatitis C antibody, or mention of cause of liver disease in 

medical records. Individuals with alcohol dependence or any documentation of alcoholic liver 

disease in their EHRs were excluded. In addition, individuals who self-reported drinking 

more than 20g a day for women and more than 30g a day for men were excluded. 

In the DMDSC cohort, medical record data which could be used to rule out those with 

alterative causes of liver disease was not available. A data field noting whether the patient 

consumed alcohol ever or never was available, so this variable was included as a covariate in 

all models. 

5.3.3 Genetic Variants Analysed 

The genetic variants analysed in this study are shown in table 18. Global MAFs were taken 

from gnomAD v2.1.1.351 

Table 19- Frequencies and functions of GLP1R and GCG, GCGR SNPs analysed in the current study 

Gene SNP GoDARTS 

MAF 

SHARE 

MAF 

Global 

MAF 

Effect Description Reference 

Allele 

Alternate 

Allele 

GLP1R rs6923761 0.359 0.349 0.229 p.Gly168Ser Missense G A 

GLP1R rs1042044 0.582 0.578 0.565 p.Leu260Phe Missense A C 

GLP1R rs10305420 0.407 0.391 0.307 p.Pro7Leu Missense C T 

GCGR rs140065949 0.017 0.027 0.027 
 

Intron C T 

GCG rs4664447 0.022 0.021 0.036 
 

Intron T C 

GCGR rs28454947 0.161 0.196 0.175 p.Gly229Gly Synonymous T C 

GCGR rs5386 0.090 0.095 0.070 p.Ala155Ala Synonymous C G 
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 These were three common missense variants in GLP1R, plus three common variants in 

GCGR and one in GCG. Variants with a minor allele frequency MAF of over 1% were 

selected. Three of these variants (rs28454947, rs5384, rs2272030) were found to be in LD 

(R2 > 0.9), therefore only the most common - rs28454947 - was analysed from these. The 

correlation matrix of the SNPs in GLP1R, GCG and GCGR is shown in figure 5-1 below. 

 

5.3.4 Analysis Methods 

The association between the genetic variants of interest and NAFLD was assessed in a 

logistic regression model. They were tested in a number of unadjusted and unadjusted 

models. The adjusted models contained age, sex, and T2DM as covariates. A secondary 

adjusted model included these variables, plus BMI also. A large number of individuals in the 

SHARE cohort were missing BMI data, therefore models with and without BMI as a 

covariate were used. These models were run in GoDARTS, SHARE and then an individual 

participant data (IPD) meta-analysis of GoDARTS and SHARE cohorts.  

Figure 5-2 Correlation Matrix of Candidates SNPs 
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There were several sources of heterogeneity between the Scottish cohorts, and the DMDSC 

cohort, which led to this cohort not being included in the meta-analysis. The main difference 

was the NAFLD phenotype, which was based on a single ALT measurement rather than 2 

which were 3 months apart. Other differences in the data availability and the way in which it 

was collected mean that it was not suitable for meta analysis. 

5.4 Results 

5.4.1 Single SNP Analyses 

The effects of each SNP on NAFLD rate were analysed individually in a series of unadjusted 

and unadjusted models. The results of these analyses are shown in tables 1, 2, and 3 for 

GoDARTS, SHARE and the meta-analysis respectively. 

5.4.1.1 GoDARTS 

A number of variants had significant effects on NAFLD in each cohort respectively as well as 

the meta-analysis. In GoDARTS, the GLP1R SNP rs6923761 was close to significance in the 

unadjusted and adjusted models, with an OR of 1.14 in each. (p = 00.058 – 0.085) In a 

dominant model with adjustment for age, sex and T2DM, the SNP rs1042044 had a 

significant association with NAFLD. (OR = 0.88(0.78 - 0.99), p = 0.037) In GCGR, the SNP 

rs28454947 was associated with NAFLD in the adjusted models, with an OR of 1.14(1.01 - 

1.28) in the model adjusted for sex, age, T2DM and BMI. (p = 0.037) Full results are shown 

in table 19. 

Table 20 - The associations between variants in GLP1R, GCG and GCGR, and NAFLD in the GoDARTS cohort 

Variant Unadjusted Adjusted for age, sex, and T2DM Adjusted for age, sex, 

T2DM and BMI 

Model 

rs6923761 

GLP1R 

OR = 1.14 , 

( 0.998 - 1.3 ), 

p = 0.0538 

OR = 1.14, 

( 0.983 - 1.32 ), 

p = 0.0854 

OR = 1.14 , 

( 0.983 - 1.32 ), 

p = 0.0833 

Recessive 
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rs1042044 

GLP1R 

OR = 0.943 , 

( 0.849 - 1.05 ) , 

p = 0.273 

OR = 0.886 , 

( 0.788 - 0.997 ) , 

p = 0.0447 

OR = 0.88 , 

( 0.781 - 0.992 ) , 

p = 0.0367 

Recessive 

rs10305420 

GLP1R 

OR = 1.04 , 

( 0.961 - 1.12 ), 

p = 0.356 

OR = 1.05 , 

( 0.965 - 1.14 ), 

p = 0.268 

OR = 1.06 , 

( 0.976 - 1.15 ), 

p = 0.166 

Additive 

rs140065949 

GCGR 

OR = 1.16 , 

( 0.864 - 1.59 ), 

p = 0.329 

OR = 1.18 , 

( 0.857 - 1.65 ), 

p = 0.32 

OR = 1.22 , 

( 0.885 - 1.71 ), 

p = 0.23 

Additive 

rs4664447 

GCG 

OR = 1.3 , 

( 0.937 - 1.81 ), 

p = 0.124 

OR = 1.31 , 

( 0.916 - 1.89 ), 

p = 0.147 

OR = 1.34 , 

( 0.931 - 1.94 ), 

p = 0.121 

Dominant 

rs28454947 

GCGR 

OR = 0.897 , 

( 0.615 - 1.33 ), 

p = 0.579 

OR = 0.734 , 

( 0.491 - 1.11), 

p = 0.138 

OR = 0.731 , 

( 0.484 - 1.12), 

p = 0.141 

Recessive 

rs5386 

GCGR 

OR = 1.49, 

( 0.731 - 3.36 ), 

p = 0.296 

OR = 1.27 , 

( 0.587 - 3 ), 

p = 0.566 

OR = 1.29 , 

( 0.592 - 3.08 ), 

p = 0.539 

Recessive 

 

5.4.1.2 SHARE 

In SHARE, the GLP1R variant rs10305420 was associated with NAFLD in a model adjusted 

for sex, age and T2DM. (OR = 1.18(1.02 - 1.37), p = 0.025) The SNP rs6923761 was close to 

significance in the same model, with the same direction of effect as was found in GoDARTS. 

(OR = 1.37, (1.0 - 1.9), p = 0.059) The results of all analyses are shown in table 20. 

Table 21 - Table 20 - Associations between variants in GLP1R, GCG and GCGR, and NAFLD in the SHARE cohort 

Variant Unadjusted Adjusted for age, sex, and 

T2DM 

Adjusted for age, sex, T2DM 

and BMI 

Model 

rs6923761 

GLP1R 

OR = 1.38 , 

( 1.03 - 1.88 ), 

p = 0.0362 

OR = 1.37 , 

( 0.996 - 1.9 ), 

p = 0.0585 

OR = 1.19 , 

( 0.749 - 1.96 ), 

p = 0.485 

Recessive 
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rs1042044 

GLP1R 

OR = 0.973 , 

( 0.762 - 1.23 ) , 

p = 0.824 

OR = 0.892 , 

( 0.685 - 1.15 ) , 

p = 0.39 

OR = 1.01 , 

( 0.657 - 1.5 ) , 

p = 0.977 

Recessive 

rs10305420 

GLP1R 

OR = 1.14 , 

( 0.999 - 1.31 ), 

p = 0.0532 

OR = 1.18 , 

( 1.02 - 1.37 ), 

p = 0.025 

OR = 1.07 , 

( 0.85 - 1.34 ), 

p = 0.586 

Additive 

rs140065949 

GCGR 

OR = 1.04 , 

( 0.703 - 1.58 ), 

p = 0.857 

OR = 1.14 , 

( 0.744 - 1.79 ), 

p = 0.563 

OR = 1.94 , 

( 0.85 - 5.62 ), 

p = 0.159 

Additive 

rs4664447 

GCG 

OR = 0.715 , 

( 0.479 - 1.1 ), 

p = 0.112 

OR = 0.643 , 

( 0.413 - 1.03 ), 

p = 0.0566 

OR = 0.954 , 

( 0.484 - 2.11 ), 

p = 0.899 

Dominant 

rs28454947 

GCGR 

OR = 0.76 , 

( 0.51 - 1.16 ), 

p = 0.191 

OR = 0.693 , 

( 0.447 - 1.1 ), 

p = 0.108 

OR = 0.823 , 

( 0.425 - 1.76 ), 

p = 0.587 

Recessive 

rs5386 

GCGR 

OR = 6.14 , 

( 1.3 - 110 ), 

p = 0.075 

OR = 5.01 , 

( 1.01 - 91.2 ), 

p = 0.12 

OR = 2.09 , 

( 0.411 - 38.2 ), 

p = 0.48 

Recessive 

 

5.4.1.3 Meta-Analysis 

The IPD meta-analysis of GoDARTS and SHARE revealed a number of SNPs which were 

significantly associated with NAFLD. The GLP1R SNP rs6923761 was associated with 

NAFLD in the model adjusted for sex, age and T2DM. (OR = 1.15(1.01 - 1.31), p = 0.032) In 

the same model, rs1042044 was also associated with NAFLD. (OR = 0.88, (0.794 - 0.98), p = 

0.018) 

The GCGR variant rs140065949 was associated with increased NAFLD risk in adjusted 

models, with an OR of 1.40(1.04 - 1.89) in a model adjusted for sex, age, T2DM and BMI. (p 

= 0.029) The variant rs5386 was associated with increased NAFLD risk in an unadjusted 
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model. (OR = 2.06, (1.10 - 4.30), p = 0.036) This was close to significance in the model 

adjusted for age, sex and T2DM. All results are shown in table 4. 

Table 22 - Associations between variants in GLP1R, GCG and GCGR, and NAFLD in the IPD meta-analysis of the 

GoDARTS and SHARE cohorts 

Variant Unadjusted Adjusted for age, sex, and T2DM Adjusted for age, sex, T2DM 

and BMI 

Model 

rs6923761 

GLP1R 

OR = 1.16 , 

( 1.03 - 1.3 ), 

p = 0.0146 

OR = 1.15 , 

( 1.01 - 1.31 ), 

p = 0.032 

OR = 1.14 , 

( 0.989 - 1.31 ), 

p = 0.0722 

Recessive 

rs1042044 

GLP1R 

OR = 0.944 , 

( 0.86 - 1.04 ) , 

p = 0.232 

OR = 0.881 , 

( 0.794 - 0.978 ) , 

p = 0.0176 

OR = 0.883 , 

( 0.788 - 0.989 ) , 

p = 0.031 

Recessive 

rs10305420 

GLP1R 

OR = 1.05 , 

( 0.983 - 1.12 ), 

p = 0.145 

OR = 1.05 , 

( 0.984 - 1.13 ), 

p = 0.134 

OR = 1.04 , 

( 0.966 - 1.12 ), 

p = 0.291 

Additive 

rs140065949 

GCGR 

OR = 1.21 , 

( 0.956 - 1.55 ), 

p = 0.12 

OR = 1.29 , 

( 1.01 - 1.67 ), 

p = 0.0483 

OR = 1.4 , 

( 1.04 - 1.89 ), 

p = 0.0285 

Additive 

rs4664447 

GCG 

OR = 1.04 , 

( 0.808 - 1.35 ), 

p = 0.763 

OR = 1.01 , 

( 0.772 - 1.34 ), 

p = 0.931 

OR = 1.26 , 

( 0.915 - 1.75 ), 

p = 0.166 

Dominant 

rs28454947 

GCGR 

OR = 0.928 , 

( 0.707 - 1.23 ), 

p = 0.597 

OR = 0.873 , 

( 0.654 - 1.18 ), 

p = 0.363 

OR = 0.901 , 

( 0.643 - 1.28 ), 

p = 0.55 

Recessive 

rs5386 

GCGR 

OR = 2.06 , 

( 1.1 - 4.3 ), 

p = 0.0361 

OR = 1.92 , 

( 0.993 - 4.1 ), 

p = 0.0685 

OR = 1.59 , 

( 0.792 - 3.49 ), 

p = 0.218 

Recessive 
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5.4.2 Analysis of Multiple SNPs 

5.4.2.1 GLP1R Missense Variants 

Further meta-analysis was conducted to stratify individuals into groups based on the GLP1R, 

GCG and GCGR variants that were informative about NAFLD risk. In the meta-analysis, the 

GLP1R missense variants rs6923761 and rs1042044 were in moderate linkage disequilibrium 

(LD), with a Pearson correlation of 0.62. Individuals were stratified by those who carried a 

NAFLD risk genotype in either/both of rs6923761 and rs1042044, and those who had a risk 

genotype for neither. The risk genotype for rs6923761 homozygosity for the mutant allele. 

(AA) The risk genotype in rs1042044 was homozygosity for the wild type allele. (AA) 

Individuals with at least one of these risk genotypes are henceforth referred to as being in the 

GLP1R risk group, or having the GLP1R risk genotype. 

In GoDARTS and SHARE combined, there were 3,734 individuals with risk genotypes for 

either of rs6923761 or rs1042044, and 8,002 individuals who were without risk genotypes for 

either variants. The individuals with a GLP1R risk genotype for at least one of these genes 

had increased risk of NAFLD in the model adjusted for sex, age, T2DM and BMI. (OR = 

1.15(1.04 - 1.27), p = 0.0055)  The results for each model are shown in table 22, where the 

effect of having at least one of these risk variants versus carrying none of the risk genotypes 

is shown. 

Table 23 - Association between the GLP1R risk genotype and increased NAFLD risk 

Cohort Unadjusted Adjusted for age, sex, and T2DM Adjusted for age, sex, T2DM 

and BMI 

GoDARTS OR = 0.997 , 

( 0.91 - 1.09 ) , 

p = 0.947 

OR = 1.15 , 

( 1.04 - 1.27 ) , 

p = 0.00747 

OR = 1.16 , 

( 1.05 - 1.29 ) , 

p = 0.00509 

SHARE OR = 1.19 , 

( 0.975 - 1.47 ) , 

OR = 1.26 , 

( 1.01 - 1.58 ) , 

OR = 1.09 , 

( 0.778 - 1.54 ) , 
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p = 0.0904 p = 0.0389 p = 0.622 

Meta-

Analysis 

OR = 1.01 , 

( 0.927 - 1.09 ) , 

p = 0.885 

OR = 1.12 , 

( 1.02 - 1.22 ) , 

p = 0.0138 

OR = 1.15 , 

( 1.04 - 1.27 ) , 

p = 0.00553 

 

5.4.2.2 GLP1R, GCG and GCGR Variants – Combinations and Interactions 

In GoDARTS, individuals who carried risk genotypes for both GLP1R and GCGR were at the 

highest risk of NAFLD. They had higher NAFLD risk compared to individuals with no risk 

variants in GLP1R or GCGR, (OR = 1.96(1.23- 3.24), p = 0.0066) and those who carried a 

risk variant in just one of these genes. (OR = 1.72(1.08 - 2.86), p = 0.029) 

The GCGR variant rs140065949 showed different effects in individuals with and without the 

GLP1R risk genotype. This is shown in table 6.  

Table 24 - The effects of GCGR variant rs140065949 on NAFLD rate in GoDARTS, stratified by the presence of the GLP1R 

risk genotype 

GLP1R Risk 

Group 

Unadjusted Adjusted for age, sex, and T2DM Adjusted for age, sex, T2DM and 

BMI 

Non-Risk OR = 1.1 , 

(0.83 - 1.46), 

p = 0.529 

OR = 1.14 , 

(0.849 - 1.55), 

p = 0.391 

OR = 1.32 , 

( 0.934 - 1.88 ), 

p = 0.125 

Risk OR = 1.52, 

(0.979 - 2.47), 

p = 0.0735 

OR = 1.71, 

( 1.07 - 2.83 ), 

p = 0.0304 

OR = 1.65, 

( 0.952 - 3.05 ), 

p = 0.0887 

 

This GCGR variant was associated with increased NAFLD in those who carried the GLP1R 

risk genotype, but showed no association in non-carriers. 
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The interactions between the GLP1R, GCG and GCGR variants were tested for any 

association with NAFLD in a model adjusted for age, sex, T2DM and BMI. The results are 

shown in table 24. 

Table 25 - Association between NAFLD and the statistical interaction of the GLP1R, and GCG and GCGR variants in 

GoDARTS 

 
rs6923761 rs1042044 

rs140065949 OR = 1.28, 

(0.701 - 2.39), 

p = 0.422 

OR = 1.93, 

(0.791 - 5.54), 

p = 0.179 

rs4664447 OR = 0.551 , 

(0.288 - 1.06), 

p = 0.0728 

OR = 0.32, 

( 0.149 - 0.701), 

p = 0.00377 

rs28454947 OR = 0.977, 

(0.491 - 1.96), 

p = 0.947 

OR = 0.426, 

(0.195 - 0.947), 

p = 0.0337 

rs5386 OR = 0.316, 

(0.0661 - 1.39), 

p = 0.131 

OR = 0.23, 

(0.0465 - 1.33), 

p = 0.0789 

 

 The rs1042044 AA genotype had an interaction with both rs4664447and rs28454947 that 

had a significant effect on NAFLD rate, with OR’s of 0.32 and 0.43 respectively. 

5.4.2.3 Supplementary Analysis in DMDSC Cohort 

The GLP1R variant rs6923761 was additively associated with increased NAFLD risk in a 

model adjusted for age, sex, BMI and alcohol.(OR = 1.14(1.01 - 1.28), p =  0.033) The other 

GLP1R variant for which data was available (rs1042044) showed no significant association 

with NAFLD, nor did the GCGR variants rs5386 or rs140065949. No interactions between 

variants were found. 



133 
 

5.5 Discussion 

The findings of the current analysis are that genetic variants in GLP1R and GCGR have 

associations with NAFLD rate. Two missense variants in GLP1R were found to be associated 

with NAFLD in the meta-analysis; rs6923761 and rs1042044. In GCGR, the intronic variant 

rs140065949 was associated with increased NAFLD in adjusted models, and the SNP rs5386 

associated with NAFLD in an unadjusted model. GLP1R rs6923761 was associated with 

increased NAFLD risk in the DMDSC cohort also. 

The wild type AA genotype homozygotes of GLP1R rs1042044 were at higher risk of 

NAFLD in our meta-analysis. The effect was also statistically significant in GoDARTS, and 

had a similar effect size although not significant in SHARE. A small number of studies have 

investigated this variant previously, with Sheikh et al. finding higher morning cortisol levels 

in children carrying the variant.352 This SNP was in partial LD (0.62) with rs6923761, and 

this association could represent the same signal. 

Homozygous carriers of the rs6923761 variant (AA genotype) were at increased NAFLD risk 

in the meta–analysis. Similar effect sizes, with p-values close to significance were also seen 

in GoDARTS and SHARE. In the DMDSC cohort, this variant was additively associated with 

NAFLD.  

Previous literature on GLP1R rs6923761 has investigated a number of parameters associated 

with obesity, metabolism and T2DM. Sathananthan et al. found that the rs6923761 minor 

allele (A) decreased responsiveness to infused GLP-1.350 They found this variant to be 

associated with lower beta-cell responsiveness, as individuals with at least one copy of the 

minor allele excreted significantly less insulin. Other studies have found reduced insulin in 

minor allele carriers also, as well as lower basal levels of GLP-1.353,354 Another study found 

that rs6923761 minor allele homozygotes has poorer response to gliptins for HbA1c 
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reduction.355 Based on these findings, rs6923761 appears to be a loss of function variant for 

GLP1R activity. In line with previous literature, our findings suggests that the rs6923761 

variant decreases the function of the GLP-1 receptor, and thereby increases NAFLD risk. 

GLP-1 has several physiological functions which are relevant to NAFLD.356 GLP-1 promotes 

glucose dependent insulin secretion, and is therefore a key factor in blood glucose 

homeostasis. It also decreases hepatic lipogenesis and increases fatty acid oxidation in the 

liver, as well as insulin sensitivity.357,358 Research into whether GLP-1 could be an effective 

treatment has been undertaken. Infused GLP-1 has been found to prevent NAFLD in mice.359  

Despite these effects of GLP-1, the administration of GLP-1 may not be an effective therapy 

for NAFLD. GLP-1 has a half-life of 90 seconds in the body, making it unviable as a drug in 

that form.360 Further to this, NAFLD patients have been found to have normal GLP-1 levels, 

despite decreased incretin effect.361 This may be due to the GLP-1 resistance which has been 

found in NAFLD.362 GLP-1 receptors have been found to be downregulated in individuals 

with NAFLD, causing this resistance and lowering the effect of GLP-1.363 DPP4, which 

deactivates the GLP-1 enzyme, has also been observed to be higher in patients with NAFLD, 

further decreasing the effectiveness of GLP-1.364  

To achieve the desired increase in incretin effect, agonism of the GLP-1 receptor has been 

targeted with a number of drugs.365 The increased effect of GLP-1 associated with GLP1R 

agonists increases insulin sensitivity and production.102 GLP1R agonists have shown positive 

effects on NAFLD  in a number of studies, with a study in mice showed that GLP1R agonists 

reduced oxidative stress as well as hepatic fat.359,366 The improvement in glycaemia seen with 

the administration of GLP1R agonists correlated with reduction in liver fat observed.366  

Further to this, GLP1R agonism exhibited anti-inflammatory effects in the liver.367  This is 

via the downregulation pro-inflammatory cytokines and transcription factors.368 Decreasing 
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hepatic steatosis and inflammation are key factors in the treatment of NAFLD and averting 

serious liver damage associated with progressive stages. 

The current study found that patients with loss of function variants in GLP1R had increased 

NAFLD risk, which is consistent with previous research suggesting agonism of GLP-1R 

should be beneficial for NAFLD. Patients with different GLP1R genotypes may have 

different response to GLP1RAs. These findings may be used for applied personalised 

medicine in those with NAFLD, matching patients to the drugs and doses which would be the 

most effective and safe. 

Significant associations between NAFLD and genetic variants in GCGR; the gene which 

encodes the receptor for glucagon; were found. We found the GCGR variant rs140065949 

was associated with increased NAFLD risk in the meta-analysis, in a model adjusted for sex, 

age, T2DM and BMI. This SNP is intronic and doesn’t appear in any previously published 

studies. This is also true of the synonymous variant rs5386 which associated with increased 

NAFLD in an unadjusted model. In a recessive model, rs5386 was close to significance in the 

model adjusted for sex, age, and T2DM in the meta-analysis, and also close to significance in 

the unadjusted analysis in SHARE. The intronic GCG variant rs4664447 had a significant 

interaction with rs1042044 in GLP1R. In carriers of the rs1042044 C allele (non-NAFLD risk 

allele), rs4664447 was associated with increased NAFLD risk. However, in those who were 

homozygous for the wild type rs1042044 A allele, rs4664447 was associated with an almost 

50% reduction in NAFLD risk. A previous study found variation in rs4664447 was associated 

with decreased insulin, GLP1R and glucagon levels, although this was for the T>G variation 

unlike the T>C variation analysed in the current study. 

Glucagon is a hormone which primarily acts to raise glucose and fatty acid concentrations in 

the bloodstream.346 It has a number of significant effects in the liver. Glucagon stimulates the 
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glycogenosis in the liver, where stored glycogen is released into the bloodstream in the form 

of glucose.369 It also stimulates gluconeogenesis and lipolysis in the liver, as well as 

decreasing rate of fatty acid synthesis.  

The findings of previous research combined with the current study suggest a role of the 

GCGR gene in NAFLD, and warrant further research into the functions of these variants and 

their relationship with NAFLD. NAFLD has been linked to GCGR signalling. Kazda et al. 

found that GCGR antagonism increases hepatic steatosis.370 Nason et al. found that reduced 

GCGR signalling increases fatty acid oxidation in the liver, and reduced liver triglyceride 

levels.371 It has also been shown that a high fat diet reduces glucagon receptor content in rat 

livers. Glucagon resistance has been suggested as a cause of lowered effect of GCG in the 

liver for glucose production. Despite several effects which are associated with poor 

glycaemic control, including high blood glucose and hyperinsulinemia, agonism of the 

glucagon receptor has been studied as a therapy for various metabolic conditions.372,373 These 

include thermogenic and catabolic effects.371 GCGR is associated with increased energy 

expenditure and reduced food intake.374 This effect has been combined with GLP1R agonism, 

in a number of GLP1R/GCGR co-agonist drugs.375 

GLP1R and GCGR co-agonists are a class of drug which has been investigated as a therapy 

for obesity and T2DM. Farooq et al. showed enhanced insulin as a results of GLP1R/GCGR 

co-agonism, and obesity reducing effects have been shown in rodents.102,103 They can also 

lower cholesterol and increase insulin sensitivity.347 Elvert et al. found mixed results in crab-

eating macaque monkeys, as GLP1R/GCGR co-agonism increased weight loss and insulin 

secretion, but was associated with lower glycaemic control long term.376 These effects make 

GLP1R/GCGR co-agonists worthy of further investigation for treatment of number of obesity 

related conditions. 
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Co-agonism for GLP1R and GCGR has also been investigated as a therapy for NAFLD, and 

shown promising results. Patel et al. found that co-agonism for these receptors reduced 

hepatic steatosis as well as lipotoxicity.97 Similar findings have also been made in mice.375 As 

well as simple steatosis, GLP1R/GCGR co-agonists have been found to improve NASH and 

fibrosis.101 Kannt et al. found that a GLP1R/GCGR co-agonist reduced the histological 

severity of NASH.377 As well as their individual effects, GLP-1 and glucagon are linked as 

GLP-1 inhibits glucagon secretion when blood glucose levels are raised.361 

The results of our study are consistent with this, as we show that loss of function of GLP1R 

increases risk of NAFLD, and therefore it can be extrapolated that upregulation of GLP1R 

will reduce NAFLD. We also showed effects of variants in GCGR, which further advocates a 

beneficial effect of GLP1R and GCGR co-agonism on NAFLD. We found that individuals 

who carried risk variants in both GLP1R and GCGR were at greater risk than those who 

carried no risk variants, or just one risk variant. The GCGR variant rs140065949 had a 

significant effect on NAFLD risk only in those who carried the GLP1R risk genotype. The 

GLP1R variant rs1042044 also had a significant interaction with two GCGR variants, which 

suggests interplay between the pathways associated with these two genes. 

Stratification by genotype may be an effective means of ensuring optimal treatment, should 

GLP1R/GCGR co-agonists become widely used. Individuals with different GLP1R and 

GCGR genotypes may benefit differently or not at all from GLP1R/GCGR co-agonists. With 

the advent of precision medicine, this may help ensure individuals are treated as effectively 

and economically as possible. 

The main goal of this study was to analyse the effects of GLP1R, GCG and GCGR variants 

on NAFLD in two Scottish cohorts. Analysis of these variants in the DMDSC cohort did 

however show that the GLP1R rs6923761 variant has effects on NAFLD in South Asians 
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also. Previous research has shown improvements a number of clinical outcomes including 

HbA1c and ALT levels in an Indian population with a GLP-1R agonist.378 This combined 

with research showing effects of the NAFLD risk variant PNPLA3 rs738409 in European and  

South Indian, as well as a previous chapter in the current thesis showing the same, suggest at 

least some commonality in the genetic risk architecture and disease pathology between 

Caucasian and South Indian individuals.256 

5.5.1 Limitations 

A limitation of the present study is the NAFLD phenotype. This was defined by the presence 

of raised ALT levels. There is evidence of NAFLD in individuals with normal ALT levels in 

some studies, especially in South Asians.379 BMI is also less effective as a predictor of 

NAFLD in South Asian populations.380 However, overall ALT is an effective and practical 

means for defining NAFLD in large populations.381 The longitudinal nature of the data used 

in this study improves the accuracy of the definition also, as does using the ULN’s suggested 

by Prati et al., which are lower than many previously used limits, as this increases the 

sensitivity of the definition.180 The missingness of BMI data for individuals without T2DM in 

SHARE also reduced the cohort size available for analysis, and lowered experimental power. 

The replication of results in the DMDSC cohort has some value, as it shows that the GLP1R 

rs6823761 variant has a significant effect on NAFLD. The power of this analysis is low 

however, with only 3,154 participants, and data for only four out of the seven variants was 

available. 

 The difference in NAFLD phenotype ascertainment between DMDSC and the GoDARTS 

and SHARE cohorts limit the comparability of results. This means that it is not possible to 

determine whether the lack of association between the GLP1R rs1042044 variant and 

NAFLD in DMDSC is due to true differences in the populations, or due to these confounding 
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factors. Compared with GoDARTS and SHARE, the NAFLD phenotype was more likely to 

include patients with non-NAFLD liver insults as cases. This was due to lack of availability 

of data for this. Alcohol was controlled for in this analysis as a binary trait, but there was no 

indication in the data whether individuals consumed harmful amounts of alcohol, likely to 

cause liver disease. Likewise, the data did not have sufficient information to be able to 

exclude individuals with alternate causes of liver disease such as virological or 

immunological insults. 

 

5.6 Conclusion 

We found effects of a number of genetic variants in GLP1R and GCGR on NAFLD. Two 

missense variants in GLP1R were associated with NAFLD rate. There is evidence in previous 

literature that these variants decrease the activity of GLP-1 receptors, supporting the notion 

that GLP-1 receptor agonism may be beneficial for NAFLD. The GCGR variant rs140065949 

was associated with increased NAFLD risk in the adjusted models. This likewise suggests a 

role of GCGR in NAFLD. Individuals who had risk genotypes in both GLP1R and GCGR 

were at greatest NAFLD risk, and the effect of the GCGR variant was only seen in carriers of 

the GLP1R risk genotype. These results combined with previous studies suggest that co-

agonism of GLP1R and GCGR may be an effective therapeutic approach for NAFLD. 

Stratifying individuals by the genetic variants we found to affect NAFLD may aid treatment 

of NAFLD and other obesity related conditions. 
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6 Endothelin Genes and NAFLD 

6.1 Abstract 

Endothelin is a vasoconstrictor which has significant effects in the liver, including 

modulating hepatic glucose output, and increasing risk of non-alcoholic steatohepatitis 

(NASH). Endothelin receptor antagonists (ETRA) have been studied in animal models as a 

potential NASH treatment. The aim of this study was to investigate the role of genetic 

variants which affect endothelin and endothelin receptor expression in NASH. 

Analyses for this cohort study were conducted in the GoDARTS cohort, a Scottish cohort of 

13,695, individuals. Replication was conducted in the SHARE cohort, with 3,068 individuals, 

and in the MDRF cohort with 3,068 genotyped individuals. The primary outcome of the study 

was Non-Alcoholic Steatohepatitis (NASH), which was defined by diagnoses in medical 

records. Genetic variants in EDN1, PHACTR1, EDNRA and EDNRB were selected for 

analysis based on previous literature linking them to endothelin and endothelin receptor 

expression respectively. 

In GoDARTS, three variants in EDNRA were significantly associated with NASH; 

rs17612742 – OR = 1.59(0.99 -4.02), p = 0.04); rs1878406 and rs6841581– OR = 1.81(1.16 – 

2.73), p = 0.006). In SHARE, FIB4 index was significantly associated with the same variants 

in EDNRA; rs6841581 – β= 0.25(0.077 -0.42), p = 4.6x10-3; rs1878406 – β = 0.26(0.087 – 

0.43), p = 3.2x10-3; rs17612742 – β = 0.24(0.075 – 0.41), p = 4.7x10-3. A number of other 

associations between endothelin SNPs and NASH related phenotypes were found. 

Genetic variants which are known to affect endothelin and endothelin receptor expression 

have significant effects on NASH and related phenotypes, including portal hypertension. 

These findings have relevance to research into ETRAs as NASH treatment, and to research 
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into the understanding of the pathogenesis of NASH in general. They may be useful for 

genetic stratification with respect to therapeutic intervention in NASH.  

 

6.2 Introduction 

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease 

globally. It is estimated to affect around 25.2% of adults worldwide.4,34 It is a prevalent 

comorbidity of obesity, and frequently occurs in individuals type 2 diabetes (T2DM).382 

There is currently no specific pharmacological intervention recommended for NAFLD, 

though a number of drug targets and pathways are currently being investigated, including 

antagonism of endothelin-1. (ET1)  

Endothelin is a vasoconstrictor, which when overexpressed contributes to hypertension, heart 

disease, and a number of other conditions.383,384 Endothelin acts on endothelin receptors, 

which come in two main types; Endothelin receptor A (ETA) and Endothelin receptor B 

(ETB).385 When activated ETA receptors’ main role is vasoconstriction. ETB receptors on the 

other hand have a role in vasodilation, as nitric oxide is released when they are activated.386 

Several genes are associated with the production, reception and action of endothelin. 

PHACTR1 has been found to regulate endothelin expression, by regulating the endothelin 1 

gene.114 (EDN1) The EDN1 gene itself has several variants which influence levels of 

endothelin in the body, and have been associated with clinical outcomes.112 The endothelin 

receptor A and B genes (EDNRA and EDNRB) each encode their respective receptor.113 

Endothelin has significant effects in the liver, and is a key regulator of hepatic blood flow. 

The liver has an important role in the removal of ET1 from the bloodstream and in patients 

with liver disease,  including NASH, high serum levels of ET1 have been observed.384,387 As 

well as alterations in hepatic blood flow, ET1 is associated with increased activation and 
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proliferation of hepatic stellate cells (HSCs). This is important in NAFLD as HSCs are the 

main producers of the extracellular matrix that characterises hepatic fibrosis.111,388Increased 

glycogenolysis and hepatic glucose output are also associated with ET1.387 In rats and in 

humans with cirrhotic livers, increased expression of endothelin receptors has been 

found.109,389 These findings demonstrate an association between the ET1 pathway in NASH 

and fibrosis. 

Following on from research into the link between endothelin and NASH, investigations into 

the use of endothelin receptor antagonists (ETRA) have been conducted. . The main role of 

these drugs is the reduction of pulmonary hypertension, as they block the vasoconstrictive 

effect of ET1. 108,390 ETRAs have been shown to reduce liver fibrosis in rats.391 Similar 

results were found in mice, as the ETRA ambrisentan reduced progression of hepatic fibrosis 

by inhibiting hepatic stellate cell activation.107 Some promising effects of ETRAs for treating 

NASH in a small human study have been found, but further research is required.392 Figure 6-

1 below illustrates the interaction between endothelin, its receptors and the processes of 

vasoconstriction and hepatic stellate cell activation, as well as the site of ETRA action. 

 

 

ET1 Receptor B 

Figure 6-1Endothelin Action on Vascular Muscle and Hepatic Stellate Cells 
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The aim of this study was to investigate the relationship between endothelin related genetic 

variants and NASH related outcomes. Genetic variants known to correlate with endothelin 

and endothelin receptor (ETR) activity were selected for this analysis. The main outcome 

phenotype was NASH, fibrosis and NAFLD hospitalisation also included. A significant effect 

of ET1 or ETR related variants would further clarify the role of the endothelin pathway in 

NASH, and may be useful for stratification of patients if an ETRA therapy is approved. To 

investigate whether any associations seen were due to haemodynamic effects or direct action 

on hepatic stellate cells, portal hypertension and alcoholic liver disease were also analysed.  

The genetic variants to be analysed were selected from previous literature linking genetic 

variants to ET1 and ETR expression. Three common variants from ET1 were analysed; 

rs1800541, rs2070699, and rs5370. These variants have been linked to subarachnoid 

haemorrhage, hypertension and ischemic stroke.113,393 Also analysed was rs9349379 variant 

in PHACTR1, which has been linked to ischemic heart disease. 114 This variant is close to the 

EDN1 locus, and is known to regulate ET1 expression.394   

Variants associated with endothelin receptors were analysed. Variants in EDNRA were 

investigated as this gene has been linked to conditions including hypertension.112,395 The 

SNPs rs6841581, rs17612742, and rs1878406, which are in very high linkage disequilibrium, 

have shown association with ischemic stroke and ischemic heart disease, through increased 

ETR activity.115,300,396 The SNP EDNRA rs4593108 has also shown associations with 

ischemic heart disease, through ETR activity increases.397 Common variants in EDNRB, 

which has been associated with Hirschsprung disease, were also selected for analysis; 

rs3818416 and rs5351.398 
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6.3 Methods 

6.3.1 Data  

The GoDARTS study was used as a discovery cohort.187 This is a T2DM case-control cohort 

with electronic health record data available for the 18,306 participants and genetic data 

available for many of these. The SHARE cohort was also analysed, and had 3,068 individuals 

with sufficient phenotypic and genotypic data available for analysis. The DMDSC cohort was 

included in further analysis, and had 2,013 individuals with adequate data for analysis. Full 

descriptions of these cohorts and phenotypic outcomes are presented in a previous chapter of 

the current thesis.       

6.3.2 SNPs 

Candidate SNPs which have previously been linked to ET1 and ETA activity were selected 

for analysis. These are shown in table 25 below, with frequencies from dbSNP.399 

Table 26 - Endothelin and Endothelin Receptor related genes; numbers and Minor Allele Frequencies (MAF) 

Gene SNP 

GoDARTS Allele Frequencies 

GoDARTS 

MAF 

SHARE 

MAF 

MDRF 

MAF 

 

dBSNP 

Reported 0 1 2 

EDN1 rs1800541 4424 1888 224 0.179 0.177 

 

0.243 0.246 

EDN1 rs5370 5838 3555 579 0.236 0.232 

 

0.367 0.228 

EDN1 rs2070699 1823 3016 1270 0.455 0.474 

 

0.363 0.443 

PHACTR1 rs9349379 3414 4606 1675 0.41 0.409 

 

0.490 0.401 

EDNRA rs4593108 4494 1909 221 0.177 0.174 

 

0.363 0.176 

EDNRA rs17612742 7277 2306 209 0.139 0.137 
 

0.137 
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0.206 

EDNRA rs1878406 7258 2344 213 0.141 0.14 

 

0.203 0.146 

EDNRA rs6841581 7267 2334 217 0.141 0.141 

 

0.221 0.148 

EDNRB rs3818416 374 2454 3783 0.756 0.753 

 

0.805 0.748 

EDNRB rs5351 988 3187 2442 0.610 0.605 

 

0.583 0.574 

 

A number of these variants were in high linkage disequilibrium (LD), which is shown in the 

correlation matrix in table 26. A number of other EDNRA SNPs were in extremely high LD 

with the SNPs of interest (r2 > 0.995), therefore were not analysed. These included: 

rs6842241, rs1801708, rs11413744, rs6537481, rs786205230, and rs6841473.  

Table 27 - Correlation matrix of SNPs in EDNRA in the GoDARTS cohort 

 
rs4593108 rs17612742 rs1878406 rs6841581 

rs4593108 1 
 

  

rs17612742 0.0662 1   

rs1878406 0.0646 0.964 1 
 

rs6841581 0.0676 0.968 0.994 1 

 

The two SNPs in EDRNB which were analysed were in moderate LD, with a Pearson’s R2 of 

0.70. 

Further to these five SNPs, three variants known to associate with NAFLD and NASH risk 

were analysed in the model with NASH in GoDARTS to test for any interactions or 
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alterations of associations with NASH and endothelin related SNPs. These were PNPLA3 

rs738409, TM6SF2 rs58542926 and HSD17Β13 rs6834314, shown in table 27. 

Table 28 - NAFLD and NASH related genes from previous literature; numbers and MAFs. 

Gene SNP 0 1 2 

GoDARTS 

MAF 

dBSNP 

Reported 

PNPLA3 rs738409 6797 3417 446 0.202 0.278 

TM6SF2 rs58542926 11220 1664 76 0.0701 0.0653 

HSD17B13 rs6834314 4673 3557 690 0.277 0.251 

 

6.3.3 Outcomes 

6.3.3.1 NASH 

The main phenotype investigated in this study was NASH. This was defined by the presence 

of the relevant NASH ICD-10 codes in admissions and deaths records for participants in 

GoDARTS at any point in their life. These were: "K75.8", "K740.", "K74.1", "K74.2", 

"K72.9", and "K74.6".225 Similar methods of using an ensemble of ICD-10 codes to classify 

NAFLD and its subsequent stages have been used previously, using codes for NAFLD, 

NASH, fibrosis, cirrhosis, cryptogenic cirrhosis and unspecified hepatic failure.59,400,401 

6.3.3.2 Fibrosis 

Fibrosis was also investigated in this study. This was defined by the presence of the relevant 

fibrosis ICD-10 codes in admissions and deaths records for participants in GoDARTS at any 

point in their life. These were the same as the NASH codes, with the omission of the “K75.8” 

code.  
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6.3.3.3 NAFLD Hospitalisation 

This was defined by the presence of NAFLD ICD-10 codes, or subsequent stages of NAFLD 

including NASH and fibrosis in admissions and deaths records ever. The ICD-10 codes used 

were “K76.0”, plus the codes used for NASH: "K75.8", "K74.0", "K74.1", "K74.2", "K72.9", 

and "K74.6".  

6.3.3.4 Ischaemic Heart Disease 

As a positive control to validate the effects of the genetic variants of interest, associations 

with ischaemic heart disease were tested. This condition was phenotyped using admissions 

and deaths data, which were searched for the occurrence of any ICD-10 code relating to 

ischemic heart disease. These were: “I20”, “I21”, “I22”, “I23”, “I24”, “I25”, and “I26”. In 

GoDARTS, 2,789 individuals had a diagnosis of ischemic heart disease at some point. 

6.3.3.5 Portal Hypertension 

To investigate the mechanism by which endothelin and endothelin receptor variants 

potentially altered NASH risk, portal hypertension was analysed. This was phenotyped with 

the ICD10 code “K76.6”. 

6.3.3.6 FIB-4 Index 

The FIB-4 index was developed as a non-invasive assessor of fibrosis, and FIB-4 score over 

3.25 is known to correlate with high likelihood of advanced fibrosis.153 This was calculated 

using individuals’ most recent measurements for the component biomarkers. When analysed 

as a continuous variable, FIB-4 was log transformed, as it was not normally distributed. 

6.3.3.7 ALT to AST Ratio 

ALT to AST ratio was calculated using patients most recent ALT and AST measurements 

prior to sign up to GoDARTS. ALT to AST ratio is a commonly used biomarker for liver 
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damage, particularly NAFLD.402,403 ALT and AST measurements were analysed versus the 

selected genetic variants separately, as well as a ratio. 

6.3.3.8 APRI  

The APRI score is an index of fibrosis which is calculated as the ratio of AST to platelet 

count.152 It has been shown to accurately diagnose hepatic fibrosis.  

 

6.3.4 Outcomes in MDRF Cohort: 

6.3.4.1 NAFLD 

NAFLD defined by the presence of elevated ALT levels was one of the phenotypes present in 

the MDRF cohort data. Patients in the MDRF cohort had a number of biochemical markers 

measured on their first visit to the clinic, and ALT was measured at this point.180 The 

thresholds for ALT levels in this study were 19U/L for women, and 30U/L for men.180 

6.3.4.2 ALT to AST Ratio 

Similarly to the previous ALT based NAFLD definition, this measure uses biochemical 

measurements taken at patients’ first visit to the MDRF clinic. ALT and AST measurements 

were analysed versus the selected genetic variants separately, as well as a ratio. 

6.3.4.3 Fatty Liver Grade 

Fatty Liver Grade (FLG) was assessed by abdominal ultrasound, and is a measure of the fatty 

infiltration of the liver.196 FLG was measured on a scale of 0 to 3, with these levels 

representing degrees of fatty infiltration of the liver; none, mild, moderate and severe 

respectively. This was analysed as a continuous trait, and also dichotomised as 0 versus 1, 2 

and 3; i.e. no fatty infiltration of the liver versus any level of fatty infiltration of the liver. 
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6.3.5 Exclusions 

To ensure the specificity of the NAFLD definition individuals with features of alternate 

causes of liver disease were excluded. Individuals with any positive serological tests for anti-

smooth muscle antibody, antinuclear antibodies or anti-mitochondrial antibodies, any positive 

serology for hepatitis B surface antigen or hepatitis C antibody, or mention of cause of liver 

disease in medical records were excluded. Individuals with alcohol dependence or any 

documentation of alcoholic liver disease in their EHRs were excluded. In addition, 

individuals who self-reported drinking more than 20g a day for women and more than 30g a 

day for men were excluded. 

6.3.6 Statistical Methods 

All analyses were adjusted for age, sex, and type 2 diabetes (T2DM). Continuous variables 

were analysed using a linear regression and binary variables were analysed with a logistic 

regression. All analyses were carried out in the statistical package R. This was a cross 

sectional study, as outcome phenotypes were assessed as the presence of a condition ever 

before the last follow up date.  

 

6.4 Results 

6.4.1 Results in GoDARTS 

Genetic variants associated with ET1 and ETA were tested for associations with NASH, and 

related phenotypes. A number of endothelin related SNPs in or near EDNRA and EDN1 had 

significant associations with NASH, and NASH related phenotypes. The key findings from 

this study are reported below. 
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6.4.1.1 Ischemic Heart Disease 

Positive control tests were run with genetic variants associated with ET1 and ETA, and 

coronary heart disease. The EDNRA variant rs6841581 showed an association with ischaemic 

heart disease, with an odds ratio of 1.11(95% CI = 1.00 - 1.23), p = 0.039), as did rs1878406. 

(OR = 1.11(1.01 - 1.23), p = 0.037)  

6.4.1.2 NASH 

Three variants in EDNRA were significantly associated with NASH; rs17612742 – OR = 

1.59(0.99 -4.02), p = 0.04); rs1878406 and rs6841581 (due to high LD) – OR = 1.81(1.16 – 

2.73), p = 0.006);  

In a recessive model, EDNRA rs4593108 was non-significantly associated with NASH, with 

similar OR to other EDNRA variants. (OR =1.86(0.65 - 4.22), p = 0.18) 

The known NAFLD and associated condition risk variants PNPLA3 rs738409, TM6SF2 

rs58542926 and HSD17Β13 rs6834314 were added to the models to test for any interactions 

with EDNRA variants. It was found that the EDNRA variants which associated with NASH 

behaved additively with these variants, and no interaction was found. 

6.4.1.3 Fibrosis 

None of the variants analysed were significantly associated with fibrosis. 

6.4.1.4 NAFLD Hospitalisation 

EDNRA variants were significantly associated with NAFLD hospitalisation. These were: 

rs1878406 – OR = 1.46(1.04 – 2.00) p = 0.023; rs6841581 – OR = 1.46(1.04 – 2.00), p = 

0.024. EDNRA rs17612742 and rs4593108 were both close to statistical significance for 

NAFLD hospitalisation, with similar odds ratios as seen for NASH. 
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6.4.1.5 Fatty Liver Index 

The variant EDNRA rs6841581 was associated with increased FLI: rs6841581 – β = 1.66(SE 

= 0.87), p = 0.048. The other two variants in EDNRA which are in high LD with rs6841581 

(rs17612742 and rs1878406) were close to statistical significance with similar beta estimates. 

6.4.1.6 GGT 

Three variants in EDNRA were associated with increased serum GGT: rs17612742 - β = 

10.04(SE = 3.00), p = 0.00084; rs1878406 - β = 10.35(SE = 3.02), p = 0.00062; rs6841581 – 

β = 10.76(SE = 3.01), p = 0.00036) 

6.4.1.7 FIB4 

EDNRA rs4593108 was associated with increased FIB4 index in a recessive model. (β 

=0.79(SE = 0.37), p = 0.031. 

EDN1 rs2070699 was associated with lower FIB4 index. (β = -0.77(SE = 0.31), p = 0.012) 

6.4.1.8 APRI Score 

EDNRA rs4593108 was recessively associated with APRI score. (β = 0.34(SE = 0.12), p = 

0.0048) 

6.4.1.9 Portal Hypertension 

Variants in EDNRA were associated with increased portal hypertension. rs6841581 – OR = 

2.40(1.014 -5.16), p = 0.032 and rs1878406 – OR = 2.42(1.017 - 5.21), p = 0.031) EDNRA 

rs4593108 was close to statistical significance for association with portal hypertension. (OR 

= 2.04(0.85 - 4.48), p =0.089) 

6.4.1.10 ALT to AST Ratio 

None of the variants analysed were associated with ALT to AST ratio. 
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6.4.2 Analysis in SHARE Cohort 

To validate findings, a number of phenotypes were analysed in SHARE, with the EDN1, 

EDNRA, EDNRB and PHACTR1 SNPs of interest. 

6.4.2.1 NASH 

Homozygous carriers of EDNRA rs4593108 had increased risk of NASH. (OR = 4.04(0.92 - 

1.24), p = 0.029) 

PHACTR1 rs9349379 was recessively associated with increased NASH risk. (OR = 2.39(1.02 

- 5.24), p = 0.034) 

6.4.2.2 Fibrosis 

Homozygous carriers of EDNRA rs4593108 also had increased risk of fibrosis.(OR = 

4.54(0.70 - 6.94), p =0.05) 

PHACTR1 rs9349379 was recessively associated with increased fibrosis risk. (OR = 

2.41(0.97- 5.53), p = 0.044) 

6.4.2.3 NAFLD Hospitalisation 

EDNRA rs4593108 was associated with increased NAFLD hospitalisation. (OR = 4.05(0.95 -

12.0), p = 0.026) 

For the variants in EDNRA that were significant in GoDARTS, although the p values were 

not significant, the direction of effect was the same as in GoDARTS. For example for 

NAFLD Hospitalisation: rs1878406- OR = 1.36(0.84 - 2.1297), p = 0.19; rs6841581 – OR = 

1.36, (0.83 - 2.12), p = 0.20; rs17612742 - OR = 1.39(0.85 - 2.17), p = 0.16. 

6.4.2.4 FIB4 

FIB4 index was significantly associated with variants in EDNRA, with the results as follows. 

rs6841581 – β= 0.25(0.077 -0.42), p = 4.6x10-3; rs1878406 – β = 0.26(0.087 – 0.43), p = 
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3.2x10-3; rs17612742 – β = 0.24(0.075 – 0.41), p = 4.7x10-3. PHACTR1 rs9349379 was 

recessively associated with increased FIB index. (β =4.22(SE = 2.12), p = 0.47) 

These variants were also associated with greater odds of having experienced FIB4 index 

greater than 3.25. The results were as follows: rs6841581 – OR = 2.24(1.20 - 4.10), p = 

9.2x10-3; rs1878406 – OR = 2.30(1.24 - 4.19), p = 7.2x10-3; rs17612742 – OR = 2.32(1.27 - 

4.16), p = 5.0x10-3. 

6.4.2.5 Portal Hypertension 

Variants in EDNRA were associated with increased portal hypertension. rs6841581 – OR = 

2.39(1.31 - 4.17), p = 0.003; rs17612742 – OR = 2.44(1.34 - 4.25), p = 0.0023; rs1878406 – 

OR = 2.40(1.31 - 4.18), p = 0.0029. 

6.4.3 Analysis in MDRF Cohort 

6.4.3.1 NAFLD 

A single variant in EDNRA (rs4593108) was close to statistical significance for NAFLD. (OR 

= 0.90134 (0.80 -1.01), p = 0.085) 

6.4.3.2 ALT to AST Ratio 

None of the variants tested were significantly associated with ALT to AST ratio. 

Two variants in EDN1 were associated with ALT level in recessive models; rs5370 –β= 

3.66(1.36 - 2.69), p = 0.0073 and rs2070699 – β= -2.70(1.29 - 2.09), p = 0.037 

6.4.3.3 Fatty Liver Grade 

Two variants in EDNRA were close to statistical significance for a Fatty Liver Grade Greater 

than 0. (rs17612742 - OR = 1.24(0.99 - 1.58), p = 0.07; rs1878406 – OR = 1.22(0.97 - 1.54), 

p = 0.088;   
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6.5 Discussion 

We found significant associations between genetic variants in endothelin and endothelin 

receptor A, and NASH, plus NASH related phenotypes in GoDARTS and SHARE. In the 

MDRF cohort, we found variants significantly associated with ALT levels, and close to 

significance for NAFLD and FLG. A number of these variants have been linked to 

upregulation of the endothelin pathway in previous studies. 

We found two independent variants in EDNRA to be associated with a number of the NASH 

related outcomes that were analysed in this study. The first locus contained rs17612742, 

rs1878406 and rs6841581, all of which were in high LD. (Pearson’s R2 = 0.96 -0.99) 

Associations were found for these SNPs for NASH, NAFLD hospitalisation, FLI, portal 

hypertension and ischemic heart disease in GoDARTS. In SHARE, associations were found 

for FIB4 index and portal hypertension. Although the same direction of effect for these SNPs 

was seen in GoDARTS and SHARE for associations with NASH, fibrosis and NAFLD 

hospitalisation, none were statistically significant, likely due to low power. In the MDRF 

cohort, rs17612742 and rs1878406 were close to significance for association with increased 

risk of Fatty Liver Grade greater than 0. i.e presence of fatty infiltration of the liver. 

This locus is known to associate with both carotid intima media thickness (cIMT) and plaque, 

and is thought to upregulate the activity of the endothelin receptor.404 GWAS studies have 

found that this locus is associated with increased systolic blood pressure, and increased pulse 

pressure.312 It has also been associated with increased risk of coronary artery disease, thought 

to be a result of increased cIMT and plaque.405 Association between this EDNRA locus and 

GGT was observed. GGT is often used as a marker of liver damage, but is also associated 

with ischemic heart disease.148,406 In SHARE, these three EDNRA SNPs were significantly 

associated with increased FIB-4 index, a useful marker of fibrosis. These findings are 
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consistent with this EDNRA locus being associated with increased endothelin receptor 

activity. 

The second locus was at EDNRA rs4593108, which was in extremely low LD with the 

previous EDNRA locus around rs17612742. (Pearson’s R2 < 0.07) In GoDARTS, we found 

associations with this SNP for FIB4 and APRI. It was also close to significance for NASH, 

NAFLD hospitalisation and portal hypertension. In SHARE, it was associated with NASH, 

NAFLD hospitalisation, and fibrosis. In MDRF, it was also close to significant association 

with increased NAFLD. (As defined by raised ALT levels) This locus has been reported to 

associate with a number of clinical outcomes, including coronary heart disease.397 Studies 

have also found that it is associated with increased risk of myocardial infarction.407 These 

findings suggest that this variant is associated with upregulation of endothelin A receptors. 

Significant associations between the PHACTR1 variant rs9349379 and NASH, fibrosis and 

FIB index were found in SHARE, but not replicated in GoDARTS or MDRF. This variant 

has been found to associate with increased coronary artery disease risk in a number of 

studies.408 It is also associated with carotid plaque. 409 It has recently been demonstrated that 

PHACTR1 rs9349379 regulates the EDN1 gene.114 The minor allele carriers were found to 

have higher EDN1 expression, and higher ET1 levels. 

The findings of the current study suggest that the upregulation of endothelin and the 

endothelin A receptors plays a major role in development of NASH and fibrosis. Leivas et al. 

found that expression of ETA and ETB receptors was increased in the livers of cirrhotic 

patients, and was directly associated with portal hypertension in these individuals. Tsuchiya 

et al. found that in cirrhotic rats, higher endothelin activity was associated with hepatic 

ischemia and reperfusion injury, as well as lowered survival.410 Serum levels of endothelin 

are increased in cirrhotic patients, and the levels of endothelin correlate with the severity of 
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liver damage as well as portal hypertension.411 These findings, combined with our results 

linking endothelin and endothelin receptor related genetic variants suggest an important role 

for endothelin in liver disease, especially fibrosis. 

Endothelin is associated with a number of effects and pathways which may be responsible for 

these associations, and may contribute to the pathophysiologies of NASH and fibrosis. 

Endothelin is a vasoconstrictor, and acts to increase blood pressure.383 EDNRA (Endothelin 

receptor A) is a sub-type of endothelin receptor which increases vasoconstriction when 

activated, which raises blood pressure.412 Haemodynamic changes and effects are present in 

fibrosis and cirrhosis.413  Hypertension of the hepatic artery is caused by increased 

extrahepatic hyperdilation, and the resulting increased inflow of blood.414 This increase in 

vasodilators which cause this hyperdilation is thought to be due to portosystemic shunting 

and bacteria translocation.415 Portal hypertension is a key element of cirrhosis. Additionally 

to increased inflow to the portal vein, portal hypertension is increased by the build-up of 

extracellular matrix causing increased resistance to blood flow, as well as active 

vasoconstriction within the liver.416 Portal hypertension is a major factor in the development 

of complications in liver disease.417 Moller et al. found increased circulating endothelin in 

patients with cirrhosis, causing significant changes in hepatic haemodynamics.411,415 

Endothelin has been shown to decrease splanchnic blood flow.418 There a number of 

pathways which endothelin could affect to alter splanchnic circulation including through 

nitric oxide(NO), arachidonic acid metabolites or bacteria.415,419,420  

Hepatic ischemia is a feature of severe liver disease, and in particular microvascular 

circulation is impaired in NAFLD.421 It has been found that steatotic livers are less tolerant of 

hepatic ischemic reperfusion injuries.422 Tsuchiya et al. found increased the ischemia of the 
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liver seen in cirrhotic rats was reduced with the administration of ETA receptor 

antagonists.410,423  

Endothelin is associated with increased secretion of inflammatory cytokines.424 These include 

TNF-α, IL-1 and IL-6, which are important inflammatory markers in the development of 

NASH.425 As well as hepatic inflammation, these cytokines have a role in increasing the 

extracellular matrix production associated with fibrosis.424 The ET1/ETA pathway is 

associated with increased myocardial fibrosis, through fibroblast proliferation and 

extracellular matrix deposition.426 Increased ET1 levels, as well as increased numbers of ETA 

receptors have also been seen in patients with pulmonary fibrosis.427 The increased heart and 

lung fibrosis associated with ET1 may have mechanisms in common with the increased 

NASH and fibrosis observed in the current study. 

Hepatic stellate cells (HSC) play a major role in fibrosis, and are an important factor in the 

association between endothelin and fibrosis.428 HCSs are normally inactive and have a role in 

the storage of vitamin A. When activated in response to liver damage, HSCs produce the 

extracellular matrix which forms the scar tissue seen in fibrosis.16,388 Collagen is one of the 

key components of this extracellular matrix, and can increase risk of progressing to cirrhosis.  

Endothelin increases both HSC proliferation and activation.429 This thought to be modulated 

by ETA receptors. Indeed, Cho et al. found that an ETA receptor antagonist blocked the 

formation and deposition of collagen in rats with liver fibrosis.110 This may explain a portion 

of the increased fibrosis risk in carriers of EDNRA risk variants associated with higher ETA 

receptor activity.388 This forms a vicious cycle, as when hepatic stellate cells are activated; 

such as in NASH or fibrosis; secretion of ET1 is increased.391  

The combined effect of these mechanisms and processes likely explain the increased NASH 

and fibrosis in those carrying genetic variants associated with higher ETR activity. This 
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suggests the use of drugs which interrupt and reduce the effects of ET1 this may have a role 

in fighting NASH, fibrosis and cirrhosis on several fronts. Endothelin receptor antagonists 

(ETRAs) are a class designed to down regulate endothelin receptors. These drugs have been 

used to treat pulmonary arterial hypertension primarily.390 They have been investigated as 

potential treatments for a number of other conditions including renal failure, sickle cell 

disease, and cancer.430–432 

Studies have investigated the use of ETRAs for the treatment of NASH and fibrosis.107,391 

Studies on rats have yielded promising results for the treatment of cirrhosis. Cavasin et al. 

found that antagonism of ETA receptors reduced hepatic portal blood pressure, and suggested 

a selective ETA receptor antagonist should be more effective than a dual antagonist, so as to 

preserve the beneficial effects of ETB receptor activation. (relaxation of sinusoids and 

systemic vasodilation) 433 These results were mirrored by De Gottardi et a., as they found 

only ETA receptors to reduce portal hypertension.434 

Despite past research suggesting a therapeutic role of ETRAs for NASH, and the success 

some have had in therapy for a number of conditions, serious negative side effects have been 

observed. Cases of liver toxicity have been found in patients being treated with ETRAs, some 

of which have been fatal.435 This is another aspect of ETRA which requires further research 

to fully understand the effects of the drugs and provide safe and effective treatment. 

The results of this study may have clinical relevance through stratification of patients, should 

a therapy based on ETRAs be approved. The patients who carry the EDNRA risk variants and 

therefore have greater endothelin receptor activity, may perhaps benefit more from ETRAs 

than those with the wild type allele. This is an opportunity for applied personalised medicine. 
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6.5.1.1 Limitations and Future Work 

The major limitation of this study is lack of experimental power, due to low numbers of 

individuals diagnosed with NASH and related phenotypes in medical records. The under 

diagnosis of NAFLD and related phenotypes in clinical settings is discussed previously in 

this thesis. The phenotypes NASH, fibrosis and NAFLD hospitalisation each had fewer than 

100 cases in patients who had been genotyped in both GoDARTS and SHARE. This makes 

the detection of genetic effects extremely underpowered, especially with binary outcomes.  

As discussed in previous chapters, many patients in the GoDARTS and SHARE cohorts are 

likely to have had undiagnosed NASH, fibrosis and cirrhosis, which reduced effect size and 

the statistical significance of findings. The same issue was found for other, continuous 

phenotypes including FIB4, FLI, APRI and GGT. 

A number of results in GoDARTS were not statistically significant when replicated in 

SHARE, though had the same direction of effect and similar effect sizes. The results of this 

current study are not strong enough to conclusively demonstrate the role of EDN1 and 

EDNRA variants in NASH and fibrosis, but the effects seen are concurrent with previous 

research and are biologically plausible.  

Multiple testing may have been an issue in this study. Each variant was tested in models with 

a number of NAFLD related phenotypes. This may have increased the number of significant 

results simply by chance. Techniques such as Bonferonni can be used to avoid this, but can 

blunt the sensitivity of analysis. 

To take this research further, replication and further analyses in a larger cohort with access to 

high quality phenotype data is necessary. The challenge of diagnosing NAFLD causes a large 

underdiagnosis of NAFLD in clinical settings, which makes this kind of data rare.25 Further 

to this, retrospective cohort studies investigating liver damage outcomes in those who were 
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prescribed ETRAs for pulmonary hypertension may be an effective method of using existing 

data to assess the efficacy of ETRAs for liver damage. 

 

6.6 Conclusion 

To conclude, we have shown that variants in EDNRA and EDN1 which are known to 

associate with upregulated endothelin receptor activity have significant effects on NASH, 

NAFLD hospitalisation, and indexes of fibrosis. Given the association of these variants with 

the development of atherosclerosis and heart failure with preserved ejection fraction, these 

data in NASH raise the possibility that endothelin receptor antagonism may target multiple 

underlying pathologies. Genetic profiling may also allow for targeted therapy in patients with 

established NASH and fibrosis.  
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7  Discussion 

7.1 Summary of Findings 

7.1.1 NAFLD Phenotype 

A NAFLD phenotype based on two raised ALT measurements at least 3 months apart, in the 

absence of other causes of liver disease was developed. A number of ALT thresholds were 

discussed, and those suggested by Prati et al. were (>19U/L for women, >30U/L for men) 

selected as there is good evidence that these are the upper limits of ALT levels in healthy 

individuals.180 Measures were at least 3 months apart to remove the possibility of acute liver 

damage (e.g. drug induced) being classified as NAFLD. This definition was validated against 

NAFLD diagnoses from EHRs, and was 96% sensitive in GoDARTS. It correlated well with 

other known NAFLD risk factors such as BMI, age, T2DM and cholesterol. The established 

NAFLD risk SNP rs738409 was strongly associated with this NAFLD phenotype, providing 

more validation. 

Individuals with NAFLD were found to have increased morbidity compared with those 

without NAFLD, as they had more hospital admissions, even when liver related admissions 

were excluded. Those with NAFLD also lived shorter lives, also when liver related death was 

excluded. This demonstrated the established underdiagnosis of NAFLD in clinical settings, as 

well as the effect of NAFLD on extrahepatic morbidity and mortality.25 This has been 

explored in previous literature, with cardiovascular disease and cancer found to contribute 

significantly to these associations.58,59 The link between NAFLD and cancer was investigated 

in detail in the following chapter. 

The development of an accurate and practical method for the diagnosis of NAFLD in large 

retrospective cohorts is an important step in the field of NAFLD research. This method of 

NAFLD diagnosis could allow analysis of NAFLD epidemiology, pathology and genetic 
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determinants in cohorts which previously lacked a suitable NAFLD definition. As NAFLD 

diagnosis is so challenging, as simple and commonly measured definition such as this may 

allow analysis with many more cases compared with biopsy based definitions for example. 

 

7.1.2 NAFLD and Cancer 

The aim of this chapter was to analyse the relationship between cancer incidence and death, 

and NAFLD. We found that NAFLD was significantly associated with increased risk of 

cancer incidence in GoDARTS, SHARE and Tayside and Fife Diabetic cohort (T&F). BMI 

was associated with increased cancer incidence in an unadjusted model. When NAFLD was 

accounted for, BMI was no longer associated with cancer incidence. The same results was 

found when analysis was limited to previously reported BMI related cancers.221 This result 

was consistent with another study into NAFLD and cancer, where Allen et al. found BMI 

made little to no difference to cancer risk in those without NAFLD.59 These results combined 

suggest previous results linking BMI to cancer have been driven by NAFLD. NAFLD was 

significantly associated with increases in specific cancer incidence, including prostate, breast, 

colon, lung and liver cancers. In GoDARTS, the common NAFLD risk variant PNPLA3 was 

significantly associated with increased cancer incidence, further validating the results of this 

study. 

We also found NAFLD increased risk of cancer death in GoDARTS, SHARE and T&F. 

Cancer was found to be the predominant cause of early death in those with NAFLD, as when 

cancer deaths were excluded, NAFLD was not significantly associated with age of death. In 

GoDARTS, individuals with NAFLD who did not have T2DM, and did not have cancer at 

any point in their lives, lived lives of similar length to those who did not have NAFLD. 
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Similar findings were made by Simon et al. in a large Swedish cohort where extrahepatic 

cancer was the predominant cause of early death in NAFLD.60 

These findings suggest that cancer is a major part of the epidemiology of NAFLD. This may 

also give clues as to the pathogenesis of certain cancers, and help the prevention of cancers 

through interventions against NAFLD. NAFLD is associated with numerous pathways which 

may influence cancer development. Hyperinsulinemia has been linked to a number of 

cancers, and is highly prevalent in those with NAFLD.236,436 The pro-inflammatory state 

created by NAFLD may cause increased cancer risk, as increases in cytokines, adipokines 

and lymphokines increase cell proliferation, migration and hinder apoptosis.238,239 

7.1.3 NAFLD GWAS 

GWAS analyses of NAFLD in GoDARTS and DMDSC revealed PNPLA3 rs738409 has a 

significant effect on NAFLD risk in both cohorts, with similar odds ratios. Though the data 

and NAFLD phenotypes were slightly different, this shows that this locus is an important 

factor in the development of NAFLD in both populations. Variants in ERLIN1, a SREBP 

signalling regulator, were also associated with reduced NAFLD risk in GoDARTS. This 

association was not seen in DMDSC, likely due to insufficient statistical power. 

Fatty Liver Index was analysed in GoDARTS, and a number of genetic variants were close to 

genome wide significance. Variants in GGT1 were close to significance, and as GGT is 

included in the calculation of FLI.148 A second GWAS of FLI was run in GoDARTS adjusted 

for this GGT1 locus, so as to remove the variance in FLI caused by this. This produced 

stronger results, with a number of genome wide significant hits. Significant signals were seen 

in chromosome 3 in the FAM19A4 and EOGT genes, which have roles in inflammation and 

metabolism respectively.305,307 Variants in DNAH11 were genome wide significantly 

associated with decreased FLI, though this locus has not previously been associated with 
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NAFLD or associated pathways.304 Two variants in TCF7L2 were genome wide significantly 

associated with FLI. One of these was the variant rs7903146, which is a large T2DM risk 

factor, and has independent effects on NAFLD risk.254,317 No genome wide significant 

associations were found for Fatty Liver Grade in the DMDCS cohort. 

7.1.4 NAFLD and GLP1R, GCG and GCGR Genes 

GLP1R/GCGR co-agonist medications have been used to treat diabetes and obesity, and have 

recently been investigated as a potential treatment for NAFLD.97,101,103 Variants in the genes 

associated with these receptors have been linked to their activity, and a number of relevant 

metabolic pathways.349,355 We sought to investigate whether variation in these genes was 

associated with risk of NAFLD in the GoDARTS, SHARE and DMDSC cohorts. We found 

two missense variants in GLP1R; rs1042044 and rs6923761; were significantly associated 

with NAFLD in the meta analysis of GoDARTS and SHARE. Carrying a risk genotype for 

either one of these GLP1R SNPs was associated with increased risk of NAFLD. The 

rs140065949 variant in GCGR was also significantly associated with NAFLD. Statistically 

significant interactions were found as well, as the effect of GCGR rs140065949 was 

significant in carriers but not non-carriers of GLP1R risk genotypes.  

These findings suggest a role of GLP1R and GCGR genes in the development of NAFLD, 

and complement previous research suggesting that these receptors influence NAFLD risk. 

These findings also agree that GLP1R/GCGR co-agonism ought to have beneficial effects on 

NAFLD, and that patients with different genotypes may have different drug response. They 

may have utility in implementing personalised medicine in those treated with GLP1R/GCGR 

agonists, should they be approved for treatment of NAFLD.  
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7.1.5 NAFLD and Endothelin Genes 

Endothelin receptor agonists have been investigated as a treatment for hepatic fibrosis.391 

Endothelin increases activation and proliferation of the HSCs which produce ECM which is 

present in fibrosos.428 Studies have found increased endothelin in cirrhotic livers, and 

increased presence of endothelin receptors on HSCs.437 Antagonisation of the endothelin 

receptor by ETRA drugs has been found to reduce hepatic fibrosis.391  

The current study aimed to investigate the role of genetic variants related to endothelin 

function and NAFLD in the GoDARTS, SHARE and DMDSC cohorts. We found variants in 

EDN1 and EDNRA to be significantly associated with NASH, NAFLD hospitalisation, 

fibrosis and portal hypertension. The variants in EDNRA have been associated with increased 

endothelin receptor activity in previous literature.112,113 The variant in EDN1 was has also 

been linked to increased endothelin.112 These findings are consistent with previous literature 

suggesting down regulation of the endothelin receptor will reduce NAFLD and fibrosis. The 

findings of the current study could also be useful in stratifying patients by genotype for 

treatment with ETRAs, as different genotypes may respond differently. 

7.2 Clinical Implications of the Current Study 

The findings of the current study have major implications for a large number of individuals. 

NAFLD is a common condition, affecting around 25.2% of adults globally.54 The current 

study showed that the vast majority of patients with NAFLD have not been admitted to 

hospital for their condition, and are likely undiagnosed, which is consistent with previous 

findings.25 Roughly 2% of patients with NAFLD has this listed as a cause of death in the 

GoDARTS cohort. Despite this, NAFLD patients have much more morbidity, and died on 

average 1.93 years younger than those without NAFLD, after adjusting for age, sex, BMI and 

diabetes. This is also consistent with previous reports about mortality and NAFLD.58  
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Further to this, we showed NAFLD was associated with increased cancer incidence and 

cancer death, and that BMI was no longer associated with cancer incidence when NAFLD 

was accounted for. Screening for NAFLD may allow better prediction and targeted screening 

for cancers. Our results demonstrated this association with a NAFLD definition based on 

ALT, a cheap and commonly measured biomarker. This could be applied retrospectively, 

with patients with raised ALTs in the past referred for screening. It may also be applied 

prospectively, with increased ALT testing and routine ALT measurements used to flag those 

who are at risk.  

Knowledge of the association between NAFLD and cancer should mean that even moderate 

NAFLD is taken seriously and interventions to try and reduce its severity attempted more 

often. Though there is no recommended pharmacological treatment, lifestyle interventions 

such as weight loss, exercise, smoking cessation and  lowering alcohol intake can improve 

patients’ condition.96,200,438,439 

In 2016, It was estimated to cost the USA $103 billion dollars per year, with prevalence rates 

still rising.440 Given the under diagnosis and underreporting of NAFLD in clinical settings, 

this number is likely much higher in reality.25 If extrahepatic outcomes associated with 

NAFLD are included, this figure would again rise dramatically. The direct cost of cancer 

healthcare in the USA is estimated to be $173 billion for example.441 

Further to the clinical implications, these findings suggest that more intensive research into 

NAFLD Is required, particularly with the aim of producing an effective drug for the therapy 

of NAFLD and diagnostic methods. Improved diagnostic methods would improve patient 

care through targeted screening for cancer, but also improve NAFLD research, as a high 

quality NAFLD phenotype would allow effective clinical trials to be run. 
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The associations with NAFLD and  GLP1R/GCGR genes, and endothelin genes give further 

clues as to the pathological nature of NAFLD, and may relevant to applying precision 

medicine in NAFLD if drugs involved in their respective pathways are approved for NAFLD. 

Genotyping patients has become more and more affordable, and many consider personalised 

medicine for all just years away, with every patient being genotyped.442,443  

7.3 Strengths and Limitations 

This thesis used data derived from EHRs and existing high quality research studies for 

clinical variables. Large amounts of longitudinal data were available allowing long follow-up 

periods with many events, which enabled adequately powered analyses to be run in most 

cases. Access to genetic data for a large number of these patients allowed for a number of 

interesting and productive genetic studies to be undertaken.  

The limitations associated with a NAFLD phenotype based on elevated ALT levels have been 

discussed in previous sections of the current thesis. We demonstrated the accuracy of the 

phenotype, validating it against NAFLD diagnosed in medical records and positive controls 

such as CKD, and the PNPLA3 rs738409 variant. 

Observational studies have a number of limitations compared with randomised control 

trials.444,445 A common issue is confounding factors. This was countered in the current study 

using several techniques. Analyses were adjusted for sex, age, T2DM status, and BMI where 

appropriate, and cancer analyses were also adjusted for smoking status. This helped mitigate 

the possibility of interpreting the effects these NAFLD correlates, as effects of NAFLD itself. 

Exclusions for a number of different liver disease causes were made when defining the 

NAFLD phenotype, further removing confounding factors. 

Selection bias is another issue which can affect observational studies. In the case of the 

current study this may have been introduced when defining NAFLD cases and controls. For 
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example, patients with more morbidities may interact more with healthcare services, and 

therefore have more ALT measurements taken, giving them more of chance of having raised 

measurements. The longitudinal nature of the data associated with each cohort meant that 

each patient on average had 20 ALT measurements, and almost all had more than two 

measurements. The make-up of the GoDARTS cohort; primarily a T2DM research cohort; 

has roughly a 60% to 40% split of diabetic to non-diabetic patients, and was designed to limit 

selection bias of just having T2DM patients.187 The Tayside and Fife cohort allowed 

replication of results in a cohort which used population level data also. 

7.4 Future Work 

The findings of the current thesis suggest a number of future paths for impactful research, 

using currently available datasets and potentially expanding to use more. 

Research into cancer genetics has uncovered a number of risk genotypes, some which have 

been used for applied personalised medicine, such as BRCA.446 Analysis of the genetics 

which predispose to cancer specifically in people with NAFLD may help to reveal the nature 

of the relationship between NAFLD and cancer, as well as be another opportunity for applied 

personalised medicine. 

We found NAFLD was associated with a number of extrahepatic cancers, and previous 

studies have reported links to other extrahepatic conditions such as CKD.189 NAFLD could 

potentially be used to predict future incidence of these conditions. Further to this, genetic 

predictors of NAFLD may help in the prediction of other disease, as was shown by our 

Mendelian randomisation analysis for NAFLD and cancer. 

The GWAS analysis of FLI in GoDARTS revealed variants in the GGT1 gene close to 

genome wide statistical significance. This was controlled for in a subsequent GWAS, which 

produced clearer and more significant results. An investigation into the effects of the GGT1 
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variant on FLI and whether a patient’s genotype could be included in the FLI calculation 

could improve its utility as a NAFLD biomarker. 

Conceptually, NAFLD as a diagnosis has its roots as an alternative explanation for liver 

damage which was previously thought to only be caused by alcohol consumption.32 This 

nomenclature is dated and updating it to “MAFLD” has been suggested and adopted by many 

in the field.34,447 It is increasingly understood that the alcohol and non-alcohol related causes 

of NAFLD exist together and contribute to the disease as its seen globally.33,448 Most adults in 

Europe drink some amount of alcohol, with many drinking harmful levels. 449 The current 

study excluded those who consumed excessive alcohol, but an effective and sensitive 

approach to understanding the condition may be controlling for alcohol consumption instead. 

Binge drinking is common in Scotland, and has been found to increase risk of liver disease, 

even in those who do not exceed weekly limits.448 Though research into alcohol use is often 

challenging, understanding the role of drinking and particularly binge drinking in NAFLD 

may be key to understanding the disease. Contributions from a wide variety of factors are 

known to affect NAFLD, and lifestyle factors in particular have not been described fully in 

the literature. A key feature of the SHARE cohort is the ability to contact individuals in 

recruit by phenotype studies, and this could be utilised to survey the lifestyle of NAFLD 

cases and controls.188 This would also help the understanding of MAFLD specifically, taking 

into accounts all aspects of risk. 

Genetic research published in high impact journals can often be Western centric in their 

cohorts, and thus analysis of genetic modifiers of disease susceptibility.450–452 Many reported 

genetic associations differ between ethnicities and significant genetic variation exists between 

South Indians and Europeans. There are many genetic variants which the two populations do 

not share in common. The GWAS analyses conducted in the current study used genotyping 

platforms which were developed mainly in Western countries.453 Access to genotypic data for 
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variants specific to the South Indian population provides an opportunity to investigate 

whether there are any ethnicity specific genetic risk factors for NAFLD. This may further aid 

the understanding of NAFLD in South Indian populations, and also generally in all 

ethnicities. It also may provide the basis for personalised medicine for South Indian patients. 

7.5 Conclusion 

To conclude, the current thesis shows the development and validation of a NAFLD definition 

based on elevated ALT levels in the absence of alternative causes of liver disease. We show 

increased risk of cancer incidence and death in those with NAFLD, and that cancer is the 

main factor in the shortened lifespans seen in patients with NAFLD. We found PNPLA3 

rs738409 was a key component of genetic risk for NAFLD in both Scottish and Indian 

populations, and showed significant effects of several other genetic variants. Variants in 

GCGR and GLP1R had significant effects on NAFLD risk, further demonstrating a role of the 

receptors which they code for in NAFLD, as well as providing an opportunity for 

personalised medicine, should GLP1R/GCGR co-agonists be approved for use in treatment of 

NAFLD. Variants previously shown to affect the activity of endothelin had detectable effects 

on the susceptibility to NAFLD in our cohorts, providing another possibility for the 

application of personalised medicine. These findings suggest patients’ genotypes may 

influence the efficacy of endothelin receptor antagonists in the treatment of NAFLD. 
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