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Quantum state discrimination using noisy quantum neural networks
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Near-term quantum computers are noisy, and therefore must run algorithms with a low circuit depth and
qubit count. Here we investigate how noise affects a quantum neural network (QNN) for state discrimination,
which is applicable on near-term quantum devices as it fulfils the above criteria. We find that for the required
gradient calculation on a noisy device a quantum circuit with a large number of parameters is disadvantageous.
By introducing a smaller circuit ansatz we overcome this limitation, and find that the QNN performs well at noise
levels of current quantum hardware. We present a model showing that the main effect of the noise is to increase
the overlap between the states as circuit gates are applied, hence making discrimination more difficult. Our
findings demonstrate that noisy quantum computers can be used for state discrimination and other applications,
such as classifiers of the output of quantum generative adversarial networks.
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I. INTRODUCTION

Quantum state discrimination is important in many emerg-
ing quantum technologies: quantum cryptography [1], entan-
glement concentration [2], quantum cloning [3], and quantum
metrology and sensing [4,5]. Quantum circuits trained for
classification could also be used in quantum machine learning
problems as a classifier of quantum data. They could classify
the output of other quantum circuits, e.g., the output of a
quantum generative adversarial network [6]. Current quantum
computing devices are subject to non-negligible amounts of
noise [7–9], and therefore algorithm design for devices in the
near future must take this into account. Here we present an
extension to noisy devices of the approach for quantum state
discrimination outlined in [10], a quantum analog of a neural
network used for state discrimination. In [10] simulations of
shallow quantum circuits were trained to find the optimal pos-
itive operator-valued measure (POVM), or measurement, to
distinguish between two families of nonorthogonal quantum
states. Given an input state chosen randomly from one of the
families, the output of the network should indicate which fam-
ily the input was chosen from. To do this the network is trained
on a set of labeled data, performing supervised learning [11].
The ideal POVM was learned via a classical optimizer using a
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gradient descent algorithm on the quantum parameters, which
correspond to the rotation gates in the quantum circuit. This
POVM is distinct from the error minimizing POVMs, as it also
attempts to minimize the occurrence of inconclusive results.

There are similarities between a classical unitary neural
network [12] and this algorithm. It contains a layer of symmet-
ric fully connected neurons, followed by arbitrary numbers
of nonlinear layers, or dropout layers. The nonlinearity in the
quantum network is introduced by measurement of some of
the qubits.

In this paper we extend the simulations done previously
from pure vector states to simulations of states represented as
density matrices, so that we can model noise in the quantum
device. We also simulate calculation of the parameter gradi-
ents on the quantum device, which would also be subject to
noise in a real machine. We find that with these extensions in-
cluding the effect of noise the previous algorithm proposed for
noiseless systems no longer performs optimally. To recover
performance we reduce the number of trainable parameters
through consideration of the circuit structure.

This paper is structured as follows: we begin by out-
lining the theory of state discrimination and the QNN. We
then discuss the simulation methods, gradient calculation, and
measurement. In Sec. III we present the results, including the
effect of reducing the number of parameters and the effects of
noise on training the circuits.

II. METHODS

A. Quantum state discrimination

We wish to discriminate a two-qubit input state, |ψin〉,
which in general can be represented as a normalized vector
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FIG. 1. Distribution P(a) of the parameter a for the input states
in the first set [Eq. (1)], for an average value μa = 0.5 and a standard
deviation σa = 0.15. These values of μa and σa are used for the data
in Figs. 4–8 and 11. Due to the rather large value of σa the most
probable values of a are not confined only in a thin range around μa,
but instead cover almost all the range between 0 and 1.

with four complex components. The state is chosen randomly
from two sets of states, labeled a and b, and elements defined
by

|ψin,a〉 = (
√

1 − a2, 0, a, 0), (1)

|ψin,b〉 =
(

0,± 1√
2
,

1√
2
, 0

)
, (2)

where Eq. (1) defines the states in the first set, |ψin,a〉, where
by setting the continuous real parameter a ∈ (0, 1] the specific
state is chosen. The number of states within this first set is
therefore infinite due to the fact that a can be varied continu-
ously. Equation (2) defines the second set, |ψin,b〉, which has
two elements, given by |ψin,b,+〉 = (0, 1/

√
2, 1/

√
2, 0) and

|ψin,b,−〉 = (0,−1/
√

2, 1/
√

2, 0). The discrimination in our
paper is performed between these two sets of states: one with
an infinitely large continuous set of states, and one set with
two states in it. State discrimination between general sets of
states is discussed in [13]. We set the probability that a state
from the a set appears as input state to pa = 1/3, the proba-
bility that a b state with positive sign appears to pb+ = 1/3,
and the probability that a b state with a negative sign appears
to pb− = 1/3. Note however that our results are expected to
be applicable also to other sets of states, since the methods
presented here are based on variational algorithms, which can
be formulated for any target state.

To fully define the first set one further needs to define the
probability distribution, P(a), that describes how the parame-
ter a of the first set of input states is statistically distributed in
the range from 0 to 1. We use a Gaussian distribution with
an average value, μa, and a standard deviation around this
average value, σa. As illustrative example in Fig. 1 we show
P(a) for μa = 0.5 and σa = 0.15. The set of states defined
by this distribution has about 68% of the states in the range
a = 0.35 to 0.65, 25% of the states within the range a = 0.1 to
0.35 and a = 0.65 to 0.9, and still a non-negligible probability
of about 5% of finding a state in the range a = 0 to 0.1 and
a = 0.9 to 1.0.

|0〉

U

•
|0〉

V1 V2|ψin〉
|ψin〉

FIG. 2. The general form of the quantum circuits used in this
paper. The input state is on the bottom two qubits, and measuring
the first qubit introduces a nonlinear dropout layer. The subcircuits
U and V1,2 are shown in Fig. 3.

Primarily our specific sets of states a and b are cho-
sen to reproduce the work in [10] and in [14], where the
state discrimination was performed in a laboratory. Secondly,
these states are nonorthogonal and therefore cannot be distin-
guished perfectly without some probability of erroneous or
inconclusive outcomes, making the problem harder for the
algorithm. It is therefore an ideal case to verify the method,
since the level of nonorthogonality can be tuned by choosing
μa and σa in the distribution function of a in Eq. (1), with a
value of a closer to 1 being more difficult to discriminate.

B. The quantum neural network

Classical artificial neural networks (ANNs) consist of a set
of artificial neurons, also called nodes, connected via links
[11,15]. Typically the nodes are arranged in layers, where
the output of all nodes in one layer is passed via the links
to the inputs of all the nodes in the next layer. The links
connecting the nodes have an adjustable weight associated to
them, which determines the strength of the influence of the
output of one node on the node in the next layer. Within each
node all the inputs with their given weights are added up,
and a so-called activation function is performed on this sum,
which determines the output strength of the node. Importantly,
the activation function is usually nonlinear. This nonlinearity
gives the ANN the capability to perform complex tasks when
the weights of the links are adjusted according to the task at
hand. Such ANNs have been shown to perform extremely well
on a variety of tasks such as recognizing objects in images
[16] to generating novel writing when provided with a prompt
[17].

In a classical neural network some nodes are discarded
during training, which is called dropout and stops the network
from overfitting [18]. We can also think of dropout as the
introduction of nonlinearity into the network. A network with
dropout cannot be represented by any smaller, linear network,
whereas a many-layered linear network can always be reduced
to a single linear layer. Quantum evolution is unitary and
linear, so if we wish to introduce nonlinearity into a quantum
neural network we need to include a measurement. Figure 2
shows the structure of the QNN, where the choice of the
second step of the circuit, V1,2, is conditioned on the outcome
of a measurement on the first qubit. The measurement results
are then used as the output of the neural network [10].

There are two nonorthogonal states to discriminate, so if
we wish to have a network that can be trained to not commit

013063-2



QUANTUM STATE DISCRIMINATION USING NOISY … PHYSICAL REVIEW RESEARCH 3, 013063 (2021)

U

Rx(θ1) Ry(θ2) Rz(θ3) • • •
= Rx(θ4) Ry(θ5) Rz(θ6)

Rx(θ7) Ry(θ8) Rz(θ9)

Rx(θ10) Ry(θ11) Rz(θ12) •

V1,2

Rx(θ13,22) Ry(θ14,23) Rz(θ15,24) • •
= Rx(θ16,25) Ry(θ17,26) Rz(θ18,27)

Rx(θ19,28) Ry(θ20,29) Rz(θ21,30) •

(a) (b)

U

Rx(θ1) Rz(θ2) Rx(θ3)

= Rx(θ4) Rz(θ5) Rx(θ6)

• •
• •

V1,2

Rx(θ7,10) Rz(θ8,11) Rx(θ9,12)

= •
•

FIG. 3. The circuits showing the trainable parameters, which are used in this paper. Comparison of results obtained for the circuits in Figs.
3(b) and 3(a) is made in Sec. III A. (a) The U and V circuit blocks originally used in [10]. (b) The form of the U and V blocks with a reduced
number of parameters.

any errors, we must allow for it to produce an inconclusive
result [14]. This allows the network to give a “don’t know”
result as opposed to an erroneous one. Therefore we have
a minimum of three outputs, necessitating two measurement
qubits.

The output of the network is determined by the measure-
ment outcome. As we begin in a random configuration and
are training the system, we can arbitrarily select which label a
measurement outcome corresponds to:

{|00〉 : a, |01〉 : b, |10〉 : a, |11〉 : inconclusive}. (3)

The choice of unbalanced labels may have an effect upon the
outcome. For a random measurement outcome the probability
to guess the right state is 1/2 for a and 1/4 for b. We partly
mitigate this bias setting the probability of a and b states
to appear as input to the values specified in the previous
subsection, namely, pa = 1/3 and pb = pb+ + pb− = 2/3.

This results in the probability of correctly guessing the
input state for a fully random measurement outcome to be
1/2pa + 1/4pb = 1/3, and correspondingly the probability
for an incorrect guess is equal to 2/3. In general one might
adapt the assignment of measurement outcomes to labels ac-
cording to the considered specific task.

The structure of the U and V1,2 circuit blocks is given
in Fig. 3, where Fig. 3(a) shows the same circuits used in
[10] and Fig. 3(b) shows the reduced circuits introduced here,
which we will discuss in more detail below. These circuits are
small and have low depth, so that they can be ran on a quantum
computer which supports measurement as the circuit is run-
ning and classical feedback. This requires fast measurement
and fast classical processing which is not possible in many
current systems, but has been achieved in an ion-trap device
[19], meaning this algorithm could run on a current device.

The state discrimination task is then as follows: input states
are drawn from two sets of states, and the classical optimizer
must optimize the rotation angles θ1...n of the quantum circuit
to maximize the likelihood of a correct determination of the
state. In our specific case it has to determine whether an input
state is from the a set of states or the b set of states. Note
that only these states are allowed as input states during both
training and testing of the circuit. A correct determination is
found when the measurement output of the quantum circuit

is equal to the corresponding input state label as defined in
Eq. (3).

This task is the minimum error discrimination problem,
which has been solved classically using semidefinite program-
ming methods [20–22]. Here we solve the same problem using
a noisy quantum circuit, and demonstrate the usefulness of
using quantum measurement as a form of dropout. Note that
each step of the semidefinite programming method requires
O(m4) classical steps, where m is the length of the input
vector, which scales exponentially with the number of qubits
required to represent the states. The scaling of variational
quantum circuits such as the ones used in our approach is not
known currently, especially as the number of trainable param-
eters increases, and is a topic of ongoing research [23–26].

C. Optimization

Since the input states are initially labeled, the task for the
classical optimizer is a supervised learning task [11]. The
optimizer used in this experiment is ADAM [27], which has
been found to work well in a number of quantum variational
algorithms [10,28–31]. It has also been shown classically that
ADAM deals well with noisy gradients [32], which will be the
output of our noisy quantum computer. This is possible since
ADAM uses the concept of momentum, where the gradients of
past steps contribute to the current step. Other optimizers such
as ROTOSOLVE [33] have been proposed, and a comparison of
performance can be made in future work.

Noisy gradients are a feature of the work here: as gradient
calculation must be performed on the noisy quantum device,
we expect that the output gradients will be noisy. We also
expect that there will be nonoptimal local minima in our
loss landscape, as this is also a feature of the loss function
in the noiseless case [10]. Finally we also expect that the
loss landscape may feature “barren plateaus,” as these have
been shown to be a feature of quantum optimization problems
[34]. This further motivates the choice of a gradient-based
optimizer such as ADAM.

We define the function to minimize, the cost function, as

C = αerrPerr + αincPinc, (4)
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where the positive real numbers αerr and αinc are the cost pa-
rameters used to bias the network towards minimizing errors
or inconclusive results (Perr and Pinc are defined below). If for
example we require the network to produce fewer errors, we
can do this at the cost of recording more inconclusive results
by increasing the value of αerr relative to the value of αinc.
Such intermediate optimization strategies based on changing
the cost parameters, thereby allowing for a tradeoff between
minimum-error and unambiguous state discrimination, were
studied in [35–38]. Here we use a quantum algorithm to solve
this problem, and perform the analysis of how noise in a
quantum device affects the results. We discuss the effect of
changing the cost parameters in Sec. III A.

While the input states are always pure states, as they are
processed in our quantum circuit the noise causes them to
become mixed states. To simulate this effect of the noise in
the quantum circuit we use density operators, ρ, to represent
quantum states inside the quantum circuit. The measurement
probabilities of a state, ρ, for a generalized measurement,
M = |φ〉〈φ|, are given by

〈ρ〉 = Tr(|φ〉〈φ|ρ), (5)

and the quantum state after measurement is given by

ρmeasured = |φ〉〈φ|ρ|φ〉〈φ|
Tr(|φ〉〈φ|ρ)

. (6)

Using this we can find the probability of an erroneous or
inconclusive measurement:

Perr =
∑
ρi∈b

(〈ρi〉00 + 〈ρi〉10) +
∑
ρi∈a

〈ρi〉01, (7)

Pinc =
∑

ρi∈a,b

〈ρi〉11, (8)

where ρi is the input state, and 〈ρi〉 jk refers to the probability
of obtaining a measurement of | jk〉 from the circuit.

Discrimination of these states, without the use of a varia-
tional algorithm, has been shown in the laboratory to reach
the theoretical best success probability, Psuc of 0.833 for
μa = 0.25, σa = 0.01 [14]. This is a minimum loss, L = 1 −
Psuc = Perr + Pinc, of 0.166. For the equal probability case,
P(|00〉) = P(|01〉) = P(|10〉) = P(|11〉) = 0.25, the success
rate is 0.385, which translates into a loss of 0.635. This gives
us lower and upper expected bounds to compare our results
for the loss to.

D. Gradient calculation

Unlike gradient-free optimizers (such as Nelder-Mead
[39]) the ADAM optimizer requires the calculation of param-
eter derivatives ( ∂〈C〉

∂θ0..n
). In the previous work this was done

using the forward differences formula [10], which requires
direct access to the components of the wave function. In a
real quantum computer this is difficult to achieve, and hence
here we use a more practical approach. Calculation of the gra-
dients of quantum parameters has received attention recently
[40–42] due to the introduction of variational methods such as
the variational quantum eigensolver [43]. The gradient of the
loss function with respect to a parameter θi is calculated by the
method outlined in [40], which requires two extra repetitions

of the circuit for each θi:

∂〈C〉
∂θi

= 1

2
(〈C〉+ − 〈C〉−), (9)

where 〈C〉± is calculated by changing θi by ±π
2 , and leaving

all other parameters in the circuit constant.

E. Reduced circuit

For the probability distribution of a determined by μa =
0.25 and σa = 0.01 the maximum theoretical success rate
(Psuc) is 0.8333 [14], which was obtained with the long circuit
in [10]. However, after optimization of circuit parameters for
our larger circuit in Fig. 3(a) we reach only 0.72, which is
significantly smaller than the theoretical limit. We attribute
this discrepancy to the different implementations of the op-
timization procedure, and to the different calculation of the
gradients. To overcome this suboptimal result we designed
the shorter circuits in Fig. 3(b). The choice of the reduced
circuit is motivated by the consideration that for this task
the rotations on the state qubits have a smaller effect on the
measurement outcomes than rotations on the measurement
qubits. This choice of structure is so that the input states are
entangled with both output qubits, and then the measurement
qubits are rotated. The choice of rotations about the x axis,
followed by the z axis, and then again the x axis allows for the
initial state to be transformed to any other state on the surface
of the Bloch sphere [44]. With this short circuit [Fig. 3(b)] we
obtain a success rate of 0.826, close to optimal performance.
This is the circuit used for the results presented, except where
we explicitly note that the longer circuit is used.

We note that as the shorter circuits do not explore the full
Hilbert space of all the qubits, they may not be necessarily
optimal for all discrimination tasks. Investigations into the
capability of different variational quantum circuits have been
made in [45]. Here we present evidence that when used on a
noisy device, the smaller variational circuit converges to better
results than the larger circuit. In general a tradeoff needs to be
made between this better resilience to noise and the ability of
the circuit to distinguish very complex states.

F. Noise

Noise in quantum computers can be modeled by a superop-
erator, E (ρ), which is a completely positive, trace-preserving
map on the state ρ [44]. We can give the operator-sum repre-
sentation of E by introducing the Kraus operators, Ek:

E (ρ) =
∑

k

EkρE†
k , (10)

and to preserve the trace of ρ, they must obey the relation

∑
k

E†
k Ek = 1. (11)

For the single-qubit noise channel our operators are the single-
qubit Pauli operators, modified by the noise probability, p, to
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give the depolarizing channel:

E0 =
√

1 − 3p

4

[
1 0
0 1

]
, E1 =

√
p

4

[
0 1
1 0

]
,

E2 =
√

p

4

[
0 −i
i 0

]
, E3 =

√
p

4

[
1 0
0 −1

]
.

(12)

For the two-qubit noise channel, which is applied after a
two-qubit gate, the Kraus operators are tensor products of
the combinations of these operators, i.e., E0 ⊗ E0, . . . E1 ⊗
E2, . . . E3 ⊗ E3.

Since in our circuit we have four qubits, these one- and
two-qubit Kraus operators have to be expanded using tensor
products with identity operators. For example, if the Kraus
operator i is acting on the first qubit, and the Kraus operator
j is acting on the third qubit (e.g., after an entangling gate
between those two qubits), then the total Kraus operator used
in our simulations is Ei ⊗ I ⊗ Ej ⊗ I. In matrix form this is
of dimension 16 × 16.

The probability of the single-qubit noise channel is p1q =
4
5 p2q. This is the one-qubit marginal probability of error for
the two-qubit gates [46], i.e., the probability of a single-qubit
error without condition of an error on the other qubit. This is
a commonly used assumption in the quantum error correction
literature [47], which assumes that the error process in single-
and two-qubit gates is the same. In real devices the process can
be quite different, but we nevertheless choose this method as
it is an upper limit on the error probability of the single-qubit
gate. When quoting the noise level in this paper, we will
always refer to p2q. We set the highest noise level in our
simulations to p2q = 0.1, as this is an upper limit on two-qubit
gate fidelities reported on current quantum hardware [7–9].

Note that here we have not considered asymmetric noise or
different quality qubits. However, we believe that correcting
for a systematic bias such as this is possible for a variational
algorithm, as seen in [48]. Furthermore, in actual devices the
single-qubit noise probability reported is much lower than 4/5
of the two-qubit gate noise level. For example, the single-qubit
gate error rate reported in [9] is 1.4 × 10−3, whereas the
two-qubit gate fidelity is 9.3 × 10−3, and the ratio between
these is approximately 3/20, at least a factor of 5 lower. In
our simulations the single-qubit noise is set to the higher limit
of 4/5, so that we are more demanding of the algorithm.

G. Simulation

Simulations of the quantum device were performed on a
simulator built using the Tensorflow machine learning pack-
age [49], and verified with the Cirq [50] quantum simulation
package. In our simulations we set the initial angles, which
are our parameters to be optimized, at random values. The
labeled quantum state is an input to the circuit in Fig. 2 ;
that circuit is ran and the measurement probabilities calculated
and with them the cost. The gradient of the cost with respect
to each parameter is then calculated by the method described
in Sec. II D, and the parameters are updated according to the
ADAM optimizer to minimize the cost. This routine is repeated
until the cost no longer significantly decreases.

During the training process of the optimal quantum circuit
rotation angles, {θi}, at each iteration we evaluate the cost

function in Eq. (4) with a number of randomly chosen values
of a within a given distribution P(a). This number is 20 for
each training step, of which there are typically 1000–3000
until convergence. Due to this rather large number of samples
used in the training optimization it is ensured that the whole
distribution of a according to P(a) is covered. Hence the cir-
cuit is trained to discriminate between the whole continuous
set {|ψin,a〉}, with a distributed according to P(a), and the two
states in set {|ψin,b〉}. Once the circuit parameters are trained,
for the testing step we use 250 samples of a values, distributed
again following P(a). Therefore the QNN is trained not only
for one specific given value of a, but rather for the chosen
distribution of a values.

Measurements here are calculated in the “infinite-shot”
regime, where the representation of the quantum state at the
end of the circuit is used to extract exact measurement prob-
abilities. The inclusion of statistical measurement noise can
be expected to result in a slower rate of convergence than
obtained here. We note that in [29] it was demonstrated that
convergence of variational algorithms is guaranteed even for
single-shot measurements of the gradient. We indicate that
convergence can also be achieved using this method in pres-
ence of measurement noise, although with a higher number of
iterations.

III. RESULTS

A. Effect of cost function choice and circuit depth

In Fig. 4 we compare the obtained optimized Perr and Pinc

for an error minimizing cost function (αerr = 60, αinc = 10)
and a balanced cost function (αerr = 40, αinc = 40). The error
minimizing cost function often results in a practically unus-
able network, because while it gives a low probability of error,
the probability of inconclusive results is too high, as seen
for an extreme case in the inset of Fig. 4. Note that in this
particular case all b states are detected as inconclusive, and
one could in principle switch the inconclusive and b labels to
obtain a good discrimination. However, for the more general
case this will not be possible.

In comparison to the error minimizing setting, the results
for the balanced cost function are stable and generally give
both small Perr and Pinc, with some Perr comparable to the error
minimizing setting. For the remaining analysis we therefore
use the balanced cost function (αerr = αincon = 40). We note
that as the noise level is increased, Pinc and Perr progressively
tend to larger values. The effect of noise will be analyzed in
detail in the next section.

We next investigate the influence of the number of pa-
rameters in the quantum circuit on the loss. In Fig. 5 we
compare the distributions of loss between the circuit with
more trainable parameters in Fig. 3(a) to the circuit with fewer
parameters in Fig. 3(b). It can be seen that the reduced circuits
consistently perform better than the long circuits. It is more
difficult to train circuits with a large number of parameters
both without and with noise, as seen in Fig. 6. We see that
the higher noise cases always converge to a higher loss, and
that the reduced circuits perform better in both cases. These
results show that in practice increasing the number of pa-
rameters used in a quantum circuit does not always have a
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FIG. 4. The distribution of Pinc and Perr from 25 repeats of (a) a network biased towards reducing errors αerr = 60 and αinc = 10 and (b) a
network with a balanced cost function, αerr = αinc = 40, both with values μa = 0.5 and σa = 0.15. An example undesirable output for a single
minimizing error run is in the inset, where no b states are measured correctly, but the network still converges (the x axis shows the output
label and the color is the input state). The interquartile range is contained within the box, and the 5th and 95th percentiles are marked by the
whiskers. Outliers of this range are marked by a diamond. The mean is marked with a white square, and the median is the line across the box.

beneficial effect. Importantly, even in the noiseless case the
circuit with less parameters leads to better results. Further-

0.0 0.001 0.05 0.1
Noise Level

0.0

0.1

0.2

0.3

0.4

0.5

0.6

L
os

s

No. of
parameters:
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FIG. 5. The distributions of loss (Perr + Pinc) at different noise
levels for the two circuits shown in Fig. 3. Both have other pa-
rameters fixed, μa = 0.5, σa = 0.15, αerr = αinc = 40. We observe
that reducing the number of parameters is advantageous at all noise
levels.

more the reduced number of parameters also significantly
lowers the required run time.

Even with very low noise, the output is worse for larger
circuits. This suggests that with more parameters the algo-
rithm struggles to optimize, when the gradient calculations
are performed on the quantum device. Good performance of
the short circuit in the presence of noise can be due to the
noisy gradient regularizing the training, thereby optimizing
performance [11]. Moreover, the ADAM optimizer has been
designed to work well with noisy gradients [27]. The results
seen here are indicative that a noise-resilient optimizer using
gradients provided by a noisy quantum circuit can perform
well.
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FIG. 6. Evolution of the normalized cost functions for larger and
reduced circuits for μa = 0.5 and σa = 0.15, with noise levels of
0.001 and 0.1. Shown here is the number of steps taken to converge.
Note that the time taken to complete a single step of the longer circuit
is much greater than for the reduced circuit.
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FIG. 7. The distribution of loss for 25 repeats of training the
network. The cost function is balanced, αerr = αinc = 40, μa = 0.5,
and σa = 0.15. At levels of noise present in current devices, 0.01, the
loss value is favorable, an average of 0.2.

B. Effect of noise: Numerical analysis and model

In Fig. 7 the noiseless case is compared to resulting opti-
mized loss for increasing noise levels (note that in this section
we always use the reduced circuit). It can be seen that using
this algorithm with zero noise produces the lowest loss, as
one expects intuitively. With increasing noise the average loss
increases continuously. In presence of noise there are a few
high-loss outliers, which we attribute to the optimizer becom-
ing stuck in local minima of the cost function. As the noise is
increased, performance deteriorates, but is no worse than the
random output limit of 2/3 ≈ 0.67 (see Sec. II B).

Importantly, at noise levels comparable to current devices,
p2q = 0.01, the algorithm is still performing well, at an aver-
age loss of 0.2.

In general a high level of noise always leads to a higher
loss. However, we find that when noise is applied only during
the training of the parameters, the optimized parameters are
rather resilient to this training noise. To show this in Fig. 8 we
present the results when training the device at one noise level,
and validating at another. We see that even with high levels of
training noise the optimizer converges onto good parameters,
as we find comparably low loss levels when validating those
parameters trained at a high noise level with low noise in the
validation step. Also here we find that when validating at noise
levels seen in current devices, p2q = 0.01, the average loss
does not increase above 0.25, which would be acceptable to
use for state discrimination.

In order to provide an understanding of the numerically
found changes of the loss with noise, in what follows we
present a simple model that can describe the results. It is based
on the notion that a larger overlap between the states to be dis-
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FIG. 8. Distribution of loss (Perr + Pinc) against training noise for
different noise levels in the validation circuit: (a) 0.0, (b) 0.001,
(c) 0.01, and (d) 0.05.

criminated generally makes discrimination more difficult. As
outlined in Sec. II A, with our chosen set of states this overlap
can be tuned by setting the value of a, and is equal to a/

√
2.

We can therefore systematically evaluate the effect of noise
on the discrimination for increasing overlap by increasing μa,
and the results are shown in Fig. 9. The loss increases for
larger μa for all levels of noise. At high noise levels and high
μa, some runs are performing even worse than the random
output limit (0.67), but on average the loss remains well below
that value. In general we conclude that the tolerable levels of
noise depend on the overlap between the states, where small
overlap allows the states to be discriminated even for higher
noise in the quantum computer.

For large noise in the system the difference in loss between
higher and lower values of μa is significantly reduced when
compared to the low noise case. This seems to indicate that
the noise on average reduces the difference between states
as these pass the circuit, and hence effectively increases the
averaged overlap. This effect can be illustrated for the ideal
case of a = 0 and no noise, where discrimination can in prin-
ciple be perfect since the states are orthogonal. However, in
presence of noise there is a probability that a state is perturbed
as the circuit is applied to it, and hence orthogonality between
states is lost. This results in a certain probability of erroneous
detection.

In order to estimate this effect on a semiquantitative level
for our used circuit, shown in Figs. 2 and 3(b), we note that in
absence of noise the role of the data qubits is only to store the
state |ψin〉, which then controls the state of the measurement
qubits. In presence of noise the three noisy two-qubit gates
applied to each of the two data qubits will perturb |ψin〉 during
the processing of the circuit, which in turn will affect the
measurement qubits via the control operation and hence the
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FIG. 9. The distribution of loss (Perr + Pinc) and the effect of dif-
ferent values of μa. The cost function is balanced, αerr = αinc = 40,
and σa = 0.15. The noise level is (a) 0.0, (b) 0.001, (c) 0.01, and
(d) 0.05. We see that for lower values of μa, corresponding to smaller
overlap between the states to be discriminated, the discrimination
task is performed better. The red stars indicate the fidelity Fãb̃ be-
tween the two states after three applications of Kraus operators to
each of the data qubits, as given by Eq. (14d).

outcome of the state discrimination. We therefore approxi-
mately model the effect of noise on the state discrimination
by determining how much the repeated application of noisy
channels at each gate affects a given |ψin〉, without consider-
ing the presence of the measurement qubits.

In what follows we quantify how the application of noise
channels affects each state and its overlap with the state to
be discriminated from. The quantum states with noise applied
are represented by density matrices, so that the overlap be-
tween two states represented by the density matrices ρ and σ ,
respectively, is described by the fidelity, F , given by [51]:

F = Tr
[√√

σρ
√

σ
]2

. (13)

Of particular interest here is the fidelity between a pure state
|ψa〉 entering the circuit and its modified form due to the
application of noise after three two-qubit gates. We denote
this as Faã, where the tilde on the second subscript indicates
that the second state is the one where noise was applied. We
use an analogous notation for the other relevant quantities,
which are Fbb̃, Fbã, and Fb̃ã. We can compute these quantities
numerically, but given the rather cumbersome form of Eq. (13)
it is difficult to relate the results to the fundamental parameters
of the noisy discrimination process. We therefore provide a
lowest-order expansion of these terms in p, which we expect
to be close to the exact results since we are only dealing with

small p. We apply the noise model in Eqs. (10)–(12), to the
states a and b in Eqs. (1) and (2), and obtain to first order in p

Faã = 1 − n p, (14a)

Fbb̃ = 1 − 3n p

2
, (14b)

Fab̃ = Fbã = μ2
a

2
+ n p

2

(
1 − 2μ2

a

)
, (14c)

Fãb̃ = μ2
a

2
+ n p

(
1 + μa√

2
− 2μ2

a +
√

1 − μ2
a

2

)
, (14d)

where n = 0 . . . 3 is the number of noisy channel applications,
μa is the mean value of a, and p is the noise probability.
Within this expansion order the fidelities are linear in both p
and n, and the expansion coefficients are simple functions of
μa. For the noiseless case (p = 0), Fab̃ = Fãb̃ = μ2

a/2, which
corresponds to the absolute value squared of the overlap be-
tween the a and b states.

The results for the fidelities for increasing n are shown in
Fig. 10. It can be seen that the numerical results obtained
directly with Eq. (13) are captured rather well with the the
analytical low-order expansion in Eqs. (14a)–(14d). The value
of Faã decreases with each application of a noisy channel,
showing that the purity of the state degrades as the noise
channels act on the state. The value of Fab̃ increases with
n for lower values of μa, where the noise acts to increase
the fidelity between the states, while it decreases with n for
higher values of μa, where the noise reduces the orthogonal
component in |ψa〉. In Fig. 10(c) the fidelity is plotted when
the noise channel is applied to both states (Fãb̃), and it always
increases with n. Fãb̃ is the relevant quantity of the influence
of noise on the loss: the application of the noisy circuit on
the originally pure input states causes them to degrade into
mixed states. The states to be discriminated are therefore not
the input pure states anymore, but these noisy states, and for
each application of the noise channel they become harder to
discriminate.

The minimal loss achievable in quantum state discrimina-
tion is generally a function of the fidelity between the two
input states [52,53]. The exact relation depends on the cost
function that is minimized, and is only known analytically
for a few special cases, such as minimal error discrimina-
tion or unambiguous discrimination [52,53]. In this section
we consider the case where the rate of inconclusive results
and erroneous results is minimized simultaneously (αerr =
αinc = 40).

Before estimating the effect of noise we therefore need to
determine the functional relation between the fidelity and the
loss in the noiseless case for our circuit. In the top left panel
of Fig. 9 we show the results for Fãb̃(p = 0) = Fab as red stars
for each μa. One can see that the Fab is approximately equal
to the loss for all μa, so that to a good approximation for
our circuit we can fit the relation as Loss = Fab. In general
the lower bound of the optimal theoretical loss is found in
the minimum error discrimination setting, where there is no
inconclusive measurement. In our optimization we include
also the inconclusive measurement, the probability of which
is minimized in the unambiguous setting, which gives an
upper bound on the loss. Our minimized cost function is a
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(a)

(b)

(c)

FIG. 10. Fidelities as function of the number of applied noise
channels, n, (a) between the same states with noise applied to one
state (Faã), (b) between the two different states with noise applied
to one state (Fab̃ = Fbã), and (c) with noise applied to both states
(Fãb̃). Markers show the calculated numeric fidelities using Eq. (13),
and lines show the low-order expansions given by Eq. (14). The
low-order expansion agrees well with the numerical results for all
cases.

combination of these settings, which simultaneously mini-
mizes errors and inconclusive results, and our relation for the
loss in fact lies in between the optimum values in each of these
boundary settings.

We can now verify the validity of our model for the ef-
fect of noise on the loss. To this aim we calculate Fãb̃ from
Eq. (14d) for n = 3, which corresponds to the number of
entangling gates applied in our circuit to each data qubit.
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FIG. 11. The distribution of loss and θ10 obtained at different
noise levels. Here we can see the effect of noise on the values of θ10

that the optimizer converges to. We only show a single representative
parameter θ10, since we have an approximately similar behavior for
all other parameters. This is shown at different noise levels: (a) 0.0,
(b) 0.001, (c) 0.01, and (d) 0.05.

These results are presented in Fig. 9 for the panels with p �= 0.
One can see that Fãb̃ agrees rather well with the loss also in the
presence of noise. This validates our model in which the effect
of noise on the state discrimination is mainly determined by
the noise-induced increased overlap between the states as they
are processed in the circuit. In particular for the highest noise
the model captures well the fact that the effect of noise is large
for small μa, while it is reduced for larger μa. Equation (14d)
therefore allows us to estimate the minimal loss achievable
with our circuit for a given p and μa.

Finally, we investigate the effect of the noise during train-
ing on the actual values of the optimized parameters in the
circuit. In Fig. 11 we present the distribution of θ10 for differ-
ent values of noise. The values of θ are all taken modulo 2π ,
and at zero validation noise to remove the effect of validation
errors on the loss. We see that the range of angles converged
upon increases as the noise in the circuit increases. Some
values become stuck at high loss, and there can be different
values for the minimal loss parameters. The increase in noise
seems to change not just the final loss, but the parameters
found that minimize loss. We cannot rule out the correlation
between different parameters as the noise level changes. Com-
bined with what we see in Fig. 8, that good parameters are still
found at higher noise levels, we may conclude that noise in the
circuit can push the optimizer out of local minima, so that it
can find some other local minima at lower loss.

From the results presented here we see that this algorithm
performs well in the presence of noise in the training and
validation steps (Fig. 7), and that parameters found on a noisy
device work well when validated on a device with low noise
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(Fig. 8). When calculating parameter gradients on a noisy
quantum device, reducing the number of parameters has a
positive effect, as shown in Figs. 5 and 6.

IV. CONCLUSION

We have shown that a QNN can be trained for the task of
state discrimination on a noisy device, with noise levels found
in current NISQ devices. We have also shown that gradient
descent algorithms are viable on noisy quantum devices, given
a good choice of classical algorithm. As discussed in [45],
choice of training circuits in variational quantum algorithms
has a large effect upon success. Here we reduced the num-
ber of parameters by removing rotation gates from the input
states, and indeed show that the low circuit depth and qubit
count of our algorithm is beneficial in the presence of noise.
We also developed a simple model equation relating the loss to
the noise level and input state, which is based on the fact that
in our circuit the application of noisy gates effectively leads to
an increase of the overlap between states to be discriminated
during the processing of the circuit. While we specifically

considered the task of quantum state discrimination, the algo-
rithm presented here can be equally applied to such problems
as verification of general quantum machine learning outputs,
and applications in sensing, imaging, and metrology.
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