2011.05424v1 [cs.RO] 10 Nov 2020

arxXiv

Preference-Based Learning for User-Guided
HZD Gait Generation on Bipedal Walking Robots

Maegan Tucker!, Noel Csomay-Shanklin?, Wen-Loong Ma!, and Aaron D. Ames"

Abstract— This paper presents a framework that unifies
control theory and machine learning in the setting of bipedal
locomotion. Traditionally, gaits are generated through trajec-
tory optimization methods and then realized experimentally —
a process that often requires extensive tuning due to differences
between the models and hardware. In this work, the process
of gait realization via hybrid zero dynamics (HZD) based
optimization problems is formally combined with preference-
based learning to systematically realize dynamically stable
walking. Importantly, this learning approach does not require
a carefully constructed reward function, but instead utilizes
human pairwise preferences. The power of the proposed ap-
proach is demonstrated through two experiments on a planar
biped AMBER-3M: the first with rigid point feet, and the
second with induced model uncertainty through the addition
of springs where the added compliance was not accounted for
in the gait generation or in the controller. In both experiments,
the framework achieves stable, robust, efficient, and natural
walking in fewer than 50 iterations with no reliance on a
simulation environment. These results demonstrate a promising
step in the unification of control theory and learning.

I. INTRODUCTION

Despite advancements within robotics, realizing dynamic
bipedal locomotion on hardware [1] remains a benchmark
problem across the fields of control, engineering, high-
performance computing and machine learning. The dynamics
and control community has historically approached the chal-
lenge of walking from theory applied to real-world platforms,
for example Raibert’s seminal work on hopping robots [2].
Such theory includes locomotion stability, which has been
well studied and realized experimentally from various control
perspectives including zero moment point (ZMP) [3] and
simplified models, such as LIP [4], SLIP [5], and centroidal
dynamics [6]. These methods, although powerful, do not
account for the full-order dynamics of the system.

Alternatively, the hybrid zero dynamics (HZD) framework
reduces the full-order dynamics to a lower-dimensional zero
dynamics manifold, through which stability of the overall
system can be certified. This is accomplished by characteriz-
ing walking with hybrid systems that encode state jumps and
Lyapunov methods robust to these jumps [7]-[9]. This ap-
proach has been demonstrated for walking [10], running [11],
and quadrupedal locomotion [12]. To achieve experimental
success, however, one needs more than the theoretic stability

This research was supported by NSF NRI award 1924526 and CMMI
award 1923239, NSF Graduate Research Fellowship No. DGE-1745301,
and the Caltech Big Ideas and ZEITLIN Funds.

1 Authors are with the Department of Mechanical and Civil Engineering,
California Institute of Technology, Pasadena, CA 91125.

2Authors are with the Department of Computing and Mathematical
Sciences, California Institute of Technology, Pasadena, CA 91125.

2

Iteration 10 Iteration 42

Tteration 4

Fig. 1. Through 50 iterations of experiments, the proposed combination
of preference-based learning and HZD optimization transforms failed gaits
into robust walking on the AMBER-3M robot with a pair of compliant legs.

guarantees enjoyed by the theory — one must achieve
robustness against unmodeled dynamics, which is difficult to
formulate formally in the context of attributes of nonlinear
controllers. This “last-mile mission” was historically solved
by intensive parameter tuning, an arduous and nonintuitive
process which inevitably affects the scalability of translating
theory to hardware in a practical setting.

To circumvent this engineering empiricism, the field of
machine learning has approached bipedal locomotion from
many perspectives, including reinforcement leaning and imi-
tation learning. Reinforcement learning simplifies the process
of “learning to walk” [13] without prior knowledge [14]-
[17], but because this method relies on a carefully crafted
reward function, the behavior is exclusively determined by
its construction. This motivates the second method, imitation
learning, which infers the underlying reward function from
expert demonstrations [18]-[20]. While both methods have
demonstrated promising results, they heavily rely on physical
engines such as Bullet [21], MuJoCo [22], and RaiSim [23].
As realistic as these rigid-body-dynamics based simulation
environments have become, they still struggle with rough-
terrain dynamics such as elastic impacts, slipping contacts,
and granular media. These differences become more apparent
when transferred to real-world systems.

As opposed to relying on just one field, this work explores
combining the successes of both: the formality of stability
from control theory and the ability to learn the relationship
between complex parameter combinations and their resulting
locomotive behavior from machine learning. This is accom-
plished by building upon our previous results [24], [25] and

systematically integrating preference-based learning with gait
generation via HZD optimization. The result is optimal walk-
ing on hardware based only on relative pairwise preferences
from the human operator (i.e. the user prefers gait A over
gait B). We demonstrate the power of this framework through
two experiments on a planar biped AMBER-3M portrayed
in Fig. 1. In both experiments stable, robust, efficient, and
natural walking is achieved in fewer than 50 iterations with
no reliance on a simulation environment. Notably, this is
the first experimental demonstration of compliant walking
through learning.

II. HZD GAIT GENERATION

The underlying control scheme of the proposed learning
framework is based around two concepts: (1) hybrid zero
dynamics (HZD) [7], [8], which theoretically addresses lo-
comotion stability, and (2) trajectory optimization, namely
direct collocation [26], which produces a walking trajectory
(gait) that encodes the stability of the closed-loop system.
We will briefly review this methodology in this section.

A. Hybrid Zero Dynamics Method

Inherently, locomotion consists of alternating sequences of
continuous-time dynamics and discrete-time impacts, which
can be encoded as a hybrid control system [27]. Specifically,
consider a robotic system of dimension n with ¢ € Q C R"
the configuration coordinates and = = (¢,¢) € X C TQ
the full system state. The continuous-time control system is
given by

D(q)i+ H(q, q) = Bu (1

where D(q) € R™ ™ is the inertia matrix, H(q,§) € R”
is the drift vector, B € R™ ™ is the actuation matrix,
and v € U C R™ is the input. Here we present the
“pinned” model for notional simplicity, but the “unpinned
model” could similarly be considered [28]. Note that m < n
for underactuated robotic systems, such as the one under
consideration in this paper.

As the robot’s foot strikes the ground, an instantaneous
change in velocity occurs causing the system state to sud-
denly jump. Taking z : @ — R to represent the height of the
swing foot, the admissible states are given by the domain:
D = {(¢.q) € X : z(q) > 0} C X. The region where
this instantaneous change in velocity occurs is given by the
switching surface S C D defined by:

S:={(q,4) € X | z2(q) = 0,2(q,q) < 0}. 2)

Taking z := (g, ¢), the discrete dynamics during this impact
event are encoded by the reset map A : S — X, defined as:

rt=A(x"), 2 €S8 3)

where the z+ and 2~ denote the pre- and post-impact state
respectively. Finally, one can convert (1) to a control system:
& = f(z) + g(x)u where when combined with (2) and (3)
yields the single-domain hybrid control system:

Hc{j;:f(x)+g(x)u reDCX

rt=A(x7), r=eScCD @

which can be extended to the multi-domain case; for more
details, refer to [7].

The HZD framework reduces the system HC to the lower-
dimensional system. Consider the zero dynamics surface:

Zo={r €D |ylg,a) =0, y(g,) = 0},

where y : @ — R™ is defined through the following outputs
or virtual constraints (encoding desired behavior):

y(q,0) = y*(q) — y*(7(q),). Q)

Here, y*(q) is the actual measured output of the system,
and y?(7(q),) is the desired output. For the following
discussion, we take the desired output to be parameterized
by the state-based timing variable 7(¢) and a collection
of Bézier coefficients a. Through the use of a stabilizing
controller u*(z), e.g., given by feedback linearizaiton or
control Lyapunov functions [8], [9], [27] one can drive y — 0
exponentially. The end result is the closed-loop dynamics:
& = fa(z) = f(z) + g(z)u*(z). In order to guarantee
stability of a hybrid system, a hybrid invariance condition
must be satisfied, encoded through the HZD condition [8]:

A(SNZ,) C 2Z,. (0)

The remaining step to achieving hybrid invariant walking is
to generate an « that satisfies the HZD condition.

B. Trajectory Optimization

To obtain «, we use a direct collocation-based optimiza-
tion algorithm, FROST [26], which has been previously
utilized for efficient gait generation of walking [29], running
[11], and quadrupedal locomotion [30]. Direct collocation
is an implicit Runge-Kutta method to approximate the
numerical solution of certain dynamical systems, namely
differential-algebraic equations and partial differential equa-
tions. The trajectory optimization problem is stated as

HZD Optimization:

{a", X"} = argr)r(lin d(X)
(Closed-loop Dynamics)
A(SNZ,) C 2a (HZD Condition)
Xmin = X < Xiax (Decision Variables)
Cmin = ¢(X) = cmax (Physical Constraints)
amin = P(X) = amax (Essential Constraints)

st. &= fa(x)

where X = (xg,...,xn,T) is the collection of all decision
variables with z; the state at the it discretization and T
the duration, ®(X) is the cost function, and ¢(X) is the set
of physical constraints on the optimization problem. These
physical constraints are included in every gait generation
framework to encode the physical laws of real-word, such
as the friction cone condition, workspace limit, and motor
capacity [29]. In this work, we specify a subset of these
constraints, p(X), termed in this work as essential con-
straints, which are discussed further in Sec. II-C. With this
optimization formulation, we can use nonlinear programming
(NLP) solvers such as IPOPT [31], and SNOPT [32] to

efficiently synthesize an optimal walking gait. The end result
is a stable periodic solution to the walking dynamics that is
parameterized by some static parameter a*.

C. Essential Constraints

Traditionally, operators manually select the bounds on key
constraints such as walking frequency, walking velocity, step
length, foot clearance, and impact velocity. These constraints
are essential to achieving experimental robustness, and hence
are termed here essential constraints. Often, practitioners
derive intuition from years of experience on how to shape
these constraints. One example of how this intuition re-
lates to stability is Raibert-type controllers [2], which tune
the relationship between step length and walking velocity
based on a simplified model. These essential constraints are
normally posed as inequality constraints (path constraints),
where anin, and ap.x are tuned manually. In this paper,
we present a systematic approach to optimize essential
constraints using preference-based learning. To do so, the
inequality constraints are reformulated as:

a—6=<p(X)=<a+d

with § < m (defined in Alg. 1). Here, a is the vector of
essential constraints defined as an action in Sec. III.

III. LEARNING FRAMEWORK

Let a € R be a vector representing essential constraint
values where v is the number of constraints selected by the
user to optimize over. This work is interested in learning
the action @™ that maximizes how stable, robust, and natural
a walking gait is when executed on hardware. To set up
the learning problem, upper and lower bounds on a (Gex
and a,,;,, respectively) along with the granularity of dis-
cretization for each dimension d,.,x = 1,...,v are chosen
by the operator. The entire search space of the algorithm is
given by A C R? defined as the finite set of all constraint
combinations where d = [],_, dx.

By naively searching over A, the algorithm quickly faces
the curse of dimensionality. Thus, to facilitate computational
tractability, each iteration, ¢, only explores a subset of
actions S; C A. To learn a*, we introduce a framework
built around a high-dimensional preference-based learning
algorithm LINECOSPAR [25] that learns a Bayesian model
over a user’s preferences by sequentially constructing S; .
The underlying assumption of the algorithm is that the user’s
preferences are dictated by some unknown utility function
f : RY = R where f(a) is termed the latent utility and
f + A — R represents the collection of all latent utilities.
Finally, let fp be the restriction of f on some set B C A.

In general, Bayesian optimization is a powerful tool for
optimizing black-box functions by maintaining a model pos-
terior over the unknown function. Feedback typically used in
Bayesian optimization is numerical, however previous work
has extended Bayesian optimization to pairwise preferences
and other qualitative feedback mechanisms [24], [33]-[36].

LINECOSPAR has previously been demonstrated to locate
an optimal exoskeleton gait over a pre-computed gait library

Algorithm 1 LINECOSPARNLP

1: procedure LINECOSPARNLP(select v essential constraints,
Qmin, Gmax, di fOor kK =1,...,v, and n)

2: Do =0 » D, : Preference feedback including iteration 4
3: Eo=0 > E; : Executed actions including iteration ¢
4 Obtain n uniformly-random actions: Ay = {a1;,....,a1n}
5: Execute outputs of NLP for A; on the system
6: Query operator for preference feedback: 1
7: Append executed actions: E; = Eq U A,
8: Append preference feedback: D1 = Do U y1
9: fori=2,3,...,1 do
10: Obtain covariance [X];, = K(a;,ar) for a € E;_;
11: Update posterior over E;_; to obtain (p;—1,%:-1)
given D;_1
12: Update a;_; = argmaxu;—1(a)
a€E;_;
13: Li = random line through a;_, discretized via m.,
14: Update subset S; = L; UE;_1
15: Obtain covariance [X];x = K(a;,ax) for a € E;
16: Update posterior over S; to obtain (u;, 3;) given D;_1
17: Draw j = 1,...n samples: f; ~ N (1, 3;)
18: Update actions A; = {a; = argmaxf;(a)|j =1,..n}
acE;
19: Run NLP for actions A; to obtain
20: Execute outputs of NLP for A; on the system
21: Query operator for preference feedback y;
22: Append executed actions: E; = E,_; U A;
23: Append preference feedback: D; = D;_1 U y;
24: end for
25: Obtain covariance [X];x = K(a;,ar) for a € Er
26: Update posterior over Dy to obtain (pr,Xr)
27: Obtain a7 = argmaxun(a)
acE;r

28: end procedure

[25]. In this work, we extend the learning framework to
include the nonlinear optimization problem directly which
eliminates the need for pre-computed gait libraries and allows
for a more diverse set of behaviors. We term this slightly
modified algorithm LINECOSPARNLP where the goal is
to identify the optimal action a¢* € A that maximizes f(a)
of the human operator in as few iterations as possible. For
example, f(a) may account for stability, and robustness to
perturbations and model uncertainty. This multivariate utility
function often admits no mathematical description; rather, the
operator has intuition about what looks “right”. Information
about f(a) is obtained through pairwise preferences. To learn
from these preferences, we adopt the dueling bandit setting
[37] in which the algorithm selects actions to execute on the
system and receives a user’s relative preferences between the
executed actions.

A. The LINECOSPARNLP Algorithm

The procedure of the LINECOSPARNLP algorithm (Alg.
1) is as follows. First, the algorithm begins by randomly
selecting and executing A; where A; € RY*™ is the n
actions selected to execute on the system for iteration 3.
The parameter n can be changed depending on how many
actions the operator would like to sample in each iteration.
Since the actions are compared in pairs, n actions equates
to m = (g) pairwise preferences. These actions are given
to the NLP and n corresponding gaits are generated, which
are then executed on hardware. We define the set of actions

executed on hardware up to and including those sampled in
iteration i as E; :=J,_, ;A; C A.

After demonstrating the gaits on hardware, the human
operator is queried for m pairwise preferences, denoted as
y; for iteration i. D; = J,_; ,v; € RN is defined as
the dataset of all preference feedback up to and including
iteration ¢ with corresponding number of preferences N,S”.
Preference feedback is omitted when all sampled actions do
not converge, or when the user chooses to give feedback of
“no preference”. Thus, N;(,l) = 1m — Nymi; Where Ny 18
number of omitted preferences.

In each iteration, the posterior is updated over the pre-
viously executed actions E;_; given the dataset D;_; by
modeling the underlying utilities of E;_, denoted as fg
through the Gaussian posterior:

P(fg, ,|Di-1) < P(Di—1|fe,)P(fE, ;). (D)

Thus, to calculate this posterior, we first calculate the Gaus-
sian process prior defined over the utilities fg, , as:

i—1?

1

(2m) B 1
where X € RIB-1IX[Eial [[$8, = K(a;;, a;1,), and K
is a kernel of choice. In this work we utilize a squared
exponential kernel. Second, the likelihood P(D;_1|fg,_,)
is computed as:

P(fEi—l) =

1 N —
exp <_7fEi—1(ZE) 1fEi—1))
mrpe o\ 2

i—1
r flak,) — fla,)
PDi-1|fe,_,) = i (—)
(|-f 1) kl;II Gsig c

with g (2) as the chosen link function. This link function
can be replaced with any monotonically-increasing function,
but we found empirically that the heavy-tailed sigmoid distri-
bution gge () := H-% improves performance. Finally, the
posterior (7) is estimated via the Laplace approximation as in
[38] which yields a multivariate Gaussian, N (1, %;_1).
The posterior is then used to update the optimal action:

a;_, = argmax p;—1(a).
acE;_1
A random linear subspace L; C A is then generated to
intersect a;_;. The underlying utilities of the actions within
the subset S; := L; UE;_; C A, denoted as fg,, are then
modeled through the Gaussian posterior:

P(fs,|Di—1) o< P(D;_1]|fs,)P(fs,),

which is calculated as with the posterior over E;_.

Next, n new actions are sampled using the Self Sparring
approach [39] to Thompson sampling, a regret minimization
sampling method. This method selects actions to execute by
first sampling n utility functions, denoted f; for j =1,...,n,
from the posterior distribution A (u;,3;). The selected ac-
tions, A, are those which maximize the sampled functions.
These are then given to the NLP, whereby corresponding
gaits are generated, the outputs are executed on the robot,
and A; is appended to E;. The operator is again queried for
preference feedback which is added to D;.

Experimental Walking on Compliant AMBER-3M

Controller i
| wlai,y) |[— | Get User Feedback
Outputs * D?:
00
HZD Optimization Preference-Based Learning
Posterior after Highest
Tteration i Utility
a;; =minJ
s.t. {C1,C2,
C3,a,;} I

owes!
Utility

Fig. 2. The experimental procedure is illustrated in terms of each iteration
i with n denoting the number of gaits compared in each iteration. The
experiments presented in this work used m = 2. Using this notation, the set
of m actions given to the HZD optimization is denoted: A; = {a;;|j =
1,...,n}. The resulting n sets of Bézier coefficients given to the controller
are denoted B; = {oy;|j =1,...,n}.

B. Changes to LINECOSPAR for use with a NLP

Three notable changes were made to the algorithm
LINECOSPARNLP in comparison to LINECOSPAR. First,
the LINECOSPAR algorithm selects L; to intersect al_,.
To take advantage of more recent preference feedback,
LINECOSPARNLP selects L; to intersect a}_;. This change
requires two posterior updates in each iteration. Second,
LINECOSPAR uses a buffer method to compare executed ac-
tions with previously executed actions which results in higher
sample-efficiency. However, when considering preference-
based learning towards gait generation, it is important to
account for the computation time required to obtain gaits.
For this reason, we modify the LINECOSPARNLP algo-
rithm to sample and query n actions in each iteration. This
results in worse sample-efficiency, but allows for batched gait
generation that enables the generated gaits to be executed on
hardware back to back. Lastly, in LINECOSPAR, coactive
feedback is also added to the dataset D; to improve sample-
efficiency. However, coactive feedback, otherwise known as
user suggestions, relies on a known mapping between the
actions @ and the underlying utility function f(a). Since this
mapping is rarely well-understood for the parameters of a
nonlinear optimization problem, LINECOSPARNLP does
not utilize coactive feedback.

IV. LEARNING TO WALK IN EXPERIMENTS

We experimentally deploy LINECOSPARNLP on the pla-
nar bipedal robot, AMBER-3M [40]. This custom research
platform has three interchangeable lower-limb configurations
(flat-foot, point-foot, and spring-foot) and was originally built
to study how leg configurations effect energy efficiency. We
specifically selected this platform because of its engineering
reliability [12], enabling consistent data collection to isolate
the effects of various gaits in the learning process. The
controller for AMBER-3M is implemented on an off-board
i7-6700HQ CPU @ 2.6GHz with 16 GB RAM, which
computes desired torques and communicates them with the

ELMO motor drivers. The motor driver communication and
the control logic run at ~1kHz, each on a separate core.

A. Experimental Procedure

In the experiments (video: [41]), walking gaits are gener-
ated by the HZD trajectory optimization method presented
in Sec. II. We take y%(q) := q, € R* as the position
of the four motorized joints of AMBER-3M, 7(q) to be
the linearized forward hip position, and use a 5'"-order
Bézeir polynomial (o € R**®) to describe the desired output
trajectories. Additionally, the cost function is selected to be
the mechanical cost of transport (MCOT), a common metric
for locomotion efficiency defined by:

b P(t
MCOT = / th, (8)
to Mgu
where P(t) = |lu(t)Ta(t)|2, the 2-norm sum of positive

power. The essential constraints selected to tune through
learning are:

1) Average forward velocity of the torso (m/s)

2) Phase variable value at which to enforce minimum foot

clearance, 7,

3) Minimum nonstance foot clearance enforced at 7. (m)

4) Downward velocity enforced at impact (m/s)

5) Step length, i.e. the forward distance between swing

foot and stance foot at impact (mn)

The average optimization run time is 0.1 second per
iteration, with each gait averaging 160 iterations. The exper-
imental procedure is illustrated in Fig. 2. In our experiments,
the learning was conducted for n = 2, corresponding
to two gaits being compared in each iteration. This was
chosen because fewer pairwise comparisons are easier to
give feedback between, and thereby result in less noise in
the preferences. Note that other applications may benefit in
a higher n, which would increase the rate of learning.

Each trial began by initializing AMBER-3M in a stance
configuration, starting the treadmill, and attempting to push
the robot into its periodic orbit. If the robot seemed like it
would fall, extra precaution was taken to give the gait the
best chance at succeeding. Once the gait reached its orbit,
the robot was released and the robustness of the gait to
various disturbances was investigated. After both gaits were
executed on the physical robot, preferences were collected
from the human operator observing the physical realization
of the walking. In some iterations, video footage was also
reviewed before giving a preference. The criteria used to
determine preferences between gaits were the following (in
order of prioritization):

o Capable of walking

« Robust to perturbations in treadmill speeds

« Robust to external forces

o Does not exhibit harsh noise (e.g. during impact)

o Is visually appealing (intuitive judgment from operator)

B. Procedure specific to AMBER-P and AMBER-S

In this work, we leverage two configurations of the
robot: 1) the point-foot configuration (1.373 m tall, 21.3

= 0.7, a® ®
* 0.6 e |'. M
2 | ax
2 o5l * X Utility
8 z e 1
1.4 . o4 L)
3 » A L
-0.2 ™ o - 04 ™
j 0.4 . " 0.6 !, - 0 0.2 0.8
b 06 S ¥) .
e . 0 E 0. e
r 0.8 0 et W 0.2 .08 I.‘\'\‘-I(\\\. 0
o s ol -
Ty i
T, M AMBER-P e
0.4
2
[® .6 0.2
L] ‘ 4
*8 .‘ﬂ:‘ e 0, . 0
* o8 4 ®) Min
- Te=1:
[F Utility
% L] “’ oo 4 .
. s L] y
' X . 02
Py 0.5 N 0.4
w04 0.25 " 0.6 -
R 0.8 0.3]S i ¢ 0.2 08 \]\,\.n\'\‘.“
i, s 0% "o o
& ! AMBER-S 4 W

Fig. 3.
5-dimensional visited actions, averaged over the two dimensions not
shown on each subplot. The optimal action is illustrated by the yel-
low star([0.4399,0.5425,0.0759, —0.6040,0.3190] for AMBER-P and
[0.4105, 0.5930, 0.0833, —0.7020, 0.3504] for AMBER-S). The other two
actions depicted in Fig. 4 are denoted with a red circle (worst gait) and a
blue square (middle gait).

An illustration of the final utility values obtained for the

kg), AMBER-P; and 2) the spring-foot configuration (1.430
m tall, 23.5 kg), AMBER-S. We first demonstrate the
learning framework on AMBER-P, with the corresponding
robot model used in the gait generation. To emphasize the
scalability of LINECOSPARNLP, we also repeat the exact
same procedure applied to AMBER-S while still using the
AMBER-P model in the trajectory optimization process. We
intentionally do not account for these changes and instead
gaits were was still generated assuming the rigid body model
and executed on hardware using the same controller with un-
modified PD gains. Even though we don’t account for these
changes, the addition of compliance in the legs increases the
degrees of freedom of the system, adds a double support
domain to the hybrid dynamics, and increases the stiffness
of the dynamics. Historically, robots with compliance are
difficult to generate gaits for because of these added com-
plexities, with past success relying on sophisticated models
[42]. Therefore, the fact that the algorithm converges despite
these unmodeled complexities highlights the effectiveness of
the LINECOSPARNLP learning method towards achieving
experimental robustness.

C. Results

During the experiment on AMBER-P, the gaits quickly
met the first criterion of being able to walk; therefore, as the
trials progressed, the efficiency, robustness, and naturalness
became the key criteria in determining preferences between
gaits. The experiment using the rigid model was run for
a total of 30 iterations and sampled 27 unique gaits. The
final posterior over the 27 sampled actions is illustrated
in the top row of Fig. 3. To elucidate the success of
the LINECOSPARNLP, three gaits are selected from the
experiment for careful investigation corresponding to the

Minimum Posterior Utility

AMBER-P

ax [rad/s|

E: - 1 4 2
0 0.5 1 -0.6 -0.4 -0.2 0.5 1
qi[rad] qn [rad) qi[rad|

-0.2
qn [rad)

%

a1

&

=

= 1

= 2
= Z =z = = 2
3 3 K To To
=2 & & ry 22

-5 4 - h . -
0 0.5 1 -0.4 -0.2 0 0.5 1 -0.6 -0.4 -0.2 0 0.5 1

-0.6 -0.4 -0.2
’ qi[rad) qn|rad) qi[rad] qn [rad) qi[rad|

qn [rad)

Fig. 4. Gait tiles with increasing posterior utility values from left to right are shown for the the rigid model (top) and spring model (bottom). The phase
portraits of the hip (gp) and knee (g) of the stance leg (blue) and swing leg (yellow) are shown below each corresponding gait, plotted over 10 seconds
of data. The phase portraits clearly indicate that for both AMBER-P and AMBER-S the gaits evolved to be more experimentally robust.

minimum, a middle, and the maximum posterior utility. The
iteration numbers corresponding to when these gaits were
first sampled is 1, 21, and 26, respectively.

The power of this method is truly demonstrated by its
ability to facilitate the experimental realization of robust
gaits. The initial gaits tried on hardware, although optimal
subject to the imposed constraints, resulted in inferior tra-
jectory tracking and power consumption. As the algorithm
progressed, the gaits became significantly smoother, more
robust to disturbance, and energy efficient. This is exempli-
fied in Figure 4 by noting the significantly lower velocity
overshoot for all of the limbs and tighter tracking shown in
the phase portraits for the gaits with higher posterior utility.
The improvement in energy efficiency is illustrated by the
decreasing MCOT values, which were 0.74, 0.95, and 0.26
corresponding to the three gaits, respectively.

When the procedure was repeated on the AMBER-S
platform, many of the initial tested gaits were unable to walk
due to the unmodeled compliance. Thus, gaits exhibiting pe-
riodic walking behavior were strongly preferred. This second
experiment was conducted for 50 iterations and sampled 37
unique gaits with the obtained posterior illustrated in the
bottom row of Fig. 3. As with the previous experiment,
three gaits are selected for further discussion corresponding
to the minimum, a middle, and the maximum posterior utility
values. Gait tiles and phase portraits for these are again
shown in Figure 4. The iterations when these gaits were
first sampled are 4, 10, and 42. Once again, the algorithm
converges to gaits with superior trajectory tracking and lower
MCOT (1.16, 0.38, and 0.33, respectively).

V. CONCLUSION

In this work, we present and experimentally demonstrate
a preference-based learning framework, LINECOSPARNLP,
specifically designed for use towards gait generation via HZD
optimization. The success of the proposed learning method
is demonstrated through its ability to experimentally realize
gaits that are stable, robust to model uncertainty, robust to
external perturbations, efficient, and natural looking with no
requirement for simulation within 50 experimental iterations.

LINECOSPARNLP incorporates preference-based learn-
ing with HZD optimization to leverage the theoretical ben-
efits of HZD without the challenge of parameter tuning.
Furthermore, preference-based learning is a sample-efficient
learning method that does not require the user to mathe-
matically define a metric for “good” walking. Instead, the
framework relies on easy to provide pairwise preferences.
The success of LINECOSPARNLP is demonstrated by
achieving robust walking with unmodeled compliant legs,
a historically challenging control task.

Future work includes extending this framework to more
robotic platforms, such as quadrupeds and 3D bipedal robots,
as well as improving the sample-efficiency of the framework
through additional qualitative feedback mechanisms such as
ordinal labels [43]. The experimental results presented in this
paper demonstrate the rich potential lying in the boundary
between machine learning and control theory. It is well-
known that control theory provides necessary structure to
bipedal platforms, but machine learning can play a critical
role in shaping the final behavior of the system.

(1]

(2]
(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine,
J. Strauss, G. Pratt, and C. Orlowski, “The darpa robotics challenge
finals: Results and perspectives,” Journal of Field Robotics, vol. 34,
no. 2, pp. 229-240, 2017.

M. H. Raibert, Legged robots that balance. MIT press, 1986.

T. Sugihara, Y. Nakamura, and H. Inoue, “Real-time humanoid motion
generation through zmp manipulation based on inverted pendulum
control,” in Proceedings 2002 IEEE International Conference on
Robotics and Automation (Cat. No. 02CH37292), vol. 2. 1EEE, 2002,
pp. 1404-1409.

S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The
3d linear inverted pendulum mode: A simple modeling for a biped
walking pattern generation,” in Proceedings 2001 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. Expanding
the Societal Role of Robotics in the the Next Millennium (Cat. No.
01CH37180), vol. 1. 1EEE, 2001, pp. 239-246.

I. Poulakakis and J. W. Grizzle, “The spring loaded inverted pendu-
lum as the hybrid zero dynamics of an asymmetric hopper,” IEEE
Transactions on Automatic Control, vol. 54, no. 8, pp. 1779-1793,
2009.

D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous robots, vol. 35, no. 2-3, pp. 161-176,
2013.

J. W. Grizzle, C. Chevallereau, A. D. Ames, and R. W. Sinnet,
“3d bipedal robotic walking: models, feedback control, and open
problems,” IFAC Proceedings Volumes, vol. 43, no. 14, pp. 505-532,
2010.

A. D. Ames, “Human-inspired control of bipedal walking robots,”
IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1115—
1130, 2014.

A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861-3876,
2016.

K. Sreenath, H.-W. Park, 1. Poulakakis, and J. W. Grizzle, “A compliant
hybrid zero dynamics controller for stable, efficient and fast bipedal
walking on mabel,” The International Journal of Robotics Research,
vol. 30, no. 9, pp. 1170-1193, 2011.

W.-L. Ma, S. Kolathaya, E. R. Ambrose, C. M. Hubicki, and A. D.
Ames, “Bipedal robotic running with durus-2d: Bridging the gap be-
tween theory and experiment,” in Proceedings of the 20th international
conference on hybrid systems: computation and control, 2017, pp.
265-274.

W.-L. Ma, Y. Or, and A. D. Ames, “Dynamic walking on slippery
surfaces: Demonstrating stable bipedal gaits with planned ground slip-
page,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 3705-3711.

“NeurIPS 2019: Learn to move - walk around,” https://www.aicrowd.
com/challenges/neurips-2019-learning-to-move-walk-around.

G. A. Castillo, B. Weng, A. Hereid, Z. Wang, and W. Zhang,
“Reinforcement learning meets hybrid zero dynamics: A case study for
rabbit,” in 2019 International Conference on Robotics and Automation
(ICRA). 1EEE, 2019, pp. 284-290.

K. Hitomi, T. Shibata, Y. Nakamura, and S. Ishii, “Reinforcement
learning for quasi-passive dynamic walking of an unstable biped
robot,” Robotics and Autonomous Systems, vol. 54, no. 12, pp. 982—
988, 2006.

S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk
in the real world with minimal human effort,” arXiv preprint
arXiv:2002.08550, 2020.

J. Morimoto, G. Cheng, C. G. Atkeson, and G. Zeglin, “A simple
reinforcement learning algorithm for biped walking,” in IEEE Inter-
national Conference on Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004, vol. 3. IEEE, 2004, pp. 3030-3035.

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, 2019.

S. Tirumala, S. Gubbi, K. Paigwar, A. Sagi, A. Joglekar, S. Bhat-
nagar, A. Ghosal, B. Amrutur, and S. Kolathaya, “Learning stable
manoeuvres in quadruped robots from expert demonstrations,” in 2020
29th IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN). 1EEE, 2020, pp. 1107-1112.

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. van de Panne,
“Iterative reinforcement learning based design of dynamic locomotion
skills for cassie,” arXiv preprint arXiv:1903.09537, 2019.

E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016-2019.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2012, pp. 5026-5033.
“Raisim,” https://github.com/raisimTech/raisimlib, 2020.

M. Tucker, E. Novoseller, C. Kann, Y. Sui, Y. Yue, J. W. Burdick,
and A. D. Ames, “Preference-based learning for exoskeleton gait
optimization,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). 1EEE, 2020, pp. 2351-2357.

M. Tucker, M. Cheng, E. Novoseller, R. Cheng, Y. Yue, J. W.
Burdick, and A. D. Ames, “Human preference-based learning for high-
dimensional optimization of exoskeleton walking gaits,” arXiv preprint
arXiv:2003.06495, 2020.

A. Hereid and A. D. Ames, “Frost: Fast robot optimization and
simulation toolkit,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 1EEE, 2017, pp. 719-726.
E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris, Feedback control of dynamic bipedal robot locomotion.
CRC press, 2018.

A. Hereid, C. M. Hubicki, E. A. Cousineau, and A. D. Ames,
“Dynamic humanoid locomotion: A scalable formulation for hzd gait
optimization,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 370-
387, 2018.

A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames,
“3d dynamic walking with underactuated humanoid robots: A direct
collocation framework for optimizing hybrid zero dynamics,” in 2016
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2016, pp. 1447-1454.

W.-L. Ma, N. Csomay-Shanklin, and A. D. Ames, “Coupled control
systems: Periodic orbit generation with application to quadrupedal
locomotion,” IEEE Control Systems Letters, 2020.

A. Wichter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25-57, 2006.
P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM review, vol. 47, no. 1,
pp. 99-131, 2005.

E. Biyik, N. Huynh, M. J. Kochenderfer, and D. Sadigh, “Active
preference-based gaussian process regression for reward learning,” in
Proceedings of Robotics: Science and Systems (RSS), 2020.

N. Thatte, H. Duan, and H. Geyer, “A method for online optimization
of lower limb assistive devices with high dimensional parameter
spaces,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2018, pp. 1-6.

N. Wilde, D. Kulic, and S. L. Smith, “Active preference learning
using maximum regret,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), October 2020.
L. Qian, J. Gao, and H. Jagadish, “Learning user preferences by
adaptive pairwise comparison,” Proceedings of the VLDB Endowment,
vol. 8, no. 11, pp. 1322-1333, 2015.

Y. Yue, J. Broder, R. Kleinberg, and T. Joachims, “The k-armed
dueling bandits problem,” Journal of Computer and System Sciences,
vol. 78, no. 5, pp. 1538-1556, 2012.

W. Chu and Z. Ghahramani, “Preference learning with gaussian
processes,” in Proceedings of the 22nd international conference on
Machine learning, 2005, pp. 137-144.

Y. Sui, V. Zhuang, J. W. Burdick, and Y. Yue, “Multi-dueling bandits
with dependent arms,” arXiv preprint arXiv:1705.00253, 2017.

E. Ambrose, W. Ma, C. Hubicki, and A. D. Ames, “Toward bench-
marking locomotion economy across design configurations on the
modular robot: Amber-3m,” in 2017 IEEE Conference on Control
Technology and Applications (CCTA), 2017, pp. 1270-1276.

“Video of the experimental results.” https://vimeo.com/473917519.
A. Hereid, S. Kolathaya, M. S. Jones, J. Van Why, J. W. Hurst, and
A. D. Ames, “Dynamic multi-domain bipedal walking with atrias
through slip based human-inspired control,” in Proceedings of the 17th
international conference on Hybrid systems: computation and control,
2014, pp. 263-272.

W. Chu and Z. Ghahramani, “Gaussian processes for ordinal regres-
sion,” Journal of machine learning research, vol. 6, no. Jul, pp. 1019—
1041, 2005.

https://www.aicrowd.com/challenges/neurips-2019-learning-to-move-walk-around
https://www.aicrowd.com/challenges/neurips-2019-learning-to-move-walk-around
http://pybullet.org
https://github.com/raisimTech/raisimlib
https://vimeo.com/473917519

	I Introduction
	II HZD Gait Generation
	II-A Hybrid Zero Dynamics Method
	II-B Trajectory Optimization
	II-C Essential Constraints

	III Learning Framework
	III-A The LineCoSparNLP Algorithm
	III-B Changes to LineCoSpar for use with a NLP

	IV Learning to Walk in Experiments
	IV-A Experimental Procedure
	IV-B Procedure specific to AMBER-P and AMBER-S
	IV-C Results

	V Conclusion
	References

