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Abbreviations: 

ALC – absolute lymphocyte count 

APACHE II – Acute Physiology and Chronic Health Evaluation 

ARDS – acute respiratory distress syndrome 

AUROC – area under the receiver operating curve 

CCI – Charlson Comorbidity Index 

CI – confidence interval 

CK – creatinine kinase 

CSC – crisis standard of care 

EHR – electronic health record 

HDC – Health Data Compass 

ICU – intensive care unit 

IT – information technology 

LDH – lactate dehydrogenase 

SAPS II – Simplified Acute Physiology Score 

SOFA – Sequential Organ Failure Assessment 

PSI – Pneumonia Severity Index 
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Take Home Points  

Study Question: Can we improve upon the SOFA score for real-time mortality prediction during the 

COVID-19 pandemic by leveraging electronic health record (EHR) data? 

Results: We rapidly developed and implemented a novel yet SOFA-anchored mortality model across 12 

hospitals and conducted a prospective cohort study of 27,296 adult hospitalizations, 1,358 (5.0%) of 

which were positive for SARS-CoV-2. The Charlson Comorbidity Index and SOFA scores predicted all-

cause mortality with AUROCs of 0.72 and 0.90, respectively. Our novel score predicted mortality with 

AUROC 0.94.  

Interpretation: A novel EHR-based mortality score can be rapidly implemented to better predict patient 

outcomes during an evolving pandemic. 
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Abstract: (299/300 words) 

Background: The SARS-CoV-2 virus has infected millions of people, overwhelming critical care resources 

in some regions. Many plans for rationing critical care resources during crises are based on the 

Sequential Organ Failure Assessment (SOFA) score. The COVID-19 pandemic created an emergent need 

to develop and validate a novel electronic health record (EHR)-computable tool to predict mortality. 

Research Questions: To rapidly develop, validate, and implement a novel real-time mortality score for 

the COVID-19 pandemic that improves upon SOFA. 

Study Design and Methods: We conducted a prospective cohort study of a regional health system with 

12 hospitals in Colorado between March 2020 and July 2020. All patients >14 years old hospitalized 

during the study period without a do not resuscitate order were included. Patients were stratified by the 

diagnosis of COVID-19. From this cohort, we developed and validated a model using stacked 

generalization to predict mortality using data widely available in the EHR by combining five previously 

validated scores and additional novel variables reported to be associated with COVID-19-specific 

mortality.  We compared the area under the receiver operator curve (AUROC) for the new model to the 

SOFA score and the Charlson Comorbidity Index. 

Results:  We prospectively analyzed 27,296 encounters, of which 1,358 (5.0%) were positive for SARS-

CoV-2, 4,494 (16.5%) included intensive care unit (ICU)-level care, 1,480 (5.4%) included invasive 

mechanical ventilation, and 717 (2.6%) ended in death. The Charlson Comorbidity Index and SOFA 

scores predicted overall mortality with an AUROC of 0.72 and 0.90, respectively. Our novel score 

predicted overall mortality with AUROC 0.94. In the subset of patients with COVID-19, we predicted 

mortality with AUROC 0.90, whereas SOFA had AUROC of 0.85. 

Interpretation: We developed and validated an accurate, in-hospital mortality prediction score in a live 

EHR for automatic and continuous calculation using a novel model, that improved upon SOFA. 

Key Words: Crisis Triage, Mortality Prediction, COVID-19, Machine Learning 
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Introduction: 

The SARS-CoV-2 virus has infected >70 million and killed >1.5 million people in the year since its 

origination (December 2019).
1
 The resulting pandemic has overwhelmed some regions’ health care 

systems and critical care resources, forcing the medical community to confront the possibility of 

rationing resources.
2,3

 In the United States, critical care triage guidance in the setting of resource 

scarcity is produced at the state-level through Crisis Standards of Care (CSC) protocols.
4,5

 These 

protocols attempt the difficult task of ethically allocating scarce resources to individuals most likely to 

benefit, with the aim of saving the most lives.
6–8

 To accomplish this, CSC protocols use organ dysfunction 

scores and chronic comorbidity scores to assess patient survivability. Ideally, scoring would avoid 

systematic bias and be generalizable, accurate, flexible to circumstance, and computable within 

electronic health record (EHR) systems with data collected in real-time.
9
 

At the foundation of most CSC protocols is the Sequential Organ Failure Assessment (SOFA) score.
10,11

 

SOFA and other acuity scores, e.g., SAPSII and APACHE, are well-validated but have significant 

limitations. They were developed over 20 years ago before widespread electronic health records (EHRs), 

are rigid regarding context, and were designed to measure severity of illness and predict mortality based 

a few data points.
12–17

 Although SOFA predicts mortality from influenza pneumonia poorly, it was 

operationalized for use in patients with COVID-19.
11,18,19

  Optimizing the accuracy of mortality 

predictions is critical for medical triage because the decision to withhold or withdraw of life-sustaining 

therapies is heavily influenced by a single score in many states’ CSC protocols.
11

 

The COVID-19 pandemic created an emergent need for a novel, accurate, and context-sensitive EHR-

computable tool to predict mortality in hospitalized patients with and without COVID-19. Because 

developing a new score can take years, a predictive model must rely on well-validated scores, only 

adding new inputs to improve performance. Stacked generalization provides a solution.
20

 A stacked 

model is built upon one of or more baseline model (e.g. SOFA) and incorporates additional models only 

when they improve prediction.
21

  

We rapidly developed and validated a novel mortality score for triage of all hospitalized patient during 

the COVID-19 pandemic by stacking SOFA, qSOFA, a widely used pneumonia mortality score, an acute 

respiratory distress syndrome (ARDS) mortality model, and a comorbidity score.
12,22–25

 We then 

integrated recently reported predictors that may reflect COVID-19 pathophysiology. To test the novel 

model, we conducted a prospective cohort study of acutely ill adults with and without COVID-19 

disease.  

 

Study Design and Methods: 

We began by developing the novel mortality score using a multi-hospital retrospective cohort of 82,087 

patient encounters (Figure 1 and Appendix A). We then conducted a prospective cohort study to 

validate the novel mortality score in patients with and without COVID-19. Our work was anchored by 

four goals. First, to use SOFA as a baseline and address its limitations through stacked generalization, 

adding other models with the potential to improve robustness and predictive performance. Second, to 

integrate and test potential COVID-19-specific predictors. Third, to rapidly deploy the new model in a 

live EHR across a 12-hospital system that serves more than 1.9 million patients. Fourth, to validate 

model performance prospectively. The Colorado Multiple Institutional Review Board approved this study 

(#20-0995). 

Workflow and Model Deployment 
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Rapid development and implementation of a new score requires a full clinical and informatics pipeline 

including skilled data warehousing, data wrangling, machine learning, health system information 

technology (IT), and clinical and ethics personnel working in sync.
26–28

 All data flowed to the study team 

from UCHealth’s Epic instance through Health Data Compass (HDC), the enterprise data warehouse for 

the University of Colorado Anschutz Medical Campus (Figure 1).
29

 HDC is a multi-institutional data 

warehouse that links inpatient and outpatient electronic medical data, state-level all-payer claims data, 

and the Colorado Death Registry. The creation of data sets and models required identification of the 

correct data elements in both operational EHR and warehoused data tables to ensure accuracy and 

robustness. Rapid development, validation, and deployment of a novel model within the real-time EHR 

required close collaboration among three teams: 1) a data science team, 2) a clinical data warehouse 

team, and 3) a clinical informatics operations team (Appendix A).  

This study design is consistent with recent learning health system studies.
30

 Because of the rapidly 

evolving pandemic, we built a data pipeline for the stacked mortality model to update as new data were 

captured from the EHR. We originally developed, validated and deployed the model using estimates 

from retrospective data, while simultaneously building technical capacity to transition to a model 

estimated on prospective data. The time from conception to deployment of the new model across the 

hospital system was one month. 

Prospective Cohort 

The prospective cohort included all encounters of patients >14 years old hospitalized at any of 

UCHealth’s 12 acute care hospitals between March 15, 2020 (the date UCHealth halted elective 

procedures) through July 2020.  Because CSC protocols apply to all hospitalized patients during a crisis, 

we included all inpatients regardless of level of care or COVID-19 status. We excluded encounters with a 

do not attempt resuscitation order placed within 12 hours of admission, patients who were still 

admitted, and encounters longer than  30 days. 

Model Methodology 

We developed a model using stacked generalization to predict mortality.
20,31,32

 A stacked regression 

model takes other component models as covariates and estimates weights in accordance with their 

predictive power.
31

 We chose ridge regularized logistic regression as the top-level model to limit 

overfitting and to address correlation between the component models.
21

 Stacking allows for robust, 

accurate, and interpretable evaluation of the underlying models.
32

 Moreover, the stacked model never 

performs worse than the most accurate component model (see Appendix A).
33

  

The stacked regression takes six logistic regression mortality models as covariates. Four are validated 

organ dysfunction or pneumonia/ARDS mortality prediction tools, a fifth is a comorbidity score, and a 

sixth is novel and COVID-specific. These models include: (1) SOFA, (2) qSOFA, (3) the CURB-65 adult 

pneumonia mortality score, (4) a modified version of an ARDS mortality model, and (5) a Charlson 

Comorbidity Index (Appendix A).
12,14,23–25

 The ARDS mortality model was attenuated to include the 

subset of predictors reliably available in structured form in live EHRs. The sixth model includes variables 

hypothesized and reported to be associated with COVID-19-specific disease severity or mortality.  This 

includes, for example, D-dimer, lactate dehydrogenase (LDH), absolute lymphocyte count (ALC), and 

creatinine kinase (CK, Appendix A).
34–36

 Variables such as gender, race, or disability status were not 

included in any models. 

Real-time predicted mortality 
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Probability of mortality varies over the hospital course (Appendix B) and can be estimated at any time 

during the hospitalization. Thus, to estimate and validate model parameters, we selected a single time 

point to make a prediction – when the SOFA score reached its maximum for the encounter. 

Operationally, this framework allows for real-time mortality prediction under the assumption that the 

current measured state of the patient is the worst state the patient will experience. While this 

assumption will not be correct for all moments in time, it effectively underestimates the patient’s 

overall mortality, thus reducing the chance for premature limitation of critical care resources if used for 

triage decisions.  

Model Training, Evaluation, and Validation: 

We divided the retrospective data 40%-40%-20% for estimating the baseline logistic regression models, 

estimating the stacked model, and evaluating the stacked model, respectively. We estimated the 

stacked models with regularized (ridge) logistic regression and used 3-fold cross-validation to select a 

regularization parameter. The final stacked model was evaluated using empirical-bootstrap-estimated 

confidence intervals (CIs) and a primary metric of area under the receiver operator curve (AUROC). We 

validated the stacked model using the prospective cohort and the AUROC.  

We chose AUROC as the accuracy metric because the primary goal of the mortality score was to 

generate a ranked list of patients to inform the allocation of scare resources. The AUROC is an estimate 

of the probability of correctly ranking a case compared to a non-case. We also estimated other accuracy 

metrics including positive predictive value, sensitivity, specificity, accuracy, and F1-measure (see 

Appendix B, eFigure1).  

To evaluate the impact of COVID-19 on mortality prediction, we retrained the model using the same 

training strategy but limited training data to patients with COVID-19. Specifically, we divided the cohort 

of patients with COVID-19 40%-40%-20% for estimating the baseline logistic regression models, 

estimating the stacked model, and evaluating the stacked model, respectively.Ethical Considerations 

This novel score was developed with the purpose of optimizing mortality prediction for crisis triage. 

Consequently, the score parameters needed to fall with the ethical framework developed for crisis 

triage. Briefly, in catastrophic circumstances the goal of a resource allocation processes should be to 

provide the most benefit to as many people as possible, and to do so in ways that sustain social 

cohesion and trust in the healthcare system. To maintain trust, recommendations for rationing of 

resources must be made prospectively, transparently and consistently across the institution and region, 

and by decision-makers independent of the care team. Moreover, any decision to ration resources must 

embrace a commitment to fairness and a proscription against rationing based on non-clinical factors 

such as race, gender, sexual orientation, disability, religious beliefs, citizenship status, or “VIP,” 

socioeconomic,or insurance status.
37–40

 Consequently, factors such a race were excluded from score 

development, even if they had the potential to improve accuracy. 

Results: 

Cohort Characteristics and Hospital Course: 

The prospective cohort included a total of 28,538 encounters between March 15
th

, 2020 and July 2020. 

Of these, 1,148 (4.0%) were excluded because the patient remained in hospital at the time of data 

censoring: in-hospital survival could not be assessed. Additionally, we excluded 70 and 24 encounters 

respectivelydue to active DNR and encounter length>30 days. Of the remaining 27,296 encounters, 

1,358 (5.0%) were positive for SARS-CoV-2, 4,494 (16.5%) included intensive care unit (ICU)-level care, 

1,480 (5.4%) included invasive mechanical ventilation, and 717 (2.6%) died during the hospitalization. Of 
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the 717 patients who received mechanical ventilation, 408 (27.6%) died. Additional demographics are in 

Table 1, eTable 1, and eTable 2. 

Of the 1,358 encounters positive for COVID-19, 407 (30.0%) received ICU-level care, 239 (17.6%) were 

intubated, and 166 (12.2%) patients died. Of the 239 patients requiring mechanical ventilation, 83 

(34.7%) died. 

Compared to patients without COVID-19, patients with COVID-19 were more likely to be male (55.6% vs 

42.0%, p<0.001), be Hispanic (44.4% vs 14.6%, p<0.001), receive ICU-level care (30.0% vs 15.8%, 

p<0.001), be intubated (17.6% vs 4.8%, p<0.001), have a longer duration of mechanical ventilation (8.7 

days vs 3.0 days, p<0.001), a longer hospital length of stay (7.6 days vs 4.3 days, p<0.001), and not 

survive (12.2% vs 2.1%, p<0.001). Patients with COVID-19 had higher SOFA and CURB-65 scores and LDH, 

ferritin, and D-dimer levels than patients without COVID-19 (all p<0.05, Table 2). Mean troponin levels 

were lower in patients with COVID-19 compared to patients without COVID-19 (p=0.002, Table 2). 

However, absolute lymphocyte count and creatinine kinase levels were not dissimilar between groups 

(all p>0.05, Table 2). 

Point-Wise Mortality Estimates: 

When validating mortality models in the prospective cohort, the individual component models predicted 

point-wise mortality (estimates of mortality risk ranging from 1-99%) with AUROCs ranging from 0.72 

(Charlson Comorbidity Index) to 0.90 (SOFA) (Table 3). The stacked model predicted point-wise mortality 

better than any individual model: AUROC 0.94 (Figure 2). Most prospective encounters (95.7%) had 

predicted point-wise mortalities less than 10%. Within this group, observed mortality was only 1.0%, 

suggesting that the stacked model accurately identifies patients with low mortality (eTable 3). 

In patients with COVID-19, the AUROC for SOFA, CURB-65, the Charlson Comorbidity Index, and novel 

variables was 0.85, 0.90, 0.75, and 0.91 respectively. In this subset of patients, the stacked model 

predicted mortality with an AUROC of 0.90. In both analyses, the stacked model predicted mortality with 

narrowest 95% confidence intervals at the extremes of predicted mortality (eFigure 2). Even at 

moderate predicted mortalities, 95% confidence intervals were generally narrower than ten percentage 

points. Additional results including precision, recall, and time-integrated estimates of mortality are 

reported in Appendix B, eFigure 1. 

When trained with retrospective data and evaluated on patients with COVID-19, the novel model 

outperformed the stacked model (AUROCs of 0.91 and 0.90, respectively). However, re-training the 

stacked model only on patients with COVID-19 improved its COVID-19-specific AUROC to 0.95 (Appendix 

B). The stacked model outperformed all other models for patients with COVID-19. This highlights the 

importance of flexible modeling constructs and suggests that patients with COVID-19 have predictors of 

mortality that differ from average patients.  

Discussion: 

We developed a new, accurate mortality prediction score that is adaptable to different diseases and 

settings. Improving upon SOFA and the Charlson Comorbidity Index to predict mortality, our score 

allows more accurate and granular ranking of patients likely to benefit from intensive care. We rapidly 

deployed the novel score in our EHR during the COVID-19 pandemic for potential real-time use in 

making triage decisions. We demonstrated that reliability was maintained in a prospective cohort of 

patients with and without COVID-19. Fortunately, we have not needed to use these scores for triage, but 

our development process forges a new path for leveraging EHRs, clinical expertise, and machine learning 

to provide real time, situation-critical clinical decision support. 
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This paper adds significantly to the literature regarding CSC and ethically allocating scarce medical 

resources. Like ours, most other scoring systems are based on the SOFA score, which was developed 20 

years ago with simplicity and not triage in mind. SOFA predicted influenza H1N1 mortality poorly.
18,19

 

Others have attempted to build novel scores that are simple and accurate.
6,7

 Our work builds on recent 

reports demonstrating in patients with COVID-19 that SOFA, CURB-65, PSI, APACHE II, and novel, COVID-

specific COVID-GRAM scores predict mortality well: AUROC 0.87, 0.84-0.85, 0.87, 0.96, and 0.78-0.88 

respectively.
41–44

 Although APACHE II out-performs other scores, it includes data that is not easily 

extracted from an EHR in real-time. By stacking multiple models and using data extracted in real-time 

from the EHR, we demonstrate similar AUROC (0.94) in a large prospective cohort of patients on whom 

a CSC-based triage plan would operate: those with and without COVID-19. Finally, CSC protocols have 

collapsed SOFA scores to rank patients in just a few categories, reflecting the difficulty of knowing when 

SOFA scores are sufficiently different to make a meaningful difference for triage. Our approach 

generates 1-99% risk of mortality and the ability to statistically differentiate between patients (or 

determine statistical ties) by calculating 95% CI for each score.  

Our stacked model’s ability to predict mortality is tailored to our patient population in Colorado. This is 

important given the varied experiences with COVID-19. Our in-hospital (12% versus 21%) and ventilator 

mortality rates (35% versus 88%) were substantially lower than a New York cohort.
45

  Our mortality rates 

approach those expected for moderate-severe ARDS.
46,47

 There are potentially many explanations for 

these differences, including younger age, difference in comorbidities, differences in therapeutic 

interventions, and learning from the experience of earlier effected areas. Moreover, the utilization of 

ICU level of care and mechanical ventilation varies widely across the world: in New York, 14.2% of 

patients were treated in an ICU and 12.2% of patient received mechanical ventilation. In contrast, in a 

cohort of patients in China, 50.6% of patients were admitted to an ICU and 42.2% received mechanical 

ventilation.
35,36,41

 Such differences may affect the predictive characteristics of a mortality score. 

Moreover, we found that patients with COVID-19 have unique characteristics and may benefit from 

specific mortality prediction models. Thus, utilizing EHR data streams allows for flexibility to add 

additional components and retrain the stacked model as new knowledge and clinical experience 

accumulates. Importantly for generalization, the model can be tuned in real-time to other local patient 

populations and disease characteristics. 

Several aspects of the informatics infrastructure and workflow are important. First, such a rapid 

development process would have been impossible without a robust data warehouse staffed by experts 

with deep knowledge of EHR data and common clinical data models. The availability of high-quality data 

is known to be among the largest challenges in clinical applications of machine learning.
48

 Second, our 

data science team was in place and had substantial shared experience with data from the health system. 

It would be extremely challenging to either rapidly hire or outsource the necessary expertise during a 

pandemic. Third, our data science team already had access to highly capable cloud-based and on-

premises HIPAA-compliant computational environments. Establishing the processes and controls for 

such an environment takes time and expert human resources; our campus had already made those 

investments. Fourth, our multidisciplinary team included leadership, a variety of potential end-users, 

and experts from ethics, clinical informatics, machine learning, and clinical care.
26

 This diversity critically 

grounded the project in ethical principles and pragmatic clinical realties and allowed us to quickly iterate 

to a practical, implementable, and interpretable model. Because of urgent operational needs, we also 

had full institutional and regulatory support. Finally, we evaluated the model prospectively, an 

important gold-standard not often met by new machine learning-based informatic tools.
26

 Of note, 

there are many reports in the literature describing development of predictive models using EHR data, 
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but very few reports of the implementation of those models in a live EHR for clinical use.  In this case, 

the total elapsed time from including data extraction, model construction, implementation, and 

deployment within the EHR across the 12 UCHealth hospitals was 1 month, illustrating the potential 

capacity for novel predictive model development. Now that we have demonstrated a workflow to 

rapidly develop new informatics tools in our health system, we anticipate that many other tools will 

follow.  

This manuscript has several limitations. First, all scores are calculated from EHR data. While this allows 

for real-time score calculation, it introduces the possibility of artifactual data skewing mortality 

prediction. This was partially addressed by placing acceptable ranges on physiologic variables (see 

Appendix A). Second, missing data or data collected at different time intervals is inherent in the analysis 

of EHR data. To overcome this, we developed a system of imputation and last known value carry 

forward (see Appendix A). Such assumptions may introduce systematic and unmeasured bias but are 

unavoidable operationally. Third, more sophisticated machine learning techniques—e.g., Gaussian 

process regressions—may allow for more accurate mortality predictions.
49

 However, we chose methods 

that were robustly estimable and would allow for transparent interpretation of underlying model 

contributions to the overall score. Fourth, in-hospital mortality may not be the optimal metric to make 

triage decisions. One-year mortality may be a better metric but, given the desire to validate a mortality 

predictor quickly, longer-term outcomes were not available. Fifth, our data and patient population are 

specific to Colorado and results may differ geographically. Finally, some clinical indicators of illness 

severity were not included in the models, e.g. prone positioning, continuous renal replacement therapy, 

and radiographic results. These data may improve mortality prediction but are difficult to routinely and 

reliably auto-extract from the EHR.  

Conclusion: 

We developed a novel and accurate in-hospital mortality score that was deployed in a live EHR and 

automatically and continuously calculated for real-time evaluation of patient mortality. The score can be 

tuned to a local population and updated to reflect emerging knowledge regarding COVID-19. Moreover, 

this score adheres to the ethical principles necessary for triaging.
37–40

 Further research to test multi-

center score performance, refine mortality prediction over longer periods of time, and investigate the 

optimal methods to use such a score in a CSC protocol is needed. 
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Table 1: Prospective Cohort Characteristics and Hospital Course   

 All Encounters 

(N = 27,296) 

COVID-19 Negative  

(N = 25,938) 

COVID-19 Positive  

(N = 1,358) 
P-value 

Age (SD) 54.3 (20.4) 54.2 (20.5) 56.8 (18.4) P < 0.001 

Female 15,660 (57.4%) 15,057 (58.0%) 603 (44.4%) P < 0.001 

Race    P < 0.001 

  White or Caucasian 20,430 (74.8%) 19,848 (76.5%) 582 (42.9%)  

  Black or African     

      American 
1,964 (7.2%) 1,790 (6.9%) 174 (12.8%)  

  Other 4,481 (16.4%) 3,901 (15.0%) 580 (42.7%)  

  Unknown 421 (1.5%) 399 (1.5%) 22 (1.6%)  

Ethnicity    P < 0.001 

  Non-Hispanic 22,496 (82.4%) 21,755 (83.9%) 741 (54.6%)  

  Hispanic 4,398 (16.1%) 3,795 (14.6%) 603 (44.4%)  

  Unknown 402 (1.5%) 388 (1.5%) 14 (1.0%)  

     

Supplemental O2 16,052 (58.8%) 14,859 (57.3%) 1,193 (87.8%) P < 0.001 

High Flow Nasal  

  Cannula 
1,398 (5.1%) 1,057 (4.1%) 341 (25.1%) P < 0.001 

Non-Invasive     

  Ventilation 
1,482 (5.4%) 1,382 (5.3%) 100 (7.4%) P < 0.001 

     

Median Hospital Days  

  (IQR) 
3.0 (2.0, 5.2) 3.0 (1.9, 5.0) 5.5 (3.0, 9.6) P < 0.001 

Overall Mortality 717 (2.6%) 551 (2.1%) 166 (12.2%) P < 0.001 

     

All Mechanical    

Ventilation 
1,480 (5.4%) 1,241 (4.8%) 239 (17.6%) P < 0.001 

  Median Hospital 

      Days (IQR) 
8.4 (4.6, 15.1) 7.7 (4.1, 13.3) 15.2 (8.2, 21.0) P < 0.001 

  Median ICU Days 

      (IQR) 
3.6 (1.6, 7.8) 2.9 (1.4, 6.2) 9.1 (5.3, 15.0) P < 0.001 

  Median Ventilator 

      Days (IQR) 
1.8 (0.7, 5.7) 1.4 (0.6, 3.9) 7.5 (4.5, 12.6) P < 0.001 

  Mortality 408 (27.6%) 325 (26.2%) 83 (34.7%) P = 0.009 

Reported p-values are to assess differences between COVID-19 Negative and COVID-19 Positive 

encounters. 
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Table 2: Mortality Model Inputs 

 All Encounters 

(N = 27,296) 

COVID-19 Negative  

(N = 25,938) 

COVID-19 Positive  

(N = 1,358) 
P-value 

Scores     

  Median qSOFA (IQR) 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) 0.1 (0.0, 1.0) P < 0.001 

  Median SOFA (IQR) 2.0 (2.0, 4.0) 2.0 (2.0, 3.0) 3.0 (2.0, 5.0) P < 0.001 

  Median CURB-65 (IQR) 1.0 (0.1, 2.0) 1.0 (0.1, 2.0) 1.0 (0.0, 2.0) P = 0.44 

  Charlson Comorbidity                    

         Index (IQR) 
1.0 (0.0, 3.0) 1.0 (0.0, 3.0) 1.0 (0.0, 2.0) P = 0.38 

ARDS Mortality Model     

  Transfusion FFP 59 (0.2%) 59 (0.2%) 0 (0.0%) P = 0.14 

  Transfusion PRBC 396 (1.5%) 392 (1.5%) 4 (0.3%) P < 0.001 

  GCS ≤ 8 264 (1.0%) 246 (0.9%) 18 (1.3%) P = 0.21 

  Lactate > 2 2,676 (9.8%) 2,503 (9.6%) 173 (12.7%) P < 0.001 

  Creatinine ≥ 2 2,486 (9.1%) 2,323 (9.0%) 163 (12.0%) P < 0.001 

  Mean Bilirubin (SD) 0.7 ± 2.0 0.7 ± 2.0 0.6 ± 0.8 P = 0.003 

  Mean Arterial pH (SD) 7.4 ± 0.0 7.4 ± 0.0 7.4 ± 0.1 P = 0.001 

  Mean PF (SD) 335.7 ± 212.7 340.7 ± 215.8 239.6 ± 102.0 P < 0.001 

  Mean SpO2 (SD) 94.7 ± 2.4 94.7 ± 2.4 93.4 ± 3.1 P < 0.001 

Novel Predictors     

  Mean D-Dimer (SD) 405.0 ± 3,699.8 326.4 ± 2,440.3 1,906.2 ± 12,614.9 P < 0.001 

  Mean LDH (SD) 229.1 ± 214.9 223.1 ± 207.4 343.5 ± 305.5 P < 0.001 

  Mean ALC (SD) 1.4 ± 2.0 1.5 ± 2.0 1.3 ± 1.6 P = 0.001 

  Mean BUN (SD) 19.4 ± 15.1 19.3 ± 14.9 21.2 ± 18.4 P < 0.001 

  Mean Troponin (SD) 0.5 ± 9.0 0.6 ± 9.2 0.2 ± 3.9 P = 0.002 

  Mean CK (SD) 173.7 ± 1,612.7 170.5 ± 1,567.2 235.4 ± 2,316.0 P = 0.31 

  Mean ALT (SD) 21.1 ± 20.6 21.1 ± 21.0 20.9 ± 10.4 P = 0.47 

  Mean Lactate (SD) 1.0 ± 1.1 1.0 ± 1.1 1.2 ± 1.6 P < 0.001 

The covariates included in the stacked model are calculated at a single point int time - the time of 

maximum SOFA score for each encounter. Presented are the summary statistics for all patients at that 

single point in time. FFP: fresh frozen plasm, PRBC: packed red blood cells, GCS: Glasgow comas score, 

PF: PaO2 to FiO2 ratio, LDH: lactate dehydrogenase, ALC: absolute lymphocyte count, BUN: blood urea 

nitrogen, CK: creatinine kinase, ALT: alanine aminotransferase 
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Table 3: Model Area under the Receiver Operator Curve  

  Retrospective Validation 

Cohort 

(N = 16,418) 

Prospective 

Validation Cohort 

(N = 27,296) 

COVID-19 Positive 

Validation Cohort 

(N = 1,358) 

SOFA 0.90 0.90 0.85 

qSOFA 0.83 0.84 0.79 

CURB-65 0.81 0.87 0.90 

ARDS Mortality 0.85 0.88 0.86 

Charlson Comorbidity Index 0.63 0.72 0.75 

Novel Variables 0.83 0.88 0.91 

Stacked Model 0.93 0.94 0.90 

The AUROC for each of the component models and the final stacked model. Models were trained and 

validated on the initial retrospective cohort. The models were then validated on the prospective cohort 

and on the subset of patients with COVID-19.  The AUROC for the retrospective cohort is based on a 20% 

holdout of the encounters for testing and evaluation. The prospective validation cohort reflects 

expected performance when running in a live EHR for both COVID-19 positive and negative patients. 
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Figure 1: Study Data Flow: a) Data flow through the EHR and research team, b) Retrospective Cohort 

selection for model development, c) Prospective Cohort selection for model evaluation and validation 
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Figure 2: Stacked Model AUROC in the Retrospective and Prospective Cohorts: The retrospective 

cohort was used for training and validation (in a 40%-40%-20% split). The prospective and COVID-19 

positive cohorts were used to validate the retrospectively trained model. 
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