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Abstract 9 

Cytochrome bd-type oxygen reductases (cytbd) belong to one of three enzyme superfamilies that catalyze 10 

oxygen reduction to water. They are widely distributed in Bacteria and Archaea, but the full extent of 11 

their biochemical diversity is unknown. Here we used phylogenomics to identify 3 families and several 12 

subfamilies within the cytbd superfamily. The core architecture shared by all members of the superfamily 13 

consists of four transmembrane helices that bind two active site hemes, which are responsible for oxygen 14 

reduction. While previously characterized cytochrome bd-type oxygen reductases use quinol as an 15 

electron donor to reduce oxygen, sequence analysis shows that only one of the identified families has a 16 

conserved quinol binding site. The other families are missing this feature, suggesting that they use an 17 

alternative electron donor. Multiple gene duplication events were identified within the superfamily, 18 

resulting in significant evolutionary and structural diversity. The CydAA’ cytbd, found exclusively in 19 

Archaea, is formed by the co-association of two superfamily paralogs. We heterologously expressed 20 

CydAA’ from Caldivirga maquilingensis and demonstrated that it performs oxygen reduction with quinol 21 

as an electron donor. Strikingly, CydAA’ is the first isoform of cytbd containing only b-type hemes 22 

shown to be active when isolated, demonstrating that oxygen reductase activity in this superfamily is not 23 

dependent on heme d.  24 

Introduction 25 
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 The predominance of oxygen in our atmosphere determines the bioenergetic importance 26 

of oxygen as an electron acceptor and the prevalence of aerobic respiratory chains. There are 27 

only three enzyme superfamilies capable of acting as terminal respiratory oxygen reductases  - 28 

heme-copper oxygen reductases, alternative oxidases and cytochrome bd-type oxygen reductases 29 

(cytbd)1. While enzymes from this superfamily have been characterized from a number of 30 

Bacteria, their role in archaeal respiration has not yet been determined. Archaeal aerobic 31 

respiratory chains share some similarities with bacterial respiratory chains, however they often 32 

differ in their composition of respiratory enzymes and are adapted to use different cofactors such 33 

as methanophenazine and F420. Complexes that are typically involved in bacterial respiration 34 

such as succinate-quinone oxidoreductases2, cytochrome bc1 complexes3 and heme-copper 35 

oxygen reductases from archaea have been previously characterized4,5, while NADH:quinone 36 

oxidoreductases  and alternative complex III are absent from this domain6. The presence of 37 

cytochrome bd-type oxygen reductases has been noted in archaeal genomes7, metagenomes and 38 

metaproteomes8–11 but, no functional member of the cytbd superfamily in archaea has ever been 39 

demonstrated. 40 

 Cytochrome bd-type oxygen reductase is a respiratory enzyme that converts oxygen to 41 

water using three hemes, unlike the heme-copper oxygen reductases which have two hemes and 42 

a copper in the active sites1. Purified cytbd accepts electrons from quinols using a low-spin heme 43 

b558 and transfers these electrons to a di-heme active site containing two high-spin hemes. In 44 

some of the characterized cytochrome bd enzymes, these active site hemes were shown to be 45 

heme b595 and heme d, but some other isoforms were shown to contain only hemes b. Those 46 

cytochrome bd family members that contain only hemes b are usually referred to as cyanide 47 

insensitive oxidases (CIO) or cytochrome bb’–type oxygen reductase, and have been identified 48 
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in Pseudomonas aeruginosa, Bacillus subtilis and others12–15. It is unclear whether the presence 49 

of only hemes b has a physiological implication but it has been suggested that these enzymes are 50 

less sensitive to inhibition by cyanide13. There is no sequence signature that distinguishes those 51 

enzymes in the superfamily that only contain heme b. No CIO has ever been isolated and 52 

characterized.  53 

 The canonical cytochrome bd oxygen reductases contain a minimum of two subunits, 54 

cydA and cydB, but often contain additional “auxiliary” subunits 16–18 such as CydX, a single-55 

transmembrane subunit that is associated with cytochrome bd-I from E. coli  that has been 56 

implicated in the stability of the enzyme19. Cytochrome bd-type oxygen reductases have a high 57 

affinity for oxygen20 and the previously characterized cytbds have been associated with roles in 58 

oxygen detoxification, respiratory protection of nitrogenases and as part of sulfide oxidizing 59 

respiratory chains21–25. Cytochrome bd catalytic turnover generates a proton motive force by 60 

translocation of protons using a conserved proton channel from the cytoplasm to the site of 61 

oxygen reduction located near the periplasmic side (electrically positive) of the membrane26. Yet, 62 

cytochrome bd is not as energetically efficient as the heme-copper oxygen reductases which 63 

pump protons in addition to translocating “chemical” protons from the cytoplasm to the 64 

periplasmic active site27,28. Expression of cytochrome bd has  often been associated with 65 

microoxic conditions where a high-affinity oxygen reductase would be required29.  66 

 In this work, we used phylogenomics to determine the diversity and distribution of this 67 

high affinity oxygen reductase in Archaea and Bacteria. We determined that there are three 68 

distinct families of cytbd – one of which contained the quinol binding characteristics present in 69 

the structures of cytbd from Escherichia coli and Geobacillus thermodenitrificans30–32 and two 70 

which do not – and discussed their evolutionary relationships. The distribution of these families 71 
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even within Archaea involve significant variation and include the two distinct isoforms CydAB 72 

and CydAA’, the latter of which appears to have been created by gene duplication. We evaluate 73 

the relative distribution of the CydAA’ and CydAB within the domain archaea and consider the 74 

likely role of CydAA’ variants within their ecological context. In addition, we show that the 75 

CydAA’ from Caldivirga maquilingensis is a highly active oxygen reductase with unique 76 

biochemical and structural characteristics. This combined phylogenomic and experimental 77 

approach has significantly expanded our knowledge of the evolutionary and biochemical 78 

diversity within the superfamily, which has important implications for the role of the cytbd 79 

superfamily in novel respiratory pathways. 80 

Results 81 

Diversity of cytochrome bd-type oxygen reductases 82 

The molecular structures of cytochrome bd-type oxygen reductases from Escherichia coli 83 

and Geobacillus thermodenitrificans have been determined, and showed that cytbd typically has 84 

two conserved subunits cydA and cydB, along with a third subunit, cydX or cydS which is a 85 

single transmembrane subunit that is not well conserved or found along with cydA and cydB in 86 

the genome30–33. Of the two main subunits, cydA is better conserved in all known cytochrome 87 

bd-type oxygen reductases while cydB is very divergent and is hypothesized to have evolved at 88 

faster rates than cydA34. The cydA subunit is made of nine transmembrane helices and contains 89 

almost all the conserved amino acids known to be important for catalyzing oxygen reduction and 90 

proton translocation, including the ligands for three hemes and the residues forming a proton 91 

channel35,36. The first four helices of cydA contain all of the amino acids that form the active site. 92 

These include the proton channel and ligands to bind the active site heme b595 and heme d (these 93 
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ligands have only been verified in the isoforms containing hemes b and d, and not the ones 94 

containing only hemes b). The other five helices (V- IX) form the quinol binding site in the 95 

biochemically characterized bd-type oxygen reductases and include the ligands to heme b558, the 96 

point of entry for electrons from quinols30–32. With this structural framework in mind, we 97 

performed a sequence analysis of cytochrome bd-type oxygen.  98 

An analysis of 24706 genomes available in the Genome Taxonomy Database 99 

(release89)37,38,  revealed the presence of 17852 cydA homologs. Of these, 13007 genomes 100 

contained at least one cydA homolog, suggesting that this enzyme family is widely distributed 101 

and important (Supplementary Table1). Phylogenomic analysis of cydA homologs revealed 15 102 

clades of cydA that could be distinguished on the basis of unique sequence characteristics.1 103 

(Supplementary Figure S1, Supplementary Tables1,2). Four of these clades contain the 104 

features that are considered part of the quinol binding site – for e.g., conserved residues Lys252, 105 

Glu257 (E.coli cydA numbering) while the remaining do not. We inferred that the former four 106 

cydA clades were quinol:O2 oxidoreductases and we named them qOR1, qOR2, qOR3 and 107 

qOR4a. While cydA of the families qOR1, qOR2 and qOR3 associate with cydB to form cydAB, 108 

cydAA’ is formed by the co-association of two distinct cydA clades, qOR4a and qOR4b. qOR4b 109 

does not possess quinol binding site characteristics and is likely the result of a gene duplication 110 

event. Phylogenetic clustering of cydA sequences from all 15 cydA clades demonstrated that 2 of 111 

the remaining clades are missing quinol binding sites and instead contain a number of heme c 112 

binding motifs (CxxCH) (Supplementary figure S1, Supplementary multiple sequence 113 

alignments MSA1, MSA3). We named these enzymes OR-C1a and OR-C1b because of the 114 

presence of heme c binding motifs. Similar to qOR4a/4b, the ‘a’ and ‘b’ attachment to the names 115 

signifies that their genomic context suggests that they co-associate to form one enzyme OR-C1. 116 
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Eight of the remaining cydA clades were related and named OR-N1, OR-N2, OR-N3a, OR-N3b, 117 

OR-N4a, OR-N4b, OR-N5a and OR-N5b. OR-N is named for Nitrospirota because of 118 

predominance of these enzymes in that phylum (Supplementary Figure S1, Supplementary 119 

multiple sequence alignments MSA1, MSA2, MSA3). Their close relationship is also 120 

supported by the likely structure of the proteins of which they are a part and their genomic 121 

context (Figure 1). We have attempted to develop a nomenclature for the cytochrome bd-type 122 

oxygen reductase family that can be easily expanded upon. We designate 3 large families of 123 

cytochrome bd-type oxygen reductases – qOR, OR-C and OR-N - based on their phylogenetic 124 

placement, presence/absence of biochemical signatures such as quinol and heme c binding site 125 

features, genomic operon context and taxonomic origin. We have designated subfamilies 126 

numerically starting from 1 and attached an ‘a’ or ‘b’ subscript if it is likely that two cydA 127 

subfamilies co-associate to form one enzyme. Most of the ‘a’-type subfamilies include the proton 128 

channel residues E99 and E107 (E. coli numbering) while ‘b’-type subfamilies do not. It appears 129 

that ‘a’ and ‘b’-type subfamilies are also the result of multiple independent gene duplication 130 

events within this superfamily. We will discuss the unusual number of gene duplication events 131 

within the cytbd superfamily and the OR-C and OR-N families later in the text and in 132 

Supplementary Material but begin with the quinol oxidizing qOR family. Sequences from this 133 

family contain all the amino acids that were previously identified as forming the heme ligands, 134 

proton channel, oxygen reduction site and quinol binding site30–32,36.  135 

Evolution of the quinol-oxidizing cytochrome bd-type oxygen reductases (qOR) 136 

To explore the evolutionary relationship between the families qOR1, qOR2, qOR3 and 137 

qOR4a, which are true orthologs, we generated a maximum likelihood phylogenetic tree using 138 

RAxML with the OR-C and OR-N family sequences as outgroup (Figure 2). Sequence features 139 
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can be identified to distinguish these families and to validate the above identified monophyletic 140 

clades as meaningfully distinct; some of which are outlined below while the remaining features 141 

are mentioned in Supplementary Table 6. All cydA sequences from qOR1 subfamily have 7 142 

amino acids between the two conserved glutamates in the proton channel Glu99 and Glu107 such 143 

as in Escherichia coli cydA 26,39 while cydA sequences from qOR2, qOR3 and qOR4a typically 144 

have 6 amino acids between the two conserved glutamates (ex. as between Glu101 and Glu108 145 

in qOR3-subfamily cytbd from Geobacillus thermodenitrificans30). This insertion/deletion has 146 

been hypothesized to lead to a reversal in the position of hemes from the qOR1-bd in 147 

Escherichia coli to the qOR3-bd in Geobacillus thermodenitrificans although further research is 148 

required to establish whether the reversal of heme positions is universal (further discussion on 149 

the insertion/deletion in the proton channel and the Q-loop is included in Supplementary 150 

Material). Sequence features which distinguish the qOR4a-subfamily cytbd are insertions 151 

between helices V and VI, as well as insertions in helix VIII (Supplementary alignment MSA1, 152 

Supplementary Table 6) Conserved tyrosines (Tyr115 and Tyr117 Geobacillus 153 

thermodenitrificans cydA numbering) are present in qOR2 and qOR3 families but not in the 154 

qOR4a-subfamily, which is consistent with the close evolutionary relationship between the 155 

qOR2 and qOR3-subfamilies observed in the tree topology. Other conserved sequence features, 156 

unique to each family are listed in Supplementary alignment MSA2 and Supplementary 157 

Table 6.  158 

Comparing the cydA phylogenetic tree and the distribution of cytochrome bd-type 159 

oxygen reductases across Archaea and Bacteria provides some insight into the relative age of 160 

these families. The qOR1 subfamily, which includes the Escherichia coli enzyme, at present 161 

count seems to be the most widely distributed with enzymes in over 60 bacterial phyla, 162 
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(Supplementary Table 2, 4) but it is only sparsely distributed in Archaea. In fact, there are only 163 

a very few representatives in Euryarchaeota and Asgardarchaeota (Figure 2). It is only widely 164 

distributed in Halobacterota, whose oxidative metabolism is expected to have evolved relatively 165 

late40(Figure 3). This strongly suggests that the qOR1 subfamily is the oldest of the extant 166 

families and that it is likely that cytochrome bd-type oxygen reductases originated in Bacteria. 167 

While cydA from the qOR2 subfamily is also fairly well-distributed and found in over 20 168 

bacterial phyla, the qOR3-subfamily enzymes are almost exclusive to the Firmicutes and 169 

Firmicutes_I phyla with a few enzymes in Archaea. The qOR4a-subfamily enzymes appear to be 170 

specific to the Archaea (Supplementary Tables 2, 4). A close evolutionary relationship between 171 

the qOR2 and qOR3-subfamilies is suggested by cydA tree topology and identifiable sequence 172 

characteristics but other trees we inferred have modelled a closer relationship between the qOR2 173 

and qOR1 subfamilies (data not shown). Furthermore, the qOR1 subfamily has 7 amino acids 174 

between the conserved glutamates in the proton channel, while the qOR4a, qOR2 and qOR3 175 

subfamilies consistently have 6 amino acids. Lastly, enzymes from the qOR4a, qOR2 and qOR3 176 

subfamilies are almost completely absent from Proteobacteria. This suggests that the qOR2, 177 

qOR3 and qOR4a subfamilies diverged from the qOR1 family, Before proteobacteria diverged 178 

from other bacterial phyla. While our dataset and phylogenetic analysis is consistent with the 179 

above discussion, it must be noted that many lateral gene transfers have been observed within the 180 

cytochrome bd-type oxygen reductase1 which complicate evolutionary analysis.  181 

As mentioned above, most cydA subfamilies are widely distributed within Bacteria and 182 

Archaea, but the qOR4a-subfamily is unique in having sequences that belong only to Archaea. In 183 

addition, the qOR4a-subfamily is unique in having a completely different subunit II (cydA’), 184 

while the qOR1-, qOR2- and qOR3- subfamily members appear to have cydB homologs as their 185 
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subunit II. cydB is either not homologous to cydA’ or is evolutionarily distant.  The unique 186 

ancestry of the qOR4a-subfamily enzymes which is specific to archaea raises a question about its 187 

distribution within that domain. 188 

Distribution of cytochrome-bd type oxygen reductases in archaea 189 

To investigate the distribution of cytochrome bd-type oxygen reductases within Archaea 190 

and to contextualize the evolution of cydA within archaeal evolution, we mapped the presence of 191 

qOR4a, qOR1, qOR2 and qOR3 subfamilies of cydA onto a phylogenetic tree of all archaea, 192 

using a concatenated gene alignment made from the archaeal genomes in GTDB37 using 193 

Anvi’o41, (Figure 2). It is clear from this representation that most of the qOR4a-subfamily or 194 

cydAA’ belong to the class Thermoprotei within the phylum Crenarchaeota with a few cydAA’ 195 

in Nitrosphaeria, Thermoplasmatota and Archaeoglobi. Within the Thermoprotei, almost all 196 

members of the order Thermoproteales contain cydAA’ and family Acidilobaceae contain 197 

cydAA’ (Supplementary Table 3).  198 

To place cydAA’ into an ecological context we looked at their environmental distribution 199 

(Supplementary Table 5). Microbes containing cydAA’ are largely found in solfataric fields, 200 

hot springs and deep-sea vents, suggesting that cydAA’ might only be utilized by thermophiles, 201 

such as organisms from the genus Vulcanisaeta, Caldivirga, Thermofilum and Thermocladium42. 202 

Within Yellowstone National Park (YNP), a number of these genera are found in hypoxic, 203 

sulfur/iron-rich ecosystems, although Pyrobaculum and Thermofilum have also been found in 204 

more oxygenated environments. It has been suggested that members of the Thermoproteales 205 

which are found in aerobic environments have a heme-copper oxygen reductase and are more 206 

likely to be using aerobic respiration as their primary energetic pathway42. This is consistent with 207 

what we observe in Thermoproteales – organisms which do not have cydAA’ have heme-copper 208 
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oxygen reductases instead (Supplementary Table 3). However, of the 8 Pyrobaculum genomes 209 

in the GTDB database, the three genomes that have cydAA’, but are missing a heme-copper 210 

oxygen reductase are capable of aerobic respiration43,44. This is suggestive of an adaptation based 211 

on oxygen availability in the environment resulting in a trade-off between the greater energetic 212 

efficiency and higher oxygen affinity of HCOs and bd respectively20,28.  213 

Expression of the cydAA’ genes have been demonstrated in the hot springs and sulfur-214 

rich/iron-rich environments within Yellowstone National Park, using RT-PCR10 and 215 

metatranscriptomics (Table 1). While the hot springs were typically hypoxic and sulfur-rich, the 216 

iron oxide mats had higher oxygen concentration at the surface and had <0.3 μM concentrations 217 

of O2 within 1 mm. Nitrosphaeria, Acidilobaceae, Thermoproteales and Thermoplasmatota 218 

expressed cydAA’ in these environments, however it is not clear whether these microorganisms 219 

were exposed to high O2 concentrations. In fact, the Acidolobaceae are expected to be found in 220 

the middle and bottom layers of this mat where O2 concentrations are lower10,45. All of the above 221 

observations are consistent with the presence of cydAA’ in microaerobic and hypoxic 222 

environments. The obvious question that needed to be addressed is whether cydAA’ actually 223 

functions as an oxygen reductase.  This was accomplished by biochemically characterizing the 224 

CydAA’ from C. maquilingensis. 225 

Partial purification and spectroscopic characterization of the cydAA’ from C. 226 

maquilingensis 227 

The cydAA’ operon from Caldivirga maquilingensis consists of two genes – cydA and 228 

cydA’. There are no additional subunits encoded within the operon corresponding to cydX/cydY 229 

or cydS, which are associated, respectively, with E.coli cydAB and G.thermodenitrificans 230 

cydAB. Homologues of these subunits are not apparent in the C. maquilingensis genome. We 231 
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cloned the operon into the pET22b vector and expressed it in an Escherichia coli strain in which 232 

both bd-I and bd-II were deleted (CBO - C43, ΔcydA ΔappB)17. The enzyme, cytochrome bb’ 233 

oxygen reductase from Caldivirga was engineered to have numerous different tags – 234 

6xHistidine, FLAG, GST and GFP. None of these tags were successful, either because of a poor 235 

yield of protein or because of the inability of the affinity-tagged proteins to bind to columns with 236 

their corresponding epitopes. A GFP-tagged protein was used to verify the expression in E.coli 237 

of CydAA’ from Caldivirga maquilingensis. The presence of the protein could be observed by 238 

following the fluorescence of the protein under UV light. Since subunit II was tagged with GFP, 239 

it confirms the presence of subunit II in the preparation (Supplementary Figure 3). In addition, 240 

the purified protein was verified by mass spectrometry with many peptides recovered from 241 

subunit I. (Supplementary Figure 4). Gel electrophoresis of a partially purified CydAA’ shows 242 

two bands of the sizes expected for CydA and CydA’ (Supplementary Figure 5).  243 

A UV-visible spectrum of CydAA’ in the reduced-minus-oxidized state reveals the 244 

absence of the heme d absorbance peak. The presence of heme b595 is also not apparent in the 245 

spectrum since the maxima at 595 nm and the Soret peak at 440 nm are also missing. This could 246 

indicate that heme b595 is low spin in this preparation. Hemes were extracted from CydAA’ of 247 

Caldivirga maquilingensis as described previously46. Only b-type hemes are present in the 248 

enzyme (Figure 4). This was verified by analyzing the hemes in the protein by LC-MS (data not 249 

shown).  250 

CydAA’ from Caldivirga maquilingensis has oxygen reduction activity 251 

The oxygen reduction activity of CydAA’ was tested using a Clark electrode, with 252 

reduced coenzyme Q1 (reduced using DTT) as the electron donor. (Table 2, Figure 4) At 37 � 253 

the specific activity is ~330 e-/s (/heme b). While this is not as high as the activity of E. coli bd at 254 
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the same temperature (over 1000 e-/s), the enzymatic activity is substantial, particularly 255 

considering the fact that the source of the enzyme is a thermophilic organism whose growth is 256 

optimum at 65 �. The oxygen reductase activity of CydAA’ is insensitive to the presence of 250 257 

µM KCN, a concentration of cyanide that would completely inhibit the activity of heme-copper 258 

oxygen reductases1. Since CydAA’ was expressed in the bd-deletion mutant, E.coli strain CBO, 259 

the only other potential oxygen reductase in this preparation is bo3 ubiquinol oxygen reductase47 260 

so the lack of cyanide sensitivity confirms that our purification protocol has separated the two 261 

enzymes. The enzyme is also susceptible to Aurachin AC1-10, a known inhibitor of cytochrome 262 

bd at concentrations as low as 250 nM48. We did not test for other possible functions for cydAA’ 263 

such as catalase activity49 or peroxidase activity50.  264 

We previously noted that cydAA’ is typically found in organisms that perform sulfur-265 

based chemistry such as sulfur reduction and sulfate reduction (Supplementary Table 5) and 266 

use DMSO-reductase like enzymes which use molybdopterin as a cofactor10. Combining the 267 

above observation with the demonstrated oxygen reductase activity of CydAA’, it is likely that 268 

the role of CydAA’ is to detoxify oxygen to protect oxygen-sensitive enzymes involved in sulfur 269 

metabolism. This is similar to its expected role in Desulfovibrio24 and in the protection of 270 

nitrogenases during the process of nitrogen fixation22. 271 

It is striking that oxygen reduction is conserved in the qOR4a-subfamily despite the 272 

replacement of CydB with CydA’ and therefore, it is worth considering the similarities and 273 

differences between E.coli CydAB and C.maquilingensis CydAA’.  274 

Structural differences between CydAB and CydAA’ inferred from homology models 275 
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To aid in the understanding of differences between CydAA’ and other CydAB, we used 276 

multiple sequence alignments (Supplementary Figure 2) and structural models of cydA and 277 

cydA’ from Caldivirga maquilingensis (Supplementary Figure 7, pdb files are available in 278 

supplementary material). The most drastic difference between the E.coli and C.maquilingensis 279 

enzymes is the absence of cydB. cydB in E.coli was shown to contain the oxygen diffusion 280 

channel31,32 and an additional proton channel leading to heme d, bound to subunit I30–32. In C. 281 

maquilingensis the second subunit is cydA’ which is 26 % similar to cydA. Only the first two 282 

helices are well conserved between these subunits in C. maquilingensis whereas other qOR4a-283 

type cydA’ and qOR4b-type cydA, such as in A. fulgidus are similar in the first 4 helices. To 284 

substitute for the proton channel that exists in cydB, conserved residues in cydA’ such as Thr71, 285 

Thr74 and His126 might form a different proton channel. cydA’ probably hosts an oxygen 286 

diffusion channel to substitute for the loss of the one in cydB but it is not possible to tell from the 287 

sequence alignment or structural model where in the subunit this might be. Interestingly, cydA’ 288 

retains His19 which has been implicated as a ligand to heme d and heme b595 in E. coli and G. 289 

thermodenitrificans cytbd respectively, which might suggest that an additional heme might bind 290 

to the cydA’ subunit but we cannot verify or refute this from our protein preparation. A number 291 

of mutations are observed around the binuclear-active site in subunit I, which might affect the 292 

midpoint potential of the heme or the proton-coupled electron transfer mechanisms.  293 

Evolution of cydA’ and other cydA homologs missing the quinol binding site 294 

 As mentioned earlier, a phylogenomic analysis of cydA homologs revealed two new 295 

families, OR-C and OR-N that share the first four helices containing the oxygen reduction site. 296 

The cydA subunit of OR-C bd-type oxygen reductases typically has eight transmembrane helices 297 

and an extended C-terminal periplasmic portion that binds hemes c, strongly suggesting that a 298 
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cytochrome c could be an electron donor to this family. Adjacent to the OR-C1a-type cydA is 299 

OR-C1b which also has 8 transmembrane helices. The OR-N3a/b, -N4a/b and -N5a/b family 300 

cydA typically have 10 helices while the OR-N2 and -N1 have 14 transmembrane helices. OR-N 301 

enzymes have been previously noted in Nitrospira51 and Chloroflexi (N5a/b)52. They were 302 

recently shown to be expressed in manganese oxidizing autotrophic microorganism, Candidatus 303 

manganitrophus noduliformans (N2/N1)from the phylum Nitrospira53 and is implicated in 304 

oxygen reduction. Greater details on the OR-C and OR-N families, including distribution, 305 

alignments and conserved amino acids are found in Supplementary Material. The OR-C and 306 

OR-N families are widely distributed in Bacteria. OR-C is present only in Bacteria, while OR-N 307 

has very few representatives in Archaea (Supplementary Table 2, Supplementary Table 4).  308 

 A phylogenetic tree of all cydA clades suggest that the OR-C and OR-N families are 309 

more closely related to qOR4b than the other qOR subfamilies (Figure 1). There are also 310 

conserved sequence features that suggest that the OR-C and OR-N families are more closely 311 

related to the qOR3 and qOR4a families than the qOR1 family including the deletion in the 312 

proton channel between the conserved glutamates E101 and E108 like in G.thermodenitrificans 313 

cytbd, and the presence of nearby conserved tyrosines (Y123 and Y125 in the 314 

G.thermodenitrificans cytbd numbering). (Supplementary table 6). This suggests that the OR-C 315 

and OR-N families diverged from either of these two families and evolved after the qOR 316 

reductases. The evolutionary analysis within this family is complicated by the high number of 317 

independent gene duplication events. It appears that qOR4b, OR-N5b, OR-N3b, OR-N4b and 318 

OR-C1b subfamilies were the result of gene duplication events (Figure 1). In fact, OR-3a and 319 

OR-3b cydA share 50 % sequence similarity. Additionally, the presence of OR-N1-type and OR-320 

N2-type cydA in the same operon in some Bacteria and the extent of similarity between them (up 321 
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to 40%) suggest that they were part of yet another gene duplication. The importance of gene 322 

duplication in protein evolution and functional diversification is well-known54. The nature this 323 

process has taken in the cytochrome bd-type oxygen reductases is interesting - a majority of the 324 

cydA paralogs have maintained the architecture associated with oxygen reduction and all of them 325 

have maintained the His19 ligand to the active site heme d (as per the E. coli structure).  326 

Additionally, all the above-mentioned duplication events appear to have resulted in a complex of 327 

multiple cydA-like proteins with the possible exception of OR-N1 and OR-N2. OR-N2 is often 328 

found in operons without another cydA-like protein (Figure 1). His19 and heme d is found near 329 

the interface of subunit I and subunit II in the cydAB structures and the complete conservation of 330 

these features with a change in their interacting partner, is suggestive of the process of 331 

duplication and interface evolution recently investigated in hemoglobin55. Future work in the 332 

biochemical and structural characterization of the various cytbd families will help us develop 333 

insight into the driving forces behind the evolution of this superfamily. Presently, it is clear that 334 

the defining characteristic of the cytbd superfamily is the di-heme oxygen reduction site found in 335 

the first four helices of cydA homologs. Our analysis suggests that the bd protein scaffold was 336 

diversified multiple times to perform O2 chemistry in unique environments, possibly to function 337 

with different electron donors. 338 

Conclusions 339 

The superfamily of cytochrome bd-type oxygen reductases is one of only two oxygen reductase 340 

superfamilies that are widely distributed in Bacteria and Archaea. In the current work we have 341 

demonstrated the large diversity of this superfamily using phylogenomics. In addition, we 342 

biochemically characterized the CydAA’ from C. maquilingensis showing that cydAA’ is a 343 

robust oxygen reductase. The isolated CydAA’ contained only b hemes and no heme d. Hence, 344 
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C. maquilingensis CydAA’ is a bb’-type oxygen reductase and is the first such enzyme to be 345 

purified and demonstrated to be a functional oxygen reductase. Finally, we demonstrate that 346 

significant diversification of the cydA has occurred with the conserved oxygen reduction site 347 

being adapted to multiple functions within various ecological niches.    348 

Materials and Methods 349 

Phylogenomic analysis of cytochrome bd sequences in the GTDB database 350 

In order to reconcile the protein phylogeny of cytochrome bd oxygen reductases with species 351 

taxonomy, we identified and mapped all cytbd to their respective species within the GTDB 352 

database release8937. All cydA sequences were extracted from GTDB genomes using BLAST56 with an 353 

e-value of 1e-1. The sequences were then aligned using muscle57 using the optional maxiters cut-off of 2. 354 

The alignment was visualized on Jalview58 and sequences were filtered to remove cydA sequences 355 

without characteristics of the quinol binding site or the proton channel. This filtration step was used to 356 

remove subunits II but also resulted in the loss of a few subunits I within qOR1 that appear to have lost 357 

the proton channel. The filtered set of cydA sequences were then classified using a Hidden Markov 358 

Model (HMM)-based classifier trained to identify the families – qOR1, qOR2, qOR3, qOR4a, OR-C and 359 

OR-N. The HMMs for those subfamilies and families are available in the supplementary material. The 360 

presence or absence of cytbd in each species was tabulated and is available as Supplementary Table 2. 361 

The all archaea species tree used to analyze the distribution of cytochrome bd oxygen reductases in 362 

archaea was generated using Anvi’o41. A multiple sequence alignment was created by extracting all 363 

ribosomal proteins from archaeal genomes using the HMM source Archaea_76. This alignment was then 364 

used to generate a phylogenetic tree using FastTree as per Anvi’o’s default settings. This tree was 365 

annotated using the data available in Supplementary Table 4 on the iTOL server59.  366 
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The protein phylogeny of cytbd sequences was inferred using sequences of cytbd subunit I, cydA. These 367 

were extracted from a taxonomically diverse set of genomes and metagenomes from IMG60, filtered with 368 

UCLUST61 using a percentage identity cut-off of 0.6 and aligned using MUSCLE. The multiple sequence 369 

alignment was used to infer a phylogenetic tree using RAxML62 on the CIPRES Science Gateway63 with 370 

the PROTGAMMA substitution model, DAYHOFF matrix specification and a bootstrap analysis with 371 

100 iterations.  372 

Preparation of construct for of cytochrome bd oxidase from Escherichia coli 373 

 The genes encoding the bb’ oxygen reductase (Gene Object ID: 641276193-4) from C. 374 

maquilengensis were PCR amplified using primers purchased from Integrated DNA Technology. 375 

The genes were cloned into pET22b (Invitrogen) using 5’ NdeI and 3’ XhoI cut sites. The 376 

inherent 6-Histidine tag in the vector was used to purify the protein. The vector was engineered 377 

to use EGFP, GST or FLAG tags alternatively. The tag was added to subunit II in case of EGFP 378 

and FLAG; a tag on both subunit I and II was attempted for the His-tag and GST tag. The 379 

expression vector, along with pRARE (Novagen) was then transformed into (CBO 380 

ΔcydBΔappC::kan) for protein expression. 381 

Cell Growth and Protein Purification 382 

 A single colony was inoculated into 5 ml of LB (yeast extract and tryptone were 383 

purchased from Acumedia and NaCl from Sigma-Aldrich) with 100 µg/ml Ampicillin and 384 

incubated with shaking at 37 �. The following day, the 5 ml culture was inoculated in 300 ml 385 

LB with 100 µg/ml Ampicillin and grown overnight at 37 �. On the third day, 10 ml of the 386 

secondary culture was inoculated into twenty four of 2L flasks containing 1 L LB with 100 387 

µg/ml Ampicillin, each. The flasks were incubated at 37 � while shaking at 200 rpm, until the 388 
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OD600 of the culture reached 0.6. The temperature was then lowered to 30 �, and the culture 389 

was incubated for 8 hrs or overnight. 390 

 The fully-grown cultures were then pelleted by spinning down at 8000 rpm for 8 minutes, 391 

in 500 ml centrifuge bottles. The harvested cells were then resuspended in 100 mM Tris-HCl, 10 392 

mM MgS04, pH 8 with DNaseI and a protease inhibitor cocktail from Sigma. The cells were 393 

then homogenized using a Bamix Homogenizer, and passed through a Microfluidizer cell at 100 394 

psi, three times, to lyse the cells. The soluble fraction of the lysate was then separated from the 395 

insoluble by spinning down the lysate at 8000 rpm. Membranes were extracted from the soluble 396 

fraction by centrifuging the soluble fraction at 42000 rpm for 4 hours.   397 

 Membranes were resuspended in 20 mM Tris, 300 mM NaCl, pH 8 and then solubilized 398 

with 1% DDM or 1% SML. The solubilized membranes were spun down at 42000 rpm for 45 399 

minutes to remove unsolubilized membranes. The supernatant was stirred with Ni-NTA resin for 400 

1 hr and then loaded onto a column. The flow through was shown to contain the cydAA’ because 401 

of its poor affinity for the nickel column. The flow through was then diluted in buffer to contain 402 

50 mM salt and then loaded onto a DEAE column equilibriated with 20 mM Tris, pH 8, 0.05% 403 

DDM. An elution gradient was run between 0-500 mM NaCl and cydAA’ was partially purified 404 

from the fraction with higher absorbance at A412nm, corresponding to the soret peak for heme b 405 

and used for assays and spectroscopy. This is similar to the first step for purification of 406 

Escherichia coli.  407 

UV-visible spectroscopy 408 

 Spectra of the protein were obtained using an Agilent DW-2000 Spectrophotometer in the 409 

UV-visible region. The cuvette used has a pathlength of 1cm. The oxidized spectrum was taken 410 
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of the air-oxidized protein. The enzyme was reduced with dithionite to obtain a reduced 411 

spectrum. 412 

Collection of Pyridine Hemochrome spectra and Heme Analysis 413 

 For the wildtype or mutants enzymes, 35 μl of the enzyme solution was mixed with an 414 

equal volume of 40% pyridine with 200 mM NaOH. The oxidized spectra was measured in the 415 

presence of ferricyanide and the reduced in the presence of dithionite. The values of heme b were 416 

calculated according to the matrix suggested in46. The concentration of heme d was estimated 417 

using the extinction coefficient ε(629-670nm) = 25 mM-1cm-1. 418 

Measurement of oxygen reductase activity 419 

 Oxygen reductase activity was measured using the Mitocell Miniature Respirometer 420 

MT200A (Harvard Apparatus). 5 mM DTT and 350 µM Q1 were used as electron donors to 421 

measure oxygen reduction by C.maquilingensis cydAA’ and E.coli cytochrome bd. 150-250 µM 422 

KCN was used to test the cyanide sensitivity of the enzymes. 423 

Structural modelling of cydAA’ from Caldivirga maquilingensis 424 

 Sequences of subunit I from Geobacillus thermodenitrificans and Caldivirga 425 

maquilingensis were aligned using a larger alignment comprising many hundreds of bb’ 426 

sequences made with the software MUSCLE. This alignment was used as to create a model of 427 

subunit I from Caldivirga using the Geobacillus subunit I as a template on the Swiss Model 428 

server. A model of subunit II was also created using subunit I as a template. (The alignments are 429 

provided as Supplementary Figures S4 and S5) The model was then visualized using VMD 430 

1.9.2beta1. 431 
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List of Tables 585 

Table 1. Expression of cydAA’ in the environment estimated using publicly available 586 

metatranscriptomes. cydA homologs from the metatranscriptomic data available on the IMG website 587 

were extracted using a BLASTP cutoff of 1e-5. The short fragments found in metatranscriptomic data 588 

were matched with the full corresponding protein sequence based on the best hit in the NCBI database. 589 

Table 2. Oxygen reduction activity of E. coli cydAB and C. maquilingensis cydAA’ in the presence 590 

of 350 µM coenzyme Q1 and 5 mM DTT. 591 

Supplementary Table 1. Total number of various cydA families and subfamilies in the GTDB. All 592 

cydA sequences were extracted from GTDB genomes using BLAST with an e-value of 1e-1. The 593 

sequences were then filtered to remove cydA sequences without characteristics of the quinol binding site 594 

and then classified using a Hidden Markov Model (HMM)-based classifier trained to identify the families 595 

– qOR1, qOR2, qOR3, qOR4a, OR-C, OR-N. The total number of cydA sequences in each of these 596 

families and subfamilies were summed to generate this table. 597 

Supplementary Table 2. Distribution of cydA subfamilies by genome in GTDB. All cydA sequences 598 

were extracted from GTDB genomes using BLAST with an e-value of 1e-1. The sequences were then 599 

filtered to remove cydA sequences without characteristics of the quinol binding site and then classified 600 

using a Hidden Markov Model (HMM)-based classifier trained to identify the families – qOR1, qOR2, 601 

qOR3, qOR4a, OR-C, OR-N. Labelled cydA sequences were then mapped back to each species to 602 

generate this table.  603 

Supplementary Table 3. Distribution of cydA subfamilies by phyla in GTDB. All cydA sequences 604 

were extracted from GTDB genomes using BLAST with an e-value of 1e-1. The sequences were then 605 

filtered to remove cydA sequences without characteristics of the quinol binding site and then classified 606 

using a Hidden Markov Model (HMM)-based classifier trained to identify the families – qOR1, qOR2, 607 
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qOR3, qOR4a, OR-C, OR-N. Labelled cydA sequences were then mapped back to each species and the 608 

cydA sequences from each family/subfamily were summed across each phyla. 609 

Supplementary Table 4. Distribution of quinol oxidizing cytbd in archaeal genomes found in the 610 

GTDB. All cydA sequences were extracted from GTDB genomes using BLAST with an e-value of 1e-1. 611 

The sequences were then filtered to remove cydA sequences without characteristics of the quinol binding 612 

site and then classified using a Hidden Markov Model (HMM)-based classifier trained to identify the 613 

families – qOR1, qOR2, qOR3, qOR4a. Labelled cydA sequences were then mapped back to each species 614 

within the domain archaea to generate this table. 615 

Supplementary Table 5. Growth conditions and temperature for organisms containing cydAA’. 616 

Growth conditions, sensitivity to oxygen and temperature are detailed with references in this table to see 617 

if there is a pattern to the conditions under which cydAA’ is typically found.  618 

Supplementary Table 6. Conserved features residues identified in cytbd families without quinol 619 

oxidizing features - qOR4b and subfamilies OR-C1a, OR-N1, OR-N2, OR-N3a, OR-N3b, OR-N4a, 620 

OR-N4b, OR-N5a and OR-N5b. Conserved residues were identified using multiple sequence alignments 621 

of cydA sequences from the above families. The presence or absence of the conserved residues for the 622 

three hemes, proton channel, quinol binding site are marked. 623 

Supplementary Table 7. Number of heme c binding sites in cytbd sequences from OR-C1a/OR-C1b 624 

subfamilies. Number of heme c binding sites were counted using a python script that identifies the 625 

number of CXXCH motifs in each protein sequence. The OR-C1a sequences from Desulfovibrionia 626 

appear to have the greatest number of heme c binding sites – up to 8.  627 

 628 

 629 

 630 
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List of multiple sequence alignments 631 

Supplementary multiple sequences alignment MSA1. Multiple sequence alignment of sequences from 632 

cydA subfamilies qOR1, qOR2, qOR3, qOR4a, qOR4b and families OR-C1a and OR-N. OR-N is not 633 

split into subfamilies in this alignment. Various families and subfamilies are grouped when visualized in 634 

Jalview and amino acids are colored using a ClustalX algorithim with a greater than 90 % identity. This 635 

alignment was manually curated to improve the alignment and reduce the number of gaps.  636 

Supplementary multiple sequences alignment MSA2. Multiple sequence alignment of sequences from 637 

cydA subfamilies qOR1, qOR2, qOR3, qOR4a, qOR4b. OR-C1a, OR-N1, OR-N2. OR-N3a/3b, OR-638 

N4a/4b, OR-N5a and OR-N5b. Various families and subfamilies are grouped when visualized in Jalview 639 

and amino acids are colored using a ClustalX algorithim with a greater than 90 % identity. 640 

Supplementary multiple sequences alignment MSA3. Multiple sequence alignment of sequences from 641 

all 15 cydA subfamilies qOR1, qOR2, qOR3, qOR4a, qOR4b. OR-C1a, OR-C1b OR-N1, OR-N2. OR-642 

N3a/3b, OR-N4a/4b, OR-N5a and OR-N5b.  643 

 644 

List of Figures 645 

Figure 1. Families within the cytochrome bd-type oxygen reductase superfamily. The cytochrome-bd 646 

type oxygen reductase superfamily is divided into 3 families – qOR, OR-C and OR-N, primarily defined 647 

by the presence of the quinol binding site in the first, the presence of heme c binding site in the second 648 

and the abundance of OR-N enzymes in nitrospirota. The above schematic represents the various 649 

subfamilies within each family, which are defined by the phylogenetic clustering shown in Supplementary 650 

Figure 1). The operon context and putative complex arrangement of each cydA-containing enzyme is also 651 

shown with a reference protein accession number and source microorganism. The potential gene 652 
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duplication events are highlighted in yellow. A legend is also provided to mark the related conserved 653 

domains in the same colors and redox co-factors such hemes and iron-sulfur clusters. 654 

Figure 2. Phylogeny of quinol-oxidizing cytochrome bd-type oxygen reductases. Sequences of cytbd 655 

subunit I, cydA were extracted from a taxonomically diverse set of genomes and metagenomes from 656 

IMG, filtered with UCLUST using a percentage identity cut-off of 0.6 and aligned using MUSCLE. The 657 

multiple sequence alignment was used to infer a phylogenetic tree using RAxML. The RAxML tree 658 

topology was similar to that inferred by PhyML and Mr. Bayes. The cydA sequences which do not 659 

contain the quinol binding site, from the OR-C and OR-N families as well as qOR4b, were used as the 660 

outgroup. At least four monophyletic clades of typical cydA sequences that contain the O2- and quinol 661 

binding site could be defined – qOR1, qOR2, qOR3 and qOR4a. The long branch within the qOR1 clade 662 

comprises a number of cytbd which are highly similar to enzymes from this clade but are missing the 663 

proton channel. Subunit I of cydAA’ is from the qOR4a-family. 664 

Figure 3. Distribution of cytochrome bd-type oxygen reductases in Archaea. Concatenated gene 665 

alignments were made from the archaea genomes in GTDB using Anvi’o. A phylogenetic tree was made 666 

from the concatenated gene alignments using FastTree. All cydA sequences were extracted from GTDB 667 

genomes using BLAST with an e-value of 1e-1. The sequences were then filtered to remove cydA 668 

sequences without characteristics of the quinol binding site and then classified using a Hidden Markov 669 

Model (HMM)-based classifier trained to identify the families – qOR1, qOR2, qOR3 and qOR4a. cydA 670 

sequences from each family were then mapped back to each species, and visualized along with the species 671 

tree on the iTOL server. Most phyla of the domain archaea were distinguished by color and a few classes 672 

of the phylum Crenarchaeota were labelled to emphasize the presence of cydAA’. It is clear that cydAA’ 673 

is almost exclusive to the order Thermoproteales and Desulfurococcales.  674 

Figure 4. Biochemical characteristics of cydAA’ from Caldivirga maquilingensis. (a and b.) UV-675 

visible spectra of cytochrome bd-type oxygen reductase purified from Escherichia coli and Caldivirga 676 

maquilingensis, respectively.  C. Pyridine hemochrome spectra of cydAA’ from Caldivirga 677 
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maquilingensis revealing the absence of heme d in the partially purified enzyme. D. Oxygen reductase 678 

activity of cydAA’ from C. maquilingensis shows that it is highly active and cyanide insensitive. It is 679 

sensitive to Aurachin C1-10, a quinol binding site inhibitor which also inhibits E. coli cytochrome bd.  680 

List of supplementary figures 681 

Supplementary Figure 1. Phylogenetic clustering of all cydA-like sequences. cydA sequences were 682 

extracted from a taxonomically diverse set of genomes and metagenomes from IMG and aligned using 683 

MUSCLE. The multiple sequence alignment was used to infer a phylogenetic tree using RAxML. The 684 

RAxML tree topology was similar to that inferred by PhyML. The three families, qOR, OR-C and OR-N 685 

are clearly separated, and 15 subfamilies were designated based on the clustering observed and 686 

identifiable sequence characteristics.  687 

Supplementary Figure 2. Sequence characteristics of qOR4a-cydA. a. An unrooted phylogenetic tree 688 

of cydA sequences from archaea including both qOR4a-type cydA and cydA of the qOR1, qOR2 and 689 

qOR3 (in red) types was generated using RaxML. qOR4a type cydA have some internal clusters, 690 

identified with a shaded box in green, blue and purple. Characteristics unique to the cluster, when 691 

identifiable were indicated. For e.g., the presence of the insertion in the proton channel. b. A multiple 692 

sequence alignment of the sequences present in the above clusters, the background of each sequence 693 

cluster shaded in red, green, blue and purple according to the colors in the tree in a. Conserved residues 694 

corresponding to the ligands, proton channel and a few residues expected to participate in proton-coupled 695 

electron transfer are marked. Significantly, several qOR4a-type cydA have a lysine substituted for M393 696 

(E. coli numbering) in the active site suggesting an alteration of the midpoint potential of heme b558 in 697 

those enzymes.  698 

Supplementary Figure 3. GFP-tagged cydAA’ from Caldivirga maquilingensis. The presence of 699 

cydAA’ during protein purification protocol was verified by looking at elution fractions under UV-light. 700 

Three glass vials containing (from leftmost) elution buffer, an elution fraction containing GFP-tagged 701 
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cydAA’ and a fraction without cydAA’ are compared. The green fluorescence in the cydAA’ containing 702 

fraction is easily distinguishable. 703 

Supplementary Figure 4. Mass spectrometric identification of subunit I of cydAA’ from Caldivirga 704 

maquilingensis. Partially purified cydAA’ was digested with Chymotrypsin and the digested peptides 705 

were separated by HPLC and infused into a Thermo LTQ Velos ETD Pro Mass Spectrometer. The mass 706 

fragments recovered after MS/MS fragmentation were subject to analysis by Mascot Distiller and Mascot 707 

version 2.4. The analysis revealed peptides from subunit I of cydAA’ in the protein preparation with a 708 

MASCOT score of 85. 709 

Supplementary Figure 5. SDS-PAGE gel electrophoresis of partially purified cydAA’. A. Cell lysate 710 

was loaded onto a Ni-NTA column (Lane 1). The flow-through was loaded onto a Q-sepharose column 711 

and subject to elution by changing the salt concentration from 0-500 mM NaCl. Three elution peaks 712 

(Lanes 2,3,4) which absorbed at 412 nm were pooled, concentrated and diluted to 50 mM NaCl and then 713 

loaded onto a DEAE-Sepharose column and subject to elution under a salt gradient from 0-500 mM NaCl. 714 

The elution fraction (Lane 6) which absorbed at 412 nm was pooled and concentrated and used to identify 715 

electrophoresis patterns. Assays and spectra were obtained with a sample that was subject to a simpler 716 

purification protocol – Ni-NTA followed by DEAE-sepharose because the yield was poor from the 3-step 717 

purification protocol. Lane 5 was the Precision Plus Dual Color Standard (Bio-Rad). Subunits I and II are 718 

similar in size to the subunits from E.coli cytbd (B). B. Electrophoresis patterns of purified E.coli cytbo3 719 

and cytbd. 720 

Supplementary Figure 6. Sequence characteristics of qOR4b-cydA from Caldivirga maquilingensis 721 

(also referred to as cydA’). a. A topological representation of cydA’ using HMMTOP. The amino acids 722 

conserved above 90% identity are shaded in black. b. A multiple sequence alignment of sequences from 723 

qOR4a-cydA and qOR4b-cydA family. The former sequences are highlighted with the purple background 724 

while the latter are highlighted with a gray background. The absence of the proton channel residues E99 725 

and E109 is apparent. The ligand to heme d, His19 and the proton channel residue H126 are completely 726 
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conserved. The ligands to heme b558 (H186 and M393) and other amino acids typically associated with the 727 

quinol binding site in helices V-VIII are not well conserved. Two threonines Thr71 and Thr74 in 728 

C.maquilingensis which take the place of Leu71 and Glu74 are completely conserved. 729 

Supplementary Figure 7. Structural model of subunits I from Geobacillus thermodenitrificans 730 

and Caldivirga maquilingensis respectively. The homology model of cydA from Caldivirga 731 

maquilingensis was generated using the Swiss PDB viewer and visualized using VMD. The boxed 732 

regions reveal more polar residues in Geobacillus, represented by red and blue, while aromatic 733 

residues are colored in green. 734 
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Figure 1. Diversity of the cytochrome bd oxygen reductase superfamily. The cytochrome bd 
oxygen reductase superfamily is divided into 3 families based on phylogenetics and structure – 
qOR, OR-C and OR-N. qOR is defined by the presence of the quinol binding site in subunit I 
(cydA). OR-C is missing the quinol binding site but has a heme c binding site in subunit I. OR-N 
is also missing the quinol binding site and is commonly found in operons containing alternative 
electron donors. Various subfamilies within each family are also shown (Supplementary Figure 
1). The operon context and putative protein complex arrangement of each cydA-containing 
enzyme is also shown with a reference protein accession number and source microorganism. The 
potential gene duplication events are highlighted in yellow. A legend is also provided to mark the 
related conserved domains in the same colors and redox co-factors such hemes and iron-sulfur 
clusters. A more detailed explanation of the figure including a description of the various subunits 
and characteristics of the families and subfamilies is provided in Supplementary Material. 
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Figure 2. Phylogeny of quinol-oxidizing cytochrome bd-type oxygen reductases. At least four 
clades of quinol-oxidizing cytochrome bd-type oxygen reductases could be identified – qOR1, 
qOR2, qOR-3 and qOR-4a. The long branch within the qOR1 clade (red star) is comprised of 
sequences missing the proton channel that is conserved in all other quinol-oxidizing cytochrome 
bd-type oxygen reductases. Subunit I of cydAA’ is from the qOR4a family. The cytochrome bd-
type oxygen reductases that do not contain the quinol binding site (OR-C, OR-N, and qOR-4b 
families) were used as the outgroup. 
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Figure 3. Distribution of cytochrome bd-type oxygen reductases in Archaea. Cytochrome 
bd-type oxygen reductases are sporatically distributed throughout the Archaea. The qOR4a 
family (cydAA’) is predominantly found within the Thermoproteales and Desulfurococcales 
orders of Crenarchaeota.  
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Figure 4. Biochemical characteristics of cytochrome bb’ (cytbb’) from Caldivirga 
maquilingensis.  
(A and B.) UV-visible spectra of cytochrome bd-type oxygen reductases purified from 
Escherichia coli and Caldivirga maquilingensis, respectively.  C. Pyridine hemochrome spectra 
of Caldivirga maquilingensis cytbb’ reveals the absence of heme d in the partially purified 
enzyme. D. Oxygen reductase activity of cytbb’ from C. maquilingensis shows that it is highly 
active and cyanide insensitive. It is sensitive to Aurachin C1-10, a quinol binding site inhibitor 
which also inhibits E. coli cytochrome bd.  
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Table 1. cydAA’ is expressed in many environments. Protein expression is estimated based on 
read counts in metatranscriptomes. 

Genome_ID Genome_Name Locus_Tag Reads Best BLAST Hit NCBI Organism

Ga0040881_1063211 246 ESQ23817.1 Acidilobus sp. OSP8

Ga0040881_1110491, 

Ga0099831_11874701

106

42

AMD31390.1 Acidilobus sp. 7A

Ga0040881_1111231 27 WP_081246098.1 Thermoproteus sp. CP80

Ga0040881_1134581 25 WP_066793619.1 Caldivirga sp. MU80

Ga0040881_1142191, 

Ga0040881_1205091

2174

 12

NAY81522.1 Thaumarchaeota archaeon

Ga0040881_1202971 5 KUO89797.1 Caldivirga sp. CIS_19

Ga0040881_1228021, 8 KUO80886.1 Vulcanisaeta sp. JCHS 4

Ga0040873_1002501 4784 AMD31390.1 Acidilobus sp. 7A

Ga0040873_1003761 1921 EQB65596.1 Thermoplasmatales 

Ga0040873_1011521 2174 KUO93148.1 Thermocladium sp. ECH_B

Ga0040873_1013971 707 PMP91269.1 Caldisphaera sp. 

Ga0040873_1028371 244 NAY81522.1 Thaumarchaeota archaeon

Ga0040875_1014081 163 AMD31390.1 Acidilobus sp. 7A

Ga0040875_1034841 11 KUO93148.1 Thermocladium sp. ECH_B

Ga0099835_1035811 192 NAY81522.1 Thaumarchaeota archaeon

Ga0099835_1427011, 

Ga0099835_1431661

4

3

KUO93148.1 Thermocladium sp. ECH_B

Ga0099835_1456681 2 PMP93815.1 Nitrosphaera sp.

Ga0099835_1510461 17 KUO89797.1 Caldivirga sp. CIS_19

Ga0099836_1305913 60 NAY81522.1 Thaumarchaeota archaeon

Ga0099836_1428691 2 WP_066793619.1 Caldivirga sp. MU80

Ga0099836_1428931, 

Ga0099836_1472421

3

3

KUO93148.1 Thermocladium sp. ECH_B

Ga0099838_1606901 3 KUO93148.1 Thermocladium sp. ECH_B

Ga0099838_1754862 40 NAY81522.1 Thaumarchaeota archaeon

Ga0099839_1320821 2 NAZ28310.1 Caldivirga sp. 

Ga0099839_1444841, 

Ga0099839_1444842, 

Ga0099839_1513781

19

4

NAY81522.1 Thaumarchaeota archaeon

Ga0099840_1194611, 

Ga0099840_1228901

6 KUO93148.1 Thermocladium sp. ECH_B

Ga0099840_1208591, 

Ga0099840_1293341

Ga0099840_1307751,

29

27

7

NAY81522.1 Thaumarchaeota archaeon

Ga0099840_1212061 16 AMD31390.1 Acidilobus sp. 7A

Ga0099841_1138611 5 WP_117355195.1 Acidilobus sp. 7A

Ga0099841_1140711, 

Ga0099841_1141101

23

12

NAY81522.1 Thaumarchaeota archaeon

Ga0099841_1256151 7 NAZ28310.1 Caldivirga sp. 

Ga0099841_1293981 15 KUO93148.1 Thermocladium sp. ECH_B

3300007575

Iron oxide microbial mat communities from 

Yellowstone National Park, Wyoming, USA - 

ECH_C_top_diel_T=7 metaT (Metagenome 

Metatranscriptome) (*) (MER-FS) (assembled)

Ga0099844_1215141,

Ga0099844_1308701

10

10

NAY81522.1 Thaumarchaeota archaeon

Ga0187838_10229991 154 WP_014289867.1 Pyrobaculum ferrireducens

Ga0187838_11515921 155 KUK06933.1 Archaeoglobus fulgidus

3300037625

Metatranscriptome of soil microbial communities 

from Old Woman Creek estuary, Ohio, United 

States - Aug_M1_C1_D5_B (Metagenome 

Metatranscriptome) (*) (MER-FS) (assembled)

Ga0401895_061319_2_36

1

-

HGD34321.1 Candidatus Korarchaetoa 

archaeon

3300019273

Metatranscriptome of tropical peat soil microbial 

communities from peatlands in Department of 

Meta, Colombia - 0116_SJ02_MP02_20_MT 

(Metagenome Metatranscriptome) (*) (MER-FS) 

(assembled)

Ga0187794_17837561 5 PMP74969.1 Aciduliprofundum sp.

Ga0187796_12966161 31 HHN53578.1 Nitrosphaera archaeon

Ga0187796_15754521 8 PMP74969.1 Aciduliprofundum sp.

3300019211

Metatranscriptome of tropical peat soil microbial 

communities from peatlands in Department of 

Meta, Colombia - 0216_BV02_MP12_10_MT 

(Metagenome Metatranscriptome) (*) (MER-FS) 

(assembled)

Ga0187799_12787231 6 HHN53578.1 Nitrosphaera archaeon

3300019278

Metatranscriptome of tropical peat soil microbial 

communities from peatlands in Department of 

Meta, Colombia - 0216_BV02_MP12_20_MT 

(Metagenome Metatranscriptome) (*) (MER-FS) 

(assembled)

Ga0187800_11075051 3 PMP74969.1 Aciduliprofundum sp.

Ga0040879_1097101 63 NAY81522.1 Thaumarchaeota archaeon

Ga0040879_1273451 7 NAZ28310.1 Caldivirga sp. 

Metatranscriptome of extremophilic microbial mat 

communities from Yellowstone National Park, 

Wyoming, USA - CONBC_RNA (Metagenome 

Metatranscriptome) (*) (MER-FS) (assembled)

3300021851

3300019264

Metatranscriptome of tropical peat soil microbial 

communities from peatlands in Department of 

Meta, Colombia - 0116_SJ02_MP15_20_MT 

(Metagenome Metatranscriptome) (*) (MER-FS) 

(assembled)

3300003730

Thermal spring microbial communities from Beowulf 

Spring, Yellowstone National Park, Wyoming, USA - 

Beowulf (BE_D) (Metagenome Metatranscriptome) 

(*) (MER-FS) (assembled)

3300007161

Iron oxide microbial mat communities from 

Yellowstone National Park, Wyoming, USA - 

BED_top_diel_T=8 metaT (Metagenome 

Metatranscriptome) (*) (MER-FS) (assembled)

3300007574

Iron oxide microbial mat communities from 

Yellowstone National Park, Wyoming, USA - 

ECH_B_top_diel_T=1 metaT (Metagenome 

Metatranscriptome) (*) (MER-FS) (assembled)

3300007486

Iron oxide microbial mat communities from 

Yellowstone National Park, Wyoming, USA - 

ECH_B_top_diel_T=5 metaT (Metagenome 

Metatranscriptome) (*) (MER-FS) (assembled)

3300007166

Iron oxide microbial mat communities from 

Yellowstone National Park, Wyoming, USA - 

BED_top_diel_T=1 metaT (Metagenome 

Metatranscriptome) (*) (MER-FS) (assembled)

3300007164

Iron oxide microbial mat communities from 

Yellowstone National Park, Wyoming, USA - 

BED_top_diel_T=3 metaT (Metagenome 

Metatranscriptome) (*) (MER-FS) (assembled)

3300007168

Iron oxide microbial mat communities from 

Yellowstone National Park, Wyoming, USA - 

BED_top_diel_T=7 metaT (Metagenome 

Metatranscriptome) (*) (MER-FS) (assembled)

Ferric microbial mat communities from Yellowstone 

National Park, Wyoming, USA - One Hundred 

Spring Plain (OSP_B) (Metagenome 

Metatranscriptome) (*) (MER-FS) (assembled)

3300003719

3300003723

Hypersaline microbial mat communities from 

Yellowstone National Park, Wyoming, USA - 

Beowulf (BE_B) (Metagenome Metatranscriptome) 

(*) (MER-FS) (assembled)

3300003709

Hypersaline microbial mat communities from 

Yellowstone National Park, Wyoming, USA - 

Grendel (GRN_C) (Metagenome 

Metatranscriptome) (*) (MER-FS) (assembled)
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Table 2. Oxygen reduction activity of E. coli cytbd and C. maquilingensis cytbb’ in the 
presence of 350 µM coenzyme Q1 and 5 mM DTT. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Protein Oxygen reduction activity 
(e-/s) 

Caldivirga maquilingensis cytbb’ 
(cydAA’) 333 � 20 

Escherichia coli cytbd (cydAB) 1065 � 73 
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