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Abstract. Light reflectors are widely used to enhance scintillation light collection. Their enhancement
level depends on the reflector’s reflectance at the scintillator’s emission wavelength. We report UV-
Visible reflectance spectra, relative to BaSQOs,, for several common reflectors. Also reported is their
radiation hardness against an ionization dose up to 100 Mrad. The results of this investigation provide a

reference for applications of these reflectors in a severe radiation environment.
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1. Introduction

Scintillators are widely used in high energy physics (HEP) calorimeters [1-4]. In HEP, as well as
nuclear medicine and homeland security applications [5-9], reflectors are used as wrapping material to
enhance light collection efficiency for scintillation light. The level of the enhancement depends on the
reflector’s reflectance at the scintillator’s emission wavelength [6, 8, 10, 11]. Both reflectors and
scintillators may suffer from radiation damages induced by ionization dose and/or hadrons expected in
a radiation environment, causing a degraded light output for scintillator-based detectors [12,13]. Future

HEP calorimeters at the high luminosity-large hadron collider with an integrated luminosity of 3,000 fb
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1 for example, will be operated in a severe radiation environment, where up to 100 Mrad of ionization
dose and 10*° hadrons/cm? fluence are expected [13]. While radiation induced damage in inorganic
scintillators has been intensively investigated for an ionization dose up to 340 Mrad [14], a proton
fluence up to 3x10*° /cm?[15], and a 1 MeV equivalent neutron fluence up to 9x10%/cm? [16], only
limited investigations were reported on radiation damage in reflectors [17-19].

We report results of an investigation on relative reflectance spectra for six common reflectors:
aluminum foil, aluminized mylar film, 3M™ enhanced specular reflector film (ESR), Tyvek paper and
Polytetrafluoroethylene (PTFE) films, and their radiation damage after an ionization dose of up to 100

Mrad.

2. Samples and Measurements

Fig. 1 shows a reflector sample assembly (top), six reflector samples and their thickness (bottom). While
most samples are of single layer with various thickness, the PTFE film samples are of five and eight
layers with 25 um thickness per layer and no glue between them. These samples were placed on the top
of a 50 um thick steel base, which is attached to a PTFE plug coated with BaSQ, as the reference.

Fig. 2 shows the setup used for measuring the relative reflectance spectra. The plug with a sample
attached was inserted into a 2.5 inch integrating sphere in a HITACHI U3210 UV/Vis
spectrophotometer’s large sample compartment. While aluminum foil, aluminized mylar and ESR are
featured with specular reflection, Tyvek and PTFE have diffuse reflection [10]. The light collection
system was designed to collect both specular and diffuse reflected light with a 10° angle between the
incident beam and the normal direction of the sample to minimize the leakage of spectral reflected light.
A Hamamatsu photomultiplier (PMT) located at the bottom of the integrating sphere was used to collect
response light. The response light measured with a reflector sample on the top of the BaSO, reference
plug to that without provided the reflectance spectrum relative to BaSO4 for the reflector sample. The
systematic uncertainty was determined to be about 1% between 250 and 800 nm by repeated

measurements, which was increased to about 7% at 220 nm due to a lower signal-to-noise ratio below
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Figure 1. A sample assembly (top) and six Figure 2. The setup used to measure the relative
reflector samples and their thickness reflectance spectrum with a Hitachi U3210 UV/VIS
(bottom). spectrophotometer.

Gamma-ray irradiations were carried out at the Total lonization Dose (TID) facility of Jet
Propulsion Laboratory (JPL), where a group of high intensity ©Co sources provided a dose rate up to 1
Mrad/h. All reflectors were irradiated in two steps for 10 and 90 Mrad at 0.18 and 1 Mrad/h respectively
to reach a cumulated dose of 100 Mrad. The PTFE film samples turned yellowish and broke into pieces

after 100 Mrad. Consequently, the resulting irradiation data are shown only for 10 Mrad irradiation for

PTFE films.

3. Experimental Results

3.1 Initial relative reflectance spectrum

Fig. 3 (a) and (b) show initial relative reflectance spectra for the aluminum foil, aluminized mylar film,
3M™ ESR film and Tyvek paper, and the PTFE films, respectively. Also shown in the figures are the
X-ray excited emission spectra of BaF,, BisGezO1. (BGO) and LuaxY2xSiOs:Ce (LY SO:Ce) crystals.

Table 1 lists the numerical values of the emission weighted relative reflectance (EWRR) defined as:

[ emission ()-reflectance(1)dA

EWRR = [ emission (1)dA ! @
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where the emission(2) is the emission spectrum of LYSO:Ce, BGO and the fast and slow component of
BaF,, and the reflectance() is the relative reflectance spectrum of the reflector sample. The EWRR
value provides a numerical representation of the relative reflectance across the entire emission spectrum.

The relative reflectance of the aluminum foil and the aluminized mylar film degrades below 250
nm, indicating that they do not match well with the VUV luminescence from e.g. BaF,. A strong
absorption below 390 nm is observed for the ESR film, which is caused by the fluorescence excitation
in ESR [11], indicating that ESR does not match with scintillators UV luminescence, such as BaF; and
undoped Csl. Tyvek paper shows a good relative reflectance between 370 to 800 nm, matching well
with LYSO and BGO. PTFE films show the highest relative reflectance between 200 to 800 nm,
indicating that they are excellent reflectors for almost all scintillators. This result is consistent with the

previous publication [11].
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Figure 3. The initial relative reflectance spectra for (a) aluminum foil, aluminized mylar, ESR and
Tyvek, and (b) PTFE films of five and eight layers).
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Table 1. Initial EWRR values relative to BaSO,4 for LYSO, BGO and BaF scintillation crystals

EWRR LYSO BGO BaF, @220 nm? BaF,@300 nm°
(%) (%) (%) (%)

Al Foil 76.5£1.0 80.4%1.0 56.317.0 70.5+1.0

Al Mylar 75.2£1.0 79.8£1.0 43.6%7.0 66.7+1.0
ESR 78.5£1.0 87.9£1.0 - -

Tyvek 96.7+1.0 96.7+1.0 71.9+7.0 89.5+1.0

PTFE 97.2+1.0 95.6+1.0 107.847.0 103.3+1.0
(5 layers)

PTFE 100.4+1.0 99.0+£1.0 106.7+7.0 105.4+1.0
(8 layers)

2 Fast scintillation with emission peak at 220 nm of BaF
b Slow scintillation with emission peak at 300 nm of BaF,

3.2 Relative reflectance spectrum after irradiations

Fig. 4 shows relative reflectance spectra for six samples before and after gamma-ray irradiations of up
to 100 Mrad. Table 2 lists the corresponding numerical values of the normalized EWRR loss. Although
with the lowest initial relative reflectance, the aluminum foil shows the smallest degradation in the
relative reflectance between 200 to 800 nm after irradiations up to 100 Mrad, indicating its excellent
stability against gamma-rays up to 100 Mrad. No degradation is observed in the aluminized mylar film
after 10 Mrad, and between 200 to 250 nm after 100 Mrad. Significant degradation, however, is observed
between 250 and 800 nm in the aluminized mylar film. The ESR film shows no degradation in the
relative reflectance after 10 Mrad, and between 500 to 800 nm after 100 Mrad. Significant degradation,
however, is observed between 200 and 500 nm in the ESR film after 100 Mrad. Tyvek paper shows a
good radiation hardness between 400 to 800 nm after 10 Mrad, while degradation is observed between
200 to 400 nm and between 200 to 700 nm after 100 Mrad. PTFE films show significant degradation in
relative reflectance between 200 to 800 nm after 10 Mrad, indicating its poor radiation hardness against

ionization dose.
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Figure 4. The relative reflectance spectra measured before and after gamma-ray irradiations for (a)
aluminum foil, (b) aluminized mylar, (c) ESR film, (d) Tyvek paper, (¢) PTFE films of five layers
and (f) PTFE films of eight layers.

95 Table 2. Normalized losses (%) of the EWRR values after Gamma-ray irradiations for all samples
P @ @
Reflectors lonization Dose LYSO BGO BaF; a220 BaF; b300
(rad) nm nm
. 107 22416 1.6x1.6 5+11 3.0+1.6
Al Foil
108 44+16 35+1.6 4+11 45+1.6
107 0.8+1.6 0.1+1.6 3+11 0.0+1.6
Al Mylar
108 13.3+1.6 14.3+1.6 3+11 6.6+1.6
Normalized ESR 107 1.4+1.6 0.0+£1.6 - -
EWRR Loss 108 9.8+1.6 2.6*x1.6 - -
(%) 107 18+16 0.1+16 33+11 13.9+1.6
Tyvek
108 144416 7.3+1.6 55+11 38.9+1.6
Py 107 6.3+16 6.6+16  46+11 10.641.6
(5 layers)
Qo 107 34416 33+16 38+l 8.2+1.6
(8 layers)

96  ?Fast scintillation with emission peak at 220 nm of BaF,
97 P Slow scintillation with emission peak at 300 nm of BaF
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Fig. 5 shows the normalized EWRR values as a function of the integrated dose for LYSO (a),
BGO (b) and BaF,’s fast (200 nm, c) and slow (300 nm, d) scintillation components. It illustrates that
the aluminum foil and ESR film have excellent radiation hardness against gamma-rays used as wrapping
materials for LYSO and BGO. Considering the absolute EWRR values, ESR is the best choice for both
LYSO and BGO in a severe radiation environment. For BaF, crystals, aluminum foil and aluminized
mylar have good radiation hardness although their initial EWRR values are lower than multilayers PTFE
films. PTFE thus is a good choice for BaF, crystal used in a low radiation environment, while aluminum

foil and aluminized Mylar are better choices for BaF: in a severe radiation environment.
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Figure 5. Normalized emission weighted relative reflectance is shown as a function of the integrated
dose for (a) LYSO, (b) BGO, (c) BaF; fast scintillation at 220 nm and (d) BaF, slow scintillation at
300 nm.
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4. Summary

We measured the relative reflectance spectrum and its radiation hardness against ionization dose for the
following commonly used reflectors: aluminum foil, aluminized mylar film, ESR film, Tyvek paper and
multilayer PTFE films. The result shows that multilayer PTFE films show the best relative reflectance
between 200 to 800 nm, perfect for all inorganic scintillators. PTFE films, however, show poorer
radiation hardness against gamma-rays as compared to aluminum foil and ESR film. Both aluminum
foil and ESR film, however, have their weakness. Aluminum foil has a relatively low reflectance. ESR
film has a strong absorption below 390 nm. There is no perfect reflector with high reflectance in a wide
spectrum range and a good radiation hardness. The selection of reflector for inorganic scintillators thus
depends on the emission wavelength and radiation environment. Trade-off between the reflectance and

the radiation hardness is needed for some applications.
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