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NON-DEGENERACY FOR THE

CRITICAL LANE–EMDEN SYSTEM

RUPERT L. FRANK, SEUNGHYEOK KIM, AND ANGELA PISTOIA

Abstract. We prove the non-degeneracy for the critical Lane–Emden system

−∆U = V p, −∆V = U q, U, V > 0 in R
N

for all N ≥ 3 and p, q > 0 such that 1

p+1
+ 1

q+1
= N−2

N
. We show that all solutions to

the linearized system around a ground state must arise from the symmetries of the

critical Lane–Emden system provided that they belong to the corresponding energy

space or they decay to 0 uniformly as the point tends to infinity.

1. Introduction

We consider the critical Lane–Emden system














−∆U = V p in RN ,

−∆V = U q in RN ,

U, V > 0 in RN

(1)

where N ≥ 3, p, q > 0 and (p, q) belongs to the critical hyperbola

1

p+ 1
+

1

q + 1
=
N − 2

N
. (2)

In [3, Corollary I.2], Lions found a positive ground state

(U, V ) ∈ Ẇ 2, p+1
p (RN )× Ẇ 2, q+1

q (RN)

of (1), by transforming it into an equivalent scalar equation

∆
(

|∆U |
1
p
−1∆U

)

= |U |q−1U in R
N (3)
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and employing a concentration-compactness argument to the associated minimization

problem

inf

{

‖∆u‖
L

p+1
p (RN )

: ‖u‖Lq+1(RN ) = 1

}

= inf
u∈Ẇ

2,
p+1
p (RN )\{0}

∫

RN |∆u|
p+1
p

(
∫

RN |u|q+1)
p+1

p(q+1)

. (4)

As shown by Alvino et al. [1] (see also [3, Corollary I.2]), it is always radially sym-

metric and decreasing in r = |x|, after a suitable translation. Moreover, Wang in [5,

Lemma 3.2] and Hulshof and Van der Vorst in [2, Theorem 1] proved that a ground

state solution of (1) is unique up to scalings.

The present paper deals with the non-degeneracy for the critical Lane–Emden sys-

tem. Let (U, V ) be a ground state solution to system (1). The invariance of the

system under dilations and translations leads to natural solutions of the linearized

system around (U, V ). More precisely, the functions

(Uδ,ξ(x), Vδ,ξ(x)) :=
(

δ
2(p+1)
pq−1 U(δ(x− ξ)), δ

2(q+1)
pq−1 V (δ(x− ξ))

)

for any δ > 0, ξ ∈ R
N

are solutions to system (1). Hence, if we differentiate the system
{

−∆Uδ,ξ = V p
δ,ξ in RN ,

−∆Vδ,ξ = U q
δ,ξ in RN

with respect to the parameters at (δ, ξ) = (1, 0), we immediately see that the (N + 1)

linearly independent functions

(Ψ0(x),Φ0(x)) :=

(

x · ∇U +
2(p+ 1)

pq − 1
U, x · ∇V +

2(q + 1)

pq − 1
V

)

(5)

and

(Ψi(x),Φi(x)) :=

(

∂U

∂xi
,
∂V

∂xi

)

for i = 1, . . . , N (6)

solve the linear system
{

−∆Ψ = p V p−1Φ in R
N ,

−∆Φ = q U q−1Ψ in RN .
(7)

A fundamental question regarding the linear system (7) is to classify all its solutions

which vanish, in a certain sense, at infinity. Notably, one can ask if all such solutions

of (7) result from the invariance of (1). Such a property, which we call the non-

degeneracy for system (1), is a key ingredient in analyzing the blow-up phenomena

of solutions to various elliptic systems on bounded or unbounded domains in RN or

Riemannian manifolds whose asymptotic behavior is encoded in (1). It also plays a

crucial role in building new types of bubbling solutions to the Lane–Emden systems

as well as their parabolic and hyperbolic counterparts.

In this paper, we provide an affirmative answer to the question mentioned earlier, by

proving the non-degeneracy for the critical Lane–Emden system (1) for all dimensions

N ≥ 3 and all possible pairs (p, q).
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Here is the precise description of our main result.

Theorem 1. Suppose that N ≥ 3, p, q > 0, (p, q) satisfies (2), and (U, V ) is a ground

state solution to (1). Then all the solutions (Ψ,Φ) ∈ Ẇ 2, p+1
p (RN) × Ẇ 2, q+1

q (RN ) to

(7) are linear combinations of (Ψi,Φi) , i = 0, 1, . . . , N.

In fact, we may drop the condition Φ ∈ Ẇ 2, q+1
q (RN) in the statement, because the

assumption that Ψ ∈ Ẇ 2, p+1
p (RN) implies this; see Subsection 2.1 for more comments.

In order to prove Theorem 1, we perform an angular momentum decomposition.

Namely, we decompose the linear system (7) and its solutions into spherical harmonics.

Because our natural function space is not a Hilbert space such as Ẇ 1,2(RN), the step

to determine relevant function spaces is somewhat tricky. Once it is done, we carefully

study the corresponding radial parts by employing delicate ODE techniques.

Furthermore, by using the precise decay estimate of a ground state solution to (1)

due to Hulshof and Van der Vorst [2, Theorem 2] and the maximum principle, one can

prove the following lemma.

Lemma 2. Suppose that N ≥ 3, p, q > 0, (p, q) satisfies (2), and (U, V ) is a ground

state solution to (1). Let (Ψ,Φ) ∈ Ẇ 2, p+1
p (RN) × Ẇ 2, q+1

q (RN) be a weak solution to

(7) with

lim
|x|→∞

(Ψ(x),Φ(x)) = 0 .

Then (Ψ,Φ) ∈ Ẇ 2, p+1
p (RN)× Ẇ 2, q+1

q (RN).

Combining this fact and Theorem 1, we deduce the following result which, we be-

lieve, is also of practical use.

Corollary 3. Suppose that N ≥ 3, p, q > 0, (p, q) satisfies (2), and (U, V ) is a

ground state solution to (1). Then all the weak solutions (Ψ,Φ) to (7) such that

lim|x|→∞(Ψ(x),Φ(x)) = 0 are linear combinations of (Ψi,Φi) , i = 0, 1, . . . , N.

The rest of the paper is devoted to the proof of Theorem 1 and Lemma 2.

2. Proof of Theorem 1

2.1. Angular momentum decomposition. We write

U(x) = u(|x|) , V (x) = v(|x|) ,

so that the PDE system (1) becomes the ODE system

− u′′ −
N − 1

r
u′ = vp , −v′′ −

N − 1

r
v′ = uq in (0,∞) . (8)

Moreover, since U and V are regular on RN , the values u(0) and v(0) are finite and

u′(0) = v′(0) = 0 .
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Since U and V are radial, we can make a partial wave decomposition of (7), that

is, write

Ψ(x) =

∞
∑

ℓ=0

∑

m∈Mℓ,N

Ψℓ,m(|x|)Yℓ,m(x/|x|) , Φ(x) =

∞
∑

ℓ=0

∑

m∈Mℓ,N

Φℓ,m(|x|)Yℓ,m(x/|x|) ,

where Yℓ,m is a basis of spherical harmonics in L2(SN−1). The parameter ℓ ∈ N0 is the

degree of the spherical harmonic (‘angular momentum’ in physics terminology) and

the parameter m from the index set Mℓ,N labels the degeneracy. In the following it

will only be important that

#M0,N = 1 and #M1,N = N ,

as well as that Y0,0 is a constant function and that span{Y1,m : m ∈ M1,N} coincides

with the span of the coordinate functions xn/|x|, n = 1, . . . , N . For each ℓ and m, the

pair of functions (Ψℓ,m,Φℓ,m) satisfies the following equations, where, for simplicity,

we write (ψ, ϕ) instead of (Ψℓ,m,Φℓ,m),

−ψ′′ −
N − 1

r
ψ′ +

ℓ(ℓ+N − 2)

r2
ψ = p vp−1ϕ in (0,∞) , (9)

−ϕ′′ −
N − 1

r
ϕ′ +

ℓ(ℓ+N − 2)

r2
ϕ = q uq−1ψ in (0,∞) . (10)

We have

lim
r→0

r−ℓψ(r) and lim
r→0

r−ℓϕ(r) exist (11)

and

lim
r→0

(r−ℓψ)′(r) = lim
r→0

(r−ℓϕ)′(r) = 0 . (12)

Finally, let us comment on the relevant function spaces. We are concerned with

solutions Ψ ∈ Ẇ 2, p+1
p (RN) and then (7) and U,Ψ ∈ Lq+1(RN) (by Sobolev) implies

that Φ ∈ Ẇ 2, q+1
q (RN). Let us deduce corresponding properties of the Ψℓ,m and Φℓ,m.

We denote by Es
ℓ the completion of rℓC2

c [0,∞) with respect to

‖f‖Es
ℓ
:=

(
∫ ∞

0

∣

∣

∣

∣

(

f ′′ +
N − 1

r
f ′ −

ℓ(ℓ+N − 2)

r2
f

)
∣

∣

∣

∣

s

rN−1 dr

)
1
s

.

(We suppress N from the notation of Es
ℓ for the sake of simplicity.) We claim that

Ψℓ,m ∈ E
p+1
p

ℓ , Φℓ,m ∈ E
q+1
q

ℓ .

Indeed, if the Yℓ,m are normalized in L2(SN−1), then

Ψℓ,m(r) =

∫

SN−1

Yℓ,m(ω)Ψ(rω) dω

and

Ψ′′
ℓ,m +

N − 1

r
Ψ′

ℓ,m −
ℓ(ℓ+N − 2)

r2
Ψℓ,m =

∫

SN−1

Yℓ,m(ω)(∆Ψ)(rω) dω .
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Thus, by Hölder’s inequality on SN−1,

‖Ψℓ,m‖
E

p+1
p

ℓ

≤ ‖∆Ψ‖
L

p+1
p (RN )

‖Yℓ,m‖Lp+1(SN−1) .

A similar argument shows

‖Φℓ,m‖
E

q+1
q

ℓ

≤ ‖∆Φ‖
L

q+1
q (RN )

‖Yℓ,m‖Lq+1(SN−1) .

In view of the above fact, Theorem 1 is an immediate consequence of the following

proposition.

Proposition 4. Let (ψ, ϕ) ∈ E
p+1
p

ℓ × E
q+1
q

ℓ be a solution of (9), (10) satisfying (11)

and (12).

(a) If ℓ = 0, then (ψ, ϕ) is a multiple of (ru′ + 2(p+1)
pq−1

u, rv′ + 2(q+1)
pq−1

v).

(b) If ℓ = 1, then (ψ, ϕ) is a multiple of (u′, v′).

(c) If ℓ ≥ 2, then (ψ, ϕ) ≡ 0.

We will prove the proposition in the following two subsections, which will deal with

the two different aspects of this result. On the one hand, for ℓ = 0, 1 we need to

show that there are no other solutions than the known ones. This is proved using a

uniqueness result in Lemma 5. On the other hand, for ℓ ≥ 2 we need to prove that

there are no non-trivial finite energy solutions at all. This is proved by adapting and

completing an argument from [4] for the special case p = 1, q = N+4
N−4

.

2.2. A uniqueness theorem. Our first goal will be to prove the following uniqueness

result.

Lemma 5. Let (ψ, ϕ) be a solution to (9), (10) with limr→0 r
−ℓψ(r) = 0 and ψ 6≡ 0.

Then r−ℓψ is strictly monotone. In particular, ψ is strictly monotone and ψ 6∈ E
p+1
p

ℓ .

Before giving the proof, let us apply it to prove the first half of Proposition 4. We

shall often use the fact (see, e.g., [3, Cor. I.2]) that

u > 0 and v > 0 in [0,∞) . (13)

and

u′ < 0 and v′ < 0 in (0,∞) . (14)

Proof of Proposition 4. Parts (a) and (b). Note that (Ψ0,Φ0) defined in (5) corre-

sponds to angular momentum ℓ = 0, while (Ψi,Φi) for i = 1, . . . , N correspond to an-

gular momentum ℓ = 1. By the above discussion, this means that (ru′+ 2(p+1)
pq−1

u, rv′+
2(q+1)
pq−1

v) is a solution of (9), (10) with ℓ = 0 and (u′, v′) is a solution of (9), (10)

for ℓ = 1. Moreover, since the right sides of the equations satisfy the correspond-

ing integrability conditions, we have (ru′ + 2(p+1)
pq−1

u, rv′ + 2(q+1)
pq−1

v) ∈ E
p+1
p

0 × E
q+1
q

0 and

(u′, v′) ∈ E
p+1
p

1 × E
q+1
q

1 .
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It remains to be proved that these are the only solutions. We first assume that

ℓ = 0. If (ψ, ϕ) ∈ E
p+1
p

0 × E
q+1
q

0 is a solution of (9), (10), then

(ψ, ϕ)−
pq − 1

2(p+ 1)

ψ(0)

u(0)

(

ru′ +
2(p+ 1)

pq − 1
u, rv′ +

2(q + 1)

pq − 1
v

)

is a solution of (9), (10) in E
p+1
p

0 × E
q+1
q

0 whose first component vanishes at zero.

(Note that here we use u(0) 6= 0 which follows from (13).) Thus, by Lemma 5, the

above solution vanishes identically, which means that (ψ, ϕ) is a multiple of (ru′ +
2(p+1)
pq−1

u, rv′ + 2(q+1)
pq−1

v).

The proof for ℓ = 1 is similar, except that now we use the fact that u′(0) = 0 and,

by equation (8) and (13),

u′′(0) = −N−1v(0)p 6= 0 .

Thus, if (ψ, ϕ) ∈ E
p+1
p

1 × E
q+1
q

1 is a solution of (9), (10), then

(ψ, ϕ)−
ψ′(0)

u′′(0)
(u′, v′)

is a solution in E
p+1
p

1 × E
q+1
q

1 whose first component is o(r) at the origin. Thus, by the

lemma the above solution vanishes identically, which means that (ψ, ϕ) is a multiple

of (u′, v′). This completes the proof of parts (a) and (b) in the proposition. �

Proof of Lemma 5. Step 1. The case ℓ = 0. Since zeros of solutions of ordinary

differential equations cannot accumulate at a finite point, we know that ψ is either

positive or negative in a right neighborhood of zero. By multiplying both ψ and ϕ by

−1 if necessary, we may assume that ψ is positive in a right neighborhood of zero. Let

R := sup{r > 0 : ψ > 0 in (0, r)} ,

so, by assumption, R > 0. We will show that ψ is strictly increasing in (0, R). Note

that this implies, in particular, that R = ∞, because otherwise we had ψ(R) = 0 and

then 0 = ψ(R)− ψ(0) =
∫ R

0
ψ′(r) dr > 0, a contradiction.

Writing the equation for ϕ as (rN−1ϕ′)′ = −qrN−1uq−1ψ and using the fact that

limr→0 r
N−1ϕ′(r) = 0, we obtain

rN−1ϕ′(r) = −q

∫ r

0

u(s)q−1ψ(s)sN−1 ds .

By (13), this proves that ϕ′ < 0 in (0, R). We now deduce from the equation for ψ

that

−Nψ′′(0) = lim
r→0

(

−ψ′′(r)−
N − 1

r
ψ′(r)

)

= lim
r→0

p v(r)p−1ϕ(r) = p v(0)p−1ϕ(0) .

Since v(0) > 0 (again from (13)) and ψ′′(0) ≥ 0 (this follows from the fact that ψ

is positive in a right neighborhood of zero and ψ(0) = ψ′(0) = 0), we conclude that

ϕ(0) ≤ 0. This, together with the fact that ϕ′ < 0 in (0, R) implies that ϕ < 0 in

(0, R).
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Now writing the equation for ψ as (rN−1ψ′)′ = −prN−1vp−1ϕ and using the fact

that limr→0 r
N−1ψ′(r) = 0, we obtain

rN−1ψ′(r) = −p

∫ r

0

v(s)p−1ϕ(s)sN−1 ds .

By (13) and ϕ < 0 in (0, R), we conclude that ψ′ > 0 in (0, R), as claimed.

Step 2. The case ℓ ≥ 1. We use a standard trick to reduce the case ℓ ≥ 1 to the

case ℓ = 0 by increasing N . Let ψ̃(r) := r−ℓψ(r) and ϕ̃(r) := r−ℓϕ(r) and note that

−ψ̃′′ −
N + 2ℓ− 1

r
ψ̃′ = p vp−1ϕ̃ in (0,∞) . (15)

−ϕ̃′′ −
N + 2ℓ− 1

r
ϕ̃′ = q uq−1ψ̃ in (0,∞) . (16)

Moreover, we have

ψ̃′(0) = ϕ̃′(0) and lim
r→0

ϕ̃(r) exists

and, by the assumption of the lemma,

ψ̃(0) = 0 .

Therefore, from Step 1 we infer that ψ̃ = r−ℓψ is strictly monotone. Since it vanishes

at the origin, this implies, in particular, that r−ℓψ has the same sign as (r−ℓψ)′. Thus,

ψ′ = rℓ(r−ℓψ)′ + ℓr−1ψ has a fixed sign, which means that ψ is strictly monotone, as

claimed. �

2.3. An identity for solutions and its consequences. The following two functions

will play an important role in what follows,

I1(r) := rN−1(v′′(r)ψ(r)− v′(r)ψ′(r)) , I2(r) := rN−1(u′′(r)ϕ(r)− u′(r)ϕ′(r)) .

In the next lemma we compute their derivatives and prove an integral representation

for their sum.

Lemma 6. For any r > 0,

I ′1(r) = rN−1

(

−quq−1u′ψ + pvp−1v′ϕ−
ℓ(ℓ+N − 2)− (N − 1)

r2
v′ψ

)

, (17)

I ′2(r) = rN−1

(

−pvp−1v′ϕ+ quq−1u′ψ −
ℓ(ℓ+N − 2)− (N − 1)

r2
u′ϕ

)

. (18)

In particular, for any R > 0,

I1(R) + I2(R) = −

∫ R

0

ℓ(ℓ+N − 2)− (N − 1)

r2
(u′(r)ϕ(r) + v′(r)ψ(r))rN−1 dr . (19)
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In the proof of part (a) of Proposition 4 we have already shown that (u′, v′) solves

(9), (10) with ℓ = 1. For easier reference we record the equation (which is obtained

from (8) by differentiation),

−u′′′ −
N − 1

r
u′′ +

N − 1

r2
u′ = pvp−1v′ in (0,∞) , (20)

−v′′′ −
N − 1

r
v′′ +

N − 1

r2
v′ = quq−1u′ in (0,∞) . (21)

Proof of Lemma 6. Using the equations (21) and (9) for v′ and ψ,

I ′1(r) = rN−1

(

(v′′′ +
N − 1

r
v′′)ψ − v′(ψ′′ +

N − 1

r
ψ′)

)

= rN−1

(

(−quq−1u′ +
N − 1

r2
v′)ψ − v′(−pvp−1ϕ+

ℓ(ℓ+N − 2)

r2
ψ)

)

= rN−1

(

−quq−1u′ψ + pvp−1v′ϕ−
ℓ(ℓ+N − 2)− (N − 1)

r2
v′ψ

)

.

Similarly, using the equations (20) and (10) for u′ and ϕ,

I ′2(r) = rN−1

(

(u′′′ +
N − 1

r
u′′)ϕ− u′(ϕ′′ +

N − 1

r
ϕ′)

)

= rN−1

(

(−pvp−1v′ +
N − 1

r2
u′)ϕ− u′(−quq−1ψ +

ℓ(ℓ+N − 2)

r2
ϕ)

)

= rN−1

(

−pvp−1v′ϕ+ quq−1u′ψ −
ℓ(ℓ+N − 2)− (N − 1)

r2
u′ϕ

)

.

This proves the first two formulas in the lemma. To prove the third one, we add the

first two and integrate them between 0 and R. �

We finally turn to the

Proof of Proposition 4. Part (c). Our goal is to prove that if (ψ, ϕ) solves (9), (10)

for ℓ ≥ 2, then (ψ, ϕ) ≡ 0. To prove this, it suffices to show that ψ ≡ 0. To prove the

latter, we argue by contradiction and assume ψ 6≡ 0. As in the proof of Lemma 5, we

may assume, without loss of generality, that ψ is positive in a right neighborhood of

zero. Let

r1 := sup{r > 0 : ψ > 0 in (0, r)} ,

so, by assumption, r1 > 0. Moreover, if r1 <∞, then

ψ(r1) = 0 and ψ′(r1) ≤ 0 . (22)

We claim that ϕ is positive in a right neighborhood of zero. Since ϕ(0) = 0 (because

ℓ > 0), this is a consequence of the following two facts,

(1) ϕ has no negative local minimum in (0, r1).

(2) ϕ takes a positive value in (0, r1).
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Item (1) follows from the equation (10) for ϕ, since by (13) at a negative local minimum

the left side would be negative whereas the right side is positive in (0, r1). To prove

item (2) note that ψ has a positive local maximum in (0, r1) (since ψ(0) = 0 and

limr→r1 ψ(r) = 0). Evaluating the equation for ψ at this point, we see that the left

side is positive and therefore so is the right side. Thus, by (13), ϕ at this point is

positive.

Because of the preceding arguments

r2 := sup{r > 0 : ϕ > 0 in (0, r)}

is positive. Clearly, if r2 <∞, then

ϕ(r2) = 0 and ϕ′(r2) ≤ 0 . (23)

Next, we show that

ψ < 0 in (r1, r2) if r1 < r2 , ϕ < 0 in (r2, r1) if r2 < r1 . (24)

We begin with the second assertion. We first argue that ϕ is negative in a right

neighborhood of r2. Recall from (23) that ϕ′(r2) ≤ 0. The negativity in a right

neighborhood is clear if ϕ′(r2) < 0, while if ϕ′(r2) = 0, the equation (10) for ϕ

evaluated at r2, together with the fact that ψ(r2) > 0, implies ϕ′′(r2) < 0, which again

implies the negativity in a right neighborhood. The negativity in the whole interval

(r2, r1) now follows from item (1) above. The assertion for ψ follows from the same

arguments.

After these preliminaries we now turn to the main part of the proof of part (c) of

Proposition 4. We first assume that min{r1, r2} < ∞ and choose R = min{r1, r2} in

identity (19) in Lemma 6. Note that with this choice, using ℓ ≥ 2 and (14),
∫ R

0

ℓ(ℓ+N − 2)− (N − 1)

r2
(u′(r)ϕ(r) + v′(r)ψ(r))rN−1 dr < 0 .

We now show that for the above choice of R,

I1(R) + I2(R) ≤ 0 , (25)

which will lead to the desired contradiction.

It is easy to see that

I1(R) ≤ 0 if R = r1 and I2(R) ≤ 0 if R = r2 . (26)

Indeed, if R = r1, then, by (14) and (22), I1(R) = −rN−1
1 v′(r1)ψ

′(r1) ≤ 0 and if

R = r2, then, by (23), I2(R) = −rN−1
2 u′(r2)ϕ

′(r2) ≤ 0.

We now show that

I2(R) ≤ 0 if R = r1 and I1(R) ≤ 0 if R = r2 . (27)

Note that in case r1 = r2 this follows from the previous assertion, so we may assume

that r1 6= r2 (and we continue to assume that min{r1, r2} <∞). In order to prove the

first assertion in (27), let r1 < r2. Using (24), (14) and ℓ ≥ 2, we see that each one
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of the three terms in the parenthesis on the right side of (18) is positive in (r1, r2).

Thus, I ′2 > 0 in (r1, r2) and therefore

I2(r1) < I2(r2) ≤ 0

where the second inequality follows from (26).

Similarly, in order to prove the second assertion in (27), let r2 < r1. Using (24),

(14) and ℓ ≥ 2, we see that each one of the three terms in the parenthesis on the right

side of (17) is positive in (r2, r1). Thus, I
′
1 > 0 in (r2, r1) and therefore

I1(r2) < I1(r1) ≤ 0

where the second inequality follows from (26).

This completes the proof of (27) and therefore the proof of (25).

We still need to deal with the case min{r1, r2} = ∞, that is, r1 = r2 = ∞. We let

R→ ∞ in (19). Since the integrand on the right side is negative, the left side converges

as R → ∞ either to +∞ or to a positive number. The following lemma implies that

the left side converges, along a subsequence, to 0, which is again a contradiction and

concludes the proof of part (c) of Proposition 4. �

In the previous proof we used the following fact.

Lemma 7. If (ψ, ϕ) ∈ E
p+1
p × E

q+1
q , then

lim inf
R→∞

|I1(R) + I2(R)| = 0 .

There are several possible proofs of this lemma. One possibility would be a detailed

ODE analysis giving the precise asymptotics of ψ, ϕ and their derivatives at infinity.

We have chosen a softer approach, based only on the finite energy assumption, together

with Sobolev embedding theorems. More precisely, we shall use the inequalities

‖f‖
E

p+1
p

ℓ

&

(
∫ ∞

0

|f |q+1 rN−1 dr

)
1

q+1

, (28)

‖f‖
E

q+1
q

ℓ

&

(
∫ ∞

0

r−
q+1
q |f ′|

q+1
q rN−1 dr

)
q

q+1

, (29)

‖f‖
E

p+1
p

ℓ

&

(
∫ ∞

0

|f ′|t rN−1 dr

)
1
t

,
1

t
=

p

p+ 1
−

1

N
, (30)

‖f‖
E

q+1
q

ℓ

&

(
∫ ∞

0

|f ′|s rN−1 dr

)
1
s

,
1

s
=

q

q + 1
−

1

N
. (31)

Inequality (28) follows from the Sobolev inequality ‖∆F‖
L

p+1
p (RN )

& ‖F‖Lq+1(RN ),

applied to F (x) = f(|x|)Yℓ,m(x/|x|). Similarly, inequalities (29), (30) and (31) follow

from Hardy and Sobolev inequalities, bounding |∇F | ≥ |f ′||Yℓ,m|. Note that Sobolev’s

inequality is applicable since q

q+1
> 1

N
and p

p+1
> 1

N
. Indeed, the latter are equivalent
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to 1
q+1

< N−1
N

and 1
p+1

< N−1
N

, and these inequalities are valid since the scaling relation

(2) implies that 1
q+1

< N−2
N

and 1
p+1

< N−2
N

.

Proof. We show that
∫ ∞

0

(|I1(r)|+ |I2(r)|) dr <∞ ,

which clearly implies the assertion. We prove this only for I1, the argument I2 being

similar.

Using the equation for v we write

I1(r) = rN−1

(

−u(r)qψ(r)−
N − 1

r
v′(r)ψ(r)− v′(r)ψ′(r)

)

and show that all three terms on the right side are separately integrable. By (28) with

f = u, ψ, we have u ∈ Lq+1(R+, r
N−1 dr) and ψ ∈ Lq+1(R+, r

N−1 dr) and therefore

uqψ ∈ L1(R+, r
N−1 dr), which means rN−1uqψ ∈ L1(R+). Moreover, ∆V = −U q ∈

L
q+1
q (RN) and therefore, by (29) with f = v, we have r−1v′ ∈ L

q+1
q (R+, r

N−1 dr). To-

gether with ψ ∈ Lq+1(R+, r
N−1 dr) this implies rN−2v′ψ ∈ L1(R+). Finally, (30) with

f = ψ and (31) with f = v imply that ψ′ ∈ Lt(R+, r
N−1 dr) and v′ ∈ Ls(R+, r

N−1 dr),

where 1
s
= q

q+1
− 1

N
and 1

t
= p

p+1
− 1

N
. Moreover, (2) implies that 1

s
+ 1

t
= 1 and

therefore v′ψ′ ∈ L1(R+, r
N−1 dr), which means rN−1v′ψ′ ∈ L1(R+). This completes

the proof. �

As we mentioned before, the basic idea for treating the case ℓ ≥ 2 comes from [4].

However, we do not see where the case r1 = r2 = ∞ is handled in that paper.

3. Proof of Lemma 2

3.1. Scheme of the proof. After interchanging the roles of p and q if necessary, we

may and will assume that q ≥ p. Thus, 2
N−2

< p ≤ N+2
N−2

≤ q.

We will prove Lemma 2 by a repeated application of the maximum principle, using

the asymptotic behavior of the ground state, which we quote from [2, Theorem 2].

Lemma 8. For each 2
N−2

< p ≤ N+2
N−2

, there are positive constants ap and bp such that

lim
r→∞

rN−2 v(r) = bp and























lim
r→∞

rp(N−2)−2 u(r) = ap if 2
N−2

< p < N
N−2

,

lim
r→∞

rN−2

log r
u(r) = ap if p = N

N−2
,

lim
r→∞

rN−2 u(r) = ap if N
N−2

< p ≤ N+2
N−2

.

(32)

3.2. The case 2
N−2

< p < N
N−2

. We begin with an elementary algebraic lemma.

Lemma 9. If 2
N−2

< p < N
N−2

, then

(p(N − 2)− 2)(q − 1) > 4− (N − 2)(p− 1) > 2. (33)
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Proof. Set A = (p+ 1)(N − 2) ∈ (N, 2(N − 1)). Note that

(N − 2)(p− 1) + (p(N − 2)− 2)(q − 1) > 4 ⇔ (A−N)(q + 1) > A

⇔
A−N

A
>

1

q + 1
= (N − 2)

(

A−N

AN

)

⇔ 1 >
N − 2

N
.

Clearly, the last inequality holds for all N ≥ 3. Thus the first inequality in (33)

is true. The second inequality in (33) is a direct consequence of the condition that

p > 2
N−2

. �

We are now in position to prove Lemma 2 for 2
N−2

< p < N
N−2

.

Proof of Lemma 2 for 2
N−2

< p < N
N−2

. The proof is divided into 3 steps.

Step 1. We assert that for any pair (α, ν) such that

α ≥ 0 and 0 < ν < min{N − 2, (p(N − 2)− 2)(q − 1)− 2 + α} (34)

one has

|Ψ(x)| ≤
C

|x|α
on {|x| ≥ 1} ⇒ |Φ(x)| ≤

C ′

|x|ν
on {|x| ≥ 1} . (35)

Observe that the minimum in (34) is positive by virtue of (33).

Consider

Gν(x) = Φ(x)−
mν

|x|ν
on {|x| ≥ 1}

where mν > 0 is a number to be determined. If mν ≥ sup{|x|=1}Φ(x), then

Gν(x) ≤ 0 on {|x| = 1}

Moreover, (34), the first inequality in (35) and (32) show that

−∆Gν(x) = q U q−1Ψ−
mνν(N − 2− ν)

|x|ν+2

≤
C ′′

|x|(p(N−2)−2)(q−1)+α
−
mνν(N − 2− ν)

|x|ν+2
≤ 0 in {|x| > 1}

provided mν ≥ C ′′/(ν(N−2−ν)). The maximum principle yields that for any number

R > 1,

Gν(x) ≤ max
{|x|=R}

(Gν(x))+ on {1 ≤ |x| ≤ R}.

Taking R → ∞ and using the uniform decay assumption on Φ, we deduce

Gν(x) ≤ 0, i.e., Φ(x) ≤
mν

|x|ν
on {|x| ≥ 1}.

By the same reasoning, we obtain a similar upper bound on −Φ in {|x| ≥ 1}. This

proves the assertion (35).
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An analogous argument shows that for any pair (β, µ) such that

β ≥ 0 and 0 < µ < min{N − 2, (N − 2)(p− 1)− 2 + β} (36)

one has

|Φ(x)| ≤
C

|x|β
on {|x| ≥ 1} ⇒ |Ψ(x)| ≤

C ′

|x|µ
on {|x| ≥ 1} . (37)

Unlike (34), the minimum in (36) may be non-positive unless β is large enough.

Step 2. We assert that for any η > 0 there is a C > 0 such that

|Ψ(x)| ≤
C

1 + |x|(N−2)p−2−η
and |Φ(x)| ≤

C

1 + |x|N−2−η
in R

N . (38)

The uniform decay condition tells us that |Ψ(x)| ≤ C in RN . Hence, taking α =

α1 = 0 in (35), we find

|Φ(x)| ≤
C ′

|x|β1
on {|x| ≥ 1}

for any fixed 0 < β1 < min{N − 2, (p(N − 2)− 2)(q− 1)− 2}. Next, taking β = β1 in

(37), we also find

|Ψ(x)| ≤
C ′′

|x|α2
on {|x| ≥ 1}

for any fixed 0 < α2 < min{N − 2, (N − 2)(p− 1) + (p(N − 2)− 2)(q − 1)− 4}. (By

(33), the minimum is positive and therefore such α2 does exist.) Taking α = α2, we

again employ (35) to update the range of β. In this way, we can construct a (finite)

sequence {(αn, βn)}n∈N such that

- Each of {αn} and {βn} is increasing;

- For each n, it holds that βn > αn+1;

- βn ր N − 2 as n gets large. In particular, αn+1 ր (N − 2)p− 2.

By picking (αn, βn) such that αn ≥ (N−2)p−2−η and βn ≥ (N−2)−η, we conclude

that (38) is true.

Step 3. We conclude the proof. By (32) and (38),

‖∆Ψ‖
L

p+1
p (RN )

= p‖V p−1Φ‖
L

p+1
p (RN )

≤ C

(
∫

RN

dx

1 + |x|(N−2)(p+1)−η

)
p

p+1

where η > 0 can be taken arbitrarily small. Hence we infer from the relation (N −

2)(p + 1) > N that the above integral is finite. This confirms that Ψ ∈ Ẇ 2, p+1
p (RN ).

This in turn yields that Φ ∈ Ẇ 2, q+1
q (RN). �
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3.3. The case N
N−2

≤ p ≤ N+2
N−2

. In this subsection, we slightly modify the argument

in the previous subsection to cover the remaining case.

Proof of Lemma 2 for N
N−2

≤ p ≤ N+2
N−2

. As before, the proof is divided into 3 steps.

Step 1. The claim that (36)-(37) continues to hold. On the other hand, the compar-

ison argument and (32) now imply that (35) holds for any pair (α, ν) such that

α ≥ 0 and 0 < ν < min{N − 2, (N − 2)(q − 1)− 2 + α}. (39)

The minimum in (36) is always non-negative (and positive if p > N
N−2

), and that of

(39) is always positive.

Step 2. The behavior of the parameters α, β, µ, ν differs from the one in the previous

subsection. Because of this reason, in this time, for any η > 0 there is a C > 0 such

that

|Ψ(x)| ≤
C

1 + |x|N−2−η
and |Φ(x)| ≤

C

1 + |x|N−2−η
in R

N . (40)

In fact, the iteration process produces a (finite) sequence {(αn, βn)}n∈N such that

- Each of {αn} and {βn} is increasing;

- For each n, it holds that βn ≤ αn+1;

- αn+1, βn ր N − 2 as n gets large.

Step 3. Having (40) in hand, one can conclude the proof of Lemma 2 by the same

reasoning as before. �

References

[1] A. Alvino, P.-L. Lions, G. Trombetti, A remark on comparison results via symmetrization. Proc.

Roy. Soc. Edinburgh Sect. A 102 (1986), 37–48.

[2] J. Hulshof, R. C. A. M. van der Vorst, Asymptotic behaviour of ground states. Proc. Amer. Math.

Soc. 124 (1996), no. 8, 2423–2431.

[3] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case.

I. Rev. Mat. Iberoamericana 1 (1985), 145–201.

[4] G. Lu, J. Wei, On a Sobolev inequality with remainder terms. Proc. Amer. Math. Soc. 128 (2000),

no. 1, 75–84.

[5] X. J. Wang, Sharp constant in a Sobolev inequality. Nonlinear Anal. 20 (1993), no. 3, 261–268.



NON-DEGENERACY FOR THE CRITICAL LANE–EMDEN SYSTEM–August 28, 2019 15

(R. L. Frank) Mathematisches Institut, Ludwig-Maximilians-Universität München,

Theresienstr. 39, 80333 München, Germany, and Mathematics 253-37, Caltech, Pasa-

dena, CA 91125, USA

E-mail address : r.frank@lmu.de, rlfrank@caltech.edu

(S. Kim) Department of Mathematics and Research Institute for Natural Sciences,

College of Natural Sciences, Hanyang University, 222 Wangsimni-ro Seongdong-gu,

Seoul 04763, Republic of Korea

E-mail address : shkim0401@hanyang.ac.kr, shkim0401@gmail.com

(A. Pistoia) Dipartimento SBAI, “Sapienza” Università di Roma, via Antonio Scarpa

16, 00161 Roma, Italy

E-mail address : angela.pistoia@uniroma1.it


	1. Introduction
	2. Proof of Theorem ??
	2.1. Angular momentum decomposition
	2.2. A uniqueness theorem
	2.3. An identity for solutions and its consequences

	3. Proof of Lemma ??
	3.1. Scheme of the proof
	3.2. The case 2N-2 < p < NN-2
	3.3. The case NN-2 p N+2N-2

	References

