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Abstract—This paper introduces for the first time a framework
to obtain provable worst-case guarantees for neural network
performance, using learning for optimal power flow (OPF) prob-
lems as a guiding example. Neural networks have the potential
to substantially reduce the computing time of OPF solutions.
However, the lack of guarantees for their worst-case performance
remains a major barrier for their adoption in practice. This
work aims to remove this barrier. We formulate mixed-integer
linear programs to obtain worst-case guarantees for neural
network predictions related to (i) maximum constraint violations,
(ii) maximum distances between predicted and optimal decision
variables, and (iii) maximum sub-optimality. We demonstrate our
methods on a range of PGLib-OPF networks up to 300 buses.
We show that the worst-case guarantees can be up to one order
of magnitude larger than the empirical lower bounds calculated
with conventional methods. More importantly, we show that the
worst-case predictions appear at the boundaries of the training
input domain, and we demonstrate how we can systematically
reduce the worst-case guarantees by training on a larger input
domain than the domain they are evaluated on.

Index Terms—Neural networks, mixed-integer linear program-
ming, optimal power flow.

I. INTRODUCTION

The optimal power flow (OPF) problem is an essential

tool for electricity markets, for power system operation, and

planning [1]. In its standard form, the OPF minimizes an

objective function (e.g. generation cost) subject to the power

flow equations and the operational constraints (e.g. line limits).

As the non-linear AC power flow equations render the AC-

OPF problem non-convex [2], the linear DC-OPF approxi-

mation is often used instead [3]. The substantial increase of

uncertainty in generation and demand requires to solve OPF

repeatedly and closer to real-time, in order to analyze a large

number of scenarios; this leads to significant computational

challenges [4]. Neural networks present a promising alternative

to conventional optimization solvers, achieving a speed-up

of several orders of magnitude [5]–[9]. However, the lack

of any guarantees related to the neural network performance

presents a major barrier towards their application in safety-

critical systems. In this work, we introduce for the first time a

framework to obtain worst-case guarantees for neural networks

which predict solutions to DC-OPF problems.

The work of A. Venzke was carried out while visiting the Department
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Technology, Pasadena, CA 91125, USA. The work of A. Venzke and S.
Chatzivasileiadis is supported by the multiDC project, funded by Innovation
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Machine learning including neural networks have been

applied to a range of power system applications over the

past three decades; for a recent survey please refer to [10].

The focus of this work is on obtaining guarantees for ma-

chine learning approaches such as the ones in [5]–[9], which

predict solutions to OPF problems and replace the use of

conventional optimization solvers. These approaches can result

to larger computational speed-ups compared to predicting

inactive constraints [11] or warm-start points [12] that could

accelerate conventional optimization solvers. The work in

[5] trains neural networks to directly predict the solution to

DC-OPF problems, achieving a speed-up of two orders of

magnitude (i.e., 100 times faster). The same authors extend

this framework to include security constraints in [6]. The work

in [13] proposes an off-line algorithm to identify the sets

of active constraints and, based on these, directly computes

solutions to DC-OPF problems on-line. The work in [7]

extends this approach to neural networks predicting the active

set. The work in [8] demonstrates that both the approaches

in [5] and [13] can fail to predict feasible solutions, i.e.,

solutions satisfying the power system constraints, and proposes

an alternative training procedure to improve the feasibility of

the obtained predictions. Using neural networks, the work in

[9] directly predicts solutions to AC-OPF problems and relies

on a penalization of constraint violations during training to

improve feasibility.

While the works [5]–[9] report substantial computational

speed-ups and empirically analyse accuracy and feasibility, no

guarantees for the neural network performance are provided.

By evaluating the worst-case performance on the discrete

samples for the entire training and test dataset only an

empirical lower bound of the worst-case guarantee can be

obtained. To the best of our knowledge, this work is the

first to introduce a framework that obtains exact worst-case

guarantees over the entire input domain, for neural networks

predicting solutions to DC-OPF problems. To this end, we

leverage recent advancements in evaluating the adversarial ro-

bustness of neural networks using mixed-integer programming

[14]–[16]. Our previous work [16] focused on power system

security assessment and provided performance guarantees for

classification neural networks. While these works [14]–[16]

focus on obtaining local robustness certificates that no adver-

sarial examples exist (i.e., input perturbations around a given

sample which lead to a wrong classification), in this work we
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introduce a framework to obtain global worst-case guarantees

over the entire input domain. The main contributions of our

work are:

1) We introduce a framework to compute worst-case guar-

antees for (i) physical constraint violations, (ii) maxi-

mum distance between predicted and optimal decision

variables, and (iii) sub-optimality, leveraging mixed-

integer linear reformulations of neural networks.

2) We demonstrate our methodology on PGLib-OPF net-

works of up to 300 buses. We show (i) that the worst-

case guarantees over the entire input domain can be up

to an order of magnitude larger than the empirical lower

bounds obtained with conventional methods; and (ii)

that these worst-case guarantees can be systematically

reduced by training on a larger input domain than the

domain these neural networks are evaluated on.

The structure of this paper is as follows: In Section II,

we formulate the DC-OPF and its KarushKuhnTucker (KKT)

conditions, and explain the neural network architecture and

training to predict solutions to DC-OPF problems. In Sec-

tion III, leveraging mixed-integer reformulations of neural

networks, we introduce the framework to compute worst-case

guarantees. Section IV demonstrates our methodology on a

range of PGLib-OPF networks. Section V concludes. The code

to reproduce all simulation results is available online [17].

II. LEARNING DC-OPF WITH NEURAL NETWORKS

First, we state the DC-OPF problem and its KKT conditions

(which we will use at a later stage in Section III-C), and

then we detail the architecture and training process of neural

networks predicting solutions to DC-OPF problems.

A. DC Optimal Power Flow (DC-OPF) Formulation

An electric power grid consists of an nb number of buses

(denoted with the set N ) and an nline number of lines (denoted

with the set L). Each line connects a bus i ∈ N to another

bus j ∈ N , (i, j) ∈ L. Set G (a subset of N ) collects the ng

number of buses that have a generator connected to them. The

vector pg of size ng denotes the generator active power output

and the matrix Mg of size nb ×ng maps the generators to the

buses. A number nd of buses has a load connected to them.

The vector pd of size nd denotes the active power demands and

the matrix Md of size nb ×nd maps the loads to the buses. In

the DC-OPF formulation, the voltage magnitudes are assumed

to be constant at all buses, and only the voltage angles θ of

size nb are included as variables. The DC-OPF problem can

be formulated as:

min
pg,θ

cTpg (1)

s.t. Mgpg −Mdpd = Bbusθ : λ (2)

pmin
line ≤ Blineθ ≤ pmax

line : µmin
line ,µ

max
line (3)

pmin
g ≤ pg ≤ pmax

g : µmin
g ,µmax

g (4)

The objective function in (1) minimizes the generation cost,

with a positive unique linear cost term c associated to each

pd
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Fig. 1. Illustration of the neural network architecture to predict the mapping
from the active power demand pd to the optimal generation p̂g: The neural
network consists of K hidden layers with Nk neurons each with k = 1, ...,K .
At each neuron of the hidden layers, a ReLU activation function is applied.

generator output. The nodal power balance in (2) ensures that

the power generation, power demand and in- and out-going

flows are balanced at each bus. The term Bbus defines the

bus admittance matrix, and the term Bline the line admittance

matrix. For brevity, refer to [3] for the full details. The active

power line flows in (3) are a function of the line admittance

matrix Bline and the voltage angles θ. We fix the voltage angle

corresponding to the slack bus θslack = 0 to remove the trivial

non-uniqueness of the obtained DC-OPF solution due to the

singularity of the bus admittance matrix Bbus. The physical

constraints comprise minimum and maximum limits on the

active line flow in (3) and the active power generation in (4),

respectively. Each constraint is associated with a dual variable,

denoted with λ for equality constraints and µ for inequality

constraints. The KKT conditions of the DC-OPF problem in

(1)–(4) can be written as:

c− µmin
g + µmax

g +MT
g λ = 0 (5)

−BT
lineµ

min
line +BT

lineµ
max
line −Bbusλ = 0 (6)

µmin
line(p

min
line −Blineθ) = 0, µmin

line(Blineθ − pmax
line ) = 0 (7)

µmin
g (pmin

g − pg) = 0, µmax
g (pg − pmax

g ) = 0 (8)

µmin
g ≥ 0, µmax

g ≥ 0,µmin
line ≥ 0, µmax

line ≥ 0 (9)

(2) − (4) (10)

The stationarity conditions are described in (5) and (6). The

complementary slackness conditions are enforced in (7) and

(8). The primal and dual feasibility corresponds to (10) and (9),

respectively. As the DC-OPF in (1)–(4) is a linear program,

satisfying the KKT conditions is necessary and sufficient for

optimality [18], given the DC-OPF problem is feasible.

B. Neural Network Architecture and Training

This subsection details the neural network architecture and

the training procedure in order to learn the mapping between

an instance of the power demand pd and the associated optimal

generation dispatch pg of the DC-OPF, see also (1)–(4). We

assume the power system topology is fixed, i.e., Bbus and Bline

remain constant, and the load domain pd ∈ D is restricted to

a convex polytope characterized by matrix Ad and vector bd:

Adpd ≤ bd (11)

On this load domain, we assume that the DC-OPF mapping

from system demand pd to the optimal generation dispatch pg



is unique, i.e., a singleton. It is shown in [19] that the DC-OPF

solution is unique almost surely in an appropriate space. This

is a requirement for the learning task as the neural network

predicts one optimal generation dispatch p̂g for the active

power demand input. The neural network architecture to learn

this mapping is illustrated in Fig. 1. The architecture comprises

a number K of fully-connected hidden layers, each of which

consists of a number of neurons Nk with k = 1, ...,K . The

neural network input vector is the active power demand pd and

the output vector is the prediction of the optimal generation

dispatch p̂g. Note that the entry of p̂g corresponding to the

slack bus (p̂g)
slack is not predicted by the neural network as

it is not an independent variable. The slack bus generation is

defined by the difference in predicted generation and demand:

(p̂g)
slack =

∑

i∈N

(Mdpd)
i −

∑

i∈G\slack

(p̂g)
i (12)

The superscripts are used to denote the corresponding entries

of the vectors. The input to the first and subsequent hidden

layers ẑk of the neural network is defined as:

ẑ1 =W1pd + b1 (13)

ẑk+1 =Wk+1zk + bk+1 ∀k = 1, ...,K − 1 (14)

The weight matrices Wk have dimensions Nk+1 × Nk and

the bias vector b has dimension Nk+1. Each neuron in the

hidden layer applies a non-linear activation function to the

input. In the following, we use the ReLU activation function,

which is used by the majority of neural network applications in

recent years, as it has been found to accelerate neural network

training [20]:

zik = max(ẑik, 0) ∀k = 1, ...,K ∀i = 1, ..., Nk (15)

The ReLU activation function in (15) outputs 0 if the input

is negative, otherwise it propagates the input. Note that the

max operator is applied element-wise to the vector ẑk . The

predicted generator dispatch of the neural network can be

evaluated as follows:

(p̂g)
nsg = WK+1zK + bK+1 (16)

The term (p̂g)
nsg denotes the ng − 1 entries of p̂g that do

not correspond to the slack bus. To train neural networks, the

first step is to create a dataset of demand instances pd ∈ D
and their corresponding optimal generation pg by e.g. using

historical data and simulation tools. The obtained dataset is

split into a training and test set. Then, during neural network

training, the weight matrices W and biases b are optimized

using stochastic gradient descent to minimize a loss function,

e.g. the mean squared error between the prediction p̂g and

the training dataset pg. In previous works (e.g. [5], [8]), the

performance of the trained neural network is evaluated on the

test set using statistical metrics such as accuracy or share

of feasible instances. This procedure does not provide any

guarantees related to the worst-case performance of the trained

neural network over the entire input domain pd ∈ D.

III. WORST-CASE GUARANTEES FOR NEURAL NETWORKS

We first state the mixed-integer reformulation of trained

neural networks and address issues related to scalability.

Then, we introduce our framework to compute worst-case

guarantees.

A. Mixed-Integer Reformulation of Trained Neural Networks

To include the trained neural network equations in an

optimization framework, we follow the work in [15] and

reformulate the maximum operator in the ReLU activations

(15) using binary variables bk ∈ {0, 1}Nk for all k = 1, ...,K
and suitable minimum and maximum bounds on the neuron

output ẑmin and ẑmax:

zik ≤ ẑik − ẑ
min,i
k (1− bi

k) ∀k = 1, ...,K ∀i = 1, ..., Nk (17)

zik ≥ ẑik ∀k = 1, ...,K ∀i = 1, ..., Nk (18)

zik ≤ ẑ
max,i
k bi

k ∀k = 1, ...,K ∀i = 1, ..., Nk (19)

zik ≥ 0 ∀k = 1, ...,K ∀i = 1, ..., Nk (20)

bk ∈ {0, 1}Nk ∀k = 1, ...,K (21)

Observe that ẑik refers to the neuron (ReLU) input and zik
to the neuron (ReLU) output. Note that the minimum and

maximum bounds on the neuron output ẑmin and ẑmax have

to be chosen large enough to not be binding and as small as

possible to facilitate tight bounds for the branch-and-bound

algorithm. In case the input to the i-th neuron in layer k is

ẑik ≤ 0 then the corresponding binary variable bi
k is 0 and (19)

and (20) constrain the neuron output zik to 0. The constraints

in (17) and (18) are non-binding if ẑik < 0 holds. If the input

to the neuron is ẑik ≥ 0, then the binary variable is 1 and (17)

and (18) constrain the neuron output zik to the input ẑik. The

constraints in (19) and (20) are non-binding if ẑik > 0 holds.

As this reformulation introduces one binary variable for

each neuron in the hidden layers, we use a combination of the

works in [15] and [14] and employ three techniques to main-

tain scalability of the resulting mixed-integer linear programs

(MILPs). First, we sparsify the weight matrices W during

training, i.e., we gradually enforce a defined share of entries to

be zero. Second, we apply the concept of ReLU stability [14]:

All neurons for which the activation is always active or always

inactive on both the training and test set are fixed to this status

in the MILP reformulation, and the corresponding binaries

are eliminated. Third, we use several techniques to compute

increasingly tighter bounds ẑmin and ẑmax. We initialize the

bounds using interval arithmetic (for details see [15]). Then,

to compute tighter bounds, we minimize and maximize the

output of each neuron zik subject to the linear relaxation of

the trained neural network (13), (14), (16)–(21), and subject

to the restricted input domain in (11). Note that for the linear

relaxation only we relax the binary variables bk to continuous

variables between 0 and 1. Finally, we repeat this step using

the full MILP formulation of the trained neural networks. As

a result, we obtain tightened bounds ẑmin and ẑmax for the

branch-and-bound algorithm. Note that in the following, when

solving MILPs to obtain worst-case guarantees, we always

solve the full MILP formulation and do not use a relaxation.



B. Worst-Case Guarantees for Constraint Violations

The mixed-integer reformulation of trained neural networks

allows us to formulate optimization problems to obtain worst-

case guarantees for the physical constraint violation. We define

the maximum violation of the constraints on active generator

power νg in (4) and on active line flows νline in (3) as:

νg = max(p̂g − pmax
g ,pmin

g − p̂g,0) (22)

νline = max(|BlineB̃
−1
bus (Mgp̂g −Mdpd)

nsb| − pmax
line ,0) (23)

The term ‘nsb’ denotes all buses except the slack bus. To

compute the maximum constraint violation of the line flow in

(23), we compute the line flow based on the neural network

prediction p̂g and system loading pd. To this end, we remove

the column and row from the bus admittance matrix and invert

the resulting reduced bus admittance matrix B̃bus, inserting

(2) in (3). Note that the product BlineB̃
−1
bus is the well-known

“Power Transfer Distribution Factors” (PTDF) matrix; please

refer to [21] for more details. In both (22) and (23), we

take the overall non-negative maximum over the violations.

Note that we take the absolute value | · | of the line flow

in (23). In previous works, these metrics have only been

evaluated empirically on the datasets. Here, to compute the

worst-case generator constraint violation for the entire defined

input domain, we solve:

max
p̂g,pd,b,z,ẑ,νg

νg (24)

s.t. (11) − (14), (16), (17) − (21), (22) (25)

Similarly, to compute the maximum line constraint violation

νline, we maximize νline subject to (25), replacing (22) with

(23). As the input domain in (11) is a convex polytope and we

reformulate the max-operators in (22) and (23) using integer

variables, the optimization problem (24)–(25) can be cast as

MILP. If the MILP is solved to zero MILP gap, i.e., to global

optimality, then the bound is exact, and we obtain the provable

guarantee that no input pd ∈ D to the neural network exist

which will lead to constraint violations larger than the obtained

values of νg and νline. At the same time, the obtained values of

pd are the neural network inputs which lead to the maximum

constraint violations. If the MILP is solved to a non-zero

optimality gap, then we obtain an upper bound on the worst-

case violations νg and νline. If, additionally, the MILP solver

identifies a feasible solution, then the values of νg and νline

corresponding to the feasible solution serve as a lower bound

on the worst-case violations. Note that in the simulation results

in Section IV, we solve all MILPs to zero optimality gap.

C. Worst-Case Guarantees for Distance of Predicted to Opti-

mal Decision Variables and for Sub-Optimality

In the following, we formulate optimization problems to

obtain (i) worst-case guarantees for the maximum distance

between the predicted and the optimal decision variables νdist

and (ii) worst-case guarantees for the sub-optimality of the

cost function νopt resulting from the predicted solution:

νdist = max(|
|p̂g−pg|
pmax

g −pmin
g
|) (26)

νopt = cT (p̂g − pg) (27)

The term pg denotes the optimal solution to the DC-OPF

problem for a given input loading pd. We normalize the

distance νdist element-wise by the corresponding generator

limits and compute the maximum over all generator set-points.

The distance νdist characterizes for the entire input domain

the largest mismatch of all generator set-points between the

prediction of the neural network and the ground-truth DC-

OPF solution. We formulate the following bi-level problem to

compute the worst-case distance νdist:

max
p̂g,pg,pd,b,z,ẑ,νdist

νdist (28)

s.t. (11) − (14), (16), (17) − (21), (26) (29)

pg ∈ argmin
pg,θ

{(1) s.t. (2) − (4)} (30)

The lower-level comprises the DC-OPF formulation and de-

fines the optimal generation pg as a function of the load

input pd. The upper-level problem maximizes the distance of

the predicted to the optimal solution of the DC-OPF for the

defined load input domain. We replace the lower-level problem

with its KKT conditions and rewrite the optimization problem:

max
p̂g,pg,pd,b,z,ẑ,νdist,θ,λ,µ

νdist (31)

s.t. (29), (5) − (10) (32)

By maximizing νopt in the the objective function and replacing

(26) with (27) we can compute worst-case guarantees for the

sub-optimality of the predicted solution. To achieve tractability

of this formulation, we reformulate the non-linear complemen-

tary slackness conditions (7) and (8) in (32) using the Fortuny-

Amat McCarl linearization [22]:

pmin
line −Blineθ ≥ −rmin

lineM
min
line , µmin

line ≤(1− rmin
line)M

min
line (33)

Blineθ − pmax
line ≥ −rmax

line M
max
line , µ

max
line ≤(1− rmax

line )M
max
line (34)

pmin
g − pg ≥ −rmin

g Mmin
g , µmin

g ≤(1− rmin
g )Mmin

g (35)

pg − pmax
g ≥ −rmax

g Mmax
g , µmax

g ≤(1− rmax
g )Mmax

g (36)

This models the complementary slackness conditions with one

binary variable r and one large non-binding constant M for

each condition. Note that the constant M has to be chosen

sufficiently large to not be binding, while at the same time

small enough to maintain numerical well-conditioning of the

mixed-integer program. For details on bi-level programming

and this reformulation, please refer to [23]. The resulting opti-

mization problem is a MILP which includes integer variables

related to the reformulation of the neural network, and related

to the reformulation of the lower-level problem. If this MILP is

solved to zero MILP gap (and if constraint qualifications for

global optimality to the bi-level problem are satisfied [23]),

the bound is exact and we obtain the provable guarantee that

no input pd ∈ D exist with distances or sub-optimality larger

than the obtained values of νdist and νopt.



TABLE I
TEST CASE CHARACTERISTICS

Test cases nd ng nb nline Max. loading

case9 3 3 9 9 315.0 MW

case30 21 2 30 41 283.4 MW

case39 21 10 39 46 6254.2 MW

case57 42 4 57 80 1250.8 MW

case118 99 19 118 186 4242.0 MW

case162 113 12 162 284 7239.1 MW

case300 199 57 300 411 23525.9 MW

IV. SIMULATION & RESULTS

We demonstrate our methodology on a range of PGLib-OPF

networks v19.05 of up to 300 buses from [24]. The test case

characteristics are listed in Table I. The case9 is taken from

MATPOWER [25]. We assume that the input domain pd ∈ D
in (11) is defined as 0.6pmax

d ≤ pd ≤ 1.0pmax
d , i.e. each load

can fluctuate individually from 60% to 100% of its maximum

loading. Note that the maximum loading level pmax
d is defined

according to [24], [25], and the sum of the maximum loading

is shown in Table I. We did not consider loading levels

larger than 100% as we observed that this frequently leads

to infeasibility of the DC-OPF problem. This would require

load shedding and represents an abnormal system situation.

To create the datasets, we use Latin hypercube sampling [26],

draw 100’000 samples from the input domain D, and solve

a DC-OPF for each of the samples using MATPOWER [25]

to generate the corresponding optimal solutions. Out of these

input-output pairs we use 80% for training and 20% for testing.

The neural network architecture comprises three hidden

layers with 50 neurons each. As we will demonstrate (and

has also been shown in [8]), the size of this architecture is

sufficient to obtain low generalization errors of the neural

networks on the unseen test set. As described in Section III-A,

we sparsify the neural network during training by gradually

setting the smallest weight entries to zero until 80% of

the weight entries are zero; that means that only 20% of

weight entries are non-zero at the end of training. We use

TensorFlow [27] for neural network training with the following

specifications. During training, we minimize the mean squared

error between the neural network prediction and the true

optimal solutions. We define the maximum number of training

epochs to 250 and split the dataset into 2000 batches. We use

early stopping and we recover the neural network weights and

biases that achieved the lowest generalization error on the test

set. As the neural network training is highly non-linear, we

repeat the training and evaluation process 5 times, and report

averaged values for all simulation results. We formulate the

MILPs in YALMIP [28] and solve them using Gurobi. For the

Fortuny-Amat McCarl linearization in (33)–(36) we choose all

constants M to be 105. After solving the MILPs, we verify

that the complementary slackness conditions are satisfied and

the constants are non-binding. All computational experiments

TABLE II
PERFORMANCE AVERAGED OVER TEST SET SAMPLES

Test cases MAE νg νline νdist νopt

(%) (MW) (MW) (%) (%)

case9 0.04 0.07 0.02 0.06 0.04

case30 0.03 0.00 0.01 0.03 -0.00

case39 0.07 0.71 1.02 0.30 0.00

case57 0.01 0.24 0.00 0.03 -0.01

case118 0.31 8.21 1.35 3.35 0.00

case162 0.61 9.11 2.07 4.08 0.01

case300 0.90 15.33 96.13 18.01 -0.02

are carried out on a laptop with i7-7820HQ CPU @2.90 GHz,

32 GB RAM and GeForce 940MX GPU. The code to repro-

duce all simulation results is available online [17].

A. Neural Network Performance

In the following, we evaluate the performance of the trained

neural networks with four metrics: The maximum generator

and line constraint violations νg, νline defined in (22) and (23),

the distance of the predicted to the optimal decision variables

νdist defined in (26),and the sub-optimality νopt defined in (27).

Note that we normalize the sub-optimality with respect to the

generation cost of the 100% loaded system state.

1) Performance Averaged over Test Set Samples: In Ta-

ble II, we show the performance of the trained neural networks

averaged over the unseen test dataset samples. The mean

absolute error (MAE) of the predicted generation dispatch

evaluates to less than 1% (normalized by the generator limits

as in (26)), indicating satisfactory generalization capability of

the neural networks. The averaged largest violation of active

generator and line limits are less than 0.5% of the total

maximum system loading in Table I. The averaged largest

distances of the predicted and optimal generator dispatch νdist

are less than 1% for the first four test cases, and increases

up to 18% for case300. Note that the latter corresponds to

the maximum over the vector p̂g of 57 predicted generator

set-points. The averaged sub-optimality νopt of the predicted

solutions is negligible. Note that the sub-optimality measure

can be negative if constraints are violated. The average per-

formance on the test set indicates satisfactory neural network

performance. In the following, however, we demonstrate that

the worst-case guarantees for these four metrics can be up to

two orders of magnitude larger than the average performance

on the test set (reported in Table I).

2) Worst-Case Guarantees for Constraint Violations: We

first compute the worst-case constraint violations on the entire

data set, i.e. on all training and test set samples. This serves

as an empirical lower bound on the worst-case guarantees.

Then, using the mixed-integer linear reformulation of the

trained neural networks, we solve the MILPs in (24)–(25) to

compute the corresponding worst-case guarantees. In Table III,

we compare the obtained empirical lower bounds with the



TABLE III
WORST-CASE GUARANTEES FOR PHYSICAL CONSTRAINT VIOLATIONS

Emp. lower bound Worst-case guarantee

Test cases νg νline νg νline

(MW) (MW) (MW) (ratio) (MW) (ratio)

case9 2.5 1.8 2.8 1.1x 1.9 1.1x

case30 1.7 0.6 3.6 2.1x 3.1 4.9x

case39 51.9 37.2 270.6 5.2x 120.0 3.2x

case57 4.2 0.0 23.7 5.6x 0.0 –

case118 149.4 15.6 997.8 6.7x 510.8 32.7x

case162 228.0 180.0 1563.3 6.9x 974.1 5.4x

case300 474.5 692.7 3658.5 7.7x 3449.3 5.0x

worst-case guarantees related to the violation of the generator

constraints νg and of the transmission line constraints νline.

First, we find that the worst-case guarantees for constraint

violations can be substantial. Table III shows the violations

in MW-values. In percentage, the violations are on average

8.1% and up to 23.5% (case118) of the maximum system

loading shown in Table I for each case. Second, the worst-

case guarantees are on average 6.7 times and up to 32.7 times

larger than the empirical lower bounds (the empirical lower

bounds are obtained by evaluating the worst-case performance

on the discrete samples of the entire training and test dataset;

if we only consider the test set, then the worst-case guaran-

tees are on average 255.2 times larger than the performance

shown in Table II). For the case57 system, we obtained a

certificate that no input inside the input domain exists which

can lead to a violation of the line constraints. Overall, these

findings highlight that by only considering the performance on

the dataset, the worst-case performance can be significantly

underestimated, posing a risk for real-time deployment if we

do not take appropriate mitigation measures. At the same time,

our framework allows to obtain a provable exact certificate on

the worst-case performance of neural networks.

By analyzing the solutions, we identified that for 18 out

of the 35 evaluations (5 neural networks trained for each test

case), the worst-case generator violation (νg) occurs for the

slack bus generator, as this generator has to compensate for the

mismatch in predicted generation and load. For the line limits,

the worst-case violations occurred on a line directly connected

to the slack bus for 24 out of the 35 evaluations. Averaged

over the 7 test cases and 5 runs for each test case, it takes

3.4 minutes to compute the tightened bounds for the mixed-

integer reformulation in (17) and (19), and 1.4 minutes to solve

both the MILP to zero MILP gap and compute the worst-

case guarantees. Based on the activation patterns on the entire

dataset, on average, 17.1% of the ReLU activations are fixed

to be active and 39.4% are fixed to be inactive for solving the

MILPs (as described in Section III-A about ReLU stability).

3) Worst-Case Guarantees for Distance of Predicted to

Optimal Decision Variables and for Sub-Optimality: In the

next step, in Table IV, for the same trained neural networks

TABLE IV
WORST-CASE GUARANTEES FOR (I) DISTANCE OF PREDICTED TO

OPTIMAL DECISION VARIABLES AND (II) SUB-OPTIMALITY

Emp. lower bound Worst-case guarantee

Test cases νdist νopt νdist νopt

(%) (%) (%) (ratio) (%) (ratio)

case9 1.2 3.3 1.4 1.2x 3.8 1.1x

case30 2.0 0.6 6.4 3.2x 2.5 3.8x

case39 6.2 0.6 64.4 10.4x 3.1 4.9x

case57 0.5 0.2 18.6 37.9x 1.8 8.1x

case118 35.0 0.2 265.7 7.6x 1.6 6.5x

and using the same procedure as in Table III, we compare the

obtained empirical lower bounds and worst-case guarantees

related to (i) the maximum distance between the predicted

and the optimal decision variables νdist and (ii) the sub-

optimality νopt. For these two metrics, we also observe that the

worst-case guarantees can be substantial; they are on average

8.5 times and up to 37.9 times larger than the empirical

lower bounds which are obtained by calculating the worst-case

neural network performance on the discrete dataset samples.

By analyzing the solutions for the metric νdist, we identified

that for 12 out of the 25 evaluations, the worst-case distance

between the neural network prediction and the optimal solution

occurs for the slack bus generator. For the first four test cases,

on average, it takes 0.3 minutes to solve both the MILPs to

zero MLIP gap. For the case118, the average computational

time increases to 25.6 minutes to solve both the MILPs

to compute νdist and νopt to zero MILP gap. Note that the

computational complexity increases as the KKT conditions of

the DC-OPF problem are included in (31) – (32). For the

case162 and case300, the MILPs could not be solved to a zero

MILP gap within 3 hours. Improving the tractability using

decomposition techniques and validating the satisfaction of

constraint qualifications for global optimality to the bi-level

program in (28) – (30) are subject of our future work [23].

4) Input Domain Reduction: In the following, we demon-

strate that the worst-case guarantees can be systematically

reduced by training on a larger input domain than the worst-

case guarantees are evaluated on. We achieve this by reducing

the input domain D with a term δ that can vary between 0.0

and 0.2: (0.6 + δ)pmax
d ≤ pd ≤ (1.0 − δ)pmax

d . For case39,

case57 and case118, Fig. 2 shows the worst-case guarantees

as a function of the input domain reduction δ. Note that the

values on y-axis are normalized to 100% with respect to the

worst-case values reported in Tables III and IV for the entire

initial input domain. First, we can observe that the inputs (i.e.,

the loading pd) which lead to the worst-case performance are

at the boundary of the input domain. Second, by increasing

the input domain reduction δ, the worst-case bounds can be

systematically reduced (e.g., for these three test cases, by

reducing each dimension by δ = 0.08, we can reduce all

worst-case guarantees to below 20% compared to the initial

domain). This implies that to reach an acceptable worst-case
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Fig. 2. The worst-case guarantees are shown as a function of the input
domain reduction δ for case39, case57 and case118. Note that the values
are normalized to 100% with respect to the worst-case values reported in
Tables III and IV for the entire initial input domain.

performance on a specified domain, the neural network can be

re-trained on a larger domain if the initial performance is not

satisfactory.

V. CONCLUSION

This work introduces for the first time a framework to

obtain worst-case guarantees for neural networks. As a guiding

example, we apply it to neural networks predicting DC-

OPF solutions. Our work addresses a major barrier which, if

removed, would enable the application of neural networks in

safety-critical systems. Leveraging mixed-integer linear refor-

mulations of trained neural networks, we can obtain worst-case

guarantees with respect to the maximum physical constraint vi-

olations, the maximum distance between the predicted and the

optimal decision variables, and the maximum sub-optimality.

For a range of PGLib-OPF networks up to 300 buses, we

show that the obtained worst-case guarantees can be up to one

order of magnitude larger than the empirical lower bounds (i.e.

computing the maximum of an error metric on the discrete

samples of the entire dataset). More importantly, we show

that the worst-case predictions appear on the boundaries of

the input domain used for training. As a result, the worst-

case guarantees can be systematically reduced by training

the neural network on a larger input domain, and applying

it on a subdomain. Future work is directed towards robust

neural network training and obtaining worst-case guarantees

for predicting solutions to AC-OPF problems.
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