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Abstract: By controlling the crystallization behavior of Poly (lactic acid) (PLA) in 

presence of hydrazide nucleating agent (HNA), PLA-HNA foams with enhanced 

microcellular structure were prepared via supercritical CO2 foaming. It was found that 

HNA can self-assemble into fibrillar networks, inducing the crystallization of PLA on 

their surface, and “shish-kebab” crystalline structure with high crystallinity formed, 

which can be maintained during the whole foaming process. Incorporation of HNA 

promoted the formation of gt conformers, improved the amount of dissolved CO2, 

hindered the escape of CO2, and increased the viscoelasticity of PLA. Compared with 

neat PLA foam, for PLA-HNA foam, the average cell diameter decreased obviously, 

from 64.39 to 6.59μm, while the cell density increased up to nearly three orders of 

magnitudes, from 6.82×10
6
 to 4.44×10

9
 cells/cm

3
. Moreover, lots of fibrillar structure 

appeared and entangled with each other on the cell wall of the foam. By forming such 

dense micropores and enhanced fibrillar structures, PLA foam was highly reinforced 

with significantly improved compressive strength. 

Keywords: Poly (lactic acid) (PLA); Microcellular foam; Enhanced crystalline 

structure; Foaming behavior; Reinforcing mechanism 

1. Introduction 

Microcellular foams, which are usually characterized by a cell size less than 10 

µm and a cell density greater than 10
9
 cells/cm

3
, exhibit significant advantages over 



ordinary foams, such as high impact toughness, superior heat and sound insulation 

properties.
1-8

 At present, the preferential way to prepare microcellular foam is 

supercritical CO2 (scCO2) foaming, which applies non-toxic, nonflammable and 

inexpensive CO2 as the blow agent.
9, 10

 Although some microcellular foams have been 

prepared via supercritical CO2 foaming in recent decades, from amorphous to 

semi-crystalline polymers, such as PP, PS, and so on,
11-13

 the overuse of such 

petroleum-based polymers not only consumes lots of petrochemical energy, but also 

brings about series of ecological environment problems. 

Poly (lactic acid) (PLA), a biobased and biodegradable aliphatic polyester, 

derived from renewable resources such as corn and sugarcane, has been considered as 

the most promising replacement for petroleum-based polymer due to its outstanding 

mechanical properties and good processing ability.
14-17

 However, PLA usually 

exhibits low viscoelasticity at processing temperature as a consequence of its linear 

structure and slow crystallization kinetics, which could negatively affect cell growth 

and cell uniformity during foaming process due to cell coalescence and cell-wall 

rupture. And thus the preparation of microcellular PLA foams with uniform cell 

morphology remains challenging. 

At present, some methods have been proposed to improve the foaming behavior 

of PLA, such as chain extension, chain branching, and blending with other 

materials.
18-23

 Moreover, controlling crystallization kinetics of PLA during foaming 

has also been recognized as an effective way to improve its foaming behavior. Li et al. 

reported a new supercritical fluid foaming process based on pre-isothermal cold 

crystallization for PLA, and foams with high expansion ratio were obtained.
24

 Tiwary 

et al. prepared chain branched PLA containing nucleating agent through reactive 

extrusion, and very fine, sub-micron sized foams were obtained.
25

 Nieddu et al. 



studied the foaming behavior of PLA/nanoclay composites by using CO2 as blowing 

agent. It was found that, both cell nucleation and growth behaviors of PLA were 

improved due to the more rapid crystallization kinetics triggered by the presence of 

nanoclay.
26

 Wang et al. incorporated chain extender (CE) as well as 

hydroxyl-functionalized graphene (HG) into PLA to improve the crystallization 

behaviors and rheological properties of PLA, and foams with nanocellular structure 

were obtained.
27

 Based on PLA/graphene oxide (GO) nanocomposites, Geng et al. 

also prepared composite foams with nanopores via supercritical CO2 foaming at low 

temperature.
28

 In conclusion, at present, for the purpose of foaming, the improvement 

in crystallinity of PLA has been usually achieved by 

pre-isothermal/pre-non-isothermal crystallization treatment or incorporation of 

nano-particles as heterogeneous nucleators in PLA, such as nanosilica, nanoclay and 

graphene, and so on.
29

  

Self-assembling nucleating agents can be dissolved in polymer melt and then 

self-assemble into special frameworks upon cooling, such as needle-like, dendritic 

and flower-like crystals, inducing the crystallization of polymer with sorts of 

crystalline morphology.
30

 Hydrazide nucleating agent (HNA) with structural feature 

of containing a large number of functional polar groups like C=O and N-H, can also 

recrystallize and self-assemble into fibrillar or dendritic crystalline structure upon 

cooling due to the association of hydrogen bonds between HNA molecules. In this 

work, by controlling the crystallization behavior of PLA in presence of HNA, the 

enhanced fibrillar crystalline structure with high crystallinity was expected to form for 

PLA, which was very beneficial for enhancing the viscoelasticity and improving the 

foaming ability of PLA matrix, and thus PLA-HNA foams with microcellular 

structure could be prepared. The formation of the enhanced crystalline structure for 



PLA-HNA was studied, while the influence of HNA content on the foaming behavior, 

microcellular structure and mechanical properties of PLA foam was discussed. 

Furthermore, the formation mechanism of the enhanced microcellular structure for 

PLA-HNA foams was explored. 

2. Experimental  

2.1 Materials 

Poly (L-lactic acid) (PLA) comprising 2% DLA (NatureWorks® 3052D) was 

provided by Nature Works Co., USA. The molecular weight (Mw) and the 

polydispersity was about 1×10
5
 and 1.21, respectively, and the melt flow index was 14 

g/10min. The glass transition temperature of PLA (Tg) was about 58
o
C and the 

melting temperature (Tm) was about 156
o
C. Hydrazide nucleating agent (HNA) with 

analytical grade was supplied by Shanxi Provincial Institute of Chemical Industry, 

China. The molecular weight (Mw) of HNA was 438 and the density was about 1.16 

g/cm
3
. The chemical structure of HNA was shown in Figure 1.  

 

Figure 1. Chemical structure of HNA 

2.2 Preparation of PLA microcellular foam 

A HAAKE internal mixer (Thermo Scientific, U.S.A.) was used to prepare PLA 

samples containing various amounts of HNA. After compounding by the mixer for 

10min, the product was compression molded into sheets at 200
o
C and 10MPa for 

5min, followed by cooling to 30
o
C (the cooling rate was 2

o
C/min). Then the sheets 

were cut into squares with dimensions of 10×10 mm
2
 for foaming.  

The PLA microcellular foams were prepared by batch foaming process by using 



sc-CO2 as foaming agents. The sample was put into a self-made high-pressure vessel 

with volume of 1L and then was pre-heated to 150
o
C. The pressure of the vessel was 

controlled by a supercritical fluid pump (TELEDYNE ISCO 500D, Lincoln, Nebraska) 

with control precision of 0.01MPa. The temperature control precision of the vessel 

was about 1
o
C. Then, after flushed by low pressure CO2 for 5 min, the vessel was 

pressurized to 18MPa. After saturation for 2h, the sample underwent a rapid quench 

of pressure (the decompression rate was about 4MPa/s) for cell nucleation and growth. 

Finally, after the vessel was cooled down with a water cooling system, the sample was 

removed from the vessel and foam product was obtained. 

2.3 Measurements 

2.3.1 Polarized optical microscopy (POM) analysis 

The crystalline morphology of PLA samples was observed by an Olympus BX51 

microscopy (Olympus Co., Japan) equipped with a HCS 302 hot-stage (INSTEC, 

USA). Before observation, slice sample with thickness of 20μm was prepared.  

2.3.2 In-situ FTIR analysis 

The time-dependent IR absorbance spectrum of PLA samples were recorded by 

using a Nicolet-IS10 (Thermo Electron Co., USA) spectrometer with a 4 cm
−1

 spectral 

resolution. The measurement was conducted under the protection of nitrogen and the 

baseline correcting process was performed by using the automatic baseline correction 

of OMNIC 8.2 spectral collecting software (Thermo Fisher Scientific Inc., USA). 

2.3.3 Differential scanning calorimetry (DSC) analysis 

The non-isothermal crystallization analysis of PLA samples was performed with a 

Netzsch 204 differential scanning calorimetry (DSC) (Phoenix Co, Germany). Xc can 

be obtained with the following formula: 

Xc=[(ΔHm-ΔHc)/ΔH0]*100%   (1)  



where ΔHm and ΔHc were the melting enthalpies and cold crystallization enthalpies for 

the samples; ΔH0 was the melting enthalpy of 100% crystalline PLA which was 

93J/g.
31

 

2.3.4 The amount of dissolved CO2 

A gravimetric method was applied to determine the amount of CO2 dissolved in 

PLA samples.
28

 The original weight of PLA samples was measured by an electronic 

balance readable to 0.0001 g, and then samples were placed into the high-pressure 

vessel under a CO2 gas pressure of 18MPa at 150
o
C (the same as the foaming 

condition) for a certain time to absorb CO2. Afterward, the vessel was slowly 

depressurized with a pressure relief rate of 0.5MPa/s (to avoid foaming), and the 

CO2-absorbed samples were taken out and weighed immediately. The results showed 

in this work were an average of the data for five samples.  

The amount of CO2 dissolved in PLA samples can be determined with the 

following formula: 

The amount of dissolved CO2=(Wt-Wi)/Wi   (2) 

where Mi and Mt were the masses of the sample before and after absorption, 

respectively. 

Furthermore, the weight loss of the saturated PLA samples during desorption 

process over time at atmosphere pressure was measured. After saturated for 2h at 

18MPa and 150
o
C, samples were removed from the vessel immediately and weighed 

at regular time intervals. The weight loss of PLA samples can be calculated as 

follows: 

Weight loss= [(Wi-Wt)/Wi]*100%   (3) 



where Mi was the mass of saturated sample and Mt was the mass of the sample after 

desorption. The results showed in this work were an average of the data for five 

samples. 

2.3.5 Scanning electron microscope analysis (SEM) 

The analysis of the crystalline structure and cellular structure for PLA samples 

was performed with a JEOL JSM-5900LV scanning electron microscope (JEOL co, 

Japan).
32

 The average cell diameter as well as the cell density of the PLA foams was 

estimated by using image analysis software (Image Pro Plus, USA). The cell density 

was calculated with Eq. (4): 

Nf = (nM
2
/A)

3/2
  (4) 

where Nf was cell density of the sample; n was the number of cells in specific region; M 

was the magnification factor and A was the area of specific region. 

2.3.6 Dynamic mechanical analysis 

Dynamic mechanical analysis (DMA) of PLA samples was performed with a 

Q800 DMA instruments (TA Instruments, USA) according to ISO 6721-1-2019. 

Samples were measured with a stretching mode under a frequency of 1 Hz. The 

temperature range was 30~200
o
C and the heating rate was 3°C/min. The dynamic load 

of 5N and amplitude of 15% were applied. The dimension of the sample was 25×5×1 

mm
3
. The results showed in the work were an average of the data for five samples. 

2.3.7 Mechanical properties 

The compressive properties of PLA foams were measured by the 4302 material 

testing machine (Instron Co., USA) at room temperature according to ISO 844-2004. 

The foam was compressed to 50% of the initial thickness at room temperature. The 

dimension of the sample was 10×10×4 mm
3
 and the test speed was 5 mm/min. The 

results showed in the work were an average of the data for five samples.  



3. Results and Discussion 

3.1 Formation of Enhanced Distinctive Crystalline Structure of PLA-HNA 

The preparation process of PLA-HNA microcellular foams included two steps: 

compression molding process and batch foaming process. In the compression molding 

process, PLA-HNA samples were compression-molded at 200°C and cooled with a 

cooling rate of 2
o
C/min to promote the formation of perfect crystalline structure in the 

sample. In the batch foaming process, samples were saturated with CO2 for 2h at 

150
o
C and 18MPa, followed by a rapid release of pressure for cell nucleation and 

growth, and quenched to room temperature. The influence of HNA on the crystalline 

structure of PLA at different stage of foam-preparation process was studied. 

As shown in Figure 2, for neat PLA, during the first cooling process from 200
o
C 

to 30
o
C, a small amount of spherulites began to precipitate at 116

o
C, while the 

spherulite growth was basically completed at 90
o
C, and only sparse spherulites were 

observed at 30
o
C. For PLA-0.5wt% HNA, no precipitate can be observed at 200

o
C, 

and when the temperature dropped to 118
o
C, unique macroscopic short fibrillar 

structure attributed to the self-organization of HNA molecules can be observed. When 

the temperature further dropped to 114
o
C, it was interesting to find that not only more 

HNA fibrils formed but also PLA crystals grew perpendicularly to the long axis of the 

fibrils, forming a unique shish-kebab-like structure. For PLA-2wt% HNA, some 

fibrillar structure can be found in PLA melts at 200
o
C, indicating that HNA was not 

completely dissolved in PLA melt. When the temperature dropped to 140
o
C, more and 

more HNA fibrils precipitated, forming a hybrid dendritic network structure, while 

PLA began to crystallize on the surface of HNA at 130
o
C. Compared with PLA-0.5wt% 

HNA, for PLA-2wt% HNA, the aspect ratio of fibrils became larger and the packing 

density of the fibrils was much higher, forming a large amount of shish-kebab 



structure. When the samples were re-heated to 150
o
C for sorption of CO2 and then 

quenched to room temperature, most of the crystalline structure was maintained for all 

samples, as shown in Figure 2. 

 

 



 

Figure 2. POM images of PLA, PLA-0.5wt% HNA and PLA-2wt% HNA corresponding to 

the thermal history during the mold-pressing process and foaming process  

More microscopic information about the crystalline structures of PLA samples 

with and without HNA at 30
o
C was obtained by SEM analysis. Before observation, 

samples were etched with a methanol-water mixture solution (1:2 by volume) 

containing 0.025 mol/L sodium hydroxide to selectively remove both the HNA 

frameworks and the amorphous regions from PLA crystals. As shown in Figure 3, for 

neat PLA, lots of holes can be observed on the surface of the sample, which was 

attributed to the etched amorphous phase. For the samples with 0.5wt% HNA, it can 

be seen that HNA self-assembled into fibrils with random arrangement in PLA matrix 

(the red bars depicted in SEM images represented the HNA fibrils which were etched 

away by the solution), and the “shish-kebab” structure can be observed. The “kebab” 

was originated from the overlap of PLA lamellae while the “shish” was originated 

from the HNA fibrils. With further increasing of HNA content, “shish-kebab” 

structures with more quantity and larger size can be found in the PLA matrix, which 

was consistent with the phenomenon observed by POM.  



 
Figure 3. SEM micrographs of etched PLA, PLA-0.5wt% HNA and PLA-2wt% HNA 

FTIR was used for studying the crystallization behavior of PLA-HNA samples.
33

 

Based on the rotational isomeric state (RIS) model, the infrared absorption peaks in 

the carbonyl region of PLA can be divided into four different conformational peaks: 

tt(1777 cm
-1

), tg(1769 cm
-1

), gt(1758 cm
-1

), and gg(1747 cm
-1

), respectively, as shown 

in Figure 4A. Among them, the gt conformer with the lowest energy formed 103 helix, 

which constituted the most stable α-crystal of PLA. 

Figure 4(B, b) displayed the original spectra in the carbonyl stretching region of 

neat PLA and PLA-2wt% HNA recorded during the non-isothermal crystallization 

from 200
o
C to 30

o
C. With the decrease of temperature, the peak of the carbonyl 



region of the both samples narrowed, while the maximum peak intensity increased. 

The difference spectra were obtained by subtracting the initial spectrum from the 

consecutive spectra, as shown in Figure 4(C, c). For both neat PLA and PLA-2wt% 

HNA, upon cooling, the intensity of gt conformer at 1758 cm
-1

 was positive, while 

intensities of other three peaks were negative, indicating that tt, tg and gg conformers 

transformed into gt conformer during crystallization. Meanwhile, compared with neat 

PLA, for PLA-2wt% HNA sample, when the temperature decreased, the variation of 

the peak intensity at 1758 cm
−1

 was greater, while the peak intensity at 1777 and 1747 

cm
−1

 changed little, indicating that more gt conformer formed for PLA during 

crystallization by incorporation of HNA and thus lower energy barrier was required 

for the following formation of PLA α-crystal. 



 
Figure 4. Peak distribution spectra for the carbonyl stretching region of PLA (A); 

time-resolved spectra of PLA (B) and PLA-2wt% HNA (b); the corresponding difference 

spectra of PLA (C) and PLA-2wt% (c) 

Figure 5 presented the DSC curves of neat PLA and PLA-HNA with different 

HNA content at a heating rate of 10
o
C/min, from which the enthalpy of melting (△H) 

and crystallinity (Xc) can be obtained, as listed in Tab.1. All samples exhibited three 

distinct peaks corresponding to glass transition at 60°C, cold crystallization peaks at 

about 90-120°C, and melting peaks at around 155°C respectively. Neat PLA showed 

slow crystallization during cooling from the melt, and thus imperfect crystalline 

structure formed during the sample preparation process. In this case, obvious cold 

crystallization occurred during the heating process of DSC measurement. With the 



increase of HNA content, the cold crystallization peak became smaller and moved to 

lower temperature. By introduction of HNA, the crystallization ability of PLA was 

enhanced greatly, and the crystallization can be almost completed during the sample 

preparation process, and thus the cold crystallization was weakened. Moreover, it was 

reported that PLA crystals showed a large tendency to reorganize into more stable 

structures through continuous partial melting–recrystallization–perfection mechanism 

during heating, resulting in a multiple melting behavior.
34

 The melting peak at higher 

temperature was attributed to the melting of a more perfect crystalline structure 

formed by reorganization of PLA and the shoulder peak at lower temperature was 

contributed to the less perfect crystalline structure. By the introduction of HNA, the 

shoulder melting peak at lower temperature became smaller and even disappeared, 

indicating the formation of more perfect crystalline structures with high regular 

arrangement. Besides, as shown in Table 1, the melting enthalpy and crystallinity of 

PLA increased obviously with increasing HNA content, from 2.49% to 31.38%, 

suggesting that the crystallization of PLA can be promoted greatly by incorporation of 

HNA. 

 

Figure 5. DSC curves of PLA-HNA with different HNA content 



Table 1. DSC parameters of PLA-HNA with different HNA content 

Sample Tg(℃) Tm1(℃) Tm2(℃) ΔH(J/g) Xc(%) 

PLA 56.2 152.3 156.5 2.32 2.49 

PLA-0.5wt% HNA 57.2 149.2 156.4 5.48 5.89 

PLA-0.7wt% HNA 56.4 - 154.6 23.24 24.98 

PLA-1wt% HNA 56.6 - 155.8 27.17 29.22 

PLA-2wt% HNA 56.8 - 155.4 28.67 30.83 

PLA-3wt% HNA 56.9 - 156.6 29.18 31.38 

The viscoelastic properties under foaming conditions were important for foaming 

behavior of materials. The DMA curves of PLA-HNA samples with different HNA 

content at foaming temperature was presented in Figure 6. By introduction of HNA, 

both storage modulus and loss modulus of PLA samples increased sharply, and 

compared with neat PLA, the storage modulus and loss modulus of PLA-3wt% HNA 

increased by 781% and 271%, respectively, indicating the significant enhancement of 

the viscoelasticity at the foaming temperature. Due to the retention of 

shish-kebab-like crystalline structure in PLA-HNA samples under foaming 

temperature, the stiffness of the material was improved, which was beneficial for PLA 

to resist excessive deformation under the stress. 



 
Figure 6. Storage modulus and loss modulus of PLA and PLA-HNA with different HNA 

content at foaming temperature 

3.2 Foaming Behavior of PLA-HNA  

Figure 7a showed the amount of CO2 dissolved in neat PLA and PLA-HNA 

samples as a function of absorption time. It can be seen that, in the initial stage of 

adsorption, the amount of dissolved CO2 for all samples increased rapidly with the 

increase of adsorption time, and then gradually stabilized, indicating that samples 

were fully saturated by CO2. Furthermore, with the increase of HNA content, the 

saturated amount of CO2 dissolved in the matrix increased at first and then declined 

slightly. Based on the result of DSC analysis, by incorporation of HNA, the 

crystallinity of PLA increased obviously, and thus a large amount of 

crystalline-amorphous interface formed. Such interface provided sorption sites for 

CO2 and then the amount of CO2 dissolved in PLA-HNA samples increased. However, 

because CO2 can only be dissolved in the amorphous region, the amount of CO2 

dissolved in PLA decreased for PLA-3wt%HNA samples with high crystallinity. The 

desorption curves of CO2 for the saturated samples were shown in Figure 7b. It can be 

seen that, the weight loss, i.e. CO2 desorption ratio, of neat PLA and PLA-HNA 

increased at first and then reached equilibrium. Under the same desorption time, the 



weight loss of samples decreased obviously with the increase of HNA content, 

indicating that less CO2 overflowed from the sample. The phenomenon was attributed 

to the fact that the crystalline region in PLA samples hindered the diffusion and 

escape of CO2.  

 
Figure 7. The amount of CO2 dissolved in PLA and PLA-HNA samples (a), Desorption 

curves of saturated neat PLA and PLA-HNA samples (b) 

3.3 Formation of Enhanced Microcellular Structure 

The cell morphologies of PLA foams with different content of HNA were shown 

in Figure 8. For neat PLA foam, it presented polygon cellular structure with large cell 

size and uneven cell size distribution. In contrast, by incorporation of HNA, elliptical 

cells with much smaller cell size can be observed.  



 
Figure 8. SEM images and cell size distribution of PLA-HNA foams with different HNA 

content 

The structure of the cell wall of neat PLA and PLA-HNA foams was observed in 

detail as shown in Figure 9. It can be seen that, for neat PLA foam, very smooth cell 

walls can be observed. In contrast, for the PLA-HNA foam, lots of fibrillar structure 

appeared and entangled with each other. Such entangled fibrillar structure with high 

aspect ratio and high crystallinity can acted as a “pillar” structure to improve the 

ability of cell wall to resist deformation, and thus delay the damage and collapse of 

the cell. 



 
Figure 9. Morphology of the cell wall of neat PLA and PLA-HNA foams 

Figure 10 summarized the average cell density, cell size, apparent density and 

expansion ratio of the PLA-HNA foams. With the increase of HNA content, the cell 

density and apparent density of PLA foam increased remarkably, while the average 

cell size and expansion ratio decreased. By incorporation of 3wt% HNA, the cell 

density of PLA foam reached 4.44×10
9

 cells/cm
3
, which was three orders of 

magnitude higher than that of neat PLA foam, and the average cell size decreased to 

6.59μm, reaching the level of microcellular foam.  

 
Figure 10. Average cell density and average cell size (a); apparent density and expansion 

ratio (b) of PLA-HNA foams with different HNA content 

3.4 Mechanical Properties and Formation Mechanism of Enhanced Microcellular 

Structure for PLA-HNA Foam 

The compressive strength and compressive modulus of PLA-HNA foams were 

illustrated in Figure 11. With increasing HNA content, both compressive strength and 

compressive modulus of PLA foam increased remarkably, exhibiting excellent 



compression resistance.  

 
Figure 11. Compressive properties of PLA-HNA foams with different HNA content 

In summary, the formation mechanism of enhanced microcellular structure for 

PLA-HNA foam was proposed, as illustrated in Figure 12. For neat PLA, due to the 

poor crystallization ability, sporadic and small spherulites formed in the sample. 

Meanwhile, the low viscoelasticity resulted in the occurrence of cell coalescence and 

cell-wall rupture, and thus foams with low cell density and large cell size were 

obtained. For PLA-HNA, incorporation of HNA not only increased the crystallinity of 

PLA obviously, but also promoted the formation of enhanced shish-kebab crystalline 

structure, which was beneficial for improving the viscoelasticity of PLA and reducing 

the cell coalescence of the foam. Moreover, the abundant interface between 

crystalline and amorphous regions provided lots of sorption sites for CO2, while the 

crystalline structure could hinder the escape of CO2 from the matrix, leading to an 

increase in the amount of dissolved CO2 and a decrease in CO2 desorption ratio for 

PLA-HNA samples. In addition, the crystal-amorphous region interface can also 

provide lots of heterogeneous nucleating sites for cell nucleation. Therefore, abundant 

gas can be wrapped efficiently in the cells and dense micropores (high apparent 



density) were obtained for PLA-HNA sample. The dense cell structure together with 

the enhanced fibrillar structure on the cell wall contributed to the significantly 

improved compressive strength and modulus for PLA-HNA foams. 

 
Figure 12. Schematic illustration of the foaming process of neat PLA and PLA-HNA 

4. Conclusions 

HNA was incorporated into PLA to tailor the crystallization behavior and 

PLA-HNA foams with microcellular structure were prepared via supercritical CO2 

foaming. HNA can precipitate prior to the crystallization of PLA and self-assemble 

into fibrillar networks, inducing the crystallization of PLA on their surface, and thus 

“shish-kebab” structure formed. The crystallization temperature moved to lower 

temperature for PLA-HNA, and the crystallinity increased with increasing HNA 

content. Compared with neat PLA, the variation of the intensities of bands at 1758 

cm
−1

 for PLA-2wt% HNA sample was larger, indicating that higher population of gt 

conformer formed. Addition of HNA not only significantly increased the amount of 

CO2 dissolved in PLA, but also improved the viscoelasticity of PLA matrix 

significantly. Compared with the neat PLA foam, by introduction of HNA, the 

average cell diameter of PLA-HNA foam decreased dramatically, from 64.39μm to 

6.59μm, and the cell density increased remarkably, from 6.82×10
6
 cells/cm

3
 to 

4.44×10
9

 cells/cm
3
,
 
reaching the microcellular level. Due to the formation of dense 

micropores and enhanced crystalline structures on the cell wall of the foam, PLA 



foam was highly reinforced with significantly improved compressive strength and 

modulus.  
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Figure Captions 

Figure 1. Chemical structure of HNA 

Figure 2. POM images of PLA, PLA-0.5wt% HNA and PLA-2wt% HNA 

corresponding to the thermal history during the mold-pressing process and foaming 

process 

Figure 3. SEM micrographs of etched PLA, PLA-0.5wt% HNA and PLA-2wt% HNA 

Figure 4. Peak distribution spectra for the carbonyl stretching region of PLA (A); 

time-resolved spectra of PLA (B) and PLA-2wt% HNA (b); the corresponding 

difference spectra of PLA (C) and PLA-2wt% (c)  

Figure 5. DSC curves of PLA-HNA with different HNA content 

Figure 6. Storage modulus and loss modulus of PLA and PLA-HNA with different 

HNA content at foaming temperature 

Figure 7. The amount of CO2 dissolved in PLA and PLA-HNA samples (a), 

Desorption curves of saturated neat PLA and PLA-HNA samples (b) 

Figure 8. SEM images and cell size distribution of PLA-HNA foams with different 

HNA content 

Figure 9. Morphology of the cell wall of neat PLA and PLA-HNA foams 

Figure 10. Average cell density and average cell size (a); apparent density and 

expansion ratio (b) of PLA-HNA foams with different HNA content 

Figure 11. Compressive properties of PLA-HNA foams with different HNA content 

Figure 12. Schematic illustration of the foaming process of neat PLA and PLA-HNA 

Table Captions 

Table 1. DSC parameters of PLA-HNA with different HNA content 
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