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Abstract 

A novel fully biosbased poly(lactic acid)-b-poly(lactide-co-caprolactone) 

(PLA-b-PLCL) with two phase structure and long-chain branches was specifically 

designed and prepared through reactive melt processing. The results showed that 

PLCL segments were introduced onto PLA chains successfully. With the increase of 

PLCL content, the blockier distribution of LA/CL chain sequences of the sample was 

exhibited. PLA-b-PLCL showed two distinct thermal transitions, corresponding to the 

glass transition of PLA and PLCL domains, respectively, while the phase morphology 

changed from sea-island to co-continuous structure with increasing PLCL content. 

Due to the long-chain branched structure, PLA-b-PLCL samples showed much high 

viscoelasticity, strong molecular entanglement and obvious strain-hardening behavior, 

resulting in high draw ratio of the sample during orientation process, while the tensile 

strength and the modulus of the oriented sample reached up to 173 MPa and 5.4 GPa 

respectively, which basically met the requirements of bone screws. Moreover, 

PLA-b-PLCL showed triple shape memory effect at 55 
o
C and 120 

o
C, respectively. 

For PLA-b-30wt%PLCL, the recovery ratio can reach up to 98.1% under 55 
o
C, while 

high mechanical properties can be maintained, realizing self-reinforcement and 

self-fastening effect simultaneously as smart bone fixation material. 

Key words: Poly(lactic acid); two phase structure; long-chain branches; viscoelastic 

behavior; triple shape memory effect 

1. Introduction 

Poly(lactic acid) (PLA) is a thermoplastic and biodegradable aliphatic polyester 

derived from naturally occurring organic acid (lactic acid).
[1-3]

 Due to the excellent 

biocompatibility, complete biodegradability and non-toxic nature of degradation 

products, PLA has been demonstrated to be a suitable material for producing bone 



fixation devices such as absorbable plates and screws.
[4-8]

 Unfortunately, just as most 

biodegradable polymers, some properties of PLA are unsatisfactory when it acts as 

implanted bone fixation materials: the mechanical strength of PLA is not sufficient for 

fixation of weight loading bones; self-fastening property is deficient compared with 

some shape memory alloys.
[9]  

Molecular orientation can enhance the mechanical properties of PLA 

significantly.
[10]

 Singh et al.
[11]

 fabricated orientated PLA-based nanocomposite 

through solid-state drawing. The tensile strength as high as 71 MPa and modulus of 

1.72 GPa were obtained for the oriented sample. Yuan et al.
[12]

 produced PLLA fibers 

through melt extrusion and hot drawing. The maximum draw ratio reached up to 589% 

and the tensile modulus of the fiber was 3.6~5.4 GPa. However, due to the linear 

structure and narrow molecular weight distribution, PLA exhibited very low viscosity 

and poor melt elasticity. Therefore, ultra-drawing and high orientation of PLA is very 

difficult, resulting in a limited enhancement of the mechanical property through 

molecular orientation. In our previous study, long-chain branched PLA (LCB-PLA) 

was prepared through reactive melt processing. Due to the enhanced entanglement 

between long-branched chains, LCB-PLA showed obvious enhanced melt 

viscoelasticity compared with neat PLA, and thus high draw ratio as high as 1200% 

can be obtained during solid phase hot drawing.  

As a kind of semi-crystalline polymer, the crystalline domains and molecular 

entanglement of PLA and LCB-PLA can serve as the fixed phase, while their 

amorphous domains acts as the reversible phase to realize thermally induced shape 

memory effect to a certain extent.
[13-16]

 However, the glass transition temperature (Tg) 

of both neat PLA and LCB-PLA was about 65°C. Therefore, samples could hardly 

recover their shape under low temperature, especially like body temperature
 [17]

,
 
and 



then self-fastening function cannot be achieved when used as implant bone fixation 

screw.
[18-20]

 

In this work, by means of molecular design, biodegradable 

poly(lactide-co-caprolactone) (PLCL), with much lower Tg (-20~30°C) than that of 

PLA, was selected as another component of PLA system to construct two-phase 

separated structure, and thus owing to the two transition temperature of the material, 

triple shape memory effect was expected to be achieved for PLA system.
[21-22]

 

Meanwhile, in order to improve the viscoelasticity and thus obtain high draw ratio 

during solid phase hot drawing, the block copolymer of PLA-b-PLCL with long-chain 

branched structure was prepared through reactive melt processing. Consequently, on 

one hand, highly oriented PLA-b-PLCL with excellent mechanical properties can be 

obtained by solid hot drawing. On the other hand, when such highly oriented 

PLA-b-PLCL was heated to temperature range between transition temperature of PLA 

and PLCL, the PLCL domains relaxed, while PLA domains maintained the orientation 

structure, resulting in a partial shape recovery of the sample, which was beneficial for 

PLA based material to realize controllable shape recovery and self-fastening as well 

as self-reinforcement effect as smart bone fixation material. 

2. Experimental 

2.1. Materials 

Poly(lactic acid) (PLA) (3052D) in pellet form was purchased from Nature Works 

Co., USA. Poly(lactide-co-caprolactone) (PLCL), pyromellitic dianhydride (PMDA) 

and pentaerythritol polyglycidyl ether (PGE) were all commercial grade products.  

2.2. Materials preparation 

2.2.1 Preparation of PLA-b-PLCL 

PLA-b-PLCL with long-chain branches was prepared through reactive processing. 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%8f%a6%e4%b8%80%e6%96%b9%e9%9d%a2&tjType=sentence&style=&t=on+the+other+hand


PLA with different content of PLCL were mixed in Haake internal melt mixer 

(Rhecocrd 90, Germany) at 180 °C. After the pellets were melted, 2 wt% PMDA and 

2 wt% PGE were added into the mixer to react with PLA and PLCL. After reaction for 

10~30 min, the product was removed from the mixer and cut into small granules.  

2.2.2 Orientation of PLA-b-PLCL 

The orientation of PLA-b-PLCL samples was conducted via solid phase hot 

drawing by using a 5567 material testing machine from Instron Co. (U.S.A). The 

original length of the samples between clamps was 10 mm, and a constant 

deformation rate of 50 mm/min was applied. The orientation temperature was in the 

range of 70~120 °C. 

2.3. Measurements 

The structure of PLA samples was analyzed with a Nicolet-560 Fourier transform 

infrared spectrometer (FTIR) (U.S.) and an AV HD 400 NMR spectrometer (Bruker 

Co, Germany). The fractured surface morphology of PLA samples was observed with 

a JEOL JSM-5900LV scanning electron microscope (SEM, JEOL Co, Japan). Raman 

imaging measurements were carried out with DXRxi Raman Imaging Microscope 

(Thermo Fisher, USA). The mapping was conducted over an area of 200μm × 200μm. 

Thermo mechanical properties of the PLA samples were obtained by a dynamic 

mechanical analyzer (Netzsch DMA 242C). The viscoelasticity property of PLA 

samples was analyzed with an AR 1500ex dynamic stress rheometer (TA Instruments, 

USA). The elongational viscosity of PLA samples was measured by an ARES 

reheometer (TA instrument) at 170 °C. The tensile strength of PLA samples was 

measured with a 5567 material testing machine (Instron Co, USA). 

3. Result and discussions 

3.1. Structure characterization of PLA-b-PLCL with long-chain branches 



 The block copolymer of PLA-b-PLCL with long-chain branched structure was 

prepared through a two-step ring-opening reaction with anhydride and epoxy during 

processing as shown in Figure 1. BOB model 
[23]

 was applied to investigate the chain 

structures of PLA-b-PLCL, which indicated that the topological structure of the 

sample was made of linear chains, star-like chains with three arms and tree-like chains 

with two generations. 

 
Figure 1. Chain extension reactions (a) and possible chain structures of PLA-b-PLCL (b) 

3.1.1 Molecular structure 

The FTIR spectra of neat PLA and purified PLA-b-PLCL samples with varying 

PLCL content were depicted in Figure 2. For neat PLA, the absorption peaks at 2998 

cm
-1

 and 2944 cm
-1

 were assigned to the stretching vibration of C–H bond of methyl 

and methylene groups, respectively. The absorption peaks at 1453 cm
-1

 and 1352 cm
-1

 

were attributed to the flexural vibration of C–H bond of methyl and methylene groups. 

A single absorption peak at 1756 cm
-1

 can be observed corresponding to the stretching 



vibration of C=O bond. In addition, absorption peaks in the region of 1000~1150 cm
-1

 

was assigned to the stretching vibrations of C–O–C bond of ester group. For 

PLA-b-PLCL samples, besides absorption peaks attributed to PLA, two new 

absorption peaks at 1732 cm
-1

 and 1184 cm
-1

 were observed, which was assigned to 

the vibration of C=O and C–O–C bond of ester group in PLCL block connected 

directly with long alkyl chain.
[24,25]

 With the increase of PLCL component, the 

intensity of these two peaks increased, indicating that more and more PLCL 

molecules were introduced onto PLA chains. 

 
Figure 2. FTIR spectra of neat PLA and PLA-b-PLCL samples 

13
C NMR was used to further confirm the chain structure of PLA-b-PLCL. As 

shown in Figure 3a, three identifiable peaks can be observed for neat PLA. The peak 

at δ16.62 ppm belonged to the methyl carbons (–CH3) of PLA, while the peak at 

δ68.99 ppmδ169.58 ppm was the typical chemical shifts for the methine carbon (–

CH–) and carbonyl carbon (–COO–), respectively. Because the chain of both PLCL 

and PLA-b-PLCL were composed of ε-caprolactone (CL) segment and lactide (LA) 

segment, some new signals can be observed for these samples in the 
13

C NMR 

spectrum. The resonance at δ173.2 ppm belonged to the carbonyl carbon of CL 

segment and the peak at δ63.2 ppm was assigned to methine carbon of LA segment 



which connected directly with CL units. A series of signals in the region of 

δ24.0~25.8 ppm were the chemical shifts of the β and γ-methylene carbon atoms of 

CL units,
[26]

 and the detailed peaks in this region for PLA-b-PLCL samples with 

different PLCL content were shown in Figure 3b. It can be observed that, the intensity 

of CL–CL–CL, LA–CL–CL, CL–CL–LA and LA–CL–LA triads signals increased 

with the increase of PLCL content, indicating that more PLA molecules were 

connected with PLCL chains. 

 
Figure 3. 

13
C NMR spectrum of neat PLA, neat PLCL and PLA-b-PLCL samples (a); 

13
C 

NMR spectrum of PLA-b-PLCL in the region of δ24.0~26.0 ppm (b); 
13

C NMR spectrum of 

PLA-b-PLCL in the region of δ169.0~174.0 ppm (c) 

As shown in Figure 3c, the average lengths of lactide blocks (LLA) and 

ε-caprolactone blocks (LCL) can be calculated based on the intensities of the carbonyl 

signals in the region of δ169.0~174.0 ppm:
[27]

 

L𝐶𝐿 =
𝐼𝐶𝐶𝐶

𝐼𝐿𝐶𝐶
+ 1 (1) 

L𝐿𝐴 =
𝐼𝐿𝐿𝐿

𝐼𝐿𝐿𝐿𝐶
+ 1 (2) 



where ICCC and ILLL were the intensities of ε-caprolactone–ε-caprolactone and 

L-lactide–L-lactide triads, respectively; ILCC and ILLLC represented the intensities of 

ε-caprolactone–L-lactide triad and tetrad, respectively. 

For the PLA-b-10wt%PLCL sample, the values of LLA and LCL were 56.7 and 2.8 

respectively. With the increase of PLCL content, more PLCL molecules were 

introduced onto the PLA chains, and the values of LLA decreased to 30 for 

PLA-b-30wt%PLCL and further decreased to 16.6 for PLA-b-50wt%PLCL, while the 

values of LCL almost maintained constant, indicating blockier distribution of chain 

sequences of the sample.  

3.1.2 Two phase structure 

Figure 4 showed the temperature dependence of storage modulus and tan delta 

(tanδ) of the samples. It can be obviously seen that the storage modulus curves of neat 

PLA presented a single transition step at about 60~70 °C, corresponding to the glass 

transition of PLA. However, all PLA-b-PLCL samples exhibited two well-separated 

thermal transition steps in the range of -20~0 °C and 60~70 °C, corresponding to 

dramatic drop in storage modulus curves. The higher one (60~70 °C) was attributed to 

the glass transition of PLA phase, and the lower one (-20~0 °C) was attributed to the 

glass transition of PLCL phase. In Figure 4b, two distinct thermal transitions of 

PLA-b-PLCL samples can be also observed clearly in the tanδ curve. Such two 

distinct thermal transitions to switch off/on the molecular mobility may enable 

PLA-b-PLCL to memory two temporary shapes when stimulated by heat. 



 
Figure 4. Dynamic mechanical behaviors of neat PLA and PLA-b-PLCL samples 

Figure 5 showed the SEM micrographs of cryogenic fracture surfaces for neat 

PLA and PLA-b-PLCL samples. It was found that neat PLA showed a featureless 

morphology, while for the PLA-b-PLCL, a micro-phase separated morphology was 

observed. For PLA-b-10wt%PLCL, droplets of PLCL component with size range of 

0.1~1μm dispersed uniformly in PLA matrix. When the content of PLCL rose to 

20wt%, the sample still showed distinct sea-island structure, while the size of the 

dispersed PLCL domains became larger. When the content of PLCL was higher than 

30wt%, both PLA and PLCL components formed the continuous phase and a 

well-defined co-continuous structure was built up.  

 
Figure 5. SEM micrographs of cryogenic fracture surfaces for neat PLA and PLA-b-PLCL 

samples (magnification: 10000×) 

In order to further understand the distribution of the two components in 



PLA-b-PLCL samples, Raman mapping was performed. Specific Raman spectra of 

neat PLA and PLCL in association with various band assignments were shown in 

Figure 6a. At a glance of the whole Raman spectra, the two samples showed very 

similar absorption peaks. However, different from neat PLA, the C=O stretching band 

centered at 1728cm
 −1

 was a distinct feature for PLCL domains, and thus this band 

was chosen to distinguish PLCL from PLA during mapping analysis.
[28,29]

 PLCL 

domains were denoted in the mapping images as green colors as shown in Figure 

6(b~f). For PLA-b-PLCL samples with PLCL content of 10wt% and 20wt%, the 

mapping images showed well-separated PLA and PLCL phases, and PLCL phase was 

confined as small domains between PLA phases. For samples with PLCL content 

higher than 30wt%, continuous phase structure can be observed, confirming the 

morphology observed by SEM. 

 
Figure 6. Raman spectra of PLA and PLCL in the wavenumber region of 2000~500 cm

-1
 (a); 

Raman mapping images of PLA-b-PLCL samples (b~f) 

3.2 Viscoelastic behaviour and molecular entanglements of PLA-b-PLCL with 

long-chain branches 

3.2.1 Viscoelastic behaviour 



The complex viscosity of PLA-b-PLCL samples as a function of frequency was 

plotted in Figure 7a. For neat PLA, the complex viscosity remained constant in low 

frequency region, and then decreased at higher frequency, showing a transition from 

the Newtonian plateau to the power-law regime. For PLA-b-PLCL samples, higher 

complex viscosities than that of neat PLA in full frequency range can be observed, 

and with the increase of PLCL content, the onset of the shear thinning regimes started 

at a lower frequency. When PLCL content was higher than 20wt%, the Newtonian 

plateau almost disappeared.  

The storage modulus, G′, and loss modulus, G″, of PLA-b-PLCL samples were 

shown in Figure 7(b-c). It was noted that, all samples showed almost identical G′ and 

G″ values at high frequencies, and with the decrease of frequency, both G′ and G″ 

decreased. In the terminal region, the G′ and G″ of neat PLA followed the well-known 

frequency dependences of linear polymer, that was, G′ ∝ ω
2
 and G″ ∝ ω, for 

which only the longest relaxation times contributed to the viscoelastic behavior.
[30]

 

Therefore, for neat PLA, in the log-log plot of G′ and G″ with frequency, slopes of 2 

and 1 can be respectively observed in this region. Compared with neat PLA, 

PLA-b-PLCL samples showed much higher G′ values in terminal region and the 

terminal slopes decreased obviously. Such deviation from the curve of linear PLA at 

low frequency indicated high elasticity for PLA-b-PLCL samples due to the existence 

of long-chain branched structure with much longer relaxation time than that of the 

linear ones. 

The Cole-Cole plot of PLA-b-PLCL samples were shown in Figure 7d,
[31]

 which 

exhibited the relationship between real viscosity (η′) and imaginary viscosity (η″). It 

was found that, the Cole-Cole plot for neat PLA was arc-shaped. However, for 

PLA-b-PLCL samples, the radius of the arc became larger, and showed evident 



upturning at high viscosities, which was also observed by others for polymers with 

long-chain branches. Moreover, with the increase of PLCL content, the upturning 

became more and more evident.  

 
Figure 7. The complex viscosity (a), storage modulus (b), loss modulus (c) and Cole-Cole 

curves (d) of neat PLA and PLA-b-PLCL samples obtained by dynamic frequency sweep at 

180 °C 

3.2.2 Molecular entanglements 

 Entanglements between PLA molecules are essential in understanding its 

rheological properties. The average entanglement density (υe) can be obtained with 

the equation:
[32]

 

υ𝑒 = ρa/𝑀𝑒  (3) 

where ρa and Me are the density and the average molar mass between adjacent 

entanglement points, respectively.   

The entanglement molar mass (Me) of PLA-b-PLCL can be calculated based on 

the plateau modulus G𝑁
0 :

 [33,34]
 

𝑀𝑒 =
4𝜌𝑅𝑇

5𝐺𝑁
0    (4) 



where ρ is the density; T and R are the absolute temperature and gas constant, 

respectively. Based on the crossover modulus Gx (Gx= G′= G″), a semi-quantitative 

method was applied to extract the value of G𝑁
0  

[32]
: 

log (
𝐺𝑁

0

𝐺𝑋
) = 0.38 +

2.63 log(𝑀𝑤/𝑀𝑛)

1+2.45 log(𝑀𝑤/𝑀𝑛)
 (5) 

where Mw and Mn are weight-average molecular weight and number-average 

molecular weight of PLA-b-PLCL samples, respectively. 

The Arabic numbers 1 and 2 were used to represent the components PLA and 

PLCL, respectively, and then there were three types of possible entanglements: 1–1, 

2–2 and 1–2 (assumed to be equal to 2–1). Me12 was defined as the average 

entanglement molar mass between PLCL and PLA chains (dissimilar chains), which 

can be obtained with the equation: 

𝑀𝑒12 = 2𝜑1𝜑2𝑅𝑇(𝜌1𝜌2)
1

2 (𝐺𝑁
0 − φ1

2𝐺𝑁1
0 − 𝜑2

2𝐺𝑁2
0 )⁄  (6) 

where 𝜑1 and 𝜑2 are the volume fraction of PLA and PLCL, respectively; 𝜌1 and 

𝜌2 are the density of neat PLA and neat PLCL, respectively; 𝐺𝑁
0 , 𝐺𝑁1

0  and 𝐺𝑁2
0  are 

the plateau modulus of PLA-b-PLCL, neat PLA and neat PLCL, respectively. 

The entanglement state can be compared through the value of Me and Me12. As 

shown in Figure 8, the values of Me12 were smaller than Me for samples with PLCL 

content of 30%~50%, indicating that the dissimilar chains were more likely to 

entangle with each other than similar ones. Moreover, the υe values increased with 

increasing PLCL content. 



 
Figure 8. Average entanglement molar mass and entanglement density of neat PLA and 

PLA-b-PLCL samples 

3.2.3 Elongational viscosity 

Uniaxial viscosity of neat PLA and PLA-b-PLCL samples was shown in Figure 

9(a~f). The elongational viscosities of the neat PLA increased with time at the start of 

stretching, and then decreased, showing strain-softening phenomena. In contrast, the 

PLA-b-PLCL samples displayed strain-hardening behavior,
[31,35]

 which was 

represented as a sudden increase of the viscosity at high strain. Moreover, the strain 

hardening behavior became more and more obvious with the increase of PLCL 

content. Such strain-hardening behavior was important for solid hot drawing 

processing where high melt strength was required. 



 
Figure 9. Elongational viscosity (a~f) and strain-hardening coefficient (g) of neat PLA and 

PLA-b-PLCL samples 

The strain-hardening coefficient, XE, was calculated to quantitatively evaluate the 

strain-hardening behavior of PLA-b-PLCL: 

𝑋𝐸 = 𝜂𝐸
+(𝑡, 𝜀0)/3𝜂+ (𝑡) (6) 

where 𝜂𝐸
+ was the elongational viscosity of material at Hencky strain of 2.7 and 𝜂+ 

was transient shear viscosity in the linear viscoelasticity region.  

As shown in Figure 9(g), the strain-hardening coefficient was always below 1 for 

neat PLA, implying the obviously strain softening behavior. For PLA-b-PLCL 

samples, the strain-hardening coefficient increased with increasing strain rate, 

indicating that entanglements between branched chains can improve the stretching 

ability of the backbone. 

3.3 Orientation of PLA-b-PLCL and its triple shape memory effect  



3.3.1 Orientation 

The successful formation of long-chain branched structure and obvious 

improvement of viscoelasticity encouraged us to perform solid phase hot drawing on 

PLA-b-PLCL samples. The maximum draw ratio of PLA-b-PLCL with varing PLCL 

content was shown in Figure 10a. For neat PLA, the maximum draw ratio was about 

500%, while for PLA-b-PLCL samples, with the increase of PLCL content, the draw 

ratio increased initially and then declined somewhat. The maximum draw ratio 

reached up to 960% for PLA-b-30wt%PLCL. 

 
Figure 10. Maximum draw ratio of neat PLA and PLA-b-PLCL samples at 80 °C (a); 

Real-time photographs of neat PLA and PLA-b-30wt%PLCL during drawing process at 

80 °C (b) 

The real-time photographs of neat PLA and PLA-b-30wt%PLCL samples during 

stretching at 80 °C were shown in Figure 10b. A series of black dot markers were 

printed on the front flat face of the sample. Through the observation of the 

deformation of the dots during drawing, the deformation of the sample can be 

evaluated. For neat PLA, dots on the sample were elongated uneven, suggesting an 

inhomogeneous deformation occurred during drawing. However, for PLA-b-PLCL 

sample, dots were elongated uniformly with almost equal length, indicating that the 

sample was homogeneous stretched. 

For PLA-b-30wt%PLCL sample with draw ratio of 900%, the tensile strength 

reached up to 173 MPa, and the modulus was about 5.4 GPa, which basically met the 



requirements for bone fixation materials, realizing efficient self-reinforcement for 

PLA. 

3.3.2 Triple shape memory effect 

In order to investigate the triple shape memory effect of PLA-b-PLCL, the 

original shape A of the sample was deformed at 80 °C and fixed at 50 °C to yield the 

first temporary shape B, which was further deformed at 50 °C and fixed at -10 °C to 

yield the second temporary shape C (as shown in Figure 11). During the deformation 

process, for neat PLA and PLA-b-50wt%PLCL, the second temporary shape C cannot 

be obtained due to the fracture of the sample. Meanwhile, PLA-b-PLCL samples with 

PLCL content of 10~40wt% can be deformed to shape C, and the shape fixity ratio (Rf) 

were all higher than 94%. Upon reheating to 55 °C, due to the relaxation of PLCL 

chains to a higher entropy state 
[36,37]

, the second temporary shape C was recovered to 

shape B′ which was quite similar with shape B. The shape recovery ratio (Rr) of the 

samples were listed in Tab.1. For PLA-b-30wt%PLCL, the Rr(C→B) can reach up to 

98.1%, and after recovery, the tensile strength and modulus of the sample were 

maintained as high as 124 MPa and 3.7 GPa, respectively. Then, samples were further 

heated to 120 °C, and the original shape A was partly recovered, suggesting that 

PLA-b-PLCL possessed the capability to memorize multiple shapes at different 

transition temperatures. 



 
Figure 11. Triple shape memory process of neat PLA and PLA-b-PLCL samples 

Table 1. Shape fixity ratio and shape recovery ratio of neat PLA and PLA-b-PLCL samples 

Sample Rf(A→B) [%] Rf(B→C) [%] Rr(C→B) [%] Rr(B→A) [%] 

Neat PLA 96.6 ± 1.1 - - - 

PLA-b-10wt%PLCL 97.8 ± 1.5 95.4 ± 2.1 92.5 ± 1.4 40.5 ± 2.7 

PLA-b-20wt%PLCL 98.2 ± 1.7 95.2 ± 2.5 97.7 ± 2.2 51.3 ± 2.5 

PLA-b-30wt%PLCL 97.6 ± 2.3 94.2 ± 1.9 98.1 ± 2.0 50.6 ± 2.5 

PLA-b-40wt%PLCL 98.4 ± 1.2 95.3 ± 2.2 95.4 ± 1.9 42.6 ± 2.6 

PLA-b-50wt%PLCL 97.3 ± 2.5 - - - 

Figure 12 showed the potential application of PLA-b-PLCL as smart bone 

fixation material. During bone fixation surgery, highly oriented PLA-b-PLCL screw, 

which possessed smaller diameter than that of the screw hole, was very convenient for 

implantation. And then, when such screw was heated to 55 °C which was close to the 

human body temperature, shape recovery process completed within 30s, far less than 

the exposure time (about 100s) 
[38]

 that can cause burns for human tissue under 55 
o
C, 

resulting in the shrinkage along longitudinal direction and enlargement of the 

transverse section of the screw. Therefore, the gap between screw and the hole was 

healed, and the screw was stabilized and fastened in surrounding tissues (Figure 12c). 



Moreover, after such recovery the sample still possessed excellent mechanical 

properties, due to the high orientation structure maintained in PLA domains, realizing 

self-reinforcement and self-fastening effect simultaneously as bone screw. 

 
Figure 12. Schematic illustration of the application of highly oriented PLA-b-PLCL as bone 

screw 

4. Conclusion 

Poly(lactic acid)-b-poly(lactide-co-caprolactone) (PLA-b-PLCL) with two phase 

structure and long-chain branches was prepared through reactive melt processing. The 

FTIR and 
13

C NMR analysis confirmed that PLCL chains were grafted onto PLA. 

With increasing PLCL content, the average lengths of LA segment decreased while 

the length of CL segment almost maintained constant, indicating blockier distribution 

of chain sequences of the sample. The DMA indicated that PLA-b-PLCL exhibited 

two distinct thermal transitions corresponding to the glass transition of PLA and 

PLCL, respectively. The phase morphology of PLA-b-PLCL samples changed from 

sea-island structure to co-continuous structure with the increase of PLCL content. Due 

to long chain branching, compared with neat PLA, PLA-b-PLCL samples showed 

much higher complex viscosity, storage modulus and loss modulus. Moreover, for 

PLA-b-PLCL, the Cole-Cole curve showed an evident upturning at high viscosities. 

Owing to the enhanced molecular entanglement, PLA-b-PLCL samples displayed 

obvious strain hardening behavior, and thus higher draw ratio could be achieved 



during orientation process. The tensile strength reached up to 173 MPa, and the 

modulus was about 5.4 GPa for PLA-b-30wt%PLCL sample with draw ratio of 900%, 

which basically met the requirements of bone fixation materials. PLA-b-PLCL 

possessed the capability to memorize multiple shapes at different transition 

temperatures. For PLA-b-30wt%PLCL, the recovery ratio can reach up to 98.1% 

under 55
o
C, and after recovery the sample could maintain excellent mechanical 

properties. The present work showed promising potential for developing PLA bone 

fixation medical materials with excellent self-reinforcing and self-fastening 

properties. 
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Table caption 

Table 1. Shape fixity ratio and shape recovery ratio of neat PLA and PLA-b-PLCL 

samples 

Figure captions 

Figure 1. Chain extension reactions (a) and possible chain structures of PLA-b-PLCL 

(b) 

Figure 2. FTIR spectra of neat PLA and PLA-b-PLCL samples 

Figure 3. 
13

C NMR spectrum of neat PLA, PLCL and PLA-b-PLCL samples (a);
 13

C 

NMR spectrum in the region of δ24.0~26.0 ppm (b); 
13

C NMR spectrum in the region 

of δ169.0~174.0 ppm (c) 

Figure 3. 
13

C NMR spectrum of neat PLA, neat PLCL and PLA-b-PLCL samples (a); 

13
C NMR spectrum of PLA-b-PLCL in the region of δ24.0~26.0 ppm (b); 

13
C NMR 

spectrum of PLA-b-PLCL in the region of δ169.0~174.0 ppm (c) 

Figure 4. Dynamic mechanical behaviors of neat PLA and PLA-b-PLCL samples 

Figure 5. SEM micrographs of cryogenic fracture surfaces for neat PLA and 

PLA-b-PLCL samples (magnification: 10000×) 

Figure 6. Raman spectra of PLA and PLCL in the wavenumber region of 2000~500 

cm
-1

 (a); Raman mapping images of PLA-b-PLCL samples (b~f) 

Figure 7. The complex viscosity (a), storage modulus (b), loss modulus (c) and 

Cole-Cole curves (d) of neat PLA and PLA-b-PLCL samples obtained by dynamic 

frequency sweep at 180 °C 

Figure 8. Average entanglement molar mass and entanglement density of neat PLA 

and PLA-b-PLCL samples 

Figure 9. Elongational viscosity (a~f) and strain-hardening coefficient (g) of neat PLA 

and PLA-b-PLCL samples 



Figure 10. Maximum draw ratio of neat PLA and PLA-b-PLCL samples at 80 °C (a); 

Real-time photographs of neat PLA and PLA-b-30wt%PLCL during drawing process 

at 80 °C (b) 

Figure 11. Triple shape memory process of neat PLA and PLA-b-PLCL samples 

Figure 12. Schematic illustration of the application of highly oriented PLA-b-PLCL as 

bone screw 


