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Abstract

Mathematics anxiety (MA) and mathematics motivation (MM) are important multi-dimen-

sional non-cognitive factors in mathematics learning. While the negative relation between

global MA and MM is well replicated, the relations between specific dimensions of MA and

MM are largely unexplored. The present study utilized latent profile analysis to explore pro-

files of various aspects of MA (including learning MA and exam MA) and MM (including

importance, self-perceived ability, and interest), to provide a more holistic understanding of

the math-specific emotion and motivation experiences. In a sample of 927 high school stu-

dents (13–21 years old), we found 8 distinct profiles characterized by various combinations

of dimensions of MA and MM, revealing the complexity in the math-specific emotion-motiva-

tion relation beyond a single negative correlation. Further, these profiles differed on mathe-

matics learning behaviors and mathematics achievement. For example, the highest

achieving students reported modest exam MA and high MM, whereas the most engaged

students were characterized by a combination of high exam MA and high MM. These results

call for the need to move beyond linear relations among global constructs to address the

complexity in the emotion-motivation-cognition interplay in mathematics learning, and high-

light the importance of customized intervention for these heterogeneous groups.

Introduction

Mathematics anxiety (MA) and mathematics motivation (MM) are important multi-faceted

non-cognitive factors in mathematics learning. MA refers to the fear and apprehension experi-

enced prior to or during math-related activities [1]. MM captures the extent to which individu-

als value the importance of math abilities, are interested in math-related activities, and are

motivated to perform well in math [2]. Although studies consistently reported modest to mod-

erate negative correlations between MA and MM [3, 4], their relations are likely more intricate

than a negative linear association.

Wang and colleagues [5] argued that MA and MM are conceptually related but distinctive.

They are related because both capture the valence dimension of math-related experiences,
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with MA capturing the negative evaluation (e.g., fear and uneasiness) and MM the positive

evaluation (e.g., interest and reward). Yet, MA and MM are distinct constructs rather than two

opposing ends of a continuum. MM captures the motivation dimension which defines the

approach versus withdrawal orientation toward math activities, whereas MA offers little infor-

mation in this regard. In other words, students experiencing apprehension about math activi-

ties may avoid similar situations in the future [6], or they may overcome such emotional

challenges by investing more effort [7, 8], with these differential responses being likely related

to how motivated they are. This conceptualization is consistent with factor analytic evidence

showing that MA and MM are two separate but modestly correlated constructs [9, 10]. Such a

conceptualization points to an intricate multi-dimensional emotion-motivation relation that

requires further investigation.

Additionally, both MA and MM are multi-faceted constructs. Depending on the instru-

ments used to measure MA, different factor structures were found. The four most common

factors are anxiety about math tests [11–13], anxiety about performing numerical operations

[11–12, 14], anxiety about performing math in social situations [12–13], and anxiety about

observing and learning materials in math [3, 15]. With respect to motivation, the three most

studied dimensions are self-perceived ability, interest, and importance [2]. Self-perceived abil-

ity measures individuals’ perception of their competence in various math tasks. Interest indi-

cates the enjoyment one gains from learning and doing math. Importance refers to the

perceived importance of doing well in math. Given that both constructs are multi-faceted, it is

possible that different aspects of MA and MM relate to one another in distinct ways. For exam-

ple, students who dread learning new materials in math are unlikely to enjoy math learning,

but they may still consider it important to master math. Students who feel competent in their

math ability may still worry about making a mistake in an upcoming exam. Therefore, a single

correlation between global MA and MM seems insufficient in capturing these complex multi-

dimensional relations. To address this gap, the first aim of the current research is to examine

the relations among the specific dimensions of MA and MM.

The ultimate goal in examining emotion and motivation experiences is to understand how

they relate to math learning and achievement. Many existing studies examined how MA and

MM were each associated with math achievement and learning behaviors. Higher MM and

lower MA were, respectively, associated with higher math achievement [4, 16–19], and with

more engagement in math-related activities such as taking more elective math courses [4, 6,

20]. However, few studies to date examined the combined roles of MA and MM and the possi-

bility of their interactive and nonlinear effects on mathematics learning. One study showed

that after accounting for MM, MA is no longer associated with intention to select math courses

[4], suggesting that math avoidance is primarily associated with the motivation dimension.

Two recent studies revealed that MM moderates the relation between MA and math perfor-

mance [5, 7], such that high MM mitigates the negative association between MA and math per-

formance. Together, these studies suggested that understanding the complex relations between

emotion, motivation and cognition in mathematics requires investigating diverse noncognitive

characteristics in conjunction rather than in isolation. Therefore, the second aim of the present

study was to explore differences in math achievement and math learning avoidance among

students with different emotional and motivational profiles.

Given that so few studies have examined the relations among specific dimensions of MA

and MM, the current study took an explorative approach by using latent profile analysis to fur-

ther our understanding of the emotion and motivation experiences in mathematics learning.

Latent profile analysis is a more holistic approach than variable-centered approaches (for

example moderation analysis) in studying relations that are multidimensional in nature, as it

allows the discovery of heterogeneous groups of individuals with similar values on the multiple

A latent profile analysis on MA and MM
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dimensions of interest. The different profiles derived from latent profile analysis represent nat-

urally occurring groups of individuals in the population, characterized by distinctive combina-

tions of various math-related emotional and motivational experiences. A latent profile analysis

approach also allows for the examination of the differences in math achievement and math

avoidance among students with different emotional and motivational profiles. It would be

extremely difficult to study how the multiple dimensions of MA and MM work together in

relation to achievement and avoidance using a variable-centered approach, especially if taking

into consideration both linear and curvilinear, as well as additive and interactive effects. The

advantage of latent profile analysis is that it narrows our focus on the naturally occurring com-

binations of various dimensions of MA and MM in the population, as opposed to artificially

dividing the sample into arbitrary categories. By comparing the means of math achievement

and avoidance across these profiles, this approach allows us to explore how the existing combi-

nations of MA and MM profiles relate to math achievement and avoidance without assuming

linearity and additivity in their relations.

Methods

Participants

This work is part of the Multi-Cohort Investigation into Learning and Educational Success

(MILES) study. MILES is an accelerated longitudinal study which aims to investigate the fac-

tors contributing to individual differences in academic achievement and psychological wellbe-

ing over the course of high school in Italy. All students from three opportunistically-selected

high schools in the Province of Milan were invited, and 1020 participated in the first wave of

data collection in March 2016. After data cleaning and screening, 927 students (437 male, 490

female) contributed data to the present investigation. The age of the students ranged from 13

to 21 years (M = 15.87, SD = 1.49).

Procedure

All students had been previously informed about the aims and procedures through confer-

ences held in the schools by the MILES team. The data were collected online via the MILES

website (www.projectmiles.com/test), using the forepsyte.com online platform (www.

forepsyte.com). The first wave of data collection lasted around 90 minutes and included cogni-

tive tests and self-report measures.

MILES received ethical approval from Goldsmiths University of London. The parents’ and

teachers’ committees of every school approved the MILES project and data collection protocol.

Approval was received prior data collection, and is renewed every year. Every student was pre-

sented with an online information sheet explaining the motivation of the research conducted

and completed an online consent form in Italian. Each student was informed that participation

was voluntary and that they could withdraw from the study at any time. Data will be made

available to researchers upon request and completion of the MILES research collaboration

form (http://www.projectmiles.com/research.html).

Measures

All measures were translated to and administered in Italian. All translated measures were

piloted on a sample of 70 students from five high schools in the Province of Milan prior to the

first wave of data collection. The factor structure, distribution of constructs, and the associa-

tions between constructs were comparable to those obtained with the validated measures

administered to English-speaking samples.

A latent profile analysis on MA and MM
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Mathematics motivation (MM). Three aspects of MM were assessed. The 1st aspect was

attitude towards mathematics (i.e., importance) which was measured using 1 item retrieved

from the PISA study (OECD Program for international student assessment, www.pisa.oecd.

org). Students were asked to rate on a 4-point scale “how important do you think it is to do

well in mathematics” (1 = not at all; 4 = very much). For the ease of comparison with other

scales, Importance was rescaled to a 1–5 scale using min-max normalization. Results remained

the same regardless of the transformation.

The 2nd aspect of motivation was self-perceived ability in mathematics (i.e., self-percep-

tion). Students were asked to rate how good they thought they were at specific math activities

on a 5-point scale (1 = not good at all; 5 = very good) [21]. Specific abilities included solving

number and money problems, doing math in their head, and multiplying and dividing. Cron-

bach’s alpha for this scale was 0.77.

The 3rd aspect of motivation was enjoyment of mathematics (i.e., interest). Students were

asked to rate how much they enjoyed the above 3 activities on a 5-point scale (1 = not like it at

all; 5 = like it very much) [21]. Cronbach’s alpha for this scale was 0.79.

Mathematics anxiety (MA). MA was measured using The Abbreviated Math Anxiety

Scale (AMAS) [22]. Students were asked to rate on a 5-point scale how anxious/nervous they

felt in several math-related contexts and activities (1 = not all all; 5 = very much). Principal

component analysis with oblimin rotation showed a clear 2-component structure, with the

two components explaining 46% and 15% of the total variance, respectively. Five items loaded

on the 1st component which captured anxiety about learning new math materials or listening

to others’ explaining math (loadings ranged from 0.55 to 0.86). Three items loaded on the 2nd

component which captured anxiety about math exams (loadings ranged from 0.84 to 0.90).

One item had double loadings and was excluded from the analysis to avoid contamination

between components. We labeled the 2 components learning MA and exam MA. Both sub-

scales were internally consistent with Cronbach’s alphas of 0.79 and 0.87, respectively. Higher

scores indicated higher MA.

Mathematics achievement. Students self-reported their grades in mathematics from the

semester that had ended in January, prior to the collection wave in February-March 2016.

Scores ranged from 4 (indicating a grade equivalent to 4 or less than 4) to 10 (indicating the

highest possible grade), with 6 indicating the pass mark.

Mathematics time. Students were asked to rate how much time they spent on “Out of

school time lessons in mathematics” and “Study for homework in mathematics myself” on a

5-point scale (1 = no time; 2 = less than 2 hours; 3 = 2 to 4 hours; 4 = 4 to 6 hours; 5 = 6 or

more hours; OECD Program for international student assessment, www.pisa.oecd.org). The

two items were modestly correlated (r = 0.32), and were averaged to obtain a single score rep-

resenting time spent on mathematics after school. A higher score represents more time spent

on afterschool math learning and less avoidance.

Analytic strategies

All analyses were conducted in SPSS Version 24 [23] and Mplus Version 7.4 [24]. First,

descriptive and correlational analyses were conducted to understand the basic properties of

the variables. Next, latent profile analysis (LPA) was performed on the multidimensional

aspects of MM and MA: math importance, self-perceived ability in math, interests in math,

learning MA, and exam MA. The best model was selected using Bayesian Information Crite-

rion (BIC) [25] as the primary criterion, and Lo-Mendell-Rubin adjusted likelihood ratio test

(LMRT) [26] as the supplementary criterion, in order to establish the number of classes and to

examine the distinct features of these classes. Next, we examined whether sex and grade level

A latent profile analysis on MA and MM
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predicted class memberships using the r3step command in Mplus. Subsequently, we examined

whether students in different classes also differed on math achievement and math time using

ANOVA.

Results

Descriptive and correlational analyses

Descriptive statistics are shown in Table 1. All variables were distributed widely across their

entire scales. The mean was lower for learning MA compared to exam MA, suggesting that

exam MA was more prevalent compared to learning MA.

Correlations are shown in Table 2. Female students reported higher MA and lower MM

compared to male students. Grade levels were weakly negatively associated with importance,

suggesting that students in higher grade levels tended to view math as less important. Exam

MA and learning MA were moderately positively correlated, and so were different aspects of

MM. Both exam MA and learning MA were modestly negatively correlated with various

aspects of MM. Math achievement was associated modestly negatively with MA and modestly

positively with MM. Math time was positively associated with exam MA, importance, and

interest. Finally, math time was modestly negatively associated with math achievement.

Latent profile analysis

Latent profile analysis was performed to explore profiles of MA and MM. Nine models from

2- to 10-Classes were run, and the best model was selected using BIC and LMRT. As shown in

Table 1. Descriptive statistics of Main Study Variables.

N Mean Std. Dev Skewness Kurtosis Median Min Max

Importance 927 3.74 1.12 -0.44 -0.70 3.67 1.00 5.00

Self-perception 927 3.53 0.80 -0.69 0.57 3.67 1.00 5.00

Interest 927 3.03 1.00 -0.26 -0.49 3.00 1.00 5.00

Learning MA 927 1.75 0.73 1.31 1.65 1.60 1.00 5.00

Exam MA 927 3.61 1.07 -0.58 -0.56 3.67 1.00 5.00

Achievement 927 6.53 1.40 0.01 -0.55 7.00 4.00 10.00

Time 927 2.25 0.69 1.12 1.89 2.00 1.00 5.00

Note. MA = math anxiety.

https://doi.org/10.1371/journal.pone.0192072.t001

Table 2. Correlations between Main Study Variables.

1 2 3 4 5 6 7 8

1. Sex —

2. Grade -0.01 —

3. Importance -0.14� -0.11� —

4. Self perception -0.31� -0.07 0.39� —

5. Interest -0.19� -0.05 0.44� 0.67� —

6. Learning MA 0.19� 0.05 -0.29� -0.41� -0.33� —

7. Exam MA 0.26� -0.05 -0.20� -0.37� -0.33� 0.47� —

8. Achievement 0.06 0.04 0.25� 0.29� 0.22� -0.21� -0.27� —

9. Time 0.07 0.02 0.12� 0.03 0.11� 0.08 0.22� -0.11�

Note. MA = math anxiety. Pre-specified Type I error rate is 0.05

�indicates statistical significance after Holm-Bonferroni correction.

https://doi.org/10.1371/journal.pone.0192072.t002
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Table 3, BIC decreased as the number of classes increased, but the decrease became minimal

beginning from the 7 class to the 8 class model. According to LMRT, the 8 class model was bet-

ter than the 7 class model whereas the 9 class model was not better than the 8 class model.

Therefore, the 8 class model was selected as the best model.

Fig 1 and Table 4 depict the characteristics of each of the 8 classes. Due to the large number

of classes, here we first describe the rules we used to order and label the 8 classes: As shown in

Fig 1, when considering MM levels, the 8 classes clustered into 3 groups: the first group

included 2 classes that showed high MM, the second group included 3 classes showing

Table 3. Model fit indices for the 2- to 10- class models.

Model Log Likelihood Free parameters BIC LMRT

2 Classes -5817.09 16 11743.49 832.95�

3 Classes -5671.79 22 11493.89 283.67�

4 Classes -5603.56 28 11398.42 133.21

5 Classes -5524.60 34 11281.49 154.16

6 Classes -5478.91 40 11231.10 89.21

7 Classes -5439.93 46 11194.13 76.11�

8 Classes -5408.27 52 11171.79 61.82�

9 Classes -5382.80 58 11161.85 49.72

10 Classes -5358.23 64 11153.70 47.97

Note. BIC = Bayesian Information Criterion. LMRT = Lo-Mendell-Rubin adjusted likelihood ratio test.

� indicates statistical significance under the pre-specified Type I error rate of 0.05.

https://doi.org/10.1371/journal.pone.0192072.t003

Fig 1. Latent profile analysis: Results from 8-class model. Means in different ellipses are significantly different from one another at the pre-specified Type I error rate

of 0.05 after Bonferroni correction.

https://doi.org/10.1371/journal.pone.0192072.g001
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medium MM, and the third group included another 3 classes showing low MM. This was

observed across all 3 dimensions of MM (importance, self-perception, and interest). Therefore,

we first ordered the classes according to levels of MM, and labeled the 1st, 2nd, and 3rd groups

respectively ‘high MM’ (classes 1–2), ‘medium MM’ (classes 3–5), and ‘low MM’ (classes 6–8)

groups. Within each MM group, classes further differed on levels of exam MA and learning

MA. Therefore, within each MM group, we further ordered the classes according to their levels

of MA such that the class showing comparatively lower MA came earlier in the sequence. For

example, within high MM group, one class exhibited low learning MA and low exam MA, and

the other class exhibited low learning MA and high exam MA. The two classes were respec-

tively labeled class 1 and class 2, with class 1 exhibiting lower MA compared to class 2. In the

following section, in order to abbreviate the long label for each class, we use H, M, and L to

represent high, medium and low levels, and use MM, EMA, and LMA to represent math moti-

vation, exam math anxiety, and learning math anxiety.

High MM classes. Class 1 (H MM, L LMA, L EMA): Approximately 13% of the sample

belonged to Class 1 (n = 117). This class reported the highest MM and lowest learning MA and

exam MA among all 8 classes.

Class 2 (H MM, L LMA, H EMA): 19% of the sample were in Class 2 (n = 178). Students in

this class reported very high MM, very low learning MA, but high exam MA.

The similarity between Class 1 and Class 2 was that they both showed high MM. The two

classes were different on how anxious they felt about math. Specifically, students in Class 2,

but not in Class 1, reported high anxiety about math exams.

Medium MM classes. Class 3 (M MM, L LMA, L EMA): 13% of the sample were catego-

rized in Class 3 (n = 122). This class reported medium levels of MM, and low levels of both

learning MA and exam MA. This class was similar to Class 1 in that both classes reported rela-

tively low MA compared to all other classes. This class differed from Class 1 such that they

reported lower MM compared to Class 1.

Table 4. Latent profile analysis: Estimated means and 95% confidence intervals for each class.

Importance Self-Perception Interest Learning MA Exam MA

Class 1 (n = 117)

H MM, L LMA, L EMA

4.58 (4.33, 4.82) a 4.32 (4.12, 4.53) a 4.11 (3.84, 4.39) a 1.25 (1.15, 1.35) a 2.05 (1.68, 2.42) a

Class 2 (n = 178)

H MM, L LMA, H EMA

4.47 (4.25, 4.69) a 4.10 (3.93, 4.26) a 3.88 (3.59, 4.18) a 1.44 (1.31, 1.57) a,b 3.84 (3.51, 4.17) b

Class 3 (n = 122)

M MM, L LMA, L EMA

3.67 (3.17, 4.16) b 3.62 (3.37, 3.88) b 2.88 (2.46, 3.29) b 1.27 (1.11, 1.43) a 2.48 (2.04, 2.91) a

Class 4 (n = 238)

M MM, L LMA, H EMA

3.53 (3.17, 3.88) b 3.45 (3.15, 3.74) b 2.82 (2.42, 3.21) b 1.57 (1.43,1.72) b 3.93 (3.59, 4.28) b

Class 5 (n = 122)

M MM, M LMA, H EMA

3.54 (3.21, 3.88) b 3.42 (3.15, 3.70) b 3.16 (2.75, 3.56) b 2.62 (2.41, 2.83) c 4.36 (4.13, 4.59) b,c

Class 6 (n = 48)

L MM, L LMA, H EMA

3.01 (2.16, 3.86) b 2.53 (1.99, 3.06) c 1.52 (0.90, 2.14) c 1.42 (1.10, 1.73) a,b 4.08 (3.53, 4.63) b,c

Class 7 (n = 68)

L MM, M LMA, H EMA

2.66 (1.91, 3.40) b 2.32 (1.76, 2.87) c 1.58 (1.11, 2.05) c 2.56 (2.27, 2.84) c 4.45 (4.12, 4.78) b,c

Class 8 (n = 34)

L MM, H LMA, H EMA

2.95 (2.22, 3.68) b 2.51 (1.89, 3.12) c 1.66 (1.25, 2.06) c 3.89 (3.57, 4.22) d 4.58 (4.29, 4.87) c

Note. H = high; M = medium; L = low; MM = math motivation; LMA = learning math anxiety; EMA = exam math anxiety. For each dimension, classes are not

significantly different from each other if their labels contain the same letters; classes are significantly different from each other if their labels do not contain the same

letters. 95% confidence intervals are calculated based on Bonferroni correction.

https://doi.org/10.1371/journal.pone.0192072.t004
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Class 4 (M MM, L LMA, H EMA): about 26% of the students belonged to Class 4 (n = 238),

making this the largest class. Students in this class had medium levels of MM, low learning

MA, and high exam MA. Similar to Class 2, students in Class 4 were also anxious mostly about

math exams but not math learning. However, students in Class 4 reported lower MM com-

pared to those in Class 2, which crucially differentiated the two classes.

Class 5 (M MM, M LMA, H EMA): about 13% of the students were classified into this class (n =

122). This class was characterized by medium MM, medium learning MA, and high exam MA.

These three classes were similar in that they all exhibited medium levels of MM. Yet, the

three classes critically differed on levels of exam MA and learning MA, with Class 3 being low

on both learning MA and exam MA, Class 4 being low on learning MA but high on exam MA,

and Class 5 being medium on learning MA and high on exam MA.

Low MM classes. Class 6 (L MM, L LMA, H EMA): 5% of the sample belonged to Class 6

(n = 48). Students in this class reported low MM, low learning MA, and high exam MA. The

MA levels in this class resembled those observed in Class 2 and Class 4. What separated Class 6

from Classes 2 and 4 was its lower MM compared to the other two classes.

Class 7 (L MM, M LMA, H EMA): about 7% of all students were in Class 7 (n = 68). This

class was characterized by low MM, medium learning MA, and high exam MA. This class was

similar to Class 5 such that both classes reported high exam MA and medium learning MA.

However, students in Class 7 had lower MM compared with students in Class 5.

Class 8 (L MM, H LMA, H EMA): approximately 4% of the sample were classified to the

last class (n = 34), making this the smallest class. This class showed very low MM and very

high levels of both learning MA and exam MA.

Class 6, Class 7, and Class 8 were similar in that all three classes exhibited low levels of MM

and high levels of exam MA. Yet, the three classes differed on their levels of learning MA, with

Class 6 being low on learning MA, Class 7 being medium, and Class 8 being high.

Table 5 summarizes the key characteristics of each class. Several interesting patterns emerged

from observing the 8 classes: 1) high exam MA appeared in combination with every MM level; 2)

medium learning MA appeared in combination with only medium to low MM, but not high MM;

3) high learning MA appeared in combination with only low MM, but not medium to high MM.

Grade level and sex were examined as predictors of class memberships. Results are shown

in Table 6. All effects were obtained after controlling for school differences. Overall, grade

level was not a significant predictor of class membership. Sex significantly predicted class

memberships, such that female students were more likely to belong to classes characterized by

a combination of lower MM and higher MA compared to male students.

Relations between class memberships and math achievement/time

We examined whether class memberships were associated with math achievement and math

time using ANOVA. Dummy variables representing schools were entered in the models as

covariates to control for school differences.

Table 5. Summarization of key characteristics of each class.

Low EMA High EMA

Low LMA Medium LMA High LMA Low LMA Medium LMA High LMA

High MM Class 1 — — Class 2 — —

Medium MM Class 3 — — Class 4 Class 5 —

Low MM — — — Class 6 Class 7 Class 8

Note. MM = math motivation; LMA = learning math anxiety; EMA = exam math anxiety.

https://doi.org/10.1371/journal.pone.0192072.t005
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Association between class memberships and math achievement. Class membership

was significantly associated with math achievement, F (7, 917) = 20.00, p = 0.000, η2 = 0.12.

Results from post-hoc contrasts are shown in the left panel in Fig 2. Class 1 performed signifi-

cantly better compared to all the seven remaining classes. Class 2 and Class 3 showed similar

performance that was better than that shown by Classes 4 through 8, but worse than Class 1.

Finally, no significant differences in math achievement were found among Class 4 through

Class 8.

Association between class memberships and math time. Class membership was also sig-

nificantly associated with math time, F (7, 917) = 6.27, p = 0.000, η2 = 0.04. Results from post-

hoc contrasts are shown in the right panel in Fig 2. Class 2, 5, and 8 spent the most time

whereas Class 1 and 3 spent the least time studying math after school. It is worth noting that

Class 2, Class 5, and Class 8 were the classes with the highest overall MA within each MM

group, and they were also the classes that reported spending the most time on after-school

math learning. To the contrary, Class 1 and Class 3 were the classes with the lowest overall MA

within each MM group, and they were also the classes that reported spending the least amount

of time on after-school math learning.

Table 6. Predictors of class membership.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

H MM H MM M MM M MM M MM L MM L MM L MM

Reference L LMA L LMA L LMA L LMA M LMA L LMA M LMA H LMA

Predictor Class L EMA H EMA L EMA H EMA H EMA H EMA H EMA H EMA

Class1

Grade level — -0.05 (0.12) -0.10 (0.14) -0.02 (0.11) -0.15 (0.13) -0.25 (0.17) 0.18 (0.14) 0.14 (0.16)

Sex — -0.02 (0.35) -0.26 (0.42) 0.64 (0.30) 0.82 (0.34) 1.82 (0.56)� 2.05 (0.52)� 1.62 (0.52)�

Class 2

Grade level — — -0.05 (0.13) 0.03 (0.11) -0.10 (0.12) -0.20 (0.16) 0.22 (0.13) 0.18 (0.15)

Sex — — -0.25 (0.38) 0.66 (0.31) 0.83 (0.32) 1.84 (0.53)� 2.07 (0.50)� 1.64 (0.51)�

Class 3

Grade level — — — 0.08 (0.14) -0.05 (0.14) -0.15 (0.18) 0.28 (0.15) 0.23 (0.17)

Sex — — — 0.90 (0.38) 1.08 (0.37) 2.09 (0.57)� 2.31 (0.54)� 1.88 (0.54)�

Class 4

Grade level — — — — -0.13 (0.12) -0.23 (0.17) 0.21 (0.13) 0.15 (0.15)

Sex — — — — 0.18 (0.32) 1.18 (0.56) 1.41 (0.49) 0.98 (0.50)

Class 5

Grade level — — — — — -0.10 (0.17) 0.32 (0.15) 0.28 (0.16)

Sex — — — — — 1.01 (0.54) 1.23 (0.54) 0.81 (0.52)

Class 6

Grade level — — — — — — 0.42 (0.19) 0.38 (0.20)

Sex — — — — — — 0.23 (0.71) -0.20 (0.67)

Class 7

Grade level — — — — — — — -0.04 (0.18)

Sex — — — — — — — -0.43 (0.67)

Note. Numbers not in parentheses are parameter estimates, and numbers in parentheses are standard errors. H = high; M = medium; L = low; MM = math motivation;

LMA = learning math anxiety; EMA = exam math anxiety. Pre-specified Type I error rate is 0.05

�indicates statistical significance after Holm-Bonferroni correction.

https://doi.org/10.1371/journal.pone.0192072.t006
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An exploration of the developmental pattern

Finally, given that the current sample contains students from different grades (year 1 through

year 5 of high school), we also explored whether the differences among classes in math

achievement and math time varied across grade levels. Table 7 presents the sample size for

each class by grade level combination. Given that the present design was cross-sectional, this

set of analyses were limited to description and pattern visualization. Fig 3 presents the mean of

math achievement (left panel) and math time (right panel) in each class by grade level.

Differences in math achievement among classes. Comparing classes within each MM

group allowed us to examine differences in achievement associated with differences in MA. In

high and medium MM groups, classes with lower EMA generally appeared to have better per-

formance (i.e., comparing Class 1 against Class 2, and comparing Class 3 against Class 4 and

Class 5). There seemed to be little differences in achievement associated with differences in

learning MA. Additionally, the differences between Class 1 and Class 2 seemed larger in higher

grades, whereas the differences between Class 3 and Class 4/Class 5 seemed smaller in higher

grades, suggesting that the negative association between EMA and math achievement may be

stronger in highly motivated students. The association pattern between MA and achievement

was less clear in the low MM group, potentially due to the small sample sizes in these classes.

Differences in math time among classes. Similar to the grade-aggregated pattern, Class 1

and Class 3, the two classes with the lowest overall MA within their respective MM groups,

consistently reported relatively low amount of time spent on learning math after school. To

Fig 2. Relations between class memberships and math achievement/math time. L = low, M = medium, H = high, MM = math motivation, EMA = exam math

anxiety, LMA = learning math anxiety. Classes are not significantly different from each other if their labels contain the same letters; classes are significantly different

from each other if their labels do not contain the same letters. Statistical significance is calculated under the pre-specified Type I error rate of 0.05 after Holm-Bonferroni

correction.

https://doi.org/10.1371/journal.pone.0192072.g002

Table 7. Sample size for class membership by grade level.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Total

Grade = 1 33 46 30 70 39 14 15 7 254

Grade = 2 24 50 37 58 34 18 15 9 245

Grade = 3 32 44 27 48 22 7 14 4 197

Grade = 4/5 29 38 27 62 27 8 24 14 229

Total 117 178 121 238 122 47 68 34 925

Note. Grade level information was missing for 2 individuals.

https://doi.org/10.1371/journal.pone.0192072.t007
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the contrary, Class 2 and Class 5, the two classes with the highest overall MA within their

respective MM groups, consistently spent relatively more time on learning math after school

compared to all other classes. These together suggest that it is the combination of high MM

and high MA that drives students to work more on math after class.

Discussion

The diverse range of emotions and motivations developed during the math learning process

has profound implications in mathematics education, as these influence not only the mobiliza-

tion of cognitive resources during a math test, but also long-term learning behaviors [6, 27–

28]. The goal of the current study was to explore differential profiles of the multi-dimensional

emotion and motivation factors, and ultimately to investigate how these factors interacted and

related to math learning practices and achievement.

Are highly math anxious students always unmotivated in math?

Using latent profile analysis, we discovered 8 distinct classes capturing various combinations

of MA and MM. We further grouped these 8 classes into high, medium, and low MM groups

to facilitate the understanding of each class characteristics and comparisons across classes.

Contrary to the current understanding in the extant literature that math anxious students

Fig 3. Relations between class memberships and math achievement/math time by grade level. C = class; L = low, M = medium, H = high, MM = math motivation,

EMA = exam math anxiety, LMA = learning math anxiety.

https://doi.org/10.1371/journal.pone.0192072.g003
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generally have low motivation [6, 27], our analyses suggest that some math anxious students

are highly motivated. In particular, students in Class 2 are highly motivated, and they also

reported high exam MA. Class 4 and 5 reported average to above average MM despite their

high levels of exam MA. Therefore, high exam MA seems to be present in students with all lev-

els of motivation.

With respect to learning MA, medium learning MA was observed only in medium and low,

but not high, MM groups, and high learning MA was observed only in low MM but not

medium or high MM groups, suggesting that higher learning MA was generally associated

with lower MM. In summary, highly motivated students are still likely to experience exam

MA, but they are less likely to experience learning MA. It is not surprising that students who

feel unease in math classes do not enjoy their experience, and this is consistent with the obser-

vation that high learning MA was observed only in concomitance with low MM. However,

anxiety about an upcoming math exam may reflect students’ lack of confidence in their math

abilities, or it may reflect their desire for better achievement, and this is consistent with the

observation that high exam MA was observed at all levels of MM. These findings point to the

heterogeneous nature of the relations between different aspects of MA and MM [8].

Class memberships differed between genders, such that females were more likely to belong

to classes characterized by a combination of lower MM and higher MA compared to males.

This is consistent with existing literature on sex differences in math-specific emotions and

motivation [6, 29–30].

How do the dimensions of MM and MA relate to math achievement?

In general, Class 1 reported the highest achievement, followed by Classes 2 and 3. The remain-

ing five classes reported similar achievement, which was lower than that of the first three clas-

ses. The general pattern suggests that a combination of higher MM and lower MA is associated

with higher achievement, a finding consistent with studies that examined the effects of MA

and MM separately [4, 17, 19]. However, this finding seems to be inconsistent with a previous

study showing that students with a combination of high MM and medium MA had the highest

math achievement [5]. This difference in finding could be attributable to several factors. First,

the sample characteristics between the two studies are different: the current study used a sam-

ple of high school students from Italy whereas the previous study used samples of American

middle school and college students. Second, whereas the previous study focused on the inter-

action between global MA and global MM, the present study focused on examining specific

dimensions of MA and MM. Third, the two studies differ critically on how motivation was

measured. The present study focused on aspects of motivation that were widely studied in the

literature, including perceived importance of math, self-perceived ability in math, and interest

in math. In the previous study, motivation was measured more broadly, encompassing dimen-

sions such as focused attention. Lastly, different measures were used to assess math perfor-

mance. The previous study relied on lab tasks, whereas the present study used a high-stake

exam. It is possible that the relation between moderate levels of MA and math performance

further depends on the nature of the math task (i.e., whether the task is high-stake or not) [27].

Future studies should explore which of the above differences contributed to the discrepancy in

findings between these two studies.

When the classes were further broken down into different grade levels, specific interaction

patterns emerged. Specifically, when comparing classes within each of the high and medium

MM groups, (i.e., Class 1 vs. 2, and Class 3 vs. 4), the classes with higher exam MA had poorer

math achievement. Additionally, the differences between Classes 1 and 2 appeared larger

whereas the differences between Classes 3 and 4 appeared smaller in higher grade levels. This
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indicates that high exam MA is negatively associated with math performance more strongly in

individuals with higher MM, and such effects seem to be stronger in higher grade levels. This

result echoes a recent study on math learning, which found that higher stress during learning

predicts more forgetting of course content and avoidant thinking about the course only in stu-

dents with strong math self-concept (i.e., students who believe that they are good at math and

that it is important for them to be good at math), but not in those with weak math self-concept

[31]. Both sets of results provide support for the identity threat account which argues that

domain-specific stress and anxiety impact more heavily on individuals who are motivated in

and identify themselves with that particular domain.

Within the low MM group, there seems to be no clear association between exam MA and

math achievement. It is possible that low exam MA does not contribute above and beyond the

negative association between low MM and poor math achievement. It is also possible that we

failed to observe any systematic pattern due to the small sample sizes in the low MM group.

Finally, there seemed to be little differences in math achievement associated with differences

in learning MA.

How do the dimensions of MM and MA relate to math avoidance?

Contrary to the current belief that highly anxious students are avoidant of math [6, 27], our

findings showed that within each MM group, the more anxious students were generally more

engaged across all grade levels. When combined with high motivation, worries about math

result in more efforts and investment in math learning rather than more avoidance. The dis-

crepancy between the present finding and previous literature may be attributable to the differ-

ence in the operationalization of math avoidance. Most studies to date focused on avoidance

behaviors in distal situations where students have more freedom to choose among alternatives

[27], such as whether or not to select an elective math course or to take a math-related career

in the future. In the present study, we examined how much time high school students spent on

learning math after school by taking out-of-school math lessons and studying for math as part

of their homework on their own. These activities represent math avoidance behaviors in immi-

nent learning situations in high school when immediate negative consequences ensue from

poor performance on required math courses (e.g., low GPA negatively influence college

application).

Previous literature on threat response suggests that threat can induce both approach-ori-

ented and withdrawal-oriented responses depending on the characteristics of the threatening

situation. An escapable threat of greater distance more likely elicits withdrawal/avoidance

behaviors, whereas an inescapable threat in close distance more likely elicits approach-oriented

responses [32]. Thus, it is possible that high MA students rely on different strategies to deal

with their negative emotions in different learning situations: they invest more effort in math

learning to avoid the immediate negative consequences associated with poor math perfor-

mance, but they choose to disengage from math learning when it yields no immediate negative

outcome.

It is worth noting that within each MM group, although classes with higher MA reported

more learning efforts, they generally had lower achievement compared to classes with lower

MA. In other words, within each MM level, high MA students worked longer hours but per-

formed worse in math. Two possible mechanisms may explain this counterintuitive finding.

Previous studies have shown that MA hinders math performance through compromising

working memory efficiency [16], a cognitive ability that plays an important role in both math

performance and math learning [33–34]. For students who reported MA on exam but not

learning (e.g., Class 2), MA may interfere only with performance on high stake math exams
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[27] but not knowledge acquisition in math lessons. Therefore, high stake exam performance

may not reflect students’ true math abilities in those with high exam MA [27]. Because stu-

dents with high exam MA consistently expend extra effort in learning math, it is possible that

they master more knowledge than what is reflected through their exam performance, but such

knowledge can only be induced through alternative low-stress assessments such as untimed

testing. However, the mechanism may be different for students who suffer learning MA. For

these students, impairments in math cognition may be more profound as MA may also hinder

the knowledge acquisition process in daily math lessons. As such, these students may need to

study for longer hours than their peers to complete the same amount of work because of their

poorer math abilities.

The present study has some limitations. First, all main constructs were self-reports. As a

result, relations among variables may have been inflated due to method artifact. A multi-infor-

mant multi-method design is needed to test the replicability and generalizability of the current

results. Second, two of the scales (importance and math time) had too few items to assess their

internal reliability. However, their correlations with other variables were consistent with the

existing literature, providing evidence supporting their predictive validity. Finally, because of

the cross-sectional design, we were not able to statistically examine how the differences among

the eight classes changed over time. Future longitudinal data from the MILES project will

allow us to better understand the developmental trajectories of these diverse profiles.

In summary, the present study explored profiles of math-specific emotions and motivations

in adolescence. Our findings revealed that the relation between MA and MM and their com-

bined roles in math achievement and math avoidance are complex. These diverse profiles call

for customized interventions to address the heterogeneous mechanisms underlying low math

achievement. For some students, it may be sufficient to address how anxiety affects online cog-

nitive processing during high-stake math exams to ensure that the educational assessment

reflects their true abilities. For other students, it is more pressing to address how anxiety inter-

feres with attention and memory processes that are needed for optimal learning in daily math

lessons. Finally, for the least motivated students, building the internal drive for mathematics

may be a priority.
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