
rsta.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

Rare event sampling, Markov Chain

Monte Carlo (MCMC), Power systems

engineering

Keywords:

Power system dynamics, Battery

energy storage systems, CVaR.

Author for correspondence:

Maldon Patrice Goodridge

e-mail: m.p.goodridge@qmul.ac.uk

A rare-event study of
frequency regulation and
contingency services from
grid-scale batteries
Maldon Patrice Goodridge1 John Moriarty1

and Andrea Pizzoferrato2 3

1Queen Mary University of London
2University of Bath
3The Alan Turing Institute, London

We perform a rare-event study on a simulated
power system in which grid-scale batteries provide
both regulation and emergency frequency control
ancillary services. Using a model of random power
disturbances at each bus, we employ the skipping
sampler, a Markov Chain Monte Carlo algorithm for
rare-event sampling, to build conditional distributions
of the power disturbances leading to two kinds
of instability: frequency excursions outside the
normal operating band, and load shedding. Potential
saturation in the benefits, and competition between
the two services, are explored as the battery maximum
power output increases.

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.



2

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

1. Introduction
A growing number of countries are transitioning their energy generation from fossil to renewable
energy sources (RES), due to an increased desire to mitigate the effects of climate change [1].
While on one side this shift positively impacts the environment [2] (for instance, by reducing
carbon emissions), it also poses new challenges in power system stability and security. Renewable
resources are vulnerable to exogenous shocks, such as from weather conditions [3], resulting
in increased exposure of the electricity network to power fluctuations. When combined with
endogenous power disturbances due to various other system contingencies, these disturbances
could in the worst case activate emergency responses in the power grid [4,5] which may propagate
in a cascading fashion [6–11].

There is increasing interest in embedding battery energy storage systems (BESS) in power
grids [12] to improve grid stability and resilience to disturbances [13–18] by virtue of their rapid
response [19]. In this study we employ the skipping sampler, a Markov Chain Monte Carlo
(MCMC) rare-event sampler, to examine the benefits of BESS as both the battery maximum power
output (MPO) and the distribution of power disturbances vary. Taking a probabilistic model for
the potential power disturbances at all buses (interpreted as both exogenous and endogenous), we
build conditional distributions of the combinations of disturbances which lead to rare instabilities
of two kinds. Firstly, to examine the frequency regulation benefits of BESS we study frequency
excursions beyond the normal operating band. Then, to explore the emergency response provided
by BESS, we condition on a load shedding event. Potential saturation in the benefits of BESS is
examined as MPO increases, and also potential interactions between the frequency regulation and
contingency services which they provide.

In this line of research we aim to combine time-domain simulation with random sampling,
in order to study rare events occurring in power systems. The main challenges are that
standard Monte Carlo simulation methods are unreliable in rare event settings [20], a problem
compounded by the heavy computational expense of time-domain, simulation-based assessment
of power system robustness [21]. In the face of these challenges, one approach is to apply carefully
reformulated methods for random sampling (see for example [22]), while another is to explore
alternatives to random sampling, such as those studied in [21,23,24]. However, these methods
typically involve simplifying assumptions of varying strength, which may make these studies
challenging to transfer to other related contexts.

This paper continues recent work based on Markov Chain Monte Carlo (MCMC) random
sampling which was begun in [25,26]. While the latter papers also made strong simplifications,
our goal in the present work is to demonstrate the incorporation of a power system model which
is both detailed and adaptable. That is, the model and case study below incorporate network
topology and nodal frequencies, third-order dynamics, automatic voltage regulation, primary and
secondary frequency control, battery storage, frequency-based load and generation shedding, and
rate of change of frequency (RoCoF) generator protection. We also emphasise that, as in the latter
papers, any probability density may be taken as the model of power disturbances.

In [25] a simpler MCMC rare-event sampler was used to build conditional distributions
of random disturbances leading to excessive RoCoF at any bus. One limitation in that work
was the use of dynamics which neglect system voltage transients and are valid only for
small disturbances. In order to study cascades of emergency responses caused by larger
disturbances, [26] employed third-order dynamics. The latter work established the effect of
network connectivity on the conditional distribution of cascade sizes (that is, the number of
emergency responses arising from the initial disturbances), namely that these distributions can
be highly bimodal in more highly connected networks. However, these findings were obtained
through the use of toy power system models at the extremes of connectivity, namely the ring
and fully connected networks. In contrast, we perform a case study based on Kundur’s two-area
system [27], including the additional features of BESS, line disconnection and automatic voltage
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regulation. This enables study of the benefits of BESS for system robustness and resilience under
uncertainty, taking into account potential interactions with emergency protection schemes.

In the spirit of the present theme issue of Philosophical Transactions A, we aim as far as possible
for a self-contained presentation suitable for an interdisciplinary audience, with further technical
detail provided in an online supplement. The results may be reproduced using the code available
at https://github.com/ahw493/ .

2. Simulation model
Our simulation model is cyber-physical, in the sense that we model physical observables
(the physical layer) in continuous time while simultaneously modelling emergency protection
schemes (the cyber layer) in discrete time. Between interventions from the cyber layer, the
physical layer evolves via the differential equations (2.3) and (2.4). The cyber layer, which consists
of the emergency protection schemes described in the supplementary material, inspects the
physical layer at regular intervals. On this discrete-time lattice, if any activation criterion is met
then the corresponding protection system activates. Each activation creates a discontinuity in
the physical layer, resulting either from an instantaneous reduction in generation or load, or an
instantaneous change to the graph topology through the loss of an edge (line).

Table 1 collects notation used in the paper. Constant and time-evolving variables are indicated
using Latin and Greek letters, respectively. Lower-case Greek letters correspond to physical
observables (rotor angles, frequencies, powers and voltages), while upper-case Greek letters are
used to denote the state of the emergency response schemes. Vectors are underlined e.g v.

(a) Network model
Consider an undirected graph G (N + L,W ), where N + L is the set of nodes and W a set of
weighted edges. The set of nodes 1, . . . , N represents generator buses, while the remaining N +

1, . . . , N + L nodes represent load buses. Edges represent power lines, and the weight Wij of
line ij (that is, the line between buses i and j) is the triple of characteristics Wij = (pij , eij , lij),
where pij is the reactance per unit, eij the resistance per unit and lij the length of line ij. The
line indicator variable Ωij switches from 1 to 0 upon disconnection of line ij by the protection
scheme. The system’s susceptance matrix can then be written as a Laplacian-like matrix (see [28]),
expressed in turn as a function B(Ω) of the line indicator variables:

Bij(Ω) :=


(
N+L∑
k=1

wik(Ωik)

)
− wij(Ωij) if i= j,

−wij(Ωij) if i 6= j,

(2.1)

where

wij(Ωij) :=


0 if i= j

−
pij

e2ij + p2ij

Ωij
lij

if i 6= j.
(2.2)

The network is assumed to be lossless, so that the susceptance matrix coincides with the
imaginary part of the admittance matrix [27,29].
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Table 1. Summary of notation. Note: per unit quantities are denoted p.u.

Sym. Meaning Units

Equivalent generator and line parameters
Ai Governor droop response MW/rad
Bij Susceptance matrix p.u
D Load damping factor %
δi Voltage angle rad
δ̇i Frequency p.u
δ̈i Rate of change of frequency (RoCoF) p.u
Ei Rotor field voltage p.u
εei Automatic voltage regulation p.u
ηi Random power injection or drain p.u
Li Equivalent machine reactance (see Supplementary Material) ohms

M(Ξ) System angular momentum Ws2

Mi Generator angular momentum Ws2

νi Voltage p.u
Pmi Maximum power output p.u
PNi Initial generator power ( at t= 0) p.u
PLi Initial loads (at t= 0) p.u
φij Power flow from bus i to j p.u
ρi Mechanical power p.u
Si Transient time constant d-axis s
W Governor deadband frequency range Hz
χLi Active bus loads p.u

Battery parameters
βi Battery power injection/drain p.u
b+i Initial battery state parameter %
B0
i Initial battery power MW

Bm Maximum battery power MW
Br Maximum battery power for regulation FCAS MW
Bg Battery response to global frequency MW
Bl Battery response to local frequency MW
F d Battery deadband frequency deviation Hz
Fn Emergency FCAS frequency deviation Hz
Fm Frequency deviation associated with maximum battery power Hz
E Frequency interval for local battery response Hz
R Frequency interval for AGC commanded battery response Hz
D Battery’s deadband frequency interval Hz
T b AGC signal interval s

Protection system parameters
C Load shedding increments %
Ωij Indicator for line protection system -
Ξi Indicator for generation shedding emergency response -
Γi Indicator for load shedding emergency response -
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(b) System dynamics
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Figure 1. (Left) Generator bus including synchronous machine, local load, and renewable unit (Right) Load bus including

load (modelled as a motor) and BESS. φij is the power flow through the line from bus i to bus j, see Section 2.3 in the

Supplementary Material. See Table 1 and main text for other notation.

Each generation bus i= 1, . . . , N includes a synchronous machine, load, and renewable unit,
as shown in Figure 1 (left) and equations (2.3):

M(Ξ)δ̈i +D(Γ )δ̇i =Ξiχ
N
i − χ

L
i − νi

N+L∑
j=1

Bij(Ωij)νj sin(δi − δj) + ηi

Siν̇i =Ξi(Ei − εei )− νi + Li

N+L∑
j=1

Bij(Ωij)νj cos(δi − δj)

ρ̇i =−Aiδ̇i(1− 1W [δ̇i])

(2.3a)

(2.3b)

(2.3c)

In equation (2.3a), χNi :=min{ρi + PNi , Pmi } is generator i′s mechanical power, PNi is the
equilibrium mechanical power output of the generator, Pmi is the generator’s nominal maximum
power output and ρi is the power contribution of a governor, whose dynamics are described in
(2.3c) where W is the governor deadband (see Supplementary Material); voltage dynamics are
given by (2.3b); and the terms M(Ξ), D(Γ ) and εei are detailed below.

Each load bus i=N + 1, . . . , N + L includes a load and a battery, as shown in Figure 1 (right),
whose corresponding equations are

M(Ξ)δ̈i +D(Γ )δ̇i =−χLi + νi

N+L∑
j=1

Bij(Ωij)νj sin(δi − δj) + βi

Siν̇i =Ei − νi + Li

N+L∑
j=1

Bij(Ωij)νj cos(δi − δj).

(2.4a)

(2.4b)

The initial conditions of the above system of equations, denoted δi (0), νi (0), ρi(0) and PNi are
set equal to equilibrium states which can be determined numerically. 1

Recalling that the models of generation and load shedding are presented in the supplementary
material, the variables Ξ := {Ξ1, Ξ2, . . . , ΞN} are used to record activations of generation
shedding emergency responses. That is, Ξi is initially 1 and switches to 0 when generation
shedding occurs at generator node i. The global variable M(Ξ) :=

∑N+L
i=1 ΞiMi then represents

the total angular momentum of the system, while accounting dynamically for generation
shedding through its dependence on Ξ . For the load buses i=N + 1, . . . , N + L the values
1see, for example, [29] for a study of the existence of these states and Section 4 of the Supplementary Material for specific
values.
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χLi := (1− CΓi)PLi are also dynamic, due to the action of the load shedding emergency scheme.
Here 0<C < 1 is the additional amount of load shed per activation of this emergency scheme and
Γi counts the number of load shedding events at node i. In the same way, the global damping
coefficient D(Γ ) (equation (11) in the supplementary material) accounts dynamically for load
shedding events. The variable ηi representing the power disturbance at bus i is detailed in
Section 3. The term εei accounts for the action of automatic voltage regulation (Section 1 of the
supplementary material), while βi is the battery power injection/drain defined in (2.5). Note that
the sign in front of the voltage νi on the right-hand side of (2.4a) is the opposite of that in (2.3a),
as explained by the opposite direction of the mechanical and electrical energy conversions.

(c) Battery model
Each BESS has two reference response strategies, one for response to local frequency and one
for response to an Automatic Generation Control (AGC) signal based on the average global
frequency. The response to local frequency takes precedence. Each of these reference strategies has
a deadband region with no response, a region of linear response, and a region of fixed response.
Thus the battery response is given by:

βi := 1E [δ̇i](B
l(δ̇i)−B0

i ) + (1− 1E [δ̇i])(B
g(δ̇)−B0

i ). (2.5)

Here, the indicator function 1E [δ̇i] determines whether the local frequency at bus i lies in the
range E ≡ E1 ∪ E2, where E1 ≡ (−∞,−Fm] ∪ [Fm,∞) and E2 ≡ (−Fm,−Fn] ∪ [Fn, Fm) (see
Figure 2). The terms (Bl(δ̇i)−B0

i ) and (Bg(δ̇)−B0
i ), where the functions Bl(δi)) and Bg(δ̇))

are defined below, take account of the fact that the BESS will in general be responding at a pre-
contingency levelB0

i just prior to time 0. These terms therefore model the change in power output
when the BESS delivers its reference response. Since we do not explicitly model the state of the
system prior to time 0, the values of B0

i are randomly sampled initial conditions, see Section 3 for
more details.

(i) BESS response to local frequency δi

According to (2.5), if the local frequency δi lies in the range E then the BESS response is
determined by this local frequency deviation. In this case the power-frequency relation of the
response is given by the blue graph in Figure 2: 2

Bl(δ̇i) :=


Bmsgn[δ̇i](

M lδ̇i +Qlsgn[δ̇i]
)

0

δ̇i ∈ E1

δ̇i ∈ E2

δ̇i ∈R ∪ D
, (2.6)

where R≡ (−Fn,−F d] ∪ [F d, Fn), D≡ (−F d, F d), Bm is the battery maximum power output
(MPO) and

M l :=

(
Bm −B0

Fn − Fm

)
< 0 andQl :=

∣∣∣∣BmFn −B0Fm

Fn − Fm

∣∣∣∣ (2.7)

are respectively the slope and intercept of the diagonal blue lines in Figure 2.

(ii) BESS response to system average frequency δ̇

Again from (2.5), if the local frequency δi lies outside the range E then the BESS response is
determined by the system average frequency deviation through the AGC signal. In this case the

2The superscript l stands for “local”, superscript m stands for “maximum”, superscript g stands for “global”, superscript r
stands for “regulation”.
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power-frequency relation of this response is given by the red graph in Figure 2:

Bg(δ̇) :=


Brsgn[δ̇]

(Mg δ̇ +Qgsgn[δ̇])

0

δ̇ ∈ E
δ̇ ∈R
δ̇ ∈D

, (2.8)

where

Mg :=

(
Br −B0

F d − Fn

)
< 0, andQg :=

∣∣∣∣∣BrF d −B0Fn

F d − Fn

∣∣∣∣∣ (2.9)

are respectively the slope and intercept of the diagonal red lines in Figure 2 and the system
average frequency deviation is calculated as

δ̇= δ̇(t) :=
1

N

N∑
i=1

δ̇i(T
bbt/T bc). (2.10)

The form of (2.10) takes into account time delay in the calculation, broadcast and reception of
the system-wide AGC signal. The discretised time index T bbt/T bc corresponds to reception of
the AGC signal at the BESS every T b seconds.

 

Figure 2. Reference power-frequency response strategies for the BESS response to local frequency (blue line) and the

AGC signal (red line). As in (2.5), response to local frequency takes precedence. The common deadband D is indicated

by the dashed central line.

3. Statistical Model

(a) Unconditional distribution
At each bus i we sample a random power injection or drain ηi. These random disturbances are
modelled agnostically and may, for example, represent exogenous shocks and/or endogenous
contingencies. They are applied as impulses at time 0 and, as in [26], are modelled as constant
power disturbances over the timescale of our simulations. Thus for example, if the model is used
to explore the effect of renewable generation forecast errors then the joint distribution of these
disturbances should reflect the historical joint distribution of such errors, and the timescale of
the simulation should be comparable to the characteristic timescale of these errors. In the case
study of Section 4, to enable a straightforward parametric exploration of the effect of correlations
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between disturbances, the vector η of disturbances is modelled as

η (t) :=UΘ [t]∈RN+L (3.1)

where Θ is the Heaviside step function and U is the vector of disturbance magnitudes. More
generally, if it is not judged reasonable to model disturbances as static over the timescale of the
simulation, then dynamic disturbances can be accounted for by augmenting the simulation model
with appropriate dynamics for the disturbances ηi in equation (2.3a).

Each Ui is normalised by setting it proportional to the stationary power injection at node
i. Thus U = u ◦ P 0, where P 0 is the vector of equilibrium nodal power injections, ◦ is the
component-wise product and u∈RN+L is taken to be a Gaussian vector

u∼N (0, Σ) where Σij := σ2 ·

{
1 i= j

α i 6= j
i, j ∈ {1, . . . , N + L}, (3.2)

with 0≤ α< 1 to ensure positive semidefiniteness.
The pre-contingency response of the battery just prior to time 0 is sampled from a uniform

distribution

B0
i ∼U

[
− b

+Bm

2
,
b+Bm

2

]
(3.3)

(see Section 4 of the supplementary material for parameter specifications).
It is assumed that time 0 in our simulations can occur at any time in the interval between AGC

signals. To reflect this, the time of the first AGC signal in the simulation is sampled uniformly:

T b0 ∼U [0, cT b], (3.4)

and subsequent AGC signals occur every T b seconds.

(b) Rare event sampler
Rare event sampling is performed using the skipping sampler, a Markov Chain Monte Carlo
(MCMC) algorithm developed for this purpose. The sampler belongs to the class of Metropolis-
Hastings (MH) algorithms and, as proved in [30] and demonstrated in the case study of Section
4, improves performance relative to the random walk Metropolis algorithm. Starting from any
state (in the present context, a vector u0 ∈RN+L of power disturbances), a proposed new state
ũ∈RN+L is sampled from a so-called proposal density. The proposal ũ is either accepted or
rejected according to a specified acceptance probability. If it is accepted, the proposal is added to
the output sample and becomes the new state u1. This procedure is repeated a desired number
of times and the output sample {u1, u2, . . .} is returned. The skipping sampler is dedicated to
sampling from any rare event Υ of interest, since its proposal density ‘skips’ over the unwanted
region Υ c until the rare event Υ is sampled (or until the skipping process is halted for reasons of
computational efficiency, if this occurs first).

More precisely, in rare event sampling we are given an unconditional density µ on RN+L and
a rare event Υ ⊂RN+L of interest and the task is to sample from this distribution conditional on
Υ . The density of this conditional distribution at the point u∈RN+L is

π (u) :=
µ (u)1Υ (u)

µ (Υ )
, (3.5)

where µ (Υ ) is the probability of the event Υ .
Pseudocode for the skipping sampler is given in Algorithm 1. Given the current state u, the

proposal ũ is a random walk proposal. If ũ /∈ Υ , we calculate the direction Φ= (ũ− u) / ‖ũ− u‖
between these two points, and move (‘skip’) a further independent random distance R1 in this
direction, whereR1 has the conditional distribution of ‖ũ− u‖when conditioned on the observed
value of Φ. If the modified proposal Z = u+R1Φ lies in Υ then it is either accepted or rejected
according to the acceptance probability α(u, Z), otherwise the process skips again in the same
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direction Φ, by an independent random distance R2 having the same distribution as R1, and so
on, until either Υ is entered or the budget for skipping is exhausted.

We take the unconditional distribution µ to be the Gaussian distribution in (3.2) above, and
let the set Υ be a particular system instability. While the underlying sampler is the same as that
employed in [26], in the case study of Section 4 below the system model and simulator aim to be
more realistic and we are interested in instabilities relating to two different services provided by
BESS (that is, regulation and emergency responses) and their interaction.

Input : The n-th sample un

Set u := un;
Generate an initial proposal ũ distributed according to the density q(y − u)dy;
Calculate the direction Φ= (ũ− u) / ‖ũ− u‖;
Generate a halting index K ∼Kϕ;
Set k= 1 and Z1 := ũ;
while Zk /∈ Υ and k <K do

Generate a distance increment R distributed according to qr|Φ (r|Φ);
Set Zk+1 =Zk + ΦR;
Increase w by one;

end
Set Z :=Zk;
Evaluate the acceptance probability:

α(u, Z) =

min
(
1,
π(Z)
π(u)

)
if π(u) 6= 0,

1, otherwise,
(3.6)

Generate a uniform random variable V on (0, 1);
if V ≤ α(u, Z) then

un+1 =Z;
else

un+1 = u;
end
return un+1.

Algorithm 1: Skipping sampler (n-th step). Here q is a symmetric random walk proposal
density and qr|Φ (r|Φ) is the conditional density of its polar radial coordinate r given the polar
angle Φ, see [30] for full details.

4. Case Study

(a) Kundur Two-Area System
Our case study is based on the Kundur two-area system (KTAS) [27]. In particular we take a Kron
reduced version (see for example [31,32]) consisting of N = 4 generation buses and L= 2 load
buses as in Figure 3. For simplicity the load buses are equipped with equally specified batteries.
In equilibrium, power flows from Area 1 to Area 2 through the line connecting nodes 5 and 6. This
is modelled as a weak tie line (see for example [33]) with a disconnection (‘line tripping’) scheme.
The system parameters (whose values can be found in Section 4 of the Supplementary Material)
are such that the system is N − 1 secure, in the sense that the loss of a generator (in the absence
of any other disturbance) does not trigger an emergency response.
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Figure 3. (Top) Single line diagram of the Kundur two-area 4 node network, reproduced from [27], before Kron reduction.

(Bottom) Schematic drawing of the same system after Kron reduction. Generator buses (green circles) correspond to

nodes i= 1, . . . , 4 and load buses (brown circles) correspond to nodes i= 5, 6. Governors (blue annuli) are attached to

generator buses while BESS (yellow annuli) are located at load buses. Line lengths are indicated.

(b) Metrics for instability
In order to explore the frequency regulation benefits of BESS, the first metric we apply is the
frequency excursion area (FEA) which may be defined per bus as

Fi (t) :=
∫ t
0

{
Θ[δ̇i(s)−F+](δ̇i(s)−F+)ds+Θ[F− − δ̇i(s)](F− − δ̇i(s))

}
ds, (4.1)

where F+ and F− are constant thresholds. Thus the FEA is the area lying between the graph of
frequency at bus i and the frequency band [F+,F−].

To measure the emergency response benefits of BESS, the metric of interest is the amount of
load shed (equivalently, the numbers Γi of load shed events at the load buses, as defined in section
2.2 of the supplementary material). The system averages of these quantities are then

F (t) :=
1

N + L

N+L∑
i=1

Fi(t) and G (t) :=
1

L

N+L∑
i=N+1

Γi(t) (4.2)

In equilibrium we have F (t) = 0 and G (t) = 0. Recalling Section 3(b), the rare events of interest
are the sets ΥF and ΥG , corresponding to frequency excursions and load shedding respectively,
where:

ΥF := {u∈RN+L :F (T )> 0} and ΥG := {u∈RN+L : G (T )> 0}. (4.3)

Here T > 0 is the length of the observation time window considered. In direct analogy with the
well-known conditional value at risk (CVaR) metric, we may then define the conditional average
load shed as

〈G (T )〉 :=
L∆∑
i=1

G (T ) · P[G (T ) = i|ΥG ], (4.4)

where ∆ is the maximum possible number of load shed events per node (see Section 2.2 in
the supplementary material). Thus 〈G (T )〉 measures the severity of load shedding, given that it
occurs. We may similarly define the conditional average FEA 〈F (T )〉, measuring the severity of
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frequency excursions when they occur. The conditional samples output by the skipping sampler
of Section 3(b) may be used to calculate the simulation values of these conditional metrics.

(c) Skipping sampler implementation
In Algorithm 1, the halting index is taken to be constant and the proposal q to be Gaussian, so
that the conditional distribution qr|ϕ of the polar radial coordinate r of the initial proposal is the
generalised Gamma distribution

qr|ϕ (r|ϕ) = (ϕTΣ−1ϕ)
N+L

2

2
N+L

2 −1Γ (N+L
2 )

e−(ϕ
TΣ−1ϕ) r2

2 rN+L−1. (4.5)

5. Results
In this section we explore how the frequency regulation and emergency response benefits of BESS
vary with both the BESS Maximum Power Output (MPO)Bm and the correlation parameter α for
disturbances. Based on BESS characteristics anticipated in the near future [34] we take Bm from
0 (no BESS) to 1000MW (the maximum BESS MPO considered). Simulations were conducted
using MATLAB R©, each taking between 2 and 5 seconds to execute for a given vector of initial
conditions using a desktop machine. To compare the computational complexity of the skipping
sampler to standard Metropolis-Hastings and Monte Carlo sampling, in the study of Section
(a) with 1GW battery, independent 15 minute runs generated 112, 63, and 9 samples from the
skipping sampler, MH, and Monte Carlo samplers respectively. In the study of Section (b) with
1GW battery, independent 15 minute runs generated 95, 53 and 3 samples from the skipping
sampler, MH, and Monte Carlo samplers respectively.

(a) Frequency regulation benefits of BESS
Figure 4 (Left) illustrates the relationship between battery MPO and 〈F (T )〉, the conditional
average frequency excursion area, for different values of α. The results reveal a clear decreasing
trend in 〈F (T )〉, approximately in the interval [0, 400] MW for MPO, while the frequency
regulation benefit tends to saturate beyond this level.

Figure 4 (Centre) plots the conditional average magnitude of disturbances in the rare set ΥF ,
showing an increasing trend. Recalling the ‘bell-shaped curve’ of the Gaussian distribution, this
indicates that the event ΥF becomes increasingly rare as battery MPO increases. Thus higher
MPOs correspond to a reduction in both the likelihood of frequency excursions outside the normal
operating band and, when they occur, the frequency excursions are less severe on average. While
this reduction in severity saturates as MPO increases to 1GW, the reduction in frequency appears
to be maintained up to this level.

These measures of severity and likelihood may be combined to produce a normalised version
of conditional Average FEA, calculated by dividing 〈F (T )〉 by the average magnitude of
disturbances in the set ΥF . This quantity is illustrated in Figure 4 (Right). Although this shows
the same trend as Figure 4 (Left) in the present case of FEA, it is of greater interest in the next
section.

(b) Emergency response benefits of BESS
Figure 5 replicates the plots introduced in Figure 4, this time for the conditional average load
shed metric. Recalling the above discussion of Figure 4, the relationships are more complex when
we consider load shedding, a rarer instability. In the left panel, the conditional average load
shed is initially approximately constant as MPO increases, after which a significant decreasing
relationship is seen. From the centre panel, the conditional average disturbance size initially
increases, after which a significant decrease is observed. Together this implies that as MPO
increases from 0 to 1GW, the initial benefit of BESS is in reducing the likelihood of load shedding
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Figure 4. Conditioned on the rare event ΥF (occurrence of a frequency excursion outside normal operating band),

the above plots illustrate (Left): Plot of the conditional average FEA; (Centre): Plot of conditional average disturbance

magnitude against battery MPO; (Right): Plot of normalised FEA versus battery MPO.

while its severity remains approximately constant. After this initial trend, significant reductions in
severity are balanced against significant increases in the likelihood of load shedding (as evidenced
by the decrease in conditional average disturbance size). When these two aspects are weighed
against each other in the right panel through normalisation, a consistent improvement in system
resilience under this metric is observed with increasing MPO, with the exception of the cases of
highest correlation between disturbances (α= 0.6, 0.8).

Figure 6 investigates further the phenomena observed in Figure 5. As shown in the left panel,
the increase in normalised load shedding seen for α= 0.6, 0.8 coincides with an increase in
disconnection of the weak tie line between nodes 5 and 6. Further investigation (data not shown)
reveals that in this parameter range, load shedding was associated with the occurrence of large
negative disturbances in Area 2 of the KTAS. A plausible explanation is that with this combination
of parameters and disturbances, the BESS in Area 1 contributes to excessive power transfer
to Area 2, resulting in disconnection of the weak tie line. The additional transient dynamics
resulting from the consequent system separation exacerbate the on-going cascade of both load
shedding and generation shedding (right panel), reducing system resilience. Additionally, the
centre panel of Figure 5 reveals a different but similarly complex relationship between MPO and
the probability of generation shedding due to RoCoF.

(c) Interaction between frequency regulation and contingency services
Recall from Section 3 that to account for the frequency regulation service provided by BESS, the
power injection or withdrawal B0

i from each battery just before time 0 is sampled from a uniform
distribution. Also, from equation (2.5), this initial state determines the maximum power available
to respond to the disturbances at time 0. To confirm that the model captures interaction of the
frequency regulation and emergency responses, the top row of Figure 7 plots the full distribution
of B0

i at the two buses with BESS (i= 5, 6), when conditioned on ΥG (that is, conditioned on
load shedding). The top left pair plots results for MPO 200MW, and from visual inspection
the conditional distribution is again approximately uniform. In contrast the top right pair of
distributions, which plots results for MPO 1GW, are markedly skewed. This indicates interaction
between the frequency regulation and contingency services, since load shedding is associated
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Figure 5. Conditioned on the rare event ΥG (occurrence of at least one load shed event), the above plots illustrate (Left):

Plot of the conditional average load shed; (Centre): Plot of conditional average disturbance magnitude against battery

MPO; (Right): Plot of normalised load shed versus battery MPO.

Figure 6. Conditioned on the rare event ΥG (occurrence of at least one load shed event), the above plots illustrate

(Left): Conditional probability of line trip; (Centre): Conditional probability of generation shedding due to rate of change of

frequency; (Right) Conditional probability of over frequency generation shedding.

with high values of B0
5 (the initial BESS power in Area 1) and low values of B0

6 (the initial BESS
power in Area 2).
Indeed the bottom left panel shows that, for MPO 1GW, the conditional average disturbance
at node 5 is positive, while it is negative at node 6. Thus in this case study, load shedding is
associated with disturbances which are in the same direction and thus reinforce the initial power
outputs B0

i (i= 5, 6), rather than being in the opposite direction and thus partially cancelling
them. The bottom right panel confirms that this potential issue may be mitigated by judicious
choice of the parameter b+ in (3.3): taking MPO 1GW and b+ = 0.2, the conditional distribution
of B0

i is markedly less skewed.

6. Conclusions and outlook
Our results demonstrate successful application of rare event sampling to a detailed power
system dynamic simulation model including BESS. The method accounts for the feedback
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Figure 7. Empirical distributions of the BESS initial output power B0
i for i= 5, 6, conditional on the event ΥG (that is,

conditional on load shedding), for σ2 = 0.003 and α= 0.2. Vertical red lines locate the conditional mean. (Top Left Pair):

MPO 200 MW, b+ = 1. (Top Right Pair): MPO 1GW, b+ = 1. (Bottom Right Pair): MPO 1GW, b+ = 0.2. (Bottom Left):

Plot of the conditional average disturbance level (including sign) at buses 5 and 6 versus battery MPO.

effects of emergency responses and is flexible, producing a wide variety of empirical statistics
capable of distinguishing between the likelihood and severity of instabilities, and of identifying
both saturation in these benefits as MPO increases and competition between the frequency
regulation and emergency responses provided by BESS. Possible future research directions
include extensions to further protection systems such as voltage regulation, more detailed
sensitivity analyses including the influence of BESS speed of response, and investigation of the
effect of different network topologies.
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