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NONZERO-SUM GAMES OF OPTIMAL STOPPING AND
GENERALISED NASH EQUILIBRIUM PROBLEMS*

RANDALL MARTYR' AND JOHN MORIARTY'

Abstract. In the nonzero-sum setting, we establish a connection between Nash equilibria in
games of optimal stopping (Dynkin games) and generalised Nash equilibrium problems. In the
Dynkin game this reveals novel equilibria with complex structures which have not been previously
studied. The reward functions need not be differentiable and we also obtain novel results on the
existence and uniqueness of threshold-type equilibria, and on their stability under perturbations to
the thresholds.
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1. Introduction. In this paper we establish a connection between Nash equi-
libria in two different types of game. The first type is the two-player, nonzero-sum
Dynkin game of optimal stopping (for general background on optimal stopping prob-
lems the reader is referred to [24]). Player i € {1,2} chooses a stopping time 7; for
a strong Markov process X = (X;);>o defined on an interval (z¢,z,) C R. At time
71 A T the game ends, each player i € {1, 2} receiving a reward J;(71, 72) specified by
the reward functions f;, g;, h;, where

(11) m7i(7_177—2) = fi(X'ri)]-{T,i<T,i} + gi(X'r_,y)]-{'r,i<‘ri} + hi(XT,y)]-{n:T,i}v

the subscript —¢ denoting the other player. In this context equilibrium strategies
(71, 72) of the form

(1.2) n=inf{t>0:X; <{¢} and m=if{t>0:X;>r},

for constants £,r € (x¢,x,) with £ < r, are referred to as threshold-type equilibria.
A recent example is in [11], in which the thresholds ¢, r are drawn from the disjoint
strategy spaces S and Ss respectively where

(1.3) 81 := [z, al, Sy = [b, x,],

for some constants a,b with z, < a < b < x,.

The second type of game is a deterministic generalised game [13] (or abstract econ-
omy [1]) with n > 2 players, where n will depend on the structure of the equilibrium
studied in the Dynkin game. Since the examination of all cases n > 2 is reserved for
future work, however, we focus on n = 2 and simply provide an example with n = 3.

The connection yields novel equilibria in the Dynkin game. This novelty is three-
fold. Firstly, while threshold-type equilibria correspond to the case n = 2, the cases
n > 2 yield equilibria with more complex structures which, to the best of our knowl-
edge, have not been previously studied. Secondly we obtain novel equilibria of thresh-
old type, since both cases a < b and a > b are permitted. Thirdly the reward functions
are not required to be differentiable.
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2 R. MARTYR AND J. MORIARTY

In the threshold-type case, we also obtain the novel result that the equilibria
are unique among Markovian strategies, rather than simply in the class of threshold-
type strategies. Finally, we obtain sufficient conditions for threshold-type equilibria
to be stable under perturbation of the thresholds. More precisely, we show that if
the equilibrium threshold of either player is perturbed within appropriate bounds
then the equilibrium is restored in the limit through policy iteration. This property
is obtained under more general conditions than in previous work: for example, the
resulting sequences of thresholds are not necessarily monotone.

1.1. Setting. We will take X to be Brownian motion on (0, 1), absorbed at the
boundaries z; = 0 and z, = 1. That is, let W = (W});>¢ be a one-dimensional stan-
dard Brownian motion defined on a filtered probability space (Q, F,F = (F;)i>o0,P),
where F is the universally completed filtration [7, p. 27]. We will write the probability
measure as P? in the case P({Wy = z}) = 1, and denote the expectation operator
with respect to P* by K. Then set

(1.4) Xt = Wine,

where ¢ = inf{t > 0: W; ¢ (0,1)}. We set ¢(0) = ¢(1) = 0 for every measurable
function ¢ on [0,1]. Let T denote the set of all F-stopping times with values in [0, 0]
and B([0,1]) denote the Borel o-algebra on [0,1]. For each measurable set A, write
the associated first entrance (or ‘debut’) time of X as

(1.5) Dy =inf{t >0: X; € A} =inf{t > 0: X; € A} a.s.

(The second equality follows since every point is regular for Brownian motion, see for
example [21, Remark 8.2].)
The basic assumption in this paper is the following:

Assumption 1.1. For i = 1,2 the functions f;, g; and h; are continuous on [0, 1],
and satisfy f; < h; < g; and f;(x) = g;(z) = 0 for z € {0,1}.

Although the link which we establish between games is valid in wide generality,
obtaining specific results requires specific choices to be made on the geometry of the
reward functions in the Dynkin game. We consider two possible choices:

Assumption 1.2 (Section 4). There exist points a,b € (0,1), not necessarily
satisfying a < b, such that:
(i) f1 is concave on [0,a] and is convex on [a, 1],
(i1)  f2 is convex on [0,b] and is concave on [b, 1],
(#5i) If b <athen f; < g; on [b,a] fori=1,2,
or the more complex
Assumption 1.3 (Section 6). There exist points a1 and ag with 0 < a1 < ay <
b < 1 such that:
(i) f1is convex on [0,a1], concave on [a1,as] and convex on [ag, 1],
(#)  f2 is convex on [0,b] and concave on [b, 1],
and we leave the construction of further examples to the reader.
The results of Section 5 require more regularity and there we adopt a strengthened
version of Assumption 1.2 (Assumption 5.1). Finally we note that the boundary and

inequality constraints in Assumption 1.1 can be weakened somewhat (see Section 3.2
and Remark 4.3 respectively).
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OPTIMAL STOPPING GAMES AND GNEP 3

1.2. Background. For general background on game theory we refer the reader
to [14]. Regarding the structure of Nash equilibria, in nonzero-sum Dynkin games
this has recently been investigated in [3] and [11]. There, sufficient conditions for the
existence of threshold-type equilibria, and their uniqueness in this class, are obtained.
A key difference between the case n = 2 of the present paper and the latter work is
that there, the functions f; in (1.1) are twice differentiable and have unique points
of inflexion a and b respectively with a < b, conditions which may all be relaxed in
the present approach. Other differences are the inclusion of time discounting and of
linear diffusion models for X, and these points are discussed in our setup in Appendix
E.

Our results on stability relate to an iterative approximation scheme for Nash
equilibria, which has been previously studied outside the Markovian framework in
[15] and, in the Markovian framework, in [6], [9], [17] and [22]. In [17] it is assumed
that f; = g; and in [6], [9] and [22] a condition related to superharmonicity is imposed
for the g;. The latter conditions ensure monotone convergence over the iteration,
whereas the approach via stability in Section 5 does not rely on monotonicity.

The remainder of this paper is organised as follows. In Section 2 the two game
settings are presented and connected. Useful alternative expressions for the expected
rewards in the Dynkin game are developed in Section 3, and our results on existence,
uniqueness and stability for threshold-type equilibria follow in Sections 4 and 5. Fi-
nally, in Section 6 we discuss Dynkin game equilibria with more complex stopping
regions than the threshold type.

2. Two games. Our first aim in this work is to establish an equivalence between
threshold-type equilibrium strategies in Dynkin games and equilibrium strategies in
related static, deterministic games. We begin by remarking on the specification £ < r
n (1.2). It is easy to see that both players’ stopping times for threshold-type strategies
in the Dynkin game are P*—almost surely positive if and only if £ < r and = € (4, 7).
Therefore, when £ > 7 in (1.2) the Dynkin game is trivial in that it ends immediately,
and so we seek to exclude such cases. We will show that the ordering ¢ < r in the
threshold-type strategy may be induced by generalising the classical deterministic
game. Further, in Section 6 the generalised game also provides a convenient way to
explicitly establish player 1’s stopping structure in a more complex example.

2.1. Generalised Nash equilibrium. In the n-player generalised game each
player’s set of available strategies, or feasible strategy space, depends on the strategies
chosen by the other n — 1 players. The case n = 2 is as follows. Player i € {1,2}
has a strategy space S; and a set-valued map K;: S_; = S; determining their feasible
strategy space. Denoting a generic strategy for player ¢ by s;, a strategy pair (s1, $2)
is then feasible if s; € K;(s_;) for i = 1,2. Setting S; = [0, a] and Sy = [b, 1], the pair
of mappings K1: [b,1] = [0,a] and K»: [0,a] = [b, 1] will be given by

Ki(y) = [0,y A d],

(2.1) Ky(z) = [z V b, 1],

where a and b are given constants lying in the interval (0,1). That is, the feasible
strategy pairs are given by the convex, compact set

(2.2) C={(z,y) €10,a] x [b,1]: < y}.

This choice of C will be appropriate for equilibria of the threshold form (1.2) in the
Dynkin game. (The set C will be modified in Section 6 below, where an example of

This manuscript is for review purposes only.



129
130
131
132
133

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

= =
ot
pu

ot ot o Ut Ot
C =W N

=
ot
~ ut

[
o

©

16(
161

162

163

164
165

166

167
168

4 R. MARTYR AND J. MORIARTY

a more complex equilibrium is studied). Letting R = [—00, +00] denote the extended
real line and writing U; : C — R for the utility function of player i, the generalised
Nash equilibrium problem is then given by:

DEFINITION 2.1 (GNEP, n = 2). Find s* = (s}, s3) € C which is a Nash equilib-
rium, that is:

Ui(s*) = ( suI)) CUl(sl,sg),
51,85)€
(23) Us(s") = sup DUs(stsa).
(s3,s2)€eC
It is interesting to note that in the case a < b, which is analysed in [3] and [11], the
generalised problem (2.3) reduces to a classical game (that is, where each player’s
feasible strategy space does not depend on the other player’s chosen strategy). One
advantage of the generalised problem (2.3) is therefore in enabling a natural analysis
of the case a > b as well.
In the proofs below it will be convenient to write S := S1 X Sz. We will also make
use of the following definition:

DEFINITION 2.2. Let s = ($1,82,...,8,) € R™ and w € R. Then for each i €
{1,...,n} we will write (w,s_;) for the vector s modified by replacing its ith entry
with w.

A useful method for establishing the existence of solutions in such nonzero-sum
classical games is to appeal to quasi-concavity (see e.g. [14, p. 34]) and we will use
this approach as a tool, providing the necessary details in the Appendix.

2.2. Optimal stopping. We also consider a Dynkin game with two players
which formalises the one in Section 1 with zy = 0 and z,, = 1. Each player observes
the process X and can stop the game to receive a reward (which may be positive or
negative) depending on the process value and on who stopped the game first.

Each player ¢ € {1, 2} chooses a stopping time 7; lying in 7 as their strategy. Let
fis gi and h; be real-valued reward functions on [0, 1] which respectively determine
the reward to player ¢ from stopping first, second, or at the same time as the other
player. For convenience we will refer to the f; as the leader reward functions and to
the g; as the follower reward functions. Assumption 1.1 (cf. Section 1.1) makes the
game similar to a war of attrition, and is commonly assumed in stopping games (see
for example [6, 9, 12, 22, 23]). Part (iii) of Assumption 1.2 is a mild strengthening of
Assumption 1.1 made for technical reasons.

Given a pair of strategies (71, 72) and recalling the reward defined in (1.1), we
denote the expected reward to player ¢ by

(24) Mix(Tl,TQ):]EI [‘71'(7'1,’7'2)].
The problem of finding a Nash equilibrium for this Dynkin game is then:
DEFINITION 2.3 (DP). Find a pair (11,75) € T x T such that for every x € (0,1)

we have:

My (71, 75) = sup M{(71,73)
(25) o i TET -

M3 (r{,75) = sup M3 (7{,72).

T2ET

If rf = Dg, and 75 = Dg, with 51,52 € B([0,1]), then the Nash equilibrium
(Ds,, Dg,) is said to be Markovian.

This manuscript is for review purposes only.
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2.3. Linking the games. We now present the link between the games in the
case n = 2, which is the setting used until Section 6, where we consider n = 3. The
idea is that after a suitable transformation of the stopping problems, threshold-type
solutions to the DP can be characterised by the slopes Uy (z,y) and Us(z, y) of certain
secant lines. This gives nothing else than a deterministic game, which may be studied
in the above generalised setting in order to discover additional novel equilibria. We
will close this section by illustrating that this link between the DP and GNEP does
not preserve the zero-sum property.

2.3.1. Construction of utility functions for the GNEP. For (z,y) € [0, 1]

we define
J1(z)=g1,1y,11(2)
s T <Yy,
Ul(l',y) = y-r Y .
) —00, otherwise,
(2.6) W) m0a®)
U2($7y> = y—e ' ' .
—00, otherwise,

where the functions gy, 1) and gz [0, are given by:

2.7)

(2.8)

L, Vrely)

g1y
gl,[y,l](x) { VI c [y 1]

_faw)
g1(z),
92,[0,x] (y) = {5251;7

)
Yy € [0, z]
=2, Vye (1]

x?

Note the utility functions in (2.6) are continuous and bounded above on C by As-
sumption 1.1.

Remark 2.4.

(i)

(iii)

The rationale for the form (2.6) of U; is as follows (references to the relevant
results below are given in parentheses). Suppose that (Dj ¢, Dy 1)) is a Nash
equilibrium in the DP. Then player 1’s strategy solves an optimal stopping
problem with obstacle fi—g |1 (Lemma 3.4). The function U; characterises
this solution under our sufficient conditions (Theorem 4.1 and Assumption
1.2). Similar comments of course apply to player 2.

The so-called double smooth-fit condition in the DP holds when in equilibrium
the players’ expected rewards, considered as functions of the initial point x,
are differentiable across the thresholds ¢ and r respectively (see, for example,
[3]). The characterisation described in (i) does not assume smooth reward
functions. However if the reward functions are differentiable and the equilib-
rium thresholds lie away from the boundaries (that is, (¢,7) € (0,a) x (b, 1))
then the double smooth-fit condition will be seen to hold (Remark 4.3). If
either of the equilibrium thresholds lies at a boundary then double smooth
fit does not hold in general (Remark 4.3-(iii)).

In Section 6 we show that more complex equilibria than the threshold type
may be obtained by considering GNEPs with three or more players.

2.3.2. Remark on the zero-sum property. It is interesting to note that the
zero-sum property in the DP does not imply the same for the GNEP and vice versa.

This manuscript is for review purposes only.
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6 R. MARTYR AND J. MORIARTY

Suppose that the GNEP (2.6) has zero sum: that is,

2

(2.9) Z Ui(z,y) =0, V(x,y)€S.

i=1

Recall the definition of the utility functions in (2.6) and that f1(0) = g2(0) = g1(1) =
f2(1) = 0. Then considering separately the case x =0, y € [b,1] in (2.9) and the case
y =1, x € [0,a], we conclude that fi(z) = f2(y) =0, V(z,y) € S. Then in the DP,
any nonzero choice of the reward functions g; satisfying Assumption 1.1 results in a
game with f; # —g_; and hence is nonzero sum.

On the other hand, suppose that a < b and consider the zero-sum DP with reward
functions

Then for (x,y) € S the sum of the rewards in the GNEP is

o= (- 22)- (525 (59)

which is strictly positive for (x,y) € {0,a} x (b, 1), and so the GNEP is not zero sum.

3. Best responses. In this section we provide three equivalent expressions for
best responses in the Dynkin game. These will be used to establish the existence and
uniqueness results of Sections 4 and 5.

3.1. Single player problem. Suppose that in the Dynkin game, the strategy
of player —i is specified by a set A € B(]0,1]) on which that player stops.

DEFINITION 3.1. A measurable function ¢: [0,1] — R is said to be superharmonic
on A if for every x € [0,1] and 7 € T :

¢(z) 2 E*[p(X7nD,e)]-

A measurable function ¢: [0,1] — R is said to be subharmonic on A if —¢ is super-
harmonic on A, and harmonic on A if it is both superharmonic and subharmonic on
A. If A =10,1] then ¢ is simply said to be superharmonic, subharmonic, or harmonic
as appropriate.

Taking A = [0,1] and 7 = ¢ in Definition 3.1, the convention ¢(0) = ¢(1) =0
implies that the superharmonic functions ¢ on [0, 1] are non-negative. Moreover, since
X is a diffusion on its natural scale, superharmonic (respectively subharmonic and
harmonic) functions are concave (resp. convex, linear) on convex subsets of [0,1] (see
[10, p. 179]).

The following useful result, the proof of which can be found in [4] or [12] for
example, states a key property of the resulting optimal stopping value function for
player 1.

This manuscript is for review purposes only.
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OPTIMAL STOPPING GAMES AND GNEP 7

LEMMA 3.2. For A € B([0,1]) and functions f, g and h satisfying Assump-
tion 1.1, the map

T VA(x) = SEE_EI [f(XT)]‘{T<DA} + g(XDA)]‘{DA<T} + h’(XDA)]‘{T:DA}] )

is superharmonic on A°.
DEFINITION 3.3. Given a bounded measurable function ¢: [0,1] — R, and recall-
ing the first entrance time defined in (1.5), define ¢4: [0,1] = R by

(3.1) pa(x) =E*[¢(Xp,)]-

It is not difficult to show (using the strong Markov property) that for any mea-
surable function ¢, the function ¢4 is harmonic on A¢. Moreover, it is continuous
whenever ¢ is continuous [21, Chapter 8]. The next lemma expresses the optimisation
problem for player ¢ as equivalent optimal stopping problems.

LEMMA 3.4. For x € (0,1) consider the problems

(3.2) VA(z) = sup M®(7, D),
TET

(3.3) VA(JC) = sup M*(1,D4),
TET

(3.4) VA(JC) = sup Mm(T, Dy),
TET

where for T € T we have

(35) Mm(Tv DA) =E" [f(XT)]‘{T<DA} + g(XDA)]-{DA<T} =+ h(XDA)]'{T:DA}]7
(3.6)  M®(1,Da) =E*[f(X:)1(r<pa} + 9(XDa) (2D}
(3.7)  M*(r,D,) =FE" {f—9a}(X)1ircnay],

and f, g and h are functions satisfying Assumption 1.1. Then, recalling Definition
3.3, we have

(3.8) VA@) = VAz) = galz) + VA(2).

Proof. Let 7 € T and x € (0,1) be arbitrary. We have M®(7, D) > M®(1,D,)
and therefore VA (z) > VA(x). To show the reverse inequality, first recall from Lemma
3.2 that o — V4(x) is superharmonic on A°. By Assumption 1.1 we have V4 > f on
(0,1), so that VA(X:)1¢<p,y > f(X7)1{;<p,} .., while from the strong Markov
property we have VA(Xp,) = g(Xp,) a.s. It follows from (3.6) and superharmonicity
that

M*(1,D4) <E*[VHXrap,)| < VA(2),
and taking the supremum over 7 we have V4 (z) = V4(x). Finally, recalling Definition
3.3 we have

(3.9) M(7,Da) = ga(@) = E*[{f = 9a}(X:)1{r<pay]- 0
Remark 3.5. Tt follows from (3.8) that
VA(2) = f(2) <= VA(2) = f(x) — gal2).

That is, defining the stopping region to be the subset of A on which the obstacle equals
the value function, the optimal stopping problems V4 (z) and ‘N/A(a:) have identical
stopping regions. An easy consequence is that if z € A€ lies in either stopping region
then f(z) > ga(z), and that if f < g4 on A® then 7 = D4 is optimal in (3.4).
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8 R. MARTYR AND J. MORIARTY

3.2. Rewards at the boundary. We close this section by noting that the re-
sults established in the remainder of the paper will remain true if, instead of requiring
fi(z) = gi(xz) = 0 for x € {0,1} in Assumption 1.1, the reward functions merely
take equal values at the boundary. This slightly more general setting is customary in
the literature on optimal stopping games [3, 12]. For this, it suffices to observe that
Lemma 3.2 remains true when the same relaxation is made. (An analogous argument
outside the Markovian framework can be found in [19, p. 1920].)

COROLLARY 3.6. The conditions of Lemma 3.4 may be relazed to allow f;(x) =
hz(‘r) = gz(‘r) = Hi(m)> UAS {Oa 1}7 i= 172
Proof. Consider the expected reward (3.5) with the additional reward H(z) re-

ceived at the boundary points € {0,1}. Then recalling the definition of ¢ from
Section 1.1, the new expected reward has the form:

MI(Ta DA) =E* [{f(XT)]‘{T<DA} + g(XDA)]-{T>DA}

(3.10)
+ (XD ) =D} 1 {(raDa)<cy + H(X) 1 ((rAD4)>c}]-

Then defining H{o 1} as in Definition 3.3 (with ¢ = H and A = {0,1}) and using the
strong Markov property we can show that,

M?*(r,Da) — Hyo1y(z) = E"[{ f(X:)1{r<pay + (XD )1{r>D43
+ (XD )1 ir=pay }1{(rADA) <c}]
=E" [f(XT)]‘{T<DA} + g(XDA)]‘{T>DA} + h(XDA)]-{T:DA}]7

where f =f—Hp1y,9=9—Hyo,1, and h=h— Hyo,1}, which is nothing more than
(3.5) with these new rewards instead of f, g and h respectively. d

4. Existence of threshold-type equilibria. In this section we impose As-
sumption 1.2 and exploit the link between games to establish existence results for the
DP. We show, firstly, that there is an equivalence between solutions to the GNEP with
utility functions given by (2.6) and threshold-type solutions to the DP (Theorem 4.1).
As shown in the Appendix (Lemma A.3), a standard argument using quasi-concavity
establishes the existence of solutions to the GNEP under Assumption 1.2. As a corol-
lary we obtain the existence of threshold-type solutions to the DP (Corollary 4.2).
This result includes the case a > b, which is novel when compared with the existing
literature. The case when at least one of the functions f; is not differentiable is also
novel.

Our first main result is the following.

THEOREM 4.1. Under Assumption 1.2, ({,r) € [0,a] x [b, 1] with ¢ < r is a solu-
tion to the GNEP (2.3) if and only if (Djo,¢, D},1]) is a Nash equilibrium in the DP
(2.5).

Proof. We first aim to establish that for every r € [b,1], a point 4. € [0, a] with
L, < r satisfies,

(4.1) Ui(z,r) <U1(ly,r), Vzel0,r),
if and only if

(12) V@)= sup ME(n, Do) = M7 (Dpp g, Diey). Ve € [0,1]
T1
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Let r € [b,1] and £, € [0,a] with ¢, < r be given. We will make use of the function
ur(x) == M{(Djo,1, D)) — 91,r,1)(2)

fl( ) g1, Tl]( )’ T e [Orgr)v
(43) = (fl( ) 91,[r,1] (67’)) TT gwrv T e [&"77’)7
0, x € [r,1],

where the middle line is a straightforward consequence of the expected reward for
threshold strategies and the fact that, for z € [0, 7], we have

x— 4,

z—4¥, x
I = (@) =) (2= - 2

= g1(r) <7"(9U - fEZ« : Z(;“ — &»))

(4.4) = —gi(r) (ff) <:_Z> = 791,[r,1](£r)%.

Sufficiency ( <).
Suppose that (4.2) is satisfied. Substituting this in (4.4), dividing both sides of
(4.3) by r — x (when x < r), and using the definition (2.6) of Uy, we obtain

Vl[ryl] (CE) - gl,[r,l] (Z’) _ {Ul(l’,’l"), Vl' S Er

(4.5)

r—x

Ui(b,r), V. <zx<r.

It is easy to see that Vl[r’l] (r) = 91(r) = g1,fr1(r) and Vl[r’l] () > fi(x) for all
x € [0,7]. Therefore we have,

(4.6) U1(by,r) > Usr(z,7), Ve (,r).

To treat the case z € [0, ¢, ], note from Lemma 3.4 and Lemma 3.2 that = V[T 1}( )—
91,[r,1)(z) is superharmonic on [0,7) and also non-negative (to see the latter, take
f=rf,9=g,A=Ir1and 7 = Dy in (3.7)). For 0 < z < y < 1 define
Tey = Dz} A Dyyy. Using superharmonicity and the fact that X is a positively
recurrent diffusion, for every 0 < x < /£, we have,

Vi) = gu e (6) 2 B [VIPN(XC, ) = g1 (X))
r,1 -
= (Vl[ ](JJ) — 91,[r,1] (l‘)) E’ [1{D{:C}<D{7‘}}:|

(47) = (Vl[nl] () = 91,11 (w)) rob

r—ax’

Since for all 0 < z < ¢, we have V}""(z) = fi(z), (4.7) gives
Ui(z,r) < U (4, 7), Yz €][0,L,],

and together with (4.6) establishes (4.1).

Necessity (= ).

Suppose that the pair (¢,,7) satisfies (4.1) with £ = £,.. We will establish (4.2) by
showing that

(4.8) up(x) = VI (@) — gy pog(@), V€01

This manuscript is for review purposes only.
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By construction (4.8) holds for « € [r, 1], and so we restrict attention to the domain
[0,7]. By Lemma 3.4 it is sufficient to show that w, is the value function of the
optimal stopping problem on [0,r] with the obstacle ¥ = fi — g1 .1). Therefore
using Proposition 3.2 in [10], it is enough to show that w, is the smallest non-negative
concave majorant of ¥ on [0,r]. The majorant property on [¢,,r) follows from (4.1),
which gives

r—x

2, vacion,

49 Al) = 0@ < (80) = gnge (@) (2
and the majorant property at = r follows from recalling that fi(r) < g1(r). For
nonnegativity we first recall that the reward functions are null at the boundaries, so
taking x = 0 in (4.9) gives 0 < fi1(¢r) — g1,(r,11(€r) = ur(¢;). Combining this with
the fact that u, equals the obstacle on [0, £.], and hence is concave there, establishes
nonnegativity. For concavity we note that w, is a straight line on [¢,, r], so it remains
only to counsider any x; € [0,¢,.) and xz2 € (¢,,7]. Then we have

@T — X1

x2 — Ly T2 —

. xlur(xl) + P xlur(xg) Rl [f1(x1) 91,[r,1)(1)]

yhmm b — 11 (f1( r) — g1,[r,1](ff)) (77:_22>

l’g*iﬂ

2 ()~ angea) ()

To — T r—4/,

DI ()~ g (6) (T - m)

To — X1 r—4,

fl(g'r‘) — 91,[r,1] (Er) = ur(‘er)a

IN

+

where the inequality follows from (4.1). Finally, since u, equals the obstacle on [0, ¢,]
and is a straight line on [f,,7], it is smaller than any other nonnegative concave
majorant on [0, r].

It may be proved similarly that for every £ € [0,a], a point 7, € [b, 1] with £ < ry
satisfies,

(410) U2(£a y) < U2(€a T@)) v:y € (& 1]7
if and only if

(A1) V@) = sup M3 Dy, ) = M5 (Dio.gs D) Var € [0,1)

The proof concludes by noticing that for each r € [b,1] and ¢ € [0, a,

(4.12) sup Ui(x,r)= sup Ui(x,r),
z€[0,r) z€[0,aAr]

(4.13) sup Us(l,y) = sup Us(4,y).
ye(L,1] y€E[evd,1]

For r € (a,1], eq. (4.12) follows from the convexity of fi — g1 |1 on [a,7] and the

This manuscript is for review purposes only.
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fact that f1(r) < g1(r) = g1,pr1(r):
fi(@) = (@) _ fi(@) —grpen(@) | (f1<r> ~ 9l <r>> ( - )

r—ux r—a r—a r—x
a) — g1r1)(a
< 11(@) = guir( ), Yz € (a,r).
r—a
The boundary case x = r is excluded since U;(r,r) = —oo. Similar reasoning estab-
lishes (4.13). |

COROLLARY 4.2. Under Assumption 1.2, there exists a pair (€., 7+) € [0,a] x [b,1]
such that (Do ., D}y, 11) s a solution to the DP.

Proof. See Appendix. ]

Remark 4.3.

(i) Suppose the leader reward functions are differentiable. Then the smooth-fit
condition can now easily be obtained for player 1 by differentiating (2.6) at
x = £ and applying (4.1). Smooth fit for player 2, and hence the double
smooth-fit condition, follows similarly.

(ii) It follows from the proof of Theorem 4.1 that Assumption 1.1 may be weak-
ened. For example, taking h; = g; for simplicity, it is sufficient to assume
that f; < g; on S_;.

(iii) Note that thresholds may lie at boundaries: for example, the case £ = 0
is possible. Since the boundaries are absorbing and the rewards are zero
there, stopping then becomes irrelevant for player 1. This case is therefore
equivalent to player 1 never stopping. Similarly the case r = 1 is possible, and
is equivalent to player 2 never stopping. In such cases the double smooth-fit
condition (Remark 2.4-(ii)) does not hold in general, even when the reward
functions are smooth. In Section 5 we provide a condition (Assumption 5.1-
4)) which is sufficient to exclude such boundary cases.

5. Stability and uniqueness results. In this section we exploit the above
connection to obtain additional novel results for Nash equilibria in the DP. We define
a concept of stability and provide a sufficient condition under which it holds locally
(Corollary 5.3), showing in Theorem 5.5 that this condition always holds in the par-
ticular case of zero-sum Dynkin games. By establishing global stability, Theorem
5.6 provides sufficient conditions for uniqueness of the threshold-type equilibrium of
Corollary 4.2 among the Markovian strategies. Theorem 5.9 provides an additional
novel uniqueness result for the DP.

5.1. Policy iteration. We will apply the Gauss-Seidel policy iteration or
tatonnement process [5, 14] to the GNEP. This iteration scheme has previously been
used for Dynkin games in [9] and [17] and, outside the Markovian framework, in [15].
Throughout Section 5, for ease of exposition we strengthen Assumption 1.2 to the
following:

Assumption 5.1. Assumption 1.2 holds, with:

1) a<b,

2) strict convexity and strict concavity,

3) fi,gi € C?[0,1], and

4) For all (z,y) € [0,a] x [b,1] there exists (2,7) € (0,a] x [b,1) with fi(2) >
91(y) - L and f2(3) > ga(x) - =L,

This manuscript is for review purposes only.
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12 R. MARTYR AND J. MORIARTY

Parts 1) and 3) of Assumption 5.1 imply that the GNEP utility functions are finite
and smooth on &, which is convenient for the policy iteration. Part 2) says that f is
strictly concave on [0, a] and strictly convex on [a, 1], and fs is strictly convex on [0, b]
and strictly concave on [b, 1]. This ensures that iteration (i) below is well defined. Part
4) removes the need to consider the points 0 and 1 as candidate thresholds during the
iteration, which is convenient since the principle of smooth fit (used below) may break
down there. Recalling the equality (3.8), this is straightforward to see from (3.4),
(3.7) and (2.7)—(2.8). Similarly, Part 4) also ensures that threshold-type equilibria
have their thresholds in (0, 1) and not at either boundary 0 or 1.

Taking (M) € [0, a], we consider the following two iteration schemes:

(i) In the GNEP: taking () = argmax Us(¢(1), y), for n > 2 define
ye(b.1]

(5.1) () = argmax Uy (x, 7™ V), ™ = argmax Uy (£, y).
z€[0,al y€[b,1]

(ii) In the DP: taking A; = [0, /™M], for n > 1 define
(Z) ‘/ZTL(:L') = sup M;(Ta DAzn—1)7

(i) Ap = {x € [0.1]\ Aguor: Vaule) = o)}
(i) Vausa(w) = sup M7 (7, D, )
)

A1 = {x € [0,1]\ Azp: Vappa() = fi(2)},

where MZ(7,Dy4), i € {1,2}, is given by (3.6) with f = f; and g = g;.
We will call a solution s* = (¢*,7*) to the GNEP (2.3) globally stable if for any
() € [0,a] the iteration (5.1) satisfies £(™) — ¢* and r(™ — 7*  and locally stable
if this convergence holds only for /(1) in a neighbourhood of ¢*. Similarly we call a
threshold-type solution s = (Djg ¢}, Djv.17) to the DP (2.5) globally stable if for any
() € [0,a] the iteration (5.2) satisfies

(5.2)

(v

liminf Ay, 1 = limsup As, 1 = [0,£],

n—00 n—00

liminf Ay, = limsup Ay, = [r', 1],
n—00 n— o0

and locally stable if convergence holds only for /() in a neighbourhood of ¢'.

5.2. Local stability. We will appeal to the following local stability result for
the GNEP:

PROPOSITION 5.2 (Theorem 1.2.3, [18]). Suppose that Assumption 5.1 holds and
that (L, 7)) € (0,a) X (b,1) is a solution to the GNEP. For w € Sy set

g = g(w) = argl};ax UQ(W,y),
(53) o o ]
T = Z(w) = argmax Uy (x, g(w)),
x€Sy
and Day U1 (2, 7) DuyUs (1, )
T’U},i‘,7 _ Yy 1\, Y) OxyU2(W, Y
( y) am:vljl (Evy) ayyUQ(w7ﬂ)
If it is true that
(5.4) po = |T (Ui, liy1s)| < 1,
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OPTIMAL STOPPING GAMES AND GNEP 13

then there exists § > 0 such that V() € [0,a] satisfying |¢() — £, < 6, the sequence
{€<")}n21 in (5.1) converges to .. The convergence is exponential: for any € > 0
there exists a positive constant c(f(1); ) such that

(5.5) 60 — £, < e(tM;€) (po + )"

Our next result is on local stability for the DP.

COROLLARY 5.3. Suppose Assumption 5.1 holds. If (Do .}, D}, 1]) 5 a solution
to the DP such that (5.4) holds, then it is locally stable.

Proof. We have from Assumption 5.1 that (¢,,r.) lies in (0,a) x (b,1) and, from
Theorem 4.1, that it is a solution to the GNEP. Applying Proposition 5.2, take 6(1) €
[0,a] satlsfylng [¢1) — ¢,| < & and consider the iteration given by (5.1). This yields
sequences (£(") — £, and (r(™) — r,, taking values respectively in (0,a) and (b, 1).
The proof of Lemma 3.4 and (4.11) then show that the stopping time Diyny gy is
optimal in (5.2)-i) if Agp—y = [0,£™)]. Similarly, the stopping time Djg yn+1y is
optimal in (5.2)-iii) if Ay, = [r(™,1].

Next we establish that the stopping region As is given by [r(l), 1]. From Remark
3.5, we may study the optimal stopping problem (5.2)-i) in either of its equivalent
forms (3.2) or (3.4) (taking f = fo, g = go and A = A; = [0,¢(M]). Using (3.2),
it is immediate from the strict convexity of the obstacle f on [¢(!);b] and Dynkin’s
formula that A;N[¢™1)b] = (. On the other hand, considering problem (3.4) it follows
from the strict concavity of the obstacle fo—g2 4, on [b, 1] and the smooth fit principle
that the obstacle lies strictly below the value function on [b, (1)), establishing that
Ay = [rW 1]. Arguing similarly for Az and then proceeding inductively we obtain
Agpir = [0,6D] and Ay, qe = [r(t1 1] for all n. u]

Remark 5.4. The fact that A; is an interval plays no role in the above proof,

which only uses the inclusion 4; C [0, a.

Local stability in the zero-sum DP. We also establish the following result on
local stability of equilibria in the zero-sum DP, that is, when f; = —g_;, ¢ € {1,2}.
The result is novel to the best of our knowledge.

THEOREM 5.5. Under Assumption 5.1 every threshold-type solution of the zero-
sum DP is locally stable.

Proof. Let a threshold-type solution (Do ¢,1, D[, 1)) be given for the DP. We have
Vl[r*’l} + VQ[O’Z*] = 0. Using the principle of smooth fit we get,

—gh(e) = fie) = LU= 0E)

_ [_f2(::)7+£f2(£*)] = —f}(r,) = d\(r.).

Using the expressions for U; and Us in (2.6), the general expressions for the partial
derivatives of the utility functions, and the smooth fit principle at (w,g) and (Z, 7),
one can show that

(56) Tw,3,9) = (%é@ %)(Q&(hQ)'

]
In this zero-sum context we therefore have T'(ly, £y, r,) = 0, and the local stability of
the equilibrium point now follows from Proposition 5.2. 0

This manuscript is for review purposes only.
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14 R. MARTYR AND J. MORIARTY

5.3. Global stability and uniqueness. There is a stronger version of the
criterion (5.4) that guarantees the iteration scheme to converge irrespective of player
s initial strategy ¢(1) e [0,a]. Furthermore, the equilibrium strategy (¢.,r,) thus
obtained is unique.

THEOREM 5.6. Suppose that Assumption 5.1 holds and that the reward functions
fi and g; satisfy

(5.7) sup
wES,

(=) (om-n)| <

where § = y(w) and T = T(w) are defined by (5.3). Then there exists ({y,r.) €
(0,a) x (b, 1) such that (Do e.,), Dy, 1)) is a solution to the DP. This solution is stable,
and is unique in the class of Markovian strategies (Dg,, Dg,) for closed stopping sets
S1 € [0,a] and Sy C [b,1].

Proof. Under Assumption 5.1 every solution (£, 7,) to the GNEP lies in (0,a) x
(b,1). A standard contraction argument then shows that under (5.7), there exists a
unique solution (¢4, 7.) to the GNEP and, further, that it is globally stable (see for
example Theorem 1 in [20] or Proposition 4.1 in [5]; see also Theorem 1.2.1 in [18]).

Thus from Theorem 4.1, (Do 4,1, Dy, 17) is a solution to the DP. The fact that it
is stable follows from the corresponding property in the GNEP. Suppose that the DP
has another solution (Dj g, Dj,11) with £ < 7. Again arguing as in Corollary 5.3, the
reward function geometry gives ¢ € [0,a] and r € [b,1]. Therefore (¢,r) is a solution
to the GNEP and we have £ = ¢, and r = r, by uniqueness.

Suppose that (Dg,, Dg,) is an equilibrium with closed stopping sets S; C [0, a]
and Sz C [b, 1]. Recalling Remark 5.4, now consider applying the iteration (ii) above,
modified by choosing A; = S, to obtain As = [r, 1], say. Then by optimality Sy C A,.
Finally it is not difficult to see from a standard ‘small ball’ argument that the strict
concavity of fo on [b,1] implies that A \ Se = ). We conclude similarly that A; has
the form [0, £], completing the proof. d

Remark 5.7. The sets S; and Sy in Theorem 5.6 are closed in order to avoid
trivialities, since every point is regular for standard Brownian motion. Note that the
theorem establishes uniqueness among the Markovian strategies, rather than unique-
ness among the subset of threshold-type strategies (cf. [11]).

5.4. Examples. We begin this section by constructing an example DP satisfying
the global stability condition (5.7). This example is then used to derive a second DP
for which local stability, but not global stability, holds. Finally, we discuss local
stability of the zero-sum DP.

Global stability. Suppose that b—a > % and that F;, G; are functions satisfying
Assumption 5.1 and furthermore,

Fi(z) =2(§ —x), x€l0,5]

[

It follows from Assumption 5.1 that F} is negative on [§,1]. Therefore, for every
w € S; the ‘best response’ Z(w) to y(w) takes values in [0, 5], where we have the
inequality
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OPTIMAL STOPPING GAMES AND GNEP 15

Since G} is bounded on [0,a] by Assumption 5.1, and recalling that § € [b,1] by

definition, for a sufficiently large constant R; > 0 we have:

Fi(z) — ,G1(7)
FI@)( — )

1 1
4 b—a

<2 < 1.

Therefore if player 1’s reward functions in the DP are f; = F; and g1 = R%Gl (which
clearly satisfy Assumption 5.1), then the left hand parenthesis in (5.7) has absolute
value less than 1. Similarly if we take Fh(z) = (z — 22)(1 — ) for all z € [242,1]
and let player 2’s reward functions be fo = F; and g2 = R%Gg for a sufficiently large
constant Ro, the right hand parenthesis in (5.7) has absolute value less than 1 and so
the global stability condition (5.7) holds.

Remark 5.8. Under Assumption 1.1 the reward functions in the DP must satisfy
fi < gi on [0,1]. Given the choice of g; in the example above, f; < g; implies that the
rather strong condition G; > R;F; on [0, 1] must hold. Although Remark 4.3 shows
that G; > R;F; is only needed on S_;, there are alternative choices for g; that satisfy
Assumption 1.1 and lead to a conclusion similar to that of the example above. More
specifically, in the case i = 1, take any G; > max(0, Fy) which is in C?[0,1]. We can
define a function g; which is in C?[0, 1], equal to G on [0, %], dominates f; on [0, 1],
and on [b, 1] its derivative g} is sufficiently small. For example, let « — n(z) be the
standard mollifier,

mﬂ:{gwwﬁ%»|ﬂ<1

, 7[> 1

where C' > 0 is chosen so that [ n(z)dz = 1. For € > 0 define n(z) = 1n(%),
He(z) = [*__ne(y)dy and set gi(z;e) = H(% — x + €)G1(z). For x < ¢ we have
g1(z;€) = Gi(x) > Fi(x) = fi(x). For x > § we have gi(x;¢) > 0 > Fi(z) = fi(x)
and, for an appropriate choice of €, gj(x;€) = 0 on [b,1].

Local stability only. Global stability implies that the local stability condition
(5.4) holds at the unique Nash equilibrium (¢, r,) in the DP we have just constructed.
Taking the same reward functions in the DP, suppose now that player 1’s strategy is
wy € S and that player 2’s best response is .. Then from the smooth fit condition
for player 2, the point (wg, g2(wp)) must lie on the straight line tangent to fo at
(74, f2(rs)). We may therefore conclude that if go is not linear on Sj, then there
exists a strategy wo € S\ {¢.} for player 1 to which player 2’s best response is
Yo € Sz \ {r.}. It is also not difficult to see that yo € (%5,1), and hence smooth fit
holds at yo, provided that g2 is bounded above by the tangent to fo at (1, f2(1)).

Next we remark that the function fo may be arbitrarily ‘flattened’ in a small
neighbourhood of yg without violating Assumption 5.1. That is, let Ny be an open
neighbourhood of gy whose closure does not contain 7, and let € € (f3'(y0),0). Then
f2 may be modified on Ny to produce a new function f, with

BW) =rfy), ye{yw}UN,
Fs(o) = f5(yo),
~é/(yo)

€,

and such that Assumption 5.1 holds for the reward functions fy, f; and g;. By
construction, the smooth fit condition continues to hold at yo when f; is replaced
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by fg, so that yg remains player 2’s best response to wg. In this way the right
hand multiplicand in (5.7) may be made arbitrarily large in absolute value when
w = wy (provided the numerator is non-zero, a mild condition). We thus obtain a DP
satisfying Assumption 5.1 which has local, but not global, stability.

5.5. Uniqueness of Nash equilibria. We close this section with a final result
on uniqueness of equilibria in the DP by applying a well known condition from [26]
for uniqueness of a solution to the GNEP.

THEOREM 5.9. Suppose that Assumption 5.1 holds,

58 S s ARy 0,0 <01
(5.9) 1(y) < —2L2W = fég)fyx;f) —2W v (a,y) € [0,0] x 0,1),

and 3(r1,r2) € [0,00) X [0,00) such thatV (x,y) € [0,a] x [b,1],
(5.10) drirs Hy (2, y) Ha(2,y) — (11 Hs (2, y) + r2Ha(z,9))* > 0,

where Hy,...,Hy are given by,

Hy(z,y) = fI'(z)(y — 2)> + 2[ fr(@) + fi(2)(y — ) — 1 (y)]
(511) Ha(z,y) = f5 () (y — 2)* +2[fa(y) — f5(v)(y — ) — g2(x)]

Hy(z,y) = 2[g1(y) — fr(2)] — (fi(2) + g1(v))(y — @)

Hy(x,y) = 2[ga(x) = fa(y)] + (95(2) + f2(¥))(y — @)

Then there exists a unique solution ({y,r.) € [0,a] x [b,1] to the GNEP (2.3), and
therefore (Dio.¢,1, Dir. 1)) s the unique solution to the DP in the class of Markovian
strategies (Dg,, Dg,) for closed stopping sets S; C [0,a] and Sz C [b,1].

Proof. Conditions (5.8)—(5.9) ensure that each utility function s; — U;(s;, s—;),
i € {1,2}, is concave on S; for each s_; € S_;. The condition (5.10) is sufficient
for strict diagonal concavity according to Theorem 6 of [26]. The uniqueness result
for the GNEP is an application of Theorem 2 in [26], whereas uniqueness for the DP
follows from the proof of Theorem 5.6. 0

Remark 5.10. Conditions (5.8) and (5.9) are equivalent to concavity of the GNEP
utility functions. For possible extensions of Theorem 5.9 to quasi-concave utility
functions see, for example, [2]. A comment on the relationship between the sufficient
conditions for uniqueness of Nash equilibria used in Theorems 5.6 and 5.9 can be
found in Remark 3.3 of [20].

6. Complex equilibria and multiplayer GNEPs. In this section we aim
to illustrate that connections may also be made between equilibrium strategies in
generalised classical games with n > 2 players and more complex equilibria in the two-
player Dynkin game of (2.5). Establishing such structures as Dynkin game equilibria is
novel to the best of our knowledge. For this, we take Assumption 1.3 from Section 1.1
instead of Assumption 1.2. This means that the reward function f; has an additional
convex portion, and will correspond to n = 3. Since the geometry of Assumption 1.2
suggests an equilibrium strategy for player 1 of the form Dy 42 for some a3 < "<
0? < ay, this example illustrates another convenient use of the generalised classical
game as it ensures that ¢! < ¢2 in the arguments below.
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OPTIMAL STOPPING GAMES AND GNEP 17

Define sets S, = Sy = [a1,az], S3 = [b,1] and S = Hle S;. Let the utility
functions U;: [0,1]* — R, i € {1,2,3} be defined by

le (l’, Y, Z) = fl (-73) _ :Zl’[zal] (Z) ,
(6.1) Os(z,y, 2) = f1(y) ;il,y[z,l] (y)7
Us(x,y,2) = f2(2) ;fz[o’y](z)’

(taking Us(x, vy, 2) = Us(z,y, 2) = —o0 if y > z). Define the players’ feasible strategy
spaces by the set-valued maps K;: S_; = §;, where

(62) Kl(yv Z) = [alay A a2]7 [A(z(l‘,z) = [l‘ \% a17a2]a K3(.’L‘,y) = [ba 1]7
so that the feasible strategy triples belong to the convex, compact set C defined by
(63) é = {(x,y,z) € [a17a2] X [alaaﬂ X [b7 1] x < y}

The next result shows that under Assumption 1.3, this more complex equilibrium
structure exists in the DP precisely when the corresponding generalised game has a
Nash equilibrium satisfying a condition on the sign of its utilities.

THEOREM 6.1. Suppose that the DP reward functions satisfy Assumption 1.5.
Then .
(a) there exists s* = ((*,02,r) € C with
(6.4) Ui(s*) = sup Us(si,s*,), ie{1,2,3},
(Shsii)eé

(b) a solution s* = (£*,0%,r) € C to (6.4) satisfies Us(s*) > 0 if and only if
(Dygr ¢21, Dyy1y) is a Nash equilibrium for the DP.

Proof. Part (a) follows by a standard argument using quasi-concavity, similar to
the proof of Lemma A.3 in the Appendix. For part (b), we claim that the pair (¢!, ¢2)
solves the following problem:

Problem: Find two points ¢!, ¢? satisfying

i) ay <0< P < ag,
(P) it) Uiz, ,r) <TL(E,r), Vo e(0,r),
i) Uy(0,y,r) < Ua(€4,0%,1), Yy e [0,r).

To establish part iii) note that the function y — f1(y) —g1,jr,17(y) is zero at y = 0,
convex for y € [0,a4], concave for y € [a1, az], convex for y € [ag, ], nonnegative at
y = % and negative at y = r. It is then a straightforward exercise in convex analysis,
similar to that in the proof of Theorem 4.1, to show that the maximum of the function
y — Us(£,y,r) on [0,r) must be attained at a point in [a1, as]. Taking i = 2 in (6.4)
then establishes the claim. Part ii) follows similarly.

The necessity and sufficiency claim for the Nash equilibrium in stopping strategies
then follows by applying Propositions D.1 and D.2 in the Appendix. 0

Appendix A. Quasi-concavity and existence of GNEP equilibria. We
first recall the definition and some properties of quasi-concave functions (see e.g. [8,
Chapter 3.4]).
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DEFINITION A.1. Let D C R be convex. A function F: D — R is said to be
quasi-concave if for every o € R the superlevel sets LT defined by

L ={xe€D: F(z) > a}

are convez. If the same statement holds but with the sets {x € D: F(z) > a} then F
is said to be strictly quasi-concave. A function F is said to be (strictly) quasi-convez
on a convex domain D if and only if —F is (strictly) quasi-concave.

All concave functions are quasi-concave. Moreover a function F': D — R is quasi-

concave on a convex domain D if and only if for any z1,20 € D and 0 < 6 < 1 we
have

(A.1) F(0z1 + (1 — 0)z2) > min(F(x1), F(x2)).

If (A.1) holds with strict inequality then F' is strictly quasi-concave.

LEMMA A.2. Suppose D C R is conver, f: D — R is (strictly) concave, and
w: D — (0,00) is linear. Then the function i: D — R is (strictly) quasi-concave.

Proof. In the case of concavity, for each o € R define a function F,: D — R by
Fy(z) = f(z) — agp(z). This function is concave on D, and therefore quasi-concave,
which means the superlevel set {x € D: F,(x) > 0} is convex for every a € R. The

function % is quasi-concave on D since for every o € R,

{x € D: (%) (x) > a} ={zeD: f(x) > ap(z)} ={x € D: F,(z) > 0}.

The proof for strictly concave f follows in the same way. 0

LEMMA A.3. Suppose the GNEP (2.3) satisfies fori=1,2:
(i) For each fized s_; € S_;, the mapping s; — U;(s;,$—;) is quasi-concave on
Ki(S,Z').
(ii) The utility function s — U;(s) is continuous in s = (s1, S2).
Then there exists a solution (s},s3) € C such that s7 < s3.

Proof. For i = 1,2 the correspondence K; is compact and convex valued. Further-
more, using the notion of continuity for set-valued maps in [25], we can confirm that
K, and K> are continuous. Along with the continuity and quasi-concavity properties
of the U;, we conclude by Lemma 2.5 in [1] (or see [16]) that there exists a solution
s* to (2.3). From the construction (2.6), this solution must satisfy s} < s3. |

A.1. Proof of Corollary 4.2.

Proof. Using Assumption 1.2 and Lemma A.2, we can verify the hypotheses of
Lemma A.3 and assert the existence of a pair (£,7) € [0,a] x [b,1] with £ < r that
solves the GNEP (2.3),

Uy(z,r) < Ui (¢, r), Vxe€[0,rAal,
Uslt,y) < Ua(t,r), Wy € [0V h,1],
and the result follows from Theorem 4.1. 0

Appendix B. Expected rewards for threshold strategies. If players 1
and 2 use the strategies Dig s and Dy, 1) respectively, where 0 < £ <r < 1, then the
expected reward M{ (Do g, Djp17) for player 1 (cf. (2.4)) satisfies,
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MY (Djo,q, Dipay) = [ V(XD ) Dy <Dy} + 91(X Dy, 1)) 1Dy 1y < Do}
[hl Xbio,0) 1Dy =Dy.. 1}]
fi(z), Vo € [0,/]
= VA0 F o) 2=, Voe ()
g1(z), Va € [r,1].

Analogously, the expected reward M3 (Djo g, Djr1)) for player 2 satisfies,

g2(z), YV € [0,/
M3 (Dyo,q, Dpray) = 92(0) - =2 + fo(r) - =5, Vz € ({,r)
fo(z), Vo € [r,1].

Appendix C. Derivatives of utility functions.  Throughout this section
we suppose Assumption 5.1 holds. We first provide general formulas for the first and

second partial derivatives of a utility function U(z,y) which is of the form U(z,y) =
F(z,y)
y—z

@W@M&meg:ngmw,
0,0 (r.y) = 2= ZEE),

0, U, y) = D P @y — )" + ?y[afl;(f W =)+ Fay)]
0,0 (1) Byy F(z,y)(y — 2)* - gay]:;?,y)(y — ) — F(z,y)] |
awvuw>awF@wﬂyﬂ;figmy>+%F@w)

0y —2) + F(z,y)]
(y—x)3
_ Opy F(z,y)(y — ) — Oy F(z,y) — 0. F(x,y)
(y — )2
[0,F (z,9)(y — 2) — F(z,9)]
+ 2 ) .

Using equation (2.6) for the utility functions gives the following expressions for
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their partial derivatives,

0,01 (z,y) = fil@) + fi E;s) _(yx;x) ~ ).
8,Un(z,y) = 2B T égy)fym)zw) — fa(y).

Duals (2, y) = ! (2)(y —2)* + 2[f1(;x)j;)£{ (2)(y — =) — 1(y)] |
0y, U (2, y) = 5 (y)(y —)* + 2[f2(;yi;)£2/(y)(y — ) — go(2)] |
Bus T (211) = 2[g1(y) — fu(x)] (; (_f{m(;) W) =)
@waw:QM%ﬂ—hwﬂé@%?+ﬁ@»@—@'

Appendix D. A verification theorem using multiplayer GNEPs.

PROPOSITION D.1. Under Assumption 1.3 and given r € (az, 1], (£, ¢?) is a so-
lution to Problem (P) if and only if

(D) V(@) = sup Mi(r, Dypy) = M (Dieey, Dig), - Vo € [0,1)
T1E

Proof. The arguments are more or less the same as those establishing Theo-
rem 4.1. For the sake of brevity we therefore only show the proof of necessity (Prob-
lem (P) = (D.1)).

Define u, on [0,1] by,

up(z) = My (Dier 21, Dipay) — 91,[r,1) (%)
(fl(él) — 91,[r,1] (gl)) %7 UAS [0761)5
_ fl(‘r) - gl,[r,l]( )a T e [61762)7
D.2 =
(0-2) (1(B) ~ gu) () 25, @ € [Por),
07 x € [7’, 1]

Suppose (£1,¢?) is a solution to Problem (P). Similarly to Theorem 4.1, we will
prove (D.1) by showing that u, is the smallest non-negative concave majorant of
f1 = 91,(1) on [0,7]. Initially we will analyse u, separately on [0, ¢'] and [¢*, ¢2].

Observe firstly that the function f; — g [,1] is nonnegative when evaluated at the
points ¢! and ¢? and hence, by concavity, on [El %]. Recalling (6.1), this follows from
(P), since f1(0) = g1,r1) (0) and so f1(€%) — g1,[r1](¢*) > 0. Also

Ji(x) = g1,y (2) < (fl(gl) —91,[r,1] (gl)) %a vz € (0,7),

and taking « = ¢% shows that f1(¢*) — g1 .1)(¢") > 0. Therefore u, is a non-negative
majorant of fi — g1 on [0,¢']. This is also true on [(*, 7], since fi(r) < g1(r) and
S0

rT—x

03 5@ - < (1)~ ) (75 ) Ve el
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Concavity holds for u, on the three intervals [0, '], [}, ¢?] and [¢2, 7] separately and,
arguing as in the proof of Theorem 4.1, we can show that u, is continuous and concave
on the entire interval [0, r], completing the proof. O

ProroSITION D.2. Under Assumption 1.3, for every 81,42 satisfying 0 < 1 <
02 < b, a point r € [b,1] satisfies (4.10) with £ = (% and Uy = Us if and only if

(D4) V@)= sup My (Dips oy, 72) = M5 (D), Dy ), Var € [0,1]
T2E

Proof. By Lemma 3.4 it is sufficient merely to consider the optimal stopping
problem on the set [0, £}] U [¢?,1] with obstacle fo — g2, 2], and we will only sketch
the solution. Note that since fo < gs it is clearly suboptimal to stop in [¢*,¢?]. From
Dynkin’s formula it is also suboptimal to stop on [0, £'], since fo — ga,[e1,¢2] IS convex
there and fa(z) — go 1 ¢2)(z) < 0 for € {0,£'}. The solution is nontrivial only
on (£2,1], where the arguments used for Theorem 4.1 are sufficient to complete the
proof. 0

Appendix E. Other Markov processes and discounting. Let X = (X;);>0
be a continuous strong Markov process absorbed at the endpoints of an interval F =
(¢,7) C R. Suppose that the rewards in the DP are discounted by a factor A > 0, so
that (1.1) becomes

~7z'(7'177'2) = eiA(nATﬁ){fi(X‘ri)l{nérﬂz} + gi(X‘r_i)l{"'—71<Ti}
+ hi(Xr,) {Ti:T—i}}’ ie{1,2}.
Lemma 3.4 has a straightforward extension to the case A > 0. Extending the con-

cept of superharmonic functions in Definition 3.1, we say that a measurable function
¢: E— R is A\-superharmonic on a set A € B(F) if for every x € E and 7 € T,

(1.1°)

o(x) 2 E°[e P (X np o).
The function ¢4 introduced in Definition 3.3 is given more generally by,
pa(z) =E" [e M 1¢(Xp,)].

It was noted in Section 3.1 that ¢4 is continuous when A = 0 and ¢ is continuous.
This same property, which is important for ensuring that the obstacle in problem (3.4)
is continuous, also holds for A > 0 when X is a more general regular diffusion with
strictly positive diffusion coefficient [27]. Furthermore, when X; = Zi,¢ for t > 0,
where Z = (Z;);>0 is a regular diffusion on F and ¢ = inf{t > 0: Z; ¢ E}, the results
in Sections 4-5 hold with obvious modifications. We now briefly discuss this extension
when Z satisfies the stochastic differential equation,

(E].) dZt = M(Zt)dt+U(Zt)th,

where W = (W});>0 is a standard Brownian motion and pu: E — R, 0: E — R are
Borel-measurable functions such that for every z € E,

i) o*(x) >0,
x+e 1

i1) / Mdy < oo for some € > 0.
s 02(Y)

Let G = %02(-)% + u(~)% denote the infinitesimal generator corresponding to Z.
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E.1. Undiscounted rewards. For the case A = 0, we first recall from [10] that
there is a continuous increasing function S on E, the scale function, which satisfies
GS()=0. Let £ = S¥), 7 = S(r), X = (Xy)e>0 with X; = S(X}), and E = (£, 7).
The process X is a diffusion on its natural scale on E. It follows from Proposition 3.3
of [10] that the DP corresponding to the process X and rewards f;, ¢g; and h; on
E can be studied by an equivalent DP corresponding to X with reward functions

fi) = Fi(STHC)) 3i) = 9i(STH()), hi() = ha(STI()) on E.

E.2. Discounted rewards. For the case A > 0, we first let 1)* and ¢* denote
the fundamental solutions to the diffusion generator equation Gw = Aw, where )*

is strictly increasing and ¢ is strictly decreasing [10, p. 177]. Let F(-) = ii—gfg,

{=F(),7=F(r), X = (X;)i>0 with X; = F(X;), and E = ({,7). The process X
is a diffusion on its natural scale on E. It follows from Proposition 4.3 of [10] that
the DP corresponding to the process X and rewards f;, g; and h; on E discounted by
A > 0 can be studied by an equivalent DP corresponding to X with reward functions

fil) = (%(Fil('))a gi(-) = %(F*1(~)), hi(-) = Z; (F~1()) on E without discounting.
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