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Inspired by a Savart’s pioneering work, we study the self-stimulated dynamics of a capillary jet.
The feedback loop is realised by extracting surface perturbations from a section of the jet itself
via a laser-photodiode pair, whose amplified signal drives an electromechanical actuator which, in
turn, produces pressure perturbations at the exit chamber. Under specific conditions, this loop
establishes phase-locked stimulation regimes that overcome the otherwise random natural breakup.
For each laser position along the jet, the gain of the amplifier acts as a selector across a discrete
set of observable frequencies. The main observed features are explained by a linear theory which
combines the transfer function of each stage in the loop. Our findings are relevant to continuous
inkjet technologies for the production of equally-sized droplets.

The natural and forced breakup of liquid jets has cap-
tured the imagination of scientists and engineers for hun-
dreds of years, from the great and inquisitive mind of
Da Vinci, to rigorous mathematicians and experimental-
ists such as Savart, Magnus, Plateau, Lord Rayleigh and
Bohr [1]. Jet disintegration into a train of droplets is
ubiquitous in nature; to mention a few quaint examples,
water, blood and poison jets are used as hunting or de-
fense mechanisms by the archer fish [2, 3], the horned
lizard and the bombardier beetle. Physically, the cap-
illary instability [1] is responsible for the breakup of a
liquid jet, and was mathematically described for the first
time by Rayleigh in 1892. In his model, a harmonic per-
turbation at the jet exit is advected, leading to a varicose,
locally sinusoidal pattern. The Rayleigh–Plateau disper-
sion relation [4] provides the unstable wavelength range.
It also identifies an optimal wavelength with the high-
est growth rate, which under unforced exit conditions
determines the natural size of the drops after breakup.
In practice, a multitude of effects might modify the true
value of the optimal instability wavelength, e.g., the ve-
locity relaxation at the exit [5, 6], shearing forces with
the surrounding fluid [7, 8], gravity [9], and, importantly,
the liquid properties (which may be dynamic in nature)
[10, 11]. From the industrial point of view, continuous
inkjet printing (CIJ) can be singled out as the technology
where a better understanding of the stimulated breakup
of capillary jets may have the most impact. In CIJ, a
micrometer-sized jet of ink is harmonically stimulated by
a piezoelectric or a heating element to induce capillary
instabilities that ultimately breaks the jet into equally
spaced droplets. During the last four decades, significant
industrial efforts have been dedicated to improving the
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control over the position, number, size and directional-
ity of the droplets and their satellites, while also investi-
gating material compatibility needed to adapt the tech-
nology to new under-explored applications, such as elec-
tronics, biotechnology and microchemistry [12–14]. The
complexities that exist in both the inkjet printhead and
fluid properties hinder a trustworthy theoretical predic-
tion of the breakup length and the optimal frequency
needed to minimize it. Consequently, in industry, trial
and error approach is currently the only one available.
Moreover, this process must be performed every time
that a new ink is developed, which is both resource in-
tensive and time consuming [13, 14]. Clearly, industry
would benefit from simplifying this procedure. An R&D
specialist would like practical answers to the following
questions: How do we break a jet up at a prescribed
distance from the nozzle? Are all the properties of the
ink and the stimulation device required? Surprisingly,
the key could be hidden in the pioneering experiment of
Savart (1833) [15] on capillary jets without external per-
turbations. In order to explain the unexpectedly stable
periodical breakup, he identified a feedback mechanism
between the downstream droplet splashing and the up-
stream jet birth, via the supporting structure. Inspired
by him, we propose here a phase-locked self-stimulation
of a capillary jet through a mechanical actuator and an
optical feedback loop to easily determine the optimum
stimulation parameters that require a minimum ampli-
tude to induce its breakup at a prescribed position. The
experimental realization and theoretical analysis that we
present can be easily adapted, not only to other stimula-
tion devices (piezoelectric, thermal, electrical), but also
to a variety of feedback methods (image-based, charge-
based, mechanical, among others).

Figure 1 shows a sketch of the experimental system
and the breakup of a liquid jet due to the capillary in-
stability. The working fluid (here pure deionized water
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at 21◦C, dynamic viscosity µ = 1.0 mPa s, surface ten-
sion γ = 0.072 N m−1 and density ρ = 997.6 kg/m

3
) is

pumped from an open reservoir to a pressurized cylindri-
cal ejection chamber. The bottom wall of this chamber
forms the nozzle plate with an exit orifice in its center
(diameter 1.00 mm and thickness 0.16 mm). The top of
the chamber comprises a rubber membrane connected to
an electromagnetic actuator for driving pressure pertur-
bations. The flow rate is Q = 1.97 × 10−6 m3/s for all
the experiments. The jet velocity after relaxation is esti-
mated to be vj = 3.16±0.02 m/s, measured by the single-
pressure-pulse method [16]. To this end, images are taken
with a Phantom Miro-310 high-speed camera coupled to
a Tamron SP AF 90 mm F/2.8 Macro 1:1 lens; differ-
ent frame rates are used in the range from 10000 fps to
30000 fps. After jetting, the liquid is collected by a reser-
voir, where it is pumped back to the pressurized chamber
to close the hydraulic circuit. A 1.0 mW 650 nm laser
diode (HERO Laser Module, model PLP6501AR) cou-
pled to a collimating lens and a 50µm-thick optical slit
generate a horizontal laser sheet (with adjustable width
through a second, vertical slit) that locally illuminates
the jet. This way, the jet reflects and refracts (but not
appreciably absorbs) that light, which is collected by a
photodiode aligned to the beam at the other side of the
jet. The time-dependent voltage signal from the pho-
todiode (proportional to the incoming light except for
the addition of a constant) is then analyzed by a digital
oscilloscope (Lecroy HDO4024), electronically amplified,
and fed back to the electromechanical actuator. There-
fore, the locally varying shape of the jet’s surface is ul-
timately responsible for the stimulation of the jet itself.
Figure 1b illustrates the relation between the instanta-
neous jet diameter and the photodiode output voltage at
an (adjustable) axial position z∗L from the nozzle, as de-
fined in Fig. 1a. The experiment is set up on an optical
table to reduce the effect of the surrounding noise.

The experimental procedure is as follows: once a posi-
tion z∗L of the laser–photodiode pair is selected along the
trajectory of the jet, the electronic gain is increased un-
til a threshold is reached, above which a stable periodic
(although non-sinusoidal) signal is displayed by the oscil-
loscope [17]. This is a clear signature of self-stimulation,
further confirmed by a fixed pinch-off point, always co-
incident with the laser position, as confirmed by high-
speed-camera monitoring. The oscillation period is then
extracted from this signal. By subtly changing the gain,
other stable periodic regimes are found. Finally, the po-
sition of the laser is changed and the procedure repeated
for a large selection of z∗L.

A theoretical framework is proposed as having a feed-
back loop comprising four stages: (1) the actuator, (2)
the nozzle, (3) the jet and (4) the photodiode. Each stage
has an input and an output quantity coupled via a trans-
fer function (either in the temporal or in the spectral
domain). These functions are described in dimensionless
form with scales based on the jet radius after relaxation
Rj for length, the capillary time tc ≡ (ρR3

j/γ)1/2 for

Photodiode

FIG. 1. a) Sketch of the experimental setup. b) Snapshots of
the jet at times t1 < t2 < t3, with corresponding photodiode
output voltages V (t1) > V (t2) > V (t3).
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FIG. 2. Measured amplitude (solid line, scale on the left axis
in arbitrary units) and phase (dashed line, scale on the right)
of the actuator transfer function in terms of the driving fre-
quency. The phase jump at ν = 70 Hz is 2π, i.e., without
physical origin. Experimental errors are smaller than sym-
bols.

time, γ/Rj for pressure and arbitrary units for voltage.
1.- Actuator. The electromechanical actuator exerts a

force proportional to the driving voltage V (t) producing
a pressure perturbation p(t) inside the ejection chamber,
which is measured as a voltage signal through a pres-
sure transducer (MEAS EPX-N12-0.35B) located 4 mm
above the nozzle. By sweeping in frequency ν within
the range of interest, and measuring the pressure re-
sponse with a lock-in amplifier (Anfatec eLockIn203), or
by real-time analysis of both acquired voltage signals, the
complex transfer function between Fourier components
A(ω) ≡ p̂(ω)/V̂ (ω) = |A|eiφA is determined, as shown
in Fig. 2. The formal dependence on the dimensionless
angular frequency ω ≡ 2πνtc is adopted for convenience.
2.- Nozzle. A transfer function between the harmonic

perturbations on the pressure in the chamber and on the
jet axial velocity (averaged on a slice) after relaxation was
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developed in [16] using a generalized Bernoulli equation.
For arbitrary functions of time, this transfer function can
be expressed as the ratio of their respective Fourier com-
ponents, p̂(ω) and ŵ0(ω), i.e.,

N(ω) ≡ ŵ0(ω)/p̂(ω) = β/(av + i ai ω), (1)

where β ≡ vj tc/Rj = 7.76 is the dimensionless jet veloc-
ity, and av = 2.78 and ai = 0.89 are dimensionless coef-
ficients, defined in [16], related to the viscous dissipation
and inertia, respectively, inside and near the nozzle.

3.- Jet. The capillary instability amplifies the exit per-
turbations downstream. To account for the weak stretch-
ing due to gravity, we replace vj by vm, which is the
velocity averaged along the intact length of the jet, and
Rj by Rm ≡ (Q/πvm)1/2 as the new length scale (e.g.,
z ≡ z∗/Rm). All the dimensionless parameters are ac-
cordingly redefined. We make use of the spatial bimodal
theory developed in [18], which considers harmonic per-
turbations of the form F (z, t) = 1+Re[f(z) e−iωt] on the
jet radius and W (z, t) = β + Re[w(z) e−iωt] on the mean
axial velocity, and only requires the two downstream cap-
illary modes, f(z) = fdeikdz + fse

iksz (and similar ex-
pressions for w(z)). Here, kd and ks are complex func-
tions of the real parameter ω, the dimensionless veloc-
ity β and the Ohnesorge number, Oh ≡ µ/(ργRm)1/2,
satisfying a dispersion relation (see [19, 20] for the ex-
act 3D formulation or [21] for a simpler approximate
1D model). −Im[kd] and −Im[ks] provide the domi-
nant and subdominant spatial growth rates, respectively.
For our pure-impulse conditions, the amplitudes fulfill
fd = −kdksw0/[2ω(kd − ks)] = −fs, where w0 = w(0).
By interpreting w0 as a Fourier component ŵ0(ω) of an
arbitrary function of time, the shape reads f(z, t) =∫∞
−∞ dω ŵ0(ω)J(ω, z)e−iωt, with

J(ω, z) =
−kdks

2ω(kd − ks)
(eikdz − eiksz). (2)

The jet transfer function J(ω, zL) determines the defor-
mation at the laser position for a given velocity pertur-
bation at the exit. As the jet breakup is a fully nonlinear
phenomenon, our linear formulation is an approximation
that will be discussed later.

4.- Photodiode. The output voltage provided by the
photodiode is proportional to the instantaneous jet shape
deformation at position zL (see Fig. 1b), except for an
offset associated to the average received light. Conse-
quently, the laser–photodiode pair and the signal ampli-
fier are incorporated into the formulation by V (t+ t0) =
−Gf(zL, t) + Voff , with V (t) being the output from the
amplifier, Voff the offset, G (hereinafter called the gain)
a positive-defined parameter combining a fixed gain from
the photodiode and a controllable gain from the ampli-
fier, and t0 the total electronic delay (negligible in our
experiments). Note from Fig. 1b that a positive defor-
mation implies a reduction in the light captured by the
photodiode.

With these four transfer functions, we
find (in the spectral domain) V̂ (ω) e−iωt0 =

−GA(ω)N(ω) J(ω, zL) V̂ (ω), which is only satis-

fied by a monochromatic function V̂ (ω) ∝ δ(ω − ωn),
with ωn being a discrete set of frequencies given by the
condition

e−iωnt0 = −GnA(ωn)N(ωn) J(ωn, zL) (3)

for some positive Gn. The imaginary part of Eq. (3)
determines the admissible ωn. The criterion is of a
phase-locking type. To show this, kd and ks are ex-
pressed in terms of the temporal growth rates αd and
αs (assuming β � 1) through kd ' k − iαd/β and
ks ' k − iαs/β, with k ≡ ω/β [18]. Then, J(ω, z) '
J(β k, z) ≡ −i(k/2) eik z(eαdz/β − eαsz/β)/(αd − αs). As
αd and αs are real, the imaginary part of Eq. (3) simpli-
fies to

Im
[
A(ωn)N(ωn)i eiknzLeiωnt0

]
= 0, (4)

with kn = ωn/β. If we could unrealistically, and only for
the sake of the theoretical analysis, neglect the effects of
the delay t0, the nozzle N(ω), and the actuator A(ω),
we would obtain kn zL − π/2 = 2πn for all integers n
fulfilling 0 < kn < 1 (unstable range) and Gn > 0, which
clearly reveals the phase-locking nature of condition (4).
Each positive Gn verifying the real part of Eq. (3) de-
termines the gain that holds the periodic regime having
the frequency ωn. In physical terms, the gain acts as a
frequency selector.

Figure 3 shows the discrete spectra for two significantly
different laser positions. A threshold gain Gmin(z∗L) must
be overcome in order to achieve a periodic self-stimulated
regime. The actuator strongly influences the spectra, as
illustrated in Fig. 3, both including and excluding the
effect of the actuator transfer function. Note that (i)
frequencies are not equispaced, (ii) Gmin is much lower
for the largest z∗L due to a greater spatial amplification,
and (iii) the spectrum is denser for the same zL because
the highest n fulfilling kn < 1 increases roughly linearly
with zL.

Gravity stretches and accelerates the jet, thus produc-
ing a gradual variation of any wave number and its as-
sociated growth rates along the jet [9]. An improved
phase-locking condition (4) can be found by abandoning
averages along the intact length, like Rm, and substi-

tuting kzL by an integrated phase, i.e.,
∫ z∗L

0
dz∗k∗loc(z∗)

(stars denoting dimensional quantities), where the local
wave number is taken as k∗loc = ω∗/v∗(z∗). This inte-
gral comes from the usual WKB approximation [9]. For
the basic flow, we have R2

jvj = R∗(z∗)2v∗(z∗), leading

to k∗loc = ω∗R∗(z∗)2/(vjR
2
j ). Assuming free-fall stretch-

ing, R∗ = Rj(1 + 2z/Fr)−1/4 [9], where z = z∗/Rj , and
Fr ≡ v2

j /(g Rj) is the Froude number (2.32 × 103 in our
experiments), we arrive at∫ z∗L

0

dz∗k∗loc(z∗) = kj Fr
(√

1 + 2 zL/Fr− 1
)
, (5)

with kj ≡ ω∗Rj/vj . As Fr→∞, Eq. (5) becomes kj zL.
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FIG. 3. Discrete sets of gains, Gn (in arbitrary units), al-
lowing periodic regimes, versus frequencies at the two repre-
sentative laser positions, z∗L = 43.00 mm (circles) and z∗L =
85.23 mm (squares). Parameters are β = 7.9 for circles and
8.0 for squares, and Oh = 0.0056 for both. Empty symbols
correspond to gains calculated without the actuator influence.

Figure 4 compares, in terms of z∗L, measured frequen-
cies (crosses) with our two theoretical discrete spectra.
Circles come from Eq. (3); their gray level graphically
quantifies the gain relative to its lowest value for that
position z∗L. The lines, generated by Eqs. (4) and (5), bet-
ter account for gravity effects and, indeed, they substan-
tially improve the agreement with our experiments. The
best agreement is found for the laser positions that are
far from the nozzle and for frequencies ν ' 800 Hz, i.e.,
around the maximum of the Rayleigh curve (k ' 0.69).
These frequencies also correspond to the lowest gains
needed to obtain locked behavior (highest gray levels).
The prediction of a discrete set of frequency states for
each z∗L is confirmed in most runs with z∗L > 60 mm (up
to five frequencies for z∗L = 84 mm). In the experiments,
these states are explored by slightly changing the gain,
sometimes by tapping. It is noteworthy that Savart se-
lected different frequencies with a single bow strike from
a violin [15], but returned to the “natural frequency”
by tapping the supporting structure. As seen in Fig. 3,
metastable states are expected from our analysis because
several frequencies have similar gains near the local min-
imum at 800 Hz. Interestingly, for laser positions around
z∗L ' 60 mm, the system also selects a frequency in the
range ν ' 450 − 500 Hz, which becomes the only one
observed for z∗L < 56 mm.

Aimed at justifying our linear approximation, an aux-
iliary experiment has explored the effects of limiting the
laser sheet width by narrowing the width of the verti-
cal slit (see Fig. 1a). Thereby, a threshold is imposed
to the amplitude of the jet deformation monitored by
the photodiode. Reducing the laser width leads to a
sinusoid-like signal (weaker deformation) and a breakup
displaced downstream. However, the signal period re-
mains constant within our experimental accuracy, thus
demonstrating that the linear map of Fig. 4 can predict
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FIG. 4. Discrete spectrum for each laser position z∗L without
gravity corrections from Eq. (3) (circles) and with gravity
corrections from Eqs. (4) and (5) (lines). The gray level c of
each circle (scale on the right) shows its required gain accord-
ing to c(Gn, z

∗
L) = 0.2 + 0.8Gmin(z∗L)/Gn (black: c = 1, i.e.,

Gn = Gmin(z∗L); clearest gray: c = 0.2 for Gn → ∞). Crosses
are the experimental data.

the selected frequencies despite the breakup being a non-
linear process.

The physical picture of the process sustaining the peri-
odic regime is as follows. The signal driving the actuator
remains the same after a feedback cycle (no jump in both
phase and amplitude) if condition (3) holds. While our
predictions hold for monochromatic regimes, the photo-
diode obviously acquires not only the fundamental fre-
quency but also a combination of harmonics. However,
these harmonics, introduced into the exit conditions in
the next cycle, become exponentially negligible, provided
they are outside the unstable wave number region [22].
Downstream, these harmonics reappear due to the non-
linear jet dynamics, thus producing the same breakup.
Accordingly, only the fundamental Fourier component is
relevant, in agreement with the result of our auxiliary
experiment. As far as the initial perturbation, estimated
through f0 = exp[−αd(k)zL/β], is small enough, our lin-
ear theory should hold, since the amplitude remains small
during most part of the jet life [23]. However, for short
enough jets (z∗L small), the linear theory is expected to
be less accurate. For instance, the initial perturbation
estimate at z∗L = 45 mm is f0 = 0.13, certainly not
small. This explains the disagreement at z∗L < 60 mm in
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Fig. 4. Finally, the transition from 800 to 500 Hz could
be caused (i) by the actuator performance (see Fig. 2),
and (ii) by the instability of the second harmonic (recall
that k < 0.5, so 2k is within the unstable range). We
note, in this later case, that non-monochromatic states
are not treatable by the linear theory.

Regarding applications, this study has the potential to
greatly benefit CIJ technologies. The self-stimulation al-
lows the determination of the optimal frequency and am-
plitude that one would need to drive an actuator with,
in order to achieve jet breakup at a desired length. The
steps are: laser–photodiode pair placement, oscilloscope
signal recording, laser–photodiode pair removal and oscil-
loscope signal use as the stimulation-driving signal. This

signal is optimal as the setup tunes itself to the frequency
that needs the minimum stimulation amplitude. More-
over, this method only requires a single experiment, with-
out prior information about the working fluid or the hy-
draulic system.
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