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Infectious diseases still remain one of the biggest challenges for human health. In

order to gain a better understanding of the pathogenesis of infectious diseases and

develop effective diagnostic tools, therapeutic agents, and preventive vaccines, a suitable

animal model which can represent the characteristics of infectious is required. The

Syrian hamster immune responses to infectious pathogens are similar to humans and

as such, this model is advantageous for studying pathogenesis of infection including

post-bacterial, viral and parasitic pathogens, along with assessing the efficacy and

interactions of medications and vaccines for those pathogens. This review summarizes

the current status of Syrian hamster models and their use for understanding the

underlying mechanisms of pathogen infection, in addition to their use as a drug discovery

platform and provides a strong rationale for the selection of Syrian hamster as animal

models in biomedical research. The challenges of using Syrian hamster as an alternative

animal model for the research of infectious diseases are also addressed.
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INTRODUCTION

According to data released by the World Health Organization (WHO), infectious agents causing
lower respiratory infections, diarrheal diseases, and tuberculosis were ranked in the top ten causes
of death worldwide, resulting in 5.7 million deaths in 2016 (1). It is clear that we need to improve
our understanding of these diseases and pathogenic agents in order to develop more effective drugs
and vaccines. To this end, we need a suitable animal model that can most accurately mimic the
pathogenesis of infection as infection usually induces a complex process of host immune responses
that in vitro experiments are unable to simulate. Only in vivo models can accurately assess the
complexity of host responses and allow the efficacy and adverse effects of drugs or vaccine to
be evaluated.

The Syrian hamster (Mesocricetus auratus) has been used as an animal model to study human-
associated diseases for over 60 years. A number of studies have documented that Syrian hamsters
represent better models for analysis of viral infections compared to murine models as the similarity
to humans with regard to disease symptoms, pathognesis and immune responses is greater (2–4). It
has been demonstrated by us and others that human cytokines, including granulocyte-macrophage
colony-stimulating factor (GM-CSF) and interleukin-12 (IL-12), are fully functional in hamster
models, but not in mouse models (5, 6). Together with other advantages, such as fast reproductive
rate and ease of handling, Syrian hamsters are a superior choice compared with other small animals.
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Although Syrian hamsters have historically been used
in diseases research, their value as an animal model in
the study of infectious diseases has only recently been
realized. With advancements in gene editing technologies,
their popularity has increased significantly (Figure 1). The
use of genetically engineered Syrian hamster (GESH) models
is critical for understanding disease progression and for
developing prophylactic and therapeutic treatment regimens.
The first STAT2 gene knockout (KO) Syrian hamster was
developed in 2014, using the CRISPR/Cas9 system to target
the hamster germline (7). STAT2 is a crucial element of the
type I interferon (IFN) signal transduction pathway and the
hamster model has emerged as the only small animal model
permissive for Adenovirus (AdV) infection, thus, the STAT2 KO
model has been critical for the characterization of Adenovirus
pathogenesis (8).

SYRIAN HAMSTER USED FOR RESEARCH
IN VIRAL INFECTIONS

The Syrian hamster is an ideal small animal model to study the
disease caused by virus infection. Previous studies have shown
that some human-specific viruses can also infect, replicate and
cause similar pathological alterations in Syrian hamsters (9). In
particular, Syrian hamsters are recognized as valuable model for
studying emerging and acute human viral diseases caused by
highly pathogenic RNA viruses (10). Thus, these animals are of
great value for testing potential vaccines and new therapeutic
drugs for human use. At present, over 70 different viruses have
been investigated using Syrian hamster, and more viral infection
studies will be explored in the future (Table 1). In this review, we
focus on six viruses for which the use of the Syrian hamster has
provided valuable insight into disease pathogenesis.

FIGURE 1 | Number of publications using Syrian hamsters as a disease

model. The number of publications using Syrian hamsters as an animal model

from 1997 through 2017 is shown. For each standard, the number of

publications was determined via a search using the ScienceDirect database.

The search was performed with the keywords “Syrian hamster” or “golden

hamster” AND “model” AND (1) “viral” or “virus,” (2) “bacteria,” (3) “infection” or

“disease”.

TABLE 1 | Viral infections in Syrian hamster models.

Agent Syrian

hamster

strain

Disease model References

Paramyxoviruses

Nipah virus WT Nipah disease (11)

Hendra virus WT Hendra disease (12)

Flaviviruses

West Nile virus WT West Nile neurological

syndrome

(13)

Yellow fever virus* WT Yellow fever (14)

Zika virus STAT2−/− Zika virus disease (15)

St. Louis encephalitis virus WT Chronic St. Louis

encephalitis**

(16)

Japanese encephalitis

virus

WT Japanese encephalitis (17)

Eastern equine

encephalitis virus

WT Eastern equine

encephalitis

(18)

Venezuelan equine

encephalitis virus

WT Venezuelan equine

encephalitis**

(19)

Western equine

encephalitis virus

WT Western equine

encephalitis

(20)

Filoviruses

Ebola virus* WT Ebola virus disease (21)

Marburg virus* WT Marburg virus disease (22)

Marburg virus STAT2−/− Marburg virus disease (23)

Crimean–Congo

hemorrhagic fever virus

WT Crimean Congo

hemorrhagic fever

(24)

Arenaviruses

Pichinde virus WT Lassa fever-like (25)

Pirital virus WT Arenavirus disease (26)

Phleboviruses

Rift Valley fever virus WT Rift Valley fever (27)

Heartland virus STAT2−/− HRTV disease (28)

Punta Toro virus WT Rift Valley fever-like* (29)

Gabek forest virus WT Rift Valley fever-like* (30)

Severe fever with

thrombocytopenia

syndrome virus

STAT2−/− Severe fever with

thrombocytopenia

syndrome

(31)

Others

Andes virus WT Hantavirus pulmonary

syndrome

(32)

Maporal virus WT Hantavirus pulmonary

syndrome

(33)

SARS coronavirus WT severe acute respiratory

syndrome**

(34)

Oncolytic adenoviruses WT Pancreatic cancer (35)

Adenoviruses RAG1−/− Immunodeficiency

disease

(36)

Adenoviruses STAT2−/− Immunodeficiency

disease

(8)

Prions WT Scrapie disease (37)

*Adapted viruses used in model.
** Infection model, not disease model. WT, Wild-type.

West Nile Virus
The most intensively studied virus in Syrian hamsters is
West Nile virus (WNV). WNV is a member of the genus
Flavivirus (family Flaviviridae), an emerging zoonotic arbovirus
widely distributed throughout the world (38). WNV is usually
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transmitted via bites on infected arthropods (mosquitos). In
humans, the majority of WNV infections are asymptomatic, with
only 20% of infected individuals developing symptomatic West
Nile fever (WNF) (39). However,WNV is an important emerging
neurotropic virus causing severe encephalitis in human posing
a significant threat to global health (40). Syrian hamsters can
be readily infected by mosquito bite, ingestion (oral) or needle
inoculation and infected hamsters develop viremia and illness,
with symptoms similar to those experienced during human
infection (41, 42). Using this hamster model, Xiao et al. observed
both histologic abnormalities and appearance of viral antigen
in the brain first followed by the spinal cord, with infection
eventually leading to acute central nervous system (CNS) injury
(13). Infected hamsters developed neurological disease (43–46)
and association of suppressed diaphragmatic electromyographs
(EMGs) with infection of the medulla oblongata (47). Samuel
et al. also found that inoculation of Syrian hamster with
WNV resulted in paralysis of the hind limb ipsilateral but
not contralateral to the injection site (48). Mateo et al.
generated a model of immunosuppressed Syrian hamsters using
cyclophosphamide and after infection the hamsters displayed
similar clinical signs to those observed in an immunosuppressed
cancer patient infected with WNV (49). By observing the
pathogenesis of disease in WNV-infected immunocompromised
hamsters, the animals were shown to develop chronic viremia
and sustained renal infection for 8 months (50). Syrian hamsters
not only display an adaptive immune response but also mount
an innate immune response to WNV infection. Since the
Syrian hamster has been shown to be a suitable model for
WNV infection, it has also been used to test the efficacy of
anti-WNV-neutralizing humanized monoclonal antibody, hE16
(44). Antibody immunoprophylaxis induced by delivery of
recombinant antigens (WN-80E or WN-NS1) also protected
Syrian hamster fromWNV infection (51). Using a Syrian hamster
model, Widman et al. successfully demonstrated that RepliVAX
WN, a single cycle flavivirus vaccine platform, was able to
induce durable protective immunity againstWNV challenge (52).
These studies demonstrate Syrian hamster as an ideal model for
study of the pathogenesis of WNV infection and assessing new
approaches for WNV treatment and prevention.

Yellow Fever Virus
YFV is an arthropod-borne virus of the genus Flavivirus (family
Flaviviridae) and has high morbidity and mortality rates in
regions of sub-Saharan Africa and South America (53). It was
one of the first viruses of humans to be identified, isolated,
propagated in vitro and studied by genomic sequencing (54).
The study of infection mechanism of YFV has historically been
hindered by the lack of appropriate small animal model and
non-human primate (NHP) models have typically been used.
More recently, several research groups have generated animal
models using Syrian hamsters that can be successfully infected
with YFV (55–58). McArthur et al. reported adapted viral strains
(Asibi/hamster p7) allow the reproduction of yellow fever disease
in hamsters with features similar to the human disease (59).
Further, studies have also shown that infection of Syrian hamster
results in immune responses that correspond to those observed in

infected humans, withmarked increases in IFN-γ, IL-2, TNF-α in
the spleen, kidney, and heart, but reduced levels of these seen in
the liver. In addition, these studies found increased levels of IL-10
and reduced levels of TGF-β in the liver, spleen, and heart in early
andmid-stages of infection (60). Syrian hamster can be used both
to study the pathogenesis of the YFV infection, and to validate
antiviral drugs and antiviral therapies. Recent findings have
shown that treatment with the anti-viral compounds 2′-C-methyl
cytidine (61), T-1106 (62), IFN alfacon-1 (63), and BCX4430 (64)
pre- and post-YFV exposure can significantly improve Syrian
hamster survival. In a study by Julander et al. immunization with
DEF201, an AdV type-5 vector expressing IFN alpha (IFN-α),
can effectively reduce the viral titer in hamster’s liver and serum
post-YFV infection (65). Immunoprophylaxis with XRX-001,
a vaccine containing inactivated yellow fever antigen with an
alum adjuvant, can elicit high titers of neutralizing antibodies
in vivo to protect Syrian hamsters from YFV infection (66, 67).
Interestingly, Xiao et al. (67) and Tesh et al. (68) demonstrate that
prior exposure of Syrian hamsters to heterologous flaviviruses
reduces the risk of YFV infection.

Nipah Virus
Nipah is paramyxovirus of the genus Henipavirus (family
Paramyxoviridae) with a high fatality rate (69). Infection in
humans usually causes severe encephalitic and respiratory disease
(70). After inoculation with Nipah virus (NiV), Syrian hamsters
also develop characterisitic neurological disease (12). Similar
to symptoms after human infection, pathological lesions are
the most severe and extensive in the hamster brain and viral
antigen and RNA can be detected in neurons (11), lung (71),
kidney, and spleen (11). The Syrian hamsters in the majority
of NiV infection studies are treated by intraperitoneal (IP)
injection or intranasal (IN.) delivery and these models have
revealed that different inoculation method can cause diverse
pathological responses (11). In Wong’s work, IP injection of NiV
in Syrian hamsters caused primarily neurological disease, while
IN delivery developed neurological symptoms as well as labored
breathing due to lung infection in the final stages of disease (11).
Disease progression is usually much rapid and the time to death
post-infection is shorter following intraperitoneal rather than
intranasal inoculation (72). Since the Syrian hamster has shown
suitability for studying NiV infection, it was further used to study
the viral transmission (73–75), demonstrating that Nipah virus
is transmitted efficiently via direct contact and inefficiently via
fomites, but not via aerosols. Regarding the use of these models
for development of disease treatment and prophylaxis, recent
studies have shown that pretreatment with Poly(I)-poly(C12U)
can significantly decrease the mortality caused by NiV infection
of Syrian hamster (76). In addition, the model was used as a
platform for evaluation of vaccines for NiV (77–80). Walpita
et al. discovered purified NiV-like particles (VLP) can protect
the Syrian hamster using either multiple-dose or single-dose
vaccination regimens followed by NiV challenge (81).

Ebola Virus
Ebola virus (EBOV) is one of five known viruses within the genus
Ebolavirus (family Filoviridae) (10). It’s classified as biosafety
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level 4 (BSL-4) pathogen by the WHO. Not only can Syrian
hamsters be effectively infected with mouse adapted (MA)-
EBOV, they additionally display major hallmarks infection and
pathogenesis seen in humans and non-human primates (NHPs).
Syrian hamsters could be inoculated via intraperitoneal injection
with mouse adapted Zaire Ebola virus (MA-ZEBOV). The
pathology caused by this infection is similar to that of humans,
which includes significant spleen and liver damage, cytokine
dysregulation, severe coagulopathy, lymphocyte apoptosis, and
infected organ necrosis or apoptosis (21, 82). The immune
responses of infected Syrian hamsters include activation of T
cell and antibody production. In a recent study, the results of
Ebola virus infection in hamsters demonstrate that CD4+ T
cells are required for natural immunity and CD4-dependent
antibody responses are required for immunity against the virus
in this model (83). Syrian hamsters can be used to evaluate a
bivalent vaccine comprising recombinant Vesicular stomatitis
virus (VSV) expressing two different immunogens derived from
ZEBOV envelope glycoprotein (84) and Andes Virus (ANDV)
(32). The results showed that a single immunization with this
vaccine provides hamsters complete and sterile protection against
lethal challenge with MA-ZEBOV or ANDV (85).

Marburg Virus
Marburg virus (MARV) is also a negative sense RNA virus
belonging to the family Filoviridae that causes hemorrhagic
fever (86). Researchers have shown that Syrian hamsters can
be used to study MARV infection. The Syrian hamster model
was established to study MARV infection using the Angola
variant (HA-MARV) (22). In the study, hamsters inoculated with
HA-MARV developed hemorrhagic manifestations, coagulation
abnormalities, dysregulation of pro-inflammatory chemokines
MIP-1α and IP-10, and increment of type I interferon responses
(22, 87). In addition, Atkins et al. recently developed a small
animal model for wild-type MARV infection using STAT2 KO
Syrian hamster, in which viral replication rapidly progresses to
multiorgan infection and extensive viremia (23), demonstrating
STAT2 as a key host factor affecting wild-type MARV infection.

Rift Valley Fever Virus
RVFV is a member of the Bunyaviridae family and the genus
Phlebovirus (88, 89). RVFV is usually transmitted via bites of
infected mosquitos and can lead to mild febrile illness, retinitis,
fulminant hepatitis, encephalitis and viral hemorrhagic fever
(90). The infection of RVFV in Syrian hamsters has been well-
described (91). The study results have assessed the susceptibility
of Syrian hamsters to RVFV infection and shown that viral
infection results in viremia, elevation of viral loads in liver, brain,
and spleen tissues, observation of severe hepatocellular necrosis
in the early stage of infection, and intense immunoreactivity
of affected hepatocytes (27, 92, 93). Furthermore, using Syrian
hamsters, Scharton et al. proved that prophylactic Favipiravir
(T-705) can effectively protect infected individuals against RVFV
infection and reduce delayed-onset neurologic disease observed
with ribavirin treatment (94). In another study, Gowen et al. used
hamsters to demonstrate protection from infection with just a
single-dose intranasal treatment of the AdV-IFNα vector DEF201

(95). In addtion, results presented byWestover et al. demonstrate
that the adenosine analog, galidesivir (BCX4430), can effectively
reduce the RVFV titer in infected Syrian hamsters (96).

Other Viruses
A large number of other studies have also demonstrated that
Syrian hamster is a permissive small animal model for other
viruses, for example, Syrian hamster model was successfully
used to test the efficacy of anti-F MAbs to reduce Hendra virus
infection (12). STAT2 KO Syrian hamster have shown successful
infection with Zika virus (ZIKV) and the infected hamsters
displayed the similar symptoms as in human (15). Also, an
immunosuppressed Syrian hamster generated by Schaecher et al.
strengthened its valuable application in study of severe acute
respiratory syndrome coronavirus (SARS-CoV) infection (34).
Syrian hamster has successfully been characterized for infection
of human influenza, including the recent H1N1, pdm09, and
H3N2 viruses (97). Moreover, as a permissive immunocompetent
animal model for the study of oncolytic adenovirus, its use has
been expanding for the study of cancer virotherapies (98–100).

SYRIAN HAMSTER USED FOR RESEARCH
IN BACTERIAL AND PARASITIC
INFECTIONS

Syrian hamster is also an ideal animal model for the study
of a series of human bacterial and parasite infections, and its
application has been well-reported in the literature (Table 2).
Among the pathogens studied, some, such as Babesiosis,
Leptospirosis, and Leishmaniasis can cause fatal infection. As for
studies on virus pathogenesis, the value of the Syrian hamster
model is not only reflected in the study of pathological and
immune response to these infections, but also in the discovery
of potential drugs and treatments.

Leptospira interrogan
Pathogenic Leptospira interrogans is spirochete bacteria
responsible for leptospirosis, a widespread and emerging
neglected zoonotic. Syrian hamster is the preferred model to
study the infection of serovars of Leptospira interrogans, with
bacteria traveling rapidly to the bloodstream via the lymphatics,

TABLE 2 | Major bacterial and parasitic infection studies in the Syrian hamster.

Agent Syrian

hamster

strain

Disease model References

Clostridium difficile WT Clostridium difficile

disease

(101)

Leptospira WT Leptospirosis (102)

Helicobacter spp. WT Helicobacter spp.

disease

(103)

Entamoeba histolytica WT Amebic liver abscess (104, 105)

Leishmania WT Visceral Leishmania (106)

Babesia WT Babesiosis (107)
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then invading tissues and infecting all organs prior to the
death of the hamsters (108). Similar to human, the presence
of Leptospira interrogans can be detected in liver and kidney,
with the destruction of hepatocyte junctions that leads to
jaundice, thrombotic glomerulopathy, and interstitial nephritis
(109, 110). Infected animals develop the enhanced expression of
pro-inflammatory cytokines by peripheral blood cells, such as
IL-1α, IL-10, TNF-α (111). Dramatic imbalance in the cytokine
production upon Leptospira infection might play an important
role in the development of severe leptospirosis (112). Since the
Syrian hamster has been shown to be a suitable model, it has
been used to test the efficacy of vaccines against this disease.
Palaniappan et al. demonstrate that the immunization of Syrian
hamster with recombinant LigA (rLigA) prevents fatalities, with
decreased histopathological lesions in kidney and inhibited
the growth of the organisms (113). In another study, a vaccine
using a conserved region of the leptospiral immunoglobulin-like
B protein (LigB, 131–645) and aluminum hydroxide (AH)
can significantly increase IgG and IgM levels in the hamster,
protecting the animal from mortality after challenge (114).

Clostridium difficile
Clostridium difficile disease caused by Clostridium difficile
infection (CDI) is one of the most common infectious diseases
worldwide (115). The increasing threat of morbidity and
mortality caused by the infection is mostly due to the emergence
of hypervirulent strains, increased use and misuse of antibiotics
(116). The use of mouse animal model has been unable to provide
CDI drug discoveries, so it is necessary to find new animal
models (117, 118). Several groups have generated Syrian hamster
models for CDI, which developed many of clinical symptoms
observed in infected humans (119–121). In these studies, Syrian
hamsters were conditioned with a single subcutaneous injection
of clindamycin to induce Clostridium difficile colitis model. Using
this infection model, the efficacy of LFF571 antibiotic against
Clostridium difficile was assessed (122) and the oral mixture
of kefir-isolated bacteria and yeasts to prevent diarrhea and
enterocolitis triggered by Clostridium difficile was tested (123).

Leishmania donovani
Visceral leishmaniasis (VL; also known as kala-azar) is the most
severe form of leishmaniasis caused by Leishmania donovani
and Leishmania infantum (Leishmania chagasi in the Americas)
(124). The Syrian hamster is highly susceptible to infection
with visceralizing Leishmania species and is considered the
best experimental model to study VL as it reproduces the
clinicopathological features of human disease and quite distinct
from those noted in murine models of infection (125). In the
majority of studies, animals were infected by the intracardial
route. Infected animals demonstrate up-regulated expression
of Th1-associated cytokine mRNA, such as IFN-γ, IL-2, and
TNF-α in the spleen, but limited induction of IL-4 mRNA
(126). In murine models, Leishmania is controlled through
nitric oxide (NO) generation, and however in hamsters, as in
humans, NO does not have a role in macrophage function.
Inducible NO synthetase (iNOS) mRNA was not detected in
livers or spleen of hamsters, which may explain the uncontrolled

parasite replication occurring in hamsters and humans, despite
the induction of a strong Th1 cytokine response (126). Not only
can Syrian hamster model be used to study the pathogenesis
of Leishmania donovani infection, but also to test vaccines as
recent studies have shown. Kushawaha et al. used a Syrian
hamster model to show that recombinant Leishmania donovani
protein disulfide isomerase (rLdPDI) generated a robust cellular
immune response with increased iNOS transcription and TNF-
α, IFN-γ, and IL-12 levels (127). In another study by Samant
et al. vaccination with DNA-encoding N-terminal domain of the
PPG gene in golden hamsters yielded 80% protection against
Leishmania donovani challenge with generation of Th1 type of
immune response (128).

Leishmania infantum
Besides Leishmania donovani, Leishmania infantum has also
been studied using the Syrian hamster model. Moreira et al.
generated a model using Syrian hamsters featuring a similar
human clinical picture on Leishmania infantum infection (129).
The animals developed hepatosplenomegaly, severe weight loss,
anemia, and leucopenia. A study found increased levels of IgG
in hamsters infected with Leishmania infantum (130). Similar
to humans, Syrian hamsters can develop the progressive fatal
disease, with major sites of parasites replication being the liver,
spleen, and bone marrow, eventually causing death of the host
(131). Infection of the hamsters showed a strong humoral
response against Leishmania antigens, and high antibody levels
(131). Study have tested the LJM19 (Immunization with 16 DNA
plasmids coding for salivary proteins of Lu. longipalpis) protein
protected hamsters against the fatal outcome of VL (132).

Entamoeba histolytica
Entamoeba histolytica is a popular protozoan parasite causing
amebiasis in humans that is a major source of morbidity
and mortality in the developing countries (133). Parasitic
Entamoeba histolytica produces amebic colitis and an amebic
liver abscess (ALA). Syrian hamster can be successfully
infected with Entamoeba histolytica (104). Similar to symptoms
after human infection, the main extraintestinal complication,
ALA, is also found in the hamster. In the hamster, liver
recruitment of neutrophils is the initial host response to
Entamoeba histolytica infection (134). A study indicated
that leukocytes can induce Entamoeba histolytica trophozoites
to undergo cell death (135). Although an anti-parasitic
drug (Metronidazole) exists, side effects of toxicity exist in
patients; thus this model has been used to develop alternative
therapeutic agents. One research group showed that bovine
lactoferrin protected against hepatic amoebiasis in Syrian
hamster model (136). Hamsters were also used to show
that intraperitoneal injection of Entamoeba histolytica surface
metalloprotease (EhMSP-1), an antigen vaccine, protected
against the amebic liver abscesses (137). In this study,
EhMSP-1 immunization stimulated a robust IgG antibody
response, IgG bound to the surface of Entamoeba histolytica
trophozoites and accelerated amebic lysis via activation of
the classical complement cascade. The same animal model
used for Entamoeba histolytica infection was used to show
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that baculovirus driving the expression of the Gal-Lectin
LC3 fragment, when administeredvia intramuscular injection,
increased IFN γ and IL-4 levels in the liver to protect against
ALA (138).

Schistosoma haematobium
Schistosoma haematobium (urinary blood fluke) is the etiologic
agent for urogenital schistosomiasis, a source of morbidity and
mortality for over 112 million people worldwide (139). Although
an improved mouse model of S. haematobium urinary tract
infection can recapitulate several aspects of human urogenital
schistosomiasis (139), Syrian hamsters still show advantages
compared to mouse. Syrian hamsters can be transdermally
infected with Schistosoma haematobium cercariae (140, 141). A
model with Schistosoma haematobium cercariae granulomatous-
like immune reaction and hepatic fibrosis infection using Syrian
hamsters was generated by Botelho et al. (142). Botros et al. used
Syrian hamster model to analyze and test praziquantel (PZQ)
treatment (143). This animal model revealed predominant CD4+

T cells in the acute phase of granuloma formation in the liver [75
days post-infection (PI)], Confluent granulomata with multiple
eggs in the center were observed in the liver and urinary bladder
with the preponderance of CD8+ positive T cells in the liver
(95 and 115 days PI). In this model, high dose PZQ was clearly
curative from 75 days PI.

Others
There are many studies detailing the pathogenesis of other
bacteria and parasitic infections using the Syrian hamster
animal model that cannot be discussed here in detail. A
Syrian hamster model to study Borrelia burgdorferi infection
was established by Johnson et al. (144). After Borrelia
burgodrferi infection, hamsters were utilized to study articular
manifestations of Lyme borreliosis, which is similar to human
(145). Syrian hamster can be successfully infected with
Leishmania panamensis (146). Infected animals have up-
regulated expression of type II cytokines (IL-4 and IL-13), down-
regulation of IL-12, and up-regulation of the type II chemokine
CCL17 and its receptor CCR4 in lymph node. Grogl et al.
generated a model using Syrian hamsters for drug discovery
for Leishmania panamesis infection (147). After Leishmania
braziliensis infection, Ribeiro-Romao et al. observed large and
ulcerated lesions with elevated levels of interferon-γ and tumor
necrosis factor (TNF) during the infection endpoint, which
suggests that these cytokines contribute to tissue injury (148).
Treatment of Leishmania amazonensis infection by intralesional
administration of dimethyl carbaporphyrin ketal (CKOMe)
reduced the parasite load without noticeable toxic effects in liver
(149). A Syrian hamster model to study Plasmodium berghei
infection (150) demonstrated induction of severe malaria in
the Syrian hamster window chamber model and was used
to investigate microcirculatory changes and tissue oxygenation
(151). The reader is referred to the relevant publications for
further information regarding the use of Syrian hamster models
to investigate these infections.

TABLE 3 | List of antibodies tested in Syrian hamster.

Gene Antibody Applications References

Apaf-1 Anti-Apaf-1 antibody WB (152)

Bax Anti-Bax antibody WB, IHC (152)

Bcl-2 Anti-Bcl-2 antibody WB, IHC (152)

Bcl-xL Anti-Bcl-xL antibody WB (153)

Caspase-2L Anti-Caspase-2L antibody WB (152)

Caspase-3 Anti-Caspase-3 antibody WB, IHC (152)

Caspase-6 Anti-Caspase-6 antibody WB (152)

Caspase-8 Anti-Caspase-8 antibody WB (152)

Caspase-9 Anti-Caspase-9 antibody WB (152)

Cathepsin D Anti-Cathepsin D antibody WB, IHC (154)

CD3 Anti-mouse or Syrian

hamster CD3 (4F11)

antibody

IHC,

Flow Cyt

(155, 156)

CD4 Anti-mouse CD4 (GK1.5)

antibody

IHC,

Flow Cyt

(157, 158)

CD8β Anti-rat CD8b (341)

antibody

Flow Cyt (158, 159)

CD20 Anti-CD20 antibody IHC (23)

CD25 Anti-CD25 antibody Flow Cyt (160)

CD68 Anti-CD68 antibody IHC (161)

COX-2 Anti-COX-2 antibody WB, IHC (162)

Cytochrome

C

Anti-Cytochrome C

antibody

WB (152)

Fas Anti-Fas antibody WB (152)

IL-4 Anti-IL-4 antibody Flow Cyt (160)

IFN-γ Anti-IFN-γ-antibody Flow Cyt (160)

iNOS Anti-iNOS antibody IHC (153)

ICAM-1 Anti-ICAM-1 antibody WB (163)

IκB Anti-IκB antibody WB (152)

iNOS Anti-iNOS antibody WB (153)

JAK2 Anti-JAK2 antibody WB (153)

lba-1 Anti-Iba-1 antibody IHC (159)

MARCO Anti-hamster MARCO

(PAL-1) antibody

IHC,

Flow Cyt

(164)

Mcl-1 Anti-Mcl-1 antibody WB (165)

MHC II Anti-mouse I-Ek MHC II

(14-4-4S) antibody

Flow Cyt (166)

MMP Anti-MMP antibody WB (154)

MMP-2 Anti-MMP-2 antibody WB, IHC (152, 167)

MMP-9 Anti-MMP-9 antibody WB (152)

NF Kb-p50 Anti-NF Kb-p50 antibody WB (152)

NF Kb-p65 Anti-NF Kb-p65 antibody WB (152)

p-Akt Anti-p-Akt antibody WB (154)

p-Ert Anti-p-Ert antibody WB (154)

p-p65 Anti-p-p65 antibody WB (153)

p-STAT3 Anti-p-STAT3 antibody WB, IHC (154, 165)

p21waf−1 Anti-p21waf−1 antibody WB (152)

p53 p53 antibody WB, IHC (152, 168)

p65 p65 antibody WB, IHC (153)

PARP Anti-PARP antibody WB (165)

Procaspase 3 Anti-Procaspase 3 antibody WB (153)

Procaspase 8 Anti-Procaspase 8 antibody WB (153)

(Continued)
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TABLE 3 | Continued

Gene Antibody Applications References

Procaspase 9 Anti-Procaspase 9 antibody WB (153)

RAG1 Anti-RAG-1(D-5) antibody WB (36)

STAT2 Anti-STAT2 antibody WB (7)

STAT3 Anti-STAT3 antibody WB (153)

Survivin (C) Anti-Survivin (C) antibody WB (165)

Survivin (N) Anti-Survivin (N) antibody WB (165)

TNF-α Anti-mouse TNF α antibody WB (154)

TRAF1 Anti-TRAF1 antibody WB (153)

Ubiqutitin Anti-Ubiqutitin antibody WB (154)

VCAM-1 Anti-VCAM-1 antibody WB, IHC (161, 163)

CONCLUDING REMARKS

In this review, we described the use of the Syrian hamster
model as an extraordinarily effective and relevant platform
for evaluation of the molecular mechanisms of immune
responses to infectious diseases. These studies focus on
several infectious pathogens including those of viral, parasitic,
and bacterial origins. The results indicate that the Syrian
hamster immune response is more physiological similar to
the human immune response when compared to other
animals, thus offering unique advantages when studying
the disease pathogenesis and for novel drug and treatment
discovery. Future studies should consider determining additional
similarities between the Syrian hamster and human immune
response activation through pathogen manipulation of host
metabolism. Increased research efforts will ultimately allow
for the development of new technologies and tools to
study the Syrian hamster, such as more accurate sequencing
technology along with specific antibodies against hamster

proteins that are currently limited in comparison to similar
tools for studying murine responses to infection. We believe
that the recent advances that the Syrian hamster model has
contributed enormously to our understanding of infectious
diseases and disease management and demonstrates the strong
potential for future research and development of anti-viral
drug discovery.

However, as discussed, the lack of research tools represents
a major barrier to effective use of Syrian hamster models.
Immunologic reagents for examing host immune response
and particular gene expression, and transgenic disease models
will all be required for a more complete evaluation of the
value of this model. To overcome this, research groups
are developing or identifying a considerable number of
antibodies against Syrian hamster (Table 3) and hamster specific
quantitative real-time PCR (RT-qPCR), transcriptome analysis
and microarrays have also been developed (169). Most strikingly,
CRISPR/Cas9 technology has rapidly sped up the creation of
transgenic Syrian hamster disease models (170). These tools
will overcome the limitations to research using Syrian hamsters,
opening up a powerful platform for recapitulation of human
disease pathogensis.
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