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Kinase inhibitors are efficient in reducing cancer cell via-
bility in cases where malignant cells present a dependency or
addiction to the targeted kinase [1]. Genetic alterations can
cause constitutive activation of pro-survival and proliferative
pathways and often determine the extent by which cancer
cells respond to targeted drugs [2, 3]. However, other bio-
chemical events, not directly linked to genetic mutations

may also contribute to the modulation of oncogenic kinase
activity and thus influence responses to kinase targeted drugs
[4, 5]. Here, we integrated drug sensitivity, proteomic,
phosphoproteomic, immunophenotypic, and genomic ana-
lyses of primary AML to rationalize responses and identify
determinants of sensitivity of AML cells to targeted com-
pounds of clinical and preclinical interest in this disease.

We investigated the effects on cell viability of inhibitors
for the kinases FLT3/PKC (midostaurin), PAK (PF-
3758309), CK2 (silmitasertib), MEK (trametinib), and P38
(TAK-715). Hereafter named as FLT3/PKCi, PAKi, CK2i,
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MEKi, and P38i, respectively. Dose–response curves
for cells obtained from 36 AML patients (Data File S1)
showed heterogeneous responses to all compounds
(Figure S1). However, samples of the M4 FAB subtype

were on average more sensitive than M1 samples to
MEKi (Fig. 1a).

Based on the surface expression of a set of co-expressed CD
markers (Figure S2a), mass cytometry data subdivided our
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patient samples into two groups (Fig. 1b (heatmap)). These
analyses could be performed in 30 cases with sufficient number
of cells and produced two main groups, which we termed CDs+
and CDs−, consisting of 12 and 18 patients, respectively.
Untargeted mass spectrometry proteomics (Data File S2)
uncovered greater expression in the CDs+ group relative to CDs
− of a set of proteins linked to differentiation, several kinases,
and other signal-transduction regulators (Figure S2b, c). Global
phosphoproteomics by mass spectrometry showed that CDs+
cells had an increase in protein phosphorylation relative to the
CDs− cases (Figure S2d, Data File S3) and activated kinases
downstream growth factor signaling, as illustrated by kinase
substrate enrichment analysis [6] (Fig. 1b (bar plot)). In addition,
individual phosphorylation markers [7] on ERK1/2 (MAPK3/1),
PAK1/2, MEK1 (MAP2K1), and PKCδ (PRKCD) were highly
phosphorylated in the CDs+ group (Figure S2d) and correlated
with the surface expression of individual CD markers linked to
differentiation (Figure S3a and S3b).

Since CDs+ cases activated kinase survival pathways to
a greater extent than CDs− cases, we reasoned that cells
from these groups would respond differently to kinase
inhibitors. Consistently with this hypothesis, cell viability
analysis as a function of treatment with kinase inhibitors
showed that CDs+ cases were more sensitive than CDs− to
MEKi (at 10, 100, and 1000 nM), FLT3/PKCi (1 and 10
μM), and PAKi (1 μM) (Fig. 1c). These concentrations are
physiologically relevant for MEKi and FLT3/PKCi [8, 9].
Together, our results suggest that CDs+ cells had higher
expression of proteins associated with myelomonocytic
differentiation and kinase signaling relative to negative
cells, and consequently showed high phosphorylation and
activation of pro-survival kinases, which was translated into
an increased sensitivity to treatments with PAKi, mid-
ostaurin, and trametinib.

In order to rationalize drug responses with greater detail, we
sequenced 25 genes frequently mutated in AML in 27 cases of
our cohort (Data File S4, sequencing failed in three samples).
We found that genes involved in kinase signaling (NRAS,
BRAF, and FLT3), were more frequently mutated in CDs+
cases (Figure S4, p= 0.008 by hypergeometric test). We
performed an integrative and systematic analysis of mutational
profiles with the mass spectrometry and cytometry data. Cells
positive for NRAS mutations, high MAPK1 phosphorylation,
or the CDs+ phenotype were more sensitive to MEKi than
negative cells (Fig. 2a (i–iv)). Cells with the NRAS/BRAF/
FLT3-ITD genotypes were not more sensitive to MEKi than
cells with just either NRAS or BRAF mutations (Fig. 2a (v)). In
contrast, cases positive for NRAS, BRAF mutations or the CDs
+ phenotype (NRAS/BRAF/CDs+) were on average more
sensitive to MEKi than cells without this molecular signature
(Fig. 2a (vi–ix)). The p value assessment for the comparisons
showed that the NRAS/BRAF/CDs+ signature produced the
most significant difference followed by the NRAS/BRAF/p-

MAPK1hi/CDs+ signature (Fig. 2 (bar plot)). Our results
suggest that, in addition to NRAS/BRAF activating mutations,
the RAS/MEK/ERK pathway may be activated by other
means in cells with high expression of CD markers. Thus,
MEKi treatment was more likely to reduce AML cell viability
in cases positive for at least one of these markers (NRAS/
BRAF mutations or specific CD pattern expression).

Although 15 cases with the NRAS/BRAF/CDs+ signature
were on average more sensitive to MEKi than negative cases,
8 of such cases were resistant (viability >50%) to treatment
(Fig. 2a (viii)). Within these 15 cases positive for NRAS/
BRAF/CDs+, cells with FLT3-ITD mutations were sig-
nificantly more resistant to MEKi than cells without this
mutation (p= 0.012, Fig. 2b). Several phosphorylation mar-
kers were also found to be associated with responses to MEKi
within the NRAS/BRAF/CDs+ cases, including STAT5AS780,
STAT5AS128, TOP2AS1213, KDM5CS317, and CAMKK1S458

(Fig. 2b). When the whole cohort of 27 patients was con-
sidered, samples positive for NRAS/BRAF/CDs+ and negative
for FLT3-ITD or low pSTAT5A or pKDM5C were more
sensitive to MEKi than the other cells (Fig. 2d, Figure S5a).
This higher sensitivity of NRAS/BRAF/CDs+ cases that were
FLT3-ITD negative or pKDM5CS317 low was consistent
across several MEKi concentrations (Figure S5a).

Our results suggest two distinct mechanisms of intrinsic
resistance to MEK inhibition. One occurs in cells that are not
addicted to the pro-survival actions of MEK because these
have low RAS/MEK/ERK pathway activity. The other
occurs in cells which, albeit having a highly active RAS/
MEK/ERK, bypass MEK inhibition using the FLT3/STAT5
axis; a pathway known to sustain AML viability and pro-
liferation by acting in parallel to RAS/MEK/ERK signaling
[10, 11]. Pemovska et al. [12] also observed a high response
to trametinib in a subgroup of AML primary cells. NRAS is
frequently mutated in AML and in a recent clinical trial
~20% of AML patients positive for NRAS or KRAS muta-
tions responded to trametinib [13]. Our results suggest that
selection of patients for therapy based not only on NRAS/
KRAS mutations but also on direct markers of MEK activity,
and STAT5 and KDM5A phosphorylation may increase the
proportion of patients that will respond to this treatment.

We also noted that FLT3-ITD status was not associated
with the responses of cells to FLT3/PKCi (Fig. 2c, Fig-
ure S5b), an inhibitor recently approved to treat FLT3
mutant AML [14]. In contrast, CD expression and phos-
phorylation markers on PKCδ and on its substrate GSK3A
[15] were increased in FLT3/PKCi-sensitive cells at 10 μM
and 1 μM (Fig. 2c, Figure S5b). Our results suggest that the
mode of action of midostaurin may involve the inhibition of
PKCδ (a known target of this drug), which we found acti-
vated in primary AML (Fig. 1b, Figure S4a).

In conclusion, we found that AML cells remodel their
kinase-signaling network during differentiation, resulting in a
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marked increase in the activity of pro-survival pathways
regulated by MEK and PKC. Specific combinations of target
and parallel kinase-pathway activation (caused by genetic and
non-genetic events) determined the extent by which AML
cells respond to treatments with trametinib or midostaurin.
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to the onset of donor cell leukemia after hematopoietic
transplantation: a model of leukemogenesis
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Allogeneic hematopoietic stem cell transplantation (allo-
SCT) is an effective treatment for hematologic malignancies.
The most frequent cause of post-transplant mortality is dis-
ease relapse, the majority of the cases present recurrence of
original disease from outgrowth of residual cells having
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