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CATENARITY IN QUANTUM NILPOTENT ALGEBRAS

K. R. GOODEARL AND S. LAUNOIS

(Communicated by Sarah Witherspoon)

Abstract. In this paper, it is established that quantum nilpotent algebras
(also known as CGL extensions) are catenary, i.e., all saturated chains of
inclusions of prime ideals between any two given prime ideals P � Q have
the same length. This is achieved by proving that the prime spectra of these
algebras have normal separation, and then establishing the mild homological
conditions necessary to apply a result of Lenagan and the first author. The
work also recovers the Tauvel height formula for quantum nilpotent algebras, a

result that was first obtained by Lenagan and the authors through a different
approach.

1. Introduction

The aim of this paper is to study the prime spectra of quantum algebras. More
precisely, we focus on the catenary property – that all saturated chains of inclusions
of prime ideals between any two fixed prime ideals have the same length – for a
large class of (quantum) algebras called quantum nilpotent algebras. Examples of
these algebras include for instance quantum matrices and more generally quantum
Schubert cells. Quantum nilpotent algebras have also appeared in the literature
under the name “CGL extensions”, and their prime spectra have been proved in
some cases to be linked to totally nonnegative matrix varieties; see for instance
[12, 13, 22] for more details.

A fundamental property of any affine algebraic variety V is that all saturated
chains of inclusions of irreducible subvarieties of V between any two fixed irreducible
subvarieties have the same length. Restated in terms of the coordinate ring O(V ),
this says that the prime spectrum of O(V ) is catenary.

Quantized coordinate rings of affine varieties are expected to enjoy suitable ver-
sions of the properties of their classical counterparts. In particular, it is conjectured
that the prime spectra of quantized coordinate rings must be catenary. This conjec-
ture has been verified for the quantized coordinate rings of many varieties, such as
matrix varieties [6], affine spaces and general and special linear groups [15], simple
algebraic groups [18, 34], Schubert cells [32], and Grassmannians [24]. Catenarity
has also been established for many related quantum algebras, such as uni- and
multiparameter quantum symplectic and euclidean spaces [19, 28], quantized Weyl
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algebras [15, 28], and twisted quantum Schubert cell algebras [33]. The above ref-
erences deal with generic quantum algebras, those whose quantum parameters are
non-roots of unity. When the quantum parameters are roots of unity, such algebras
satisfy polynomial identities, and catenarity of affine polynomial identity algebras
follows from a result of Schelter [30, Theorem 1].

Here we establish catenarity for all members of the broad family of quantum
nilpotent algebras (defined below). These algebras and localizations thereof cover
the generic quantum algebras mentioned above, except for quantized coordinate
rings of simple algebraic groups and Grassmannians.

By a famous result of Gabber, enveloping algebras of finite dimensional solvable
Lie algebras are catenary (see, e.g., [8] or a combination of [27, Appendix Al] and
[21, Ch. 9]). This result was extended to enveloping algebras of finite dimensional
solvable Lie superalgebras by Lenagan [25]. The method of proof involved estab-
lishing good homological properties of the ring, connecting homological properties
with growth, and controlling growth properties of prime factors by finding normal
elements. (A normal element in a ring R is an element x such that xR = Rx.) Ab-
stracting these methods, Lenagan and the first author gave a set of homological and
ring-theoretical conditions that ensure catenarity of an algebra [15, Theorem 7.1].
The method additionally yields the following useful height formula, first established
by Tauvel [31] for enveloping algebras of solvable Lie algebras:

ht(P ) + GKdim(R/P ) = GKdim(R) for all prime ideals P of R.

This formula has been proved for many quantum algebras such as the ones men-
tioned above, and Lenagan and the present authors recently proved that all quan-
tum nilpotent algebras satisfy Tauvel’s height formula [14].

In order to apply the above methods to an algebra R, a suitable supply of normal
elements in prime factor algebras is needed, in the following form. The prime
spectrum SpecR must have normal separation, meaning that for any pair of distinct
comparable prime ideals P � Q in R, the factor Q/P contains a nonzero normal
element of R/P . Normal separation was proved by Cauchon for quantum matrices
[6] using ring-theoretical and combinatorial methods. Later, Yakimov established
it for quantum Schubert cells [32] using representation theoretical methods. Here
we prove it for a larger class of algebras using purely ring-theoretical methods.

Establishing normal separation for quantum nilpotent algebras requires most of
the effort in the paper, since existing results can be applied to verify the required
homological properties.

To place our results within the context of affine (i.e., finitely generated) noether-
ian algebras, we point out that not all such algebras are catenary. Even enveloping
algebras in general are not catenary – for example, the diagrams in [3, p. 39] show
that SpecU(sl3(C)) and SpecU(sl4(C)) are not catenary. Although enveloping al-
gebras of finite dimensional solvable Lie algebras and quantum nilpotent algebras
both have the form of iterated skew polynomial rings over a ground field, not all
iterated skew polynomial algebras are catenary, as shown by [1, Example 2.10]. Fi-
nally, we mention that Tauvel’s height formula is not a consequence of catenarity.
For instance, Letzter and Lorenz have proved that group algebras of polycyclic-by-
finite groups are catenary [26, Theorem], but such group algebras do not always
satisfy the height formula [1, Example 3.8].
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1.1. Quantum nilpotent algebras. Let R an iterated skew polynomial algebra
of the form

(1.1) R = K[x1][x2;σ2, δ2] · · · [xN ;σN , δN ],

over a field K, where σj is an automorphism of the K-algebra

Rj−1 := K[x1][x2;σ2, δ2] . . . [xj−1;σj−1, δj−1]

and δj is a K-linear σj-derivation of Rj−1, for all j ∈ �2, N�. (When needed, we
denote R0 := K and set R1 = K[x1;σ1, δ1] with σ1 := idK, δ1 := 0.) In particular,
R and the Rj are noetherian domains.

Definition 1.1. An iterated skew polynomial extension R as in (1.1) is called a
quantum nilpotent algebra or a CGL extension [23, Definition 3.1] if it is equipped
with a rational action of a K-torus H = (K∗)d by K-algebra automorphisms satis-
fying the following conditions:

(i) The elements x1, . . . , xN are H-eigenvectors.
(ii) For every j ∈ �2, N�, δj is a locally nilpotent σj-derivation of Rj−1.
(iii) For every j ∈ �1, N�, there exists hj ∈ H such that (hj ·)|Rj−1

= σj and
hj · xj = qjxj for some qj ∈ K∗ which is not a root of unity.

(We have omitted the condition σjδj = qjδjσj from the original definition, as it
follows from the other conditions; see, e.g., [17, Eq. (3.1); comments, p.694].)

The main theorem of the paper is

Theorem 1.2. If R is a quantum nilpotent algebra, then SpecR is catenary, and
all prime quotients of R satisfy Tauvel’s height formula.

The key requirement in proving this theorem is normal separation in SpecR.
That easily reduces to separation ofH-stable prime ideals by normalH-eigenvectors,
due to [11, Theorem 5.3]. Existence of suitable normal H-eigenvectors is established
by induction on the number of indeterminates in R. The following two sections are
devoted to the induction step, in which normal H-eigenvectors are constructed in
certain skew polynomial algebras in one indeterminate and factor algebras thereof.
Normal separation for quantum nilpotent algebras is achieved in Section 4 together
with the desired homological properties, and Theorem 1.2 is proved there.

1.2. Notation and conventions. Throughout, all algebras will be unital algebras
over a fixed base field K. All the skew polynomial rings we consider will be of
the form A[X;σ, δ] where the coefficient ring A is a K-algebra, σ is a K-algebra
automorphism of A, and δ is a K-linear left σ-derivation of A. The K-automorphism
and K-linearity assumptions ensure that A[X;σ, δ] is a K-algebra, and that it is
noetherian if A is noetherian. The indeterminate X in A[X;σ, δ] skew-commutes
with elements a ∈ A as follows: Xa = σ(a)X + δ(a).

2. A first construction of normal elements

2.1. Basic assumptions. Let A be a noetherian K-algebra domain and R =
A[X;σ, δ] a skew polynomial extension.

Assume throughout this section that

• δ is locally nilpotent.
• There is an abelian group H acting on R by K-algebra automorphisms such
that X is an H-eigenvector and A is H-stable.
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• There exists h◦ ∈ H such that (h◦·)|A = σ and the h◦-eigenvalue λ◦ of X
is not a root of unity.

As noted in [17, Eq. (3.1)], σδ = λ◦δσ. More generally [17, Eq. (3.2)],

(2.1) (h·)|A ◦ δ = χX(h)δ ◦ (h·)|A ∀h ∈ H,

where χr : H → K∗ denotes the H-eigenvalue of an H-eigenvector r ∈ R.

2.2. H-ideals. Recall that if C is a ring equipped with an action of a group H by
automorphisms, then the H-ideals of C are the (two-sided) ideals of C invariant
under the H-action. An H-prime (ideal) of C is any proper H-ideal P such that
a product I1I2 of H-ideals of C is contained in P only if I1 or I2 is contained in
P . The ring C is said to be H-simple provided C �= 0 and the only H-ideals of C
are 0 and C. The latter condition is equivalent to the condition that 0 is the only
H-prime of C.

2.3. Cauchon extensions. If in addition to §2.1 we assume that

• Every H-prime of A is completely prime,

then R is a Cauchon extension [23, Definition 2.5].

2.4. Since δ is locally nilpotent, the set S := {Xn | n ∈ Z≥0} is a denominator set

in R [5, Lemme 2.1]. Set R̂ := RS−1. Since the elements of S are H-eigenvectors,
the action of H on R extends uniquely to an action by K-algebra automorphisms

on R̂.
Let θ : A → R̂ be the Cauchon map defined by

(2.2) θ(a) =

∞∑
l=0

(1− λ◦)
−l

(l)!λ◦

δlσ−l(a)X−l.

(See (2.5) for the definition of (l)!λ◦ .) Cauchon established in [5, Propositions
2.1–2.4] that

• θ is an injective K-algebra homomorphism.

• θ extends uniquely to an injective K-algebra homomorphism A[Y ;σ] → R̂
with θ(Y ) = X.

• Set B := θ(A) and T := θ(A[Y ;σ]) ⊆ R̂. Then T = B[X;α] where α is the
K-algebra automorphism of B defined by α(θ(a)) = θ(σ(a)).

• S is also a denominator set in T , and TS−1 = S−1T = R̂.

As is noted in [23, p.327], B ∩R ⊆ A.
By [23, Lemma 2.6] (whose proof only uses the assumptions of §2.1), θ is H-

equivariant. Since the action of σ on A is given by h◦, it follows that α = (h◦·)|B.

Lemma 2.1. Let a ∈ A \ {0} and let s ∈ Z≥0 be maximal such that δs(a) �= 0.
Then s is minimal such that θ(a)Xs ∈ R.

Proof. Since δl(a) = 0 for l > s, we have θ(a) =
∑s

l=0 clδ
lσ−l(a)X−l for some

cl ∈ K∗. Obviously θ(a)Xs ∈ R.
Suppose that s > 0 and θ(a)Xt ∈ R for some t < s. Then θ(a)Xs−1 ∈ R,

from which it follows that δsσ−s(a)X−1 ∈ R. Now δsσ−s(a) ∈ A ∩ RX, whence

δsσ−s(a) = 0. But δsσ−s = λs2

◦ σ−sδs, so we obtain δs(a) = 0, contradicting our
hypotheses. Therefore s is minimal such that θ(a)Xs ∈ R. �

The following lemma is excerpted from the proof of [23, Proposition 2.9].
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Lemma 2.2. Let a ∈ A be a normal H-eigenvector, and let s ∈ Z≥0 be maximal
such that δs(a) �= 0. Then the element x := θ(a)Xs is a normal H-eigenvector in
R. In particular, xX = η−1Xx, where η is the σ-eigenvalue of a.

Proof. Since θ is H-equivariant, the element b := θ(a) is a normal H-eigenvector
in B, and the h◦-eigenvalue of b equals that of a, namely η. By Lemma 2.1, s is
minimal such that bXs ∈ R. This places x in R, and clearly x is an H-eigenvector.

Since

(2.3) Xb = α(b)X = h◦(b)X = ηbX,

we see that xX = η−1Xx. Moreover, we see that b is also normal in T and in

R̂. In particular, bR̂ = R̂b is an ideal of R̂. But bR̂ = xR̂, and R̂b = R̂x because
x = η−sXsb. Thus,

I := xR̂ ∩R = R̂x ∩R

is an ideal of R. We show that I = Rx = xR, which will prove that x is normal in
R. Obviously I contains Rx and xR.

Let y ∈ I. Then y ∈ bR̂ implies yXu ∈ bT = Tb for some u ≥ 0. Now yXu = cb
for some c ∈ T , and cXv ∈ R for some v ≥ 0. From (2.3), we obtain

yXu+v+s = cbXv+s = η−vcXvbXs = η−vcXvx ∈ Rx.

Let t ∈ Z≥0 be minimal such that yXt ∈ Rx, and write yXt = rx for some r ∈ R.
We wish to show that t = 0. Write

r =
∑
i≥0

riX
i , y =

∑
i≥0

yiX
i , x =

∑
i≥0

xiX
i

for some ri, yi, xi ∈ A. In case s = 0, we would have x = b = a ∈ A and so
x0 = a �= 0. In case s > 0, we would have

x0X
−1 +

∑
i≥1

xiX
i−1 = xX−1 = bXs−1 /∈ R

by the minimality of s, so again x0 �= 0. Thus, x0 �= 0 in all cases.
Observe that∑

i≥0

yiX
i+t = yXt = rx =

∑
i≥0

riX
ibXs =

∑
i≥0

ηiribX
i+s =

∑
i≥0

ηirixX
i

=
∑
i,j≥0

ηirixjX
i+j .

If t > 0, it would follow that η0r0x0 = 0, whence r0 = 0. Then r = r′X for some
r′ ∈ R, and so

yXt = r′Xx = ηr′xX.

But then yXt−1 = ηr′x ∈ Rx, contradicting the minimality of t. Therefore t = 0.
Consequently, y = rx, proving that I = Rx.
The proof that I = xR is very similar, and is left to the reader. �
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2.5. q-skew calculations. Since δσ = λ−1
◦ σδ, the pair (σ, δ) is a λ−1

◦ -skew deriva-
tion in the terminology of [10]. We shall need the following calculations.

The q-Leibniz Rules for the λ−1
◦ -skew situation [10, Lemma 6.2] say that

(2.4)

δn(ef) =

n∑
i=0

(
n

i

)
λ−1
◦

σn−iδi(e)δn−i(f)

Xne =

n∑
i=0

(
n

i

)
λ−1
◦

σn−iδi(e)Xn−i

∀n ∈ Z≥0 , e, f ∈ A,

where the q-binomial coefficients, for q = λ−1
◦ , are given by

(2.5)(
n

i

)
q

=
(n)!q

(i)!q(n− i)!q
, (m)!q = (m)q(m− 1)q · · · (1)q , (m)q =

qm − 1

q − 1
.

The argument of [29, Lemme 7.2.3.2] yields

Lemma 2.3. Let C be a K-algebra domain and (σ, δ) a q-skew derivation on C,
where q ∈ K∗ is not a root of unity. Suppose c, e ∈ C with δ(c) = ce or δ(c) = ec.
If there is some m ∈ Z≥0 such that δm(c) = δm(e) = 0, then δ(c) = 0.

Proof. We must show that one of c or e is zero. Suppose that c, e �= 0, and let
s, t ∈ Z≥0 be maximal such that δs(c), δt(e) �= 0. Assume first that δ(c) = ce. By
the q-Leibniz Rule,

δs+t(ce) =
s+t∑
i=0

(
s+ t

i

)
q

σs+t−iδi(c)δs+t−i(e) =

(
s+ t

s

)
q

σtδs(c)δt(e) �= 0,

since
(
s+t
s

)
q
�= 0 because q is not a root of unity. But then δs+t+1(c) �= 0, due to

the assumption δ(c) = ce. This is impossible, since s+ t+ 1 > s. The assumption
δ(c) = ec leads to a similar contradiction. �

3. Normal elements in Cauchon extensions

Throughout this section, keep the assumptions of §§2.1, 2.3, so that R=A[X;σ, δ]
is a Cauchon extension.

3.1. H-primes in Cauchon extensions. By [16, Lemmas 3.2, 3.3, Proposition
3.4 and their proofs],

(i) Every H-prime of R is completely prime.
(ii) Every H-prime of R contracts to a δ-stable H-prime of A.
(iii) For any δ-stable H-prime P0 of A, there are at most two H-primes of R

that contract to P0 in A. There is always at least one, namely P0R.

We shall also need the observation

(iv) If P is a prime (ideal) of A (or R), then (P : H) :=
⋂

h∈H(h · P ) is an
H-prime of A (or R).

It follows that

(v) If I is an H-ideal of A (or R), then all primes minimal over I are H-primes.

By the usual localization procedures for skew polynomial rings, σ and δ extend
uniquely to an automorphism and a σ-derivation on A∗ := FractA, and the skew
polynomial algebra R∗ := A∗[X;σ, δ] equals the localization of R with respect to
A \ {0}. The H-actions on A and R extend uniquely to actions on A∗ and R∗, and
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(h◦·) = σ on A∗. Hence, except for local nilpotence of δ, the assumptions of §§2.1,
2.3 also hold for A∗ and R∗.

Recall that an inner σ-derivation of A∗ (or A) is a map of the form a 
→
da − σ(a)d, for some fixed d ∈ A∗ (or d ∈ A). Such a σ-derivation is denoted
δd.

Proposition 3.1. Assume that R∗ is not H-simple.
(a) There is a unique element d ∈ A∗ such that δ = δd on A∗ and h ·d = χX(h)d

for all h ∈ H. In particular, X − d is an H-eigenvector with χX−d = χX .
(b) There is a unique nonzero H-prime in R∗, namely (X − d)R∗ = R∗(X − d).
(c) Let I∗ be a proper nonzero H-ideal of R∗, let n be the minimum degree for

nonzero elements of I∗, and let f = Xn + cXn−1 + [lower terms], with c ∈ A∗, be
a monic element of I∗ with degree n. Then n > 0 and d = (λ◦ − 1)(1− λn

◦ )
−1c.

Proof. These follow from [16, Lemma 3.3] and its proof, since A∗ is H-simple. �

Whenever R∗ is not H-simple, we keep the notation d for the element of A∗

described in Proposition 3.1(a). Note that R∗ = A∗[X−d;σ] in this case, and that
items (i)–(v) above hold for R∗ and A∗.

Corollary 3.2. If R∗ is not H-simple, then (X − d)R∗ ∩R is the unique nonzero
H-prime of R that contracts to 0 in A. Moreover, any H-ideal of R that contracts
to 0 in A is contained in (X − d)R∗ ∩R.

Proof. On one hand, P ∗ := (X − d)R∗ is a nonzero H-prime of R∗ that contracts
to 0 in A∗, whence P ∗ ∩R is a nonzero H-prime of R that contracts to 0 in A. On
the other hand, any nonzero H-prime Q of R with Q∩A = 0 localizes to a nonzero
H-prime QR∗ of R∗, whence QR∗ = P ∗ and thus Q = QR∗ ∩R = P ∗ ∩R.

Similarly, any H-ideal I of R with I ∩ A = 0 localizes to an H-ideal IR∗ of R∗.
Since I is disjoint from A \ {0}, we must have IR∗ �= R∗, whence there is at least
one prime Q∗ of R∗ minimal over IR∗. Then Q∗ is an H-prime (§3.1(v)), whence
Q∗ = P ∗. Therefore I ⊆ IR∗ ∩R ⊆ P ∗ ∩R. �

3.2. Some normal H-eigenvectors.

Lemma 3.3. Assume there is a nonzero H-prime P in R with P ∩ A = 0. Let
a ∈ A be a normal H-eigenvector, and s ∈ Z≥0 maximal such that δs(a) �= 0.

(a) If s > 0, then x := θ(a)Xs is a normal H-eigenvector in R and x ∈ P .
Moreover, d = η−1(λs

◦ − 1)−1a−1δ(a) and δ(a)a = ηλs
◦aδ(a), where η := χa(h◦).

(b) Now assume that a is the leading coefficient of some element of P with degree
1. Then a+P is normal in R/P . Moreover, if also s = 0, then δ ≡ 0 and P = XR.

Proof. The ideal P localizes to a nonzero H-prime P ∗ of R∗ such that P ∗∩R = P ,
and P ∗ = (X − d)R∗ by Proposition 3.1(b).

(a) By Lemma 2.2, x is a normal H-eigenvector in R. Now I := Rx is a nonzero
H-ideal of R, and I ∩ A = 0 because deg x = s > 0. By Corollary 3.2, I ⊆ P ,
whence x ∈ P .

Note that x = aXs + cXs−1 + [lower terms], where

c = (1− λ◦)
−1δσ−1(a) = η−1(1− λ◦)

−1δ(a).

The ideal I localizes to a proper nonzero H-ideal I∗ := R∗x in R∗, and s is the
minimum degree for nonzero elements of I∗. Since a−1x is a monic element of
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I∗ with degree s, Proposition 3.1(c) implies that d = (λ◦ − 1)(1 − λs
◦)

−1a−1c =
η−1(λs

◦ − 1)−1a−1δ(a).
Observe that

δ(a) = da− ηad = η−1(λs
◦ − 1)−1

(
a−1δ(a)a− ηaa−1δ(a)

)
,

whence η(λs
◦ − 1)δ(a) = a−1δ(a)a− ηδ(a), and therefore ηλs

◦δ(a) = a−1δ(a)a.
(b) Assume that aX + c ∈ P for some c ∈ A. Then X + a−1c is a monic element

of P ∗ with degree 1. Since P ∗ is proper, it contains no nonzero elements of degree
0. Hence, we again apply Proposition 3.1(c), obtaining d = −a−1c.

If s = 0, then δ(a) = 0, whence δm(d) = −η−ma−1δm(c) = 0 for some m ∈ Z≥0.
Since δ(d) = dd − σ(d)d = (1 − λ◦)d

2, it follows from Lemma 2.3 that δ(d) = 0.
But 1 − λ◦ �= 0, so we obtain d = 0. Thus δ = δ0 ≡ 0 in this case. We then have
P = XR. Moreover, aX = η−1Xa, so a is normal in R, whence also a+P is normal
in R/P .

Finally, assume that s > 0. By part (a), we have

−a−1c = d = η−1(λs
◦ − 1)−1a−1δ(a),

whence δ(a) = η(1− λs
◦)c. Since aX + c ∈ P , it follows that

Xa = ηaX + η(1− λs
◦)c ≡ ηaX + η(1− λs

◦)(−aX) = ηλs
◦aX (mod P ).

As a is already normal in A, we conclude that a+ P is normal in R/P . �

Proposition 3.4. Assume that every nonzero H-prime of A contains a normal
H-eigenvector.

If P � Q are H-primes of R with P ∩A = 0, there exists a normal H-eigenvector
u of R/P such that u ∈ Q/P .

Proof. Recall that Q ∩ A is a δ-stable H-prime of A.
Assume first that P �= 0. Then 0 and P are two H-primes of R that contract to

0 in A, so Q ∩A �= 0 by §3.1(iii).
Now P localizes to a nonzero H-prime P ∗ in R∗, and P ∗ = R∗(X − d) by

Proposition 3.1(b). Writing d = b−1c for some b, c ∈ A with b �= 0, we have
bX − c = b(X − d) ∈ P ∗ ∩R = P . Thus, the H-ideal

J := {a ∈ A | aX + e ∈ P for some e ∈ A}

is nonzero, as is then J ∩ (Q ∩ A) = J ∩Q.
There exist primes P1, . . . , Pr in A minimal over J ∩Q such that P1P2 · · ·Pr ⊆

J ∩ Q. Since J ∩ Q is an H-ideal, these Pi are H-primes of A (§3.1(v)). By
hypothesis, each Pi contains a normal H-eigenvector ai, and thus a := a1a2 · · · ar
is a normal H-eigenvector of A that lies in J ∩Q. Since a is in J , it is the leading
coefficient of an element of P of degree 1. By Lemma 3.3(b), the coset u := a+ P
is a normal H-eigenvector of R/P . Moreover, u ∈ Q/P because a ∈ Q.

Now assume that P = 0. If Q ∩ A �= 0, then by hypothesis, Q ∩ A contains
a normal H-eigenvector a of A. Then δl(a) ∈ Q ∩ A for all l ∈ Z≥0, whence the
element u := θ(a)Xs lies in Q, where s ∈ Z≥0 is minimal such that θ(a)Xs ∈ R.
By Lemma 2.2, u is a normal H-eigenvector in R.

Finally, suppose that Q ∩A = 0. As above, the H-ideal

J := {a ∈ A | aX + e ∈ Q for some e ∈ A}
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is nonzero. If J = A, then 1 ∈ J , while if J �= A, then J contains a product of
nonzero H-primes of A. In either case, there is a normal H-eigenvector a of A that
lies in J . Let s ∈ Z≥0 be maximal such that δs(a) �= 0.

If s > 0, then by Lemmas 2.2 and 3.3(a), u := θ(a)Xs is a normal H-eigenvector
of R that lies in Q. On the other hand, if s = 0, Lemma 3.3(b) shows that δ ≡ 0
and Q = XR. In this case, u := X is a normal H-eigenvector of R that lies in
Q. �

3.3. Carrying normal H-separation from A to R.

Definition 3.5. Suppose C is a K-algebra equipped with an H-action by K-
algebra automorphisms. Following [11, §5.2], we say that H- SpecC has normal
H-separation provided that for any proper inclusion P � Q of H-prime ideals of
C, there exists a normal H-eigenvector of C/P which lies in Q/P .

The condition of normal H-separation only requires a suitable supply of H-
eigenvectors which are normal in appropriate factor rings. It does not require these
normal elements to normalize via actions of elements of H. That requirement leads
to the following stronger condition. We say thatH- SpecC hasH-normal separation
if, for any proper inclusion P � Q of H-prime ideals of C, the ideal Q/P contains a
nonzero element u which is H-normal in C/P , meaning that u is normal and there
is some h ∈ H such that uc = (h · c)u for all c ∈ C/P .

Theorem 3.6. If H- SpecA has normal H-separation, then so does H- SpecR.

Proof. Let P � Q be H-primes of R. Then P0 := P ∩ A is a δ-stable H-prime of
A (§3.1(ii)), and we may replace A, R, P , Q by A/P0, R/P0R, P/P0R, Q/P0R,
respectively. Thus, there is no loss of generality in assuming that P ∩ A = 0.

The hypothesis of normal H-separation now implies that every nonzero H-prime
of A contains a normal H-eigenvector of A. Therefore, by Proposition 3.4, there
exists a normal H-eigenvector u of R/P such that u ∈ Q/P . This verifies normal
H-separation in H- SpecR. �

4. Proof of the main theorem

Observe that if R = K[x1][x2;σ2, δ2] · · · [xN ;σN , δN ] is a quantum nilpotent al-
gebra, then Rj is a Cauchon extension of Rj−1 for all j ∈ �2, N�. (The complete
primeness of H-primes follows from §3.1(i) by induction.)

Theorem 4.1. If R is a quantum nilpotent algebra, then SpecR has normal sepa-
ration.

Proof. Write R as in (1.1), and let H be as in Definition 1.1. Obviously H- SpecR0

has normal H-separation. By induction on N , Theorem 3.6 implies that H- SpecR
has normal H-separation. Therefore, by [11, Theorem 5.3], SpecR has normal
separation. �

Remark 4.2. For some quantum nilpotent algebras R, it is known that H- SpecR
enjoys not just normal H-separation but the stronger property of H-normal separa-
tion (Definition 3.5). It is an easy exercise to verify this for quantum affine spaces.
It was proved for quantum matrices in [6, Proposition 6.2.2] and later for quantum
Schubert cell algebras and their cocycle twists ([32, Theorem 3.6], [33, Theorem
5.1]). This raises the question: Does H- Spec of any quantum nilpotent algebra R
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have H-normal separation? This would place automorphisms of H-prime factors of
R arising from normal separation among those coming from H.

As far as inclusions 0 � Q of H-primes are concerned, H-normal separation is
known to hold provided the torus H is maximal in the sense of [17, §5.2]. Namely,
in this case all normal elements in R itself are H-normal by [17, Corollary 5.4].

In the above-mentioned examples, a yet stronger property was proved – every H-
prime ideal has an H-polynormal sequence of generators c1, . . . , cm, meaning that
each cj is an H-eigenvector and is H-normal modulo 〈c1, . . . , cj−1〉. If R enjoys this
extra property, then the clique structure of SpecR is determined by subgroups of
H (see [2], in particular Proposition 2.3 and Theorem 3.3).

We now address homological properties of a quantum nilpotent algebra R, some
of which are obtained by filtering R so that the associated graded ring grR is a
quantum affine space.

Definition 4.3. A matrix q = (qij) ∈ MN (K) is multiplicatively skew-symmetric

provided qii = 1 for all i and qji = q−1
ij for all i, j. Given such a matrix, define the

algebra

Oq(K
N ) := K〈x1, . . . , xN | xixj = qijxjxi ∀ i, j ∈ �1, N�〉.

The algebra Oq(K
N ) is a quantized coordinate ring of the affine space AN , or a

quantum affine space for short. It is trivially a quantum nilpotent algebra.

Notation 4.4. If R is a quantum nilpotent algebra as in Definition 1.1, there are
scalars λji ∈ K∗ such that σj(xi) = λjixi for 1 ≤ i < j ≤ N . These are the below-
diagonal entries of a multiplicatively skew-symmetric matrix λ = (λij) ∈ MN (K).

Lemma 4.5. Let R be an iterated skew polynomial algebra of length N as in (1.1),
and assume there is a multiplicatively skew-symmetric matrix q = (qij) ∈ MN (K)
such that σj(xi) = qjixi for 1 ≤ i < j ≤ N . Then there exist an exhaustive,
ascending, locally finite K-algebra filtration (Rn)n≥0 on R and a K-algebra Z≥0-
grading on Oq(K

N ) such that
(a) R0 = K.
(b) The canonical generators x1, . . . , xN of Oq(K

N ) are homogeneous with pos-
itive degree.

(c) grR and Oq(K
N ) are isomorphic as graded K-algebras, where the principal

symbols of the xi in R map to the xi in Oq(K
N ).

Proof. This is an application of [4, Chapter 2, Corollary 3.3; Chapter 4, Proposition
6.4, Theorem 6.5]. �

Proposition 4.6. Let R = K[x1][x2;σ2, δ2] · · · [xN ;σN , δN ] be an iterated skew
polynomial algebra as in (1.1), and assume that σj(xi) ∈ K∗xi for 1 ≤ i < j ≤ N .
Then R is an Auslander-regular, Cohen-Macaulay algebra of GK-dimension N .

Proof. Auslander-regularity and the GK-dimension value follow by induction on
N from [7, Theorem 4.2] and [20, Lemma 2.2]. Let R be filtered as in Lemma
4.5, so that R0 = K and grR ∼= Oq(K

N ). Then [9, Theorem 3] implies that R is
Cohen-Macaulay. �

Now we have everything in hand to prove the main theorem.
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First Proof of Theorem 1.2. Clearly R is an affine noetherian K-algebra domain. It
is Auslander-Gorenstein and Cohen-Macaulay with finite GK-dimension by Propo-
sition 4.6, and SpecR is normally separated by Theorem 4.1. Therefore by [15, The-
orem 1.6], SpecR is catenary and Tauvel’s height formula holds in R.

Now consider a prime ideal P/Q in a prime quotient R/Q of R. Due to catenarity
in SpecR, we have ht(P/Q) = ht(P )−ht(Q). Taking account of the height formula
for R, we obtain

GKdim
(
(R/Q)/(P/Q)

)
+ ht(P/Q) = GKdim(R/P ) + ht(P )− ht(Q)

= GKdim(R)− ht(Q) = GKdim(R/Q),

which verifies the height formula in R/Q. �

Second Proof of Theorem 1.2. Catenarity follows from [35, Theorem 0.1], whose
hypotheses are verified as follows. (1) Normal separation is given by Theorem 4.1.
(2) If R is filtered as in Lemma 4.5, then grR is graded isomorphic to Oq(K

N ),
which is clearly noetherian and connected graded. Moreover, Oq(K

N ) has enough
normal elements in the sense of [35], since if P is a graded prime ideal of Oq(K

N )
with Oq(K

N )/P �= K, then some xj /∈ P , whence xj +P is a nonzero homogeneous
normal element of Oq(K

N )/P with positive degree.
Tauvel’s height formula for R follows from [35, Theorem 2.23] or [14, Theorem

7.1], and then the height formula may be established for prime quotients of R as in
the first proof. �
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[9] J. Gómez-Torrecillas and F. J. Lobillo, Auslander-regular and Cohen-Macaulay
quantum groups, Algebr. Represent. Theory 7 (2004), no. 1, 35–42, DOI
10.1023/B:ALGE.0000019384.36800.fa. MR2046952

[10] K. R. Goodearl, Prime ideals in skew polynomial rings and quantized Weyl algebras, J.
Algebra 150 (1992), no. 2, 324–377, DOI 10.1016/S0021-8693(05)80036-5. MR1176901

https://www.ams.org/mathscinet-getitem?mr=1028462
https://www.ams.org/mathscinet-getitem?mr=1348148
https://www.ams.org/mathscinet-getitem?mr=453826
https://www.ams.org/mathscinet-getitem?mr=2006329
https://www.ams.org/mathscinet-getitem?mr=1967309
https://www.ams.org/mathscinet-getitem?mr=1967310
https://www.ams.org/mathscinet-getitem?mr=1035227
https://www.ams.org/mathscinet-getitem?mr=2046952
https://www.ams.org/mathscinet-getitem?mr=1176901


CATENARITY IN QUANTUM NILPOTENT ALGEBRAS 213

[11] K. R. Goodearl, Prime spectra of quantized coordinate rings, Interactions between ring theory
and representations of algebras (Murcia), Lecture Notes in Pure and Appl. Math., vol. 210,
Dekker, New York, 2000, pp. 205–237. MR1759846

[12] K. R. Goodearl, S. Launois, and T. H. Lenagan, Totally nonnegative cells and matrix
Poisson varieties, Adv. Math. 226 (2011), no. 1, 779–826, DOI 10.1016/j.aim.2010.07.010.
MR2735775

[13] K. R. Goodearl, S. Launois, and T. H. Lenagan, Torus-invariant prime ideals in quantum

matrices, totally nonnegative cells and symplectic leaves, Math. Z. 269 (2011), no. 1-2, 29–45,
DOI 10.1007/s00209-010-0714-5. MR2836058

[14] K. R. Goodearl, S. Launois, and T. H. Lenagan, Tauvel’s height formula for quantum nilpotent
algebras, Comm. Algebra 47 (2019), no. 10, 4194–4209, DOI 10.1080/00927872.2019.1581210.
MR3975998

[15] K. R. Goodearl and T. H. Lenagan, Catenarity in quantum algebras, J. Pure Appl. Algebra
111 (1996), no. 1-3, 123–142, DOI 10.1016/0022-4049(95)00120-4. MR1394347

[16] K. R. Goodearl and E. S. Letzter, The Dixmier-Moeglin equivalence in quantum coordinate
rings and quantized Weyl algebras, Trans. Amer. Math. Soc. 352 (2000), no. 3, 1381–1403,
DOI 10.1090/S0002-9947-99-02345-4. MR1615971

[17] K. R. Goodearl and M. T. Yakimov, From quantum Ore extensions to quantum tori via
noncommutative UFDs, Adv. Math. 300 (2016), 672–716, DOI 10.1016/j.aim.2016.03.029.
MR3534843

[18] K. R. Goodearl and J. J. Zhang, Homological properties of quantized coordinate rings
of semisimple groups, Proc. Lond. Math. Soc. (3) 94 (2007), no. 3, 647–671, DOI
10.1112/plms/pdl022. MR2325315

[19] Karen L. Horton, The prime and primitive spectra of multiparameter quantum symplectic
and Euclidean spaces, Comm. Algebra 31 (2003), no. 10, 4713–4743, DOI 10.1081/AGB-
120023129. MR1998025

[20] Chan Huh and Chol On Kim, Gelfand-Kirillov dimension of skew polynomial
rings of automorphism type, Comm. Algebra 24 (1996), no. 7, 2317–2323, DOI
10.1080/00927879608825702. MR1390376

[21] G. R. Krause and T. H. Lenagan, Growth of algebras and Gel′fand-Kirillov dimension, Re-

search Notes in Mathematics, vol. 116, Pitman (Advanced Publishing Program), Boston, MA,
1985. MR781129

[22] S. Launois, T. H. Lenagan, and B. Nolan, Total positivity is a quantum phenomenon: the
grassmannian case, arXiv:1906.06199.

[23] S. Launois, T. H. Lenagan, and L. Rigal, Quantum unique factorisation domains, J. London
Math. Soc. (2) 74 (2006), no. 2, 321–340, DOI 10.1112/S0024610706022927. MR2269632

[24] S. Launois, T. H. Lenagan, and L. Rigal, Prime ideals in the quantum Grassmannian, Selecta
Math. (N.S.) 13 (2008), no. 4, 697–725, DOI 10.1007/s00029-008-0054-z. MR2403308

[25] T. H. Lenagan, Enveloping algebras of solvable Lie superalgebras are catenary, Abelian groups
and noncommutative rings, Contemp. Math., vol. 130, Amer. Math. Soc., Providence, RI,
1992, pp. 231–236, DOI 10.1090/conm/130/1176122. MR1176122

[26] Edward S. Letzter and Martin Lorenz, Polycyclic-by-finite group algebras are catenary, Math.
Res. Lett. 6 (1999), no. 2, 183–194, DOI 10.4310/MRL.1999.v6.n2.a6. MR1689208

[27] T. Levasseur and J. T. Stafford, Rings of differential operators on classical rings of invariants,
Mem. Amer. Math. Soc. 81 (1989), no. 412, vi+117, DOI 10.1090/memo/0412. MR988083

[28] Sei-Qwon Oh, Catenarity in a class of iterated skew polynomial rings, Comm. Algebra 25
(1997), no. 1, 37–49, DOI 10.1080/00927879708825838. MR1429747

[29] L. Richard, Equivalence rationnelle et homologie de Hochschild pour certaines algèbres poly-
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