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Abstract

Precise and accurate localization is important for safe autonomous driving.

Given a traffic scenario which has multiple vehicles equipped with internal sen-

sors for self-localization, and external sensors from the infrastructure for vehi-

cle localization, vehicle-infrastructure communication can be used to improve the

accuracy and precision of localization. However, as the number of vehicles in a

scenario increases, associating measurement data with the correct source becomes

increasingly challenging. We propose a solution utilizing the symmetric measure-

ment equation filter (SME) for cooperative localization to address data association

issue, as it does not require an enumeration of measurement-to-target associa-

tions. The principal idea is to define a symmetrical transformation which maps

measurements to a homogeneous function, thereby effectively addressing several

challenges in vehicle-infrastructure scenarios such as data association, bandwidth

limitations and registration/configuration of the external sensor. To the best of our

knowledge, the proposed solution is among the first to address all these issues of

cooperative localization simultaneously, by utilizing the topology information of

the vehicles.
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Over the last years, vehicle-to-vehicle and vehicle-to-infrastructure localiza- 
tion has evolved as an important topic in the intelligent transportation domain [1].

Cooperative localization has a number of benefits ranging from improved preci-

sion to improved situational awareness for applications such as monitoring traffic

flow. In modern transportation systems, the situational awareness system depends

on the localization uncertainty. It is possible to guide vehicles with individual

optimal routes, with the help of low precision localization information calculated

in the cloud center. However, for safety applications, high precision localization

information is utilized to assist other advanced driver assistance systems (ADAS).

For instance, precise localization information helps the lane departure system keep 

1. Introduction

the vehicle in its trajectory when there is a maneuvering behavior. 

sensors which are both internal and external to the vehicle [3], [4]. 
Furthermore, with the development of Car-2-Car (C2C) and Car-2-Infrastructure

(C2I) communication techniques, sharing information, such as sensor measure-

ments and state estimates, across the whole network has become possible [5].

These new communication networks can be utilized to improve the perception

performance, as cooperative localization can lead to better state estimates than

separate self-localization by each individual vehicle [1]. Many methods have been

proposed for the vehicle-infrastructure cooperative localization, e.g. Extended

Kalman Filter [6], Markov Localization [7], Maximum Likelihood Estimation [8]

and Maximum A Posteriori Estimation [9]. But a number of challenges still exist: 

• The data association challenge. 

One of the most important tasks for cooperative localization is that of Data 
Association, in which sensor measurements are correctly associated to their cor-

responding targets in order to estimate the physical state. The development of

C2C and C2I techniques supports vehicles in localizing and identifying other

traffic participants correctly. However, in case of an uncertain (or even missing)

measurement-to-target association within the network, it is a significant challenge 

The commonly available Global Positioning System (GPS) provides an accu-

rate estimate of receiver location and is widely used by the automotive domain.

But the signal characteristics mean that its integrity is susceptible to interference

(intentional or otherwise) and the receiving antenna should have a clear view of

the sky (e.g. [2]). This becomes problematic in urban environments with high

buildings, tunnels and parking lots. Therefore improved methodologies utilize
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to correctly compute a bias free state estimate. Also, measurements are often ob-

scured or cluttered (measurements not only originate from interesting targets, but

also from the outliers), further diluting the strength of association and increasing

the localization uncertainty. 

• The bandwidth challenge. 

A cooperative localization system requires that each node transmits both state 
and covariance estimations. System which contains a multiple dimensional state

representation (position, velocity, acceleration) with a high update frequency im-

plies a significant amount of data. The full covariance matrix (the number of

dimensions squared) is required to fully characterize the multiple dimensional

variation. This in turn requires a high bandwidth multiplexed signal carrier and as

the number of vehicles increases, the network is likely to get overloaded and thus

unusable. 

• The coordinate transformation challenge. 

Coordinate transformation plays an important role in cooperative localization. 
Measurements are acquired from internal and external sensors to localize the po-

sitions. The internal sensor only provides the absolute location in 2D global coor-

dinates whereas the external sensor often provides the relative position in 2D local

coordinates. But in a dynamic environment where the configuration of the exter-

nal sensor is unknown, the relative transformation between different coordinate

frames increases the localization issues. 
A methodology for vehicle-infrastructure cooperative localization based on 

the Symmetric Measurement Equation (SME) filter [10] is proposed, which ex-

tends the previous work of [11]. With the SME filter, a new type of symmetri-

cal measurement transformation based on homogeneous symmetric functions has

been introduced [12]. The key idea is to convert measurement data with unknown

association into a symmetric measurement equation to estimate the corresponding 
states [13].

The work-flow of the proposed SME filter is as follows: Measurements from

both internal and external sensors are projected to a symmetric equation to acquire

new observations, where the SME filter recursively estimates the dynamic states.

The advantages of the SME filter are as follows:

Firstly, the data association challenge is addressed. The SME filter provides

a new solution to avoid the data association by using a symmetric measurement
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Figure 1: Topology of cooperative localization system

equation to build up a pseudo-measurement space in which data association is

unnecessary.

Secondly, the bandwidth challenge is addressed. Since the SME filter is a

recursive centralized Bayes filter which requires the network to transmit only ob-

servations, the amount of data that needs to be exchanged is reduced. In contrast

to other methods, the proposed approach has the minimal bandwidth requirement.

Thirdly, the coordinate transformation challenge is addressed. Measurements

are converted to a symmetric measurement equation based on homogeneous sym-

metric functions, which avoids the transformation between different coordinate

system. Even if the configuration of the external sensor is unknown, the proposed

SME filter still works.

This paper is structured as follows: Sec. 2 briefly describes the scenario of

the vehicle-infrastructure cooperative localization. Sec. 3 introduces more details

about the SME filter with the implementation details. Sec. 4 presents simulation

results. Finally, the paper is concluded in Sec. 5.

2. Background description

Fig. 1 illustrates the vehicle-infrastructure cooperative localization scenario

and is described as follows:

• Each vehicle is able to localize itself according to an absolute reference.
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Here we assume that the measurements given by internal sensors (e.q. on-

board GPS) are in a 2D global coordinate system. Further values in the

2D global coordinate system represent location of the vehicles in Cartesian

coordinate system. 

• The infrastructure is able to measure the relative position of the vehicles.

Here we assume that the measurements given by external sensors are in

a 2D local coordinate system. Further values in the 2D local coordinate

system represent the relative location of the vehicles with respect to the 
external sensor in Cartesian coordinate system. 

• A communication network, to exchange information between the cars and

the infrastructure, is available. Here we assume that there is no delay in the

data-link and no clutter exists, e.g. there is no false detection in the scenario. 

• The communication method and protocol are not used to identify the indi- 
vidual vehicles. Also, there is no prior information regarding to the config-

uration of the infrastructure, i.e., the location and orientation of the external 
sensor are unknown.

Assuming that the internal sensors provide measurements with large uncer-

tainties, the localization becomes imprecise. However, by cooperative localiza-

tion, the precision is ensured with the help of the external sensor since its mea-

surements are more precise [1].

Much work has been done for cooperative localization: centralized solution

[6][14] and decentralized solution [15, 16, 17]. In the centralized solution, all

vehicles are considered as a single system where the estimation is computed using

the Kalman filter. There is no need of high communication bandwidth because

covariance of the state is not transmitted. But as the number of vehicles increases,

the data association computation grows exponentially.

In contrast to the centralized architecture, a decentralized solution uses multi-

ple fusion centers. Each fusion center handles part of the local information (only

the observed neighbors). Still, the computational demand is very high. More-

over, it often exceeds the network bandwidth limitations since each fusion center

requires both the states and the corresponding covariances. Therefore, both the

communication and computational demands present a number of difficulties in

decentralized solutions.

None of the above solution considers the coordinate transformation issue dur-

ing the localization process. Both centralized and decentralized approaches as-

sume that the transformation between the global measurement and the relative
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To the best of our knowledge, it is still difficult to address the aforementioned 
challenges simultaneously. In the next section, the SME filter is presented which

takes into account all the issues. This work is developed in cooperation with the

SADA Project (BMWi funded, ’IKT fur¨ Elektromobilitat¨ III’ [18]), to evaluate

the performance of the cooperative localization between vehicle and infrastructure 

measurement is known, or at least could be estimated with the associated mea-

surements. Cooperative localization only works under the condition that all mea-

surements are processed within a known coordinate system. On the other hand, in

highly dynamic environments, the configuration of the external sensor is difficult

to estimate due to the data association challenge.

sensors. 

3. The Symmetric Measurement Equation (SME) filter

The SME filter based on homogeneous symmetric function is proposed be-

cause of its ability to simultaneously address the identified issues within a multi-

target tracking scenario.

3.1. Overview on SME filter

A major hurdle in multi-target tracking domain is the data association between

the measurement and either a new or an existing track. In the past decades, various

methods have been developed to address this such as the Joint Probabilistic Data

Association filter (JPDA) [19], the Probability Hypothesis Density filter (PHD)

[20] and the Multi Hypothesis Tracking filter [21] (MHT). However, as the num-

ber of targets grows, the computational requirements grow exponentially.

The Symmetric Measurement Equation (SME) filter removes the data asso-

ciation by utilizing a symmetrical transformation. This allows us to bypass the

combinatorial complexity of the association tasks. The SME filter transforms

the association issue into a nonlinear state estimation problem with non-additive

Gaussian noise. In this way, one difficult problem is traded for another difficult,

but different, problem [22].

The first work on the SME filter was presented by Kamen [10]. It was also

proposed to address the nonlinear conditions by the Unscented Kalman filter [22]

and the Particle filter [23].

M. Baum [24] implemented the SME filter in the field of group targets track-

ing. The result illustrates that the SME filter is an effective solution for the multi-

ple target tracking. In addition, it was shown that the SME filter is suitable for a

large number of closely-spaced targets during the tracking phase.
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to localize the vehicles based on the symmetric measurement equations. 

3.2. Mathematic Background of the SME Filter 
The idea of the SME filter is to generate ’pseudo-measurements’ that consist 

of symmetric functions of the original measurement from targets. 

• Problem formulation 

For n dimension target state x1
k, · · · , x

N
k , where k denotes the step and N 

is the number of the targets, the joint set-valued state is represented as xk = 
[(x1

k)
T, · · · , (xN

k )
T]T 

∈ Rn·N. 
With the same manner, yk = [(h1

k(xk))
T, (h2

k(xk))
T, · · · , (hN

k (xk))
T]T 

∈ Rm·N 

denotes the set-valued measurement, where m is the dimension of measurement 
function hi

k(xk). 

This paper applies the SME filter to vehicle-infrastructure cooperative local-

ization. Assuming there is no missed or false detection, the SME filter is utilized

To avoid the data association between the measurements and targets, each 
component hi

k should remain unchanged for any permutation in the argument of 
the states, which is called ’symmetric transformation’. 

3.2.1. Measurement Model 
Assuming at each step the measurements are available, the following equations 

give the ‘pseudo-measurements’ 

y1
k 
= h1

k(x
1
k + vk,

1 x2
k + vk,

2 
· · · , xN

k + vk
N )

... 
yN
k 
= hN

k (x
1
k + vk,

1 x2
k + vk,

2 
· · · , xN

k + vk
N ) (1) 

where each hi
k is a permutation in the symmetric group which specifies the un- 

known association assignment and vk
i is considered as the additive zero-mean 

white noise. Combined with the joint set-valued state, equation (1) can be com- 
posed as following 




 

y
...

k

1 

︸ 
y
︷︷
k

N 

yk 




 

 

= 

 

h1
k(xk

... 

, vk) 

 

︸ ︸ 
hN
k (x

︷︷
k, vk) 

Hk(xak) 



︸ 

where yk denotes the joint set-valued measurement in the SME filter. 

(2) 

7



3.2.2. Process Model

The target system model in SME filter is represented as

x1
k+1 = A1

kx
1
k + w1

k

...

xN
k+1 = AN

k x
N
k + wN

k (3)

where Ak is the process transformation and wk is the additive white noise. Equa-

tion (3) can also be composed as






x1
k+1
...

xN
k+1






︸ ︷︷ ︸

xk+1

=






A1
k

. . .

AN
k






︸ ︷︷ ︸

Ak

·






x1
k
...

xN
k






︸ ︷︷ ︸

xk

+






w1
k

...

wN
k






︸ ︷︷ ︸

wk

(4)

3.2.3. Symmetric Transformation

Since the SME filter removes the data association between the measurements

and the targets, a symmetrical transformation is thus required.

The transformation is done by adding or multiplying acquired measurements 
such that all generated ‘pseudo-measurements’ have values from all the targets.

This makes the measurement matrix Hk(xk) independent of the permutation in 
the argument of the state xk. Thus there is no data association. 

Two simple examples of how to construct the symmetric measurement equa- 
tions for three targets are given as follows: 

Example 1. Sum-of-product: 

Sprod =





m1 +m2 +m3

m1m2 +m2m3 +m1m3

m1m2m3



 (5)

Example 2. Sum-of-powers:

Spow =





m1 +m2 +m3

m2
1 +m2

2 +m2
3

m3
1 +m3

2 +m3
3



 (6)

For three targets that evolve according to a random walk model in a one di- 
mension scenario, the process model and the measurement model are thus given 
by one-dimension identity matrix I1. mi is the measurement from the ith target. 
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If the measurement-to-target association is known, the Kalman filter is applied

individually as following: 

xi
k+1 = xi

k + wk
i 

mi = xi
k + vk,

i i = 1, 2, 3. 

where wk
i and vk

i are Gaussian white noises. With the same manner, it can also be 

(7) 

represented as 
 

 
x
x2

1

k

k+1

+1 

︸ 
x
︷︷

3
k+1 



 

︸ 

=  
x
x2
k

1
k

︸ 
x
︷︷

3
k 

 

xk+1 

=  m
m1

2
2 
 =  0

1 0
1 0

0 
 

m3
3 



 

 

+  
w
wk

2
k
1 

 

︸ ︸ 
w
︷︷
k
3 

 

 



xk 


 
y

y2

1
k 

︸ 



wk 



+  v
vk
1

k
2  

k 

︸ 
y
︷︷
k

3 



 

︸ 

    

︸ 
0 

︷︷
0 1 
Hk yk 

It is observed that each component hi
k depends on the permutation order in set- 

valued state xk, which is called ‘data association’. 

·  
x
x2

1

k

k

︸ 
x
︷︷
k
3 

︸ ︸ ︸ 
v
︷︷
k
3 

vk xk 

  

=  h
h1
k(xk, vk)
2
k(xk, vk)  

︸ ︸ 
h3
k(x

︷︷
k, vk) 

Hk(xk,vk) 

(8) 

︸ 

If the measurement-to-target association is unknown, the performance of Eq. 
(8) drops immediately. The SME filter when applied, makes hi

k remain unchanged 
for any permutation in the argument of the state, which is called ‘symmetric trans- 
formation function’: 

 

 x2

x1

k

k+1

+1 

︸ 
x
︷︷
k
3
+1 



xk+1 



 

︸ 

 

=  
x
x2

1
k

k

︸ 
x
︷︷
k
3 

 

 

︸ ︸ 
w
︷︷
k
3 

 

wk 

 

+  
w
wk

2
k
1 

 

xk 

︸ 



 
y

y2
k

1 

k 

︸ 
y
︷︷
k

3 



 

︸ 

 

=  
m
m2

1 + m2
2 + m2

3

1 + m2 + m3 

 =  h
h1
k(xk, vk)
2
k(xk, vk)  

m3
1 + m3

2 + m3
3 

︸ 
h3
k(x

︷︷
k, vk) 

Spow=Hk(xk) yk 

(9) 

︸ 

Although the pseudo-measurement S (Sum-of-powers) represents the infor- 
mation from a linear space to a nonlinear space, the original measurement mi can 
still be recovered uniquely. Therefore, there is no information loss with the sym- 
metrical transformation. Since the transformed equations are symmetrically rep-

resented which does not rely on the permutation order in xk, the data association 
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issue is thus addressed. By using nonlinear Bayesian estimators such as Extended

Kalman filter (EKF) [10], Unscented Kalman filter (UKF) [22] or Particle filter

(PF) [23], the set-valued states xk is estimated recursively. 

3.3. Implementation of SME filter 
The mathematic background of the SME filter has been briefly introduced in

Sec. 3.2. However, there are still open issues regarding to the implementation, e.g.

how to utilize the SME filter in vehicle-infrastructure cooperative localization?

How to utilize external sensor in unknown environments?

For the process model, each single state xi
k = [pix,k, ṗ

i
x,k, p

i
y,k, ṗ

i
y,k]

T consists

of the positions (px,k, py,k) and velocities (ṗx,k, ṗy,k), where the set-valued state is

thus given by xk = [(x1
k)

T, · · · , (xN
k )

T]T.

Following the constant velocity model, the related parameters can be repre-

sented as:

A1
k = A2

k = · · · = AN
k =







1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1






,

Ak =






A1
k

. . .

AN
k




 (10)

Q1
k = · · · = QN

k = δ2







T 2/4 T 2/2 0 0
T 2/2 T 0 0
0 0 T 2/4 T 2/2
0 0 T 2/2 T






,

Qk =






Q1
k

. . .

QN
k




 (11)

In constant turn rate model, the related parameters are changed to

A1
k = A2

k = · · · = AN
k =










1
sinωT

ω
0 −

1− cosωT

ω
0 cosωT 0 − sinωT

0
1− cosωT

ω
1

sinωT

ω
0 sinωT 0 cosωT










,
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Ak =






A1
k

. . .

AN
k




 (12)

Qi
k = δ2













2(ωT − sinωT )

ω3

1− cosωT

ω2
0

ωT − sinωT

ω2

1− cosωT

ω2
T

−(ωT − sinωT )

ω2
0

0
−(ωT − sinωT )

ω2

2(ωT − sinωT )

ω3

1− cosωT

ω2

ωT − sinωT

ω2
0

1− cosωT

QN
k 

The process model for set-valued state is thus given as: 

ω2
T













,

Qk =






Q1
k

. . .




 (13)

xk+1 = Ak · xk + wk 

where Qk is denoted as the covariance of the process noise wk, T is the sampling 
interval and δ is the standard deviation. For constant turn rate scenarios, ω is 
considered as the angular (turn) rate in circular motion. More details can be found 
in [25]. 

(14) 

In measurement model, the transformation of the original measurements into

the symmetric equation form is done both for the internal and the external sensors.

To map the state to the observation space, measurements from internal sensors

are converted as the Sum-of-powers:

yIk = [yx
k
,yy

k
]T (15)

where

yx
k
= [

N∑

i=1

pix,k,
N∑

i=1

(pix,k)
2, · · · ,

N∑

i=1

(pix,k)
N ]T

yy
k
= [

N∑

i=1

piy,k,
N∑

i=1

(piy,k)
2, · · · ,

N∑

i=1

(piy,k)
N ]T

The coordinate transformation for external sensor is unknown, the topology

information (distance between vehicles) is therefore utilized as follows:
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(17) 
Based on the above procedure, multiple challenges in vehicle-infrastructure 

cooperative localization are addressed simultaneously. The state is estimated

by the pseudo-measurement in consecutive frames. We would like to remind

the reader that the new measurement noise covariance matrix Rk is calculated 
with respect to the SME pseudo-measurement space, not in the original Cartesian 
measurement space. More details of the covariance matrix Rk can be found in 
[12, 22]. We do not consider this problem further in this paper. Compared to the 
previous work in [10, 12, 22], the proposed solution utilizes target topology infor-

mation as an additional measurement during the tracking phase. Measurements

from both internal and external sensors are collected as a set-value measurement

to update states of all the vehicles, given the configuration of the external sensor 

yEk = [
N−1∑

i=1

N∑

j=i+1

(pix,k − pjx,k)
2 +

N−1∑

i=1

N∑

j=i+1

(piy,k − pjy,k)
2] (16)

No matter in which coordinate system, the global or the local, the relative

distances between the vehicles are invariant. Equation (16) is thus considered as

an additional measurement from the external sensor, even when the coordinate

transformation is unknown. In this way, more precise information from external

sensor is also utilized in the SME filter.

The final pseudo-measurement yk is consisted as

Hk =

[
yIk
yEk

]

=



















p1x,k + p2x,k+, · · · ,+pNx,k
(p1x,k)

2 + (p2x,k)
2+, · · · ,+(pNx,k)

2

...

(p1x,k)
N + (p2x,k)

N+, · · · ,+(pNx,k)
N

p1y,k + p2y,k+, · · · ,+pNy,k
(p1y,k)

2 + (p2y,k)
2+, · · · ,+(pNy,k)

2

...

(p1x,k)
N + (p2x,k)

N+, · · · ,+(pNx,k)
N

∑N−1
i=1

∑N

j=i+1(p
i
x,k − pjx,k)

2 +
∑N−1

i=1

∑N

j=i+1(p
i
y,k − pjy,k)

2



















is unknown. 
Also, there is no difference between sum of power, or sum of product. The 

goal of the symmetric measurement equation is to transfer the original measure-

ment from linear space to the nonlinear space where the data association issue is
avoided. The performance should remain the same with different representations, 
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since the original measurement is recovered uniquely from both transformed func-

tions. Based on the symmetric non-linear transformation equation, the SME filter

can be implemented by the non-linear Bayesian state estimators such as Extended

Kalman filter, Unscented Kalman filter and the Particle filter. In this paper, the

particle filter is utilized to execute the SME filter with the sum of powers format. 

4. Simulation and discussion

4.1. Simulation

The simulation was implemented with five

In simulation, vehicles are equipped with internal sensors to measure their 
global coordinates. The external sensor provides observations with a higher pre-

cision in a local coordinate system where the transformation to the global coor-

dinate system is unknown. Such information is thus unnecessary for the filtering 

vehicles on the two dimension

ground plane. The performance of the SME filter is demonstrated with respect

to the Kalman filter and the Gaussian Mixture Probability Hypothesis Density

(GMPHD) filter. The evaluated scenarios are: Constant Velocity (CV) model and

Constant Turn Maneuver (CTM) model.

phase in both the Kalman filter and the PHD filter. 
The simulation is based on the following assumptions: 

• Each vehicle gives rise to exactly one single measurement per sensor, i.e., 
no missed detection. 

• There are no false detections during the whole process, i.e., measurements 
originate from vehicles. 

• It is not able to identify the others through the communication system, i.e., 
the measurement-to-target association is unknown. 

During the process, noises from internal sensors are assumed to be white

Gaussian distributed with zero mean and covariance diag[0.5, 0.5], and the noise

from external sensor has zero mean and covariance diag[0.1, 0.1]. The initial

states for the five vehicles are as following: x1 = [0,−1.5, 100,−1]T, x2 =
[0,−1.5, 0, 1]T, x3 = [0, 0, 0, 3]T, x4 = [0, 1.5, 0, 1]T, x5 = [0, 1.5, 100,−1]T. Thus

the joint state for the SME filter is given by x = [x1, x2, x3, x4, x5]
T.

The corresponding process model A in the SME filter has already been in-

troduced in Sec. 3.3 in Eq. (4), where the sampling interval T is defined as 1.

13



To better evaluate the proposed approach, it is assumed that the association 
between the measurements and targets is known to the Kalman filter (only by

internal sensors for comparison). Since the transformation between local coordi-

nate and global coordinate is unknown, observations from external sensor are not

used (It is possible to estimate the location and orientation of the external sensor,

when data association is given or calculated by both the internal and the external

sensors. Once the transformation between two coordinate systems is confirmed,

it is expected that the Kalman filter should be the optimal filter for the localiza-

tion task. This is out of the scope of this paper as we only consider that the data 

The standard deviation of the process noise δ is defined as 0.5 and the process

covariance matrix Q is initialed as diag[2.5, 1, 2.5, 1, · · · , 2.5, 1, 2.5, 1].

association and the corresponding transformation in unknown environments). 

Assume each measurement (px, py) takes one communication bit in the net- 
work communication, for both the internal and external sensors. Then SME filter 
requires only 2N bits bandwidth at each step, which also meets the minimal re-

quirements for the network communicating (There is a total of N measurements

acquired by external sensor and N measurements acquired by internal sensors. To

communicate the whole measurement on the network, 2N bits bandwidth is thus

the minimal requirement. In contrast to decentralized solutions, the SME filter

only operates on the measurements level whereas the others operate on both the 

The PHD filter also avoids the data association challenges under the Random

Finite Set (RFS) statistics, but only measurements from internal sensors are used

to estimate the states ( it is still impossible to utilize measurements from external

sensor with unknown configuration).

states and covariances level). 
Figure 2 exhibits true trajectories and the corresponding estimations in three

scenarios: one CV scenario and two CTM scenarios (two and four vehicles are

maneuvering in CTM scenarios, with ω = ±0.05o). Although Kalman filter has

been proved as the optimal Bayesian filter in linear environment, the correspond-

ing precisions are worse than the SME filter. Also compared to the PHD filter, the

SME filter performs better.

The high performance of the SME filter is mainly from the topology informa- 
tion measured by the external sensor. Although the external sensor’s configuration

is unknown, the topology information is still utilized. This is visualized in Fig.

1. It is observed that either in global or in local coordinate system, the distances

between vehicles are invariant. In Kalman filter, it is not possible to use this data

from external sensor. Still, the performance of the Kalman filter is better than the

PHD filter, which is due to the fact that the PHD calculations are based on prop- 
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Figure 2: Vehicles’ true trajectories and the estimations
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Figure 3: The performance of the estimation
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agation of a multi-target first-order moment statistic, whereas Kalman filter uses

each targets’ posterior distribution. 
Figure 3 indicates the precision of all methods by calculating the RMSE (root

mean square deviation) value. The total error is calculated by summing up the

RMSE of all vehicles as follows:

Error = (pestx − ptruex )2 + (pesty − ptruey )2

Total error =

√
∑n

j=1

∑N

i=1 Errorji
n

(18)

where n is the step index (The PHD filter estimates the vehicles as a set-valued

state, it does not distinguish them. Individual states are unordered within the set-

valued state. To compare the performance, a state-to-target association process is

implemented to label the PHD estimations).

Fig. 3 illustrates that each filter has a certain estimation error which depends

on each sensors’ capability. This error is caused by the uncertainties in the mea-

surements; as no errant data was introduced to the system, these values should

represent the lower bound of the estimate. It shows that the overall performance

of the SME filter is better than the others.

Although the SME filter utilizes additional precise measurements, the im-

provement still does not match the lower bound of the external sensor. This is

because the topology information only represents the distributions among vehi-

cles, which partly represents the localization information. In contrast to the sce-

nario when the coordinate transformation is known, the external sensor provides

the complete information and there should be an improvement in the estimation.

Fig. 3 also illustrates that the performance of the SME filter depends on the

vehicles’ behaviors. It is observed that for CTM with ω = ±0.05o for two vehi-

cles, the performance of the SME filter is almost same as the CV scenario. For

CTM with ω = ±0.05o for four vehicles, the performance degrades a lot when

compared to CV scenario. This results are similar for the PHD filter. This phe-

nomenon is explained as follows:

In Kalman filter, each vehicle relies on its own measurements during the fil-

tering phase. The precision of the estimation relies on the uncertainties of its

own measurements. On the other hand, in SME filter, the state is estimated by

the pseudo-measurements which consist of all the measurements. If some mea-

surements have unexpected noises from vehicles, the influence on the pseudo-

measurement space is negligible. This phenomenon helps the CV scenario, but for
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CTM scenarios SME filter may consider various maneuver of vehicles as noises

from sensors. With the additional information from the external sensor, the perfor-

mance of the SME filter is thus ensured. The PHD filter treats the measurements

as set valued measurement but without considering any information from external

sensor. This does not impact the performance of CV scenario but for the CTM it

degrades.

4.2. Discussion

To study the robustness of the SME filter in real applications, the following

issues need further discussion.

4.2.1. False detection and missed detection

In this paper, both internal and external sensors are assumed to work in an ideal

environment which means that all the measurements originate from the vehicles.

The SME filter estimates the states without considering the data association issue.

However, in practice, the number of measurements M may not be equal to the

number of vehicles N, which can be caused by false or missed detections (due to

clutter). In order to address this challenge, the SME filter should be implemented

in parallel, c.p. [26], [27]. These specific details are not the focus of this paper.

4.2.2. External sensor estimation

To jointly estimate the vehicles and the infrastructure configuration, the trans-

formation between the coordinates needs to be calculated. But there are two major

problems: the data association problem and the over-convergence problem. As the

key contribution of the proposed paper is to localize vehicles in an unknown data

association scenario, coordinates transformation is thus not considered. Over-

convergence problem is due to the stochastic interdependence between the es-

timations when sharing the information [4]. For example, a scenario when the

configuration of the external sensor has already been estimated. The observation

from external sensor cannot be directly used since the transformed information is

dependent to the internal sensors.

4.2.3. Implementation issue

Since the SME filter transforms the original measurements from linear space 
to the non-linear space by using the symmetric measurement equations, the corre-

sponding targets’ states are thus estimated based on the non-linear Bayesian filters,

e.g. Extended Kalman filter, Unscented Kalman filter and the particle filter. In this

paper, five vehicles polynomials up to order five are considered. Due to the highly 
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nonlinear functions in such situation, only the particle filter is utilized. Both the

EKF and UKF do not give satisfying results due to the strong non-linearities and

numerical instabilities. 
It should be noticed that due to the non-linear transformation, the symmetric 

transformations are unsuitable for larger target numbers as the order of the in-

volved polynomial increases with the amounts, i.e., for 10 vehicles polynomials

up to order 10 are required. Therefore, for large number of vehicles, the SME 
filter do not give satisfying results due to the high nonlinearities. 

• Benefits 

First, data association is avoided. With the symmetric measurement equations, 
the data association issue is traded for another difficult, but different, problem.

Thus the SME filter only focuses on the analytic nonlinear estimation. By utilizing

the homogeneous symmetric functions, the original measurements are projected to
the pseudo-measurements where no information is lost during the transformation.

In this way, it is possible to estimate states without considering the association

between measurements and targets. 
Second, the requirement for communication bandwidth is minimized. The

inter-communication system only transmits the original measurements to the SME

filter which results in minimal consumption requirements. In contrast to decen-

tralized solutions, it does not rely on each vehicle’s state and the corresponding

covariance in fusion process.

Third, coordinate transformation is not required. By using the topology in-

formation among vehicles, the coordinate transformation is avoided. Even if the

configuration of the infrastructure is unknown, measurements can still be utilized

by the SME filter.

5. Conclusion

In this paper, a recursive Bayesian solution for vehicle-infrastructure cooper-

ative localization is proposed. The measurement-to-track association uncertainty,

communication bandwidth issue, and unknown coordinates transformation prob-

lem make cooperative localization complex and infeasible. A SME filter solution

is proposed to address all of the mentioned issues simultaneously. In compari-

son to the related work, all vehicles are considered as a joint single state which

is updated with the symmetric measurement equations. The proposed method

has been evaluated in simulations and the results demonstrate precision which is
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proportional to the Kalman Filter, but with improved efficiency and without the

requirement for known data association. To fully demonstrate the applicability

of this algorithm in complex car-to-car and car-to-infrastructure scenarios, further

consideration should be paid to clutter, obscuration and erroneous measurements.
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