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Abstract

Digital Twin (DT) is the imitation of the real world product, process or system. Digital Twin is the ideal solution for

data-driven optimisations in different phases of the product lifecycle. With the rapid growth in DT research, data man-

agement for digital twin is a challenging field for both industries and academia. The challenges for DT data management
are analysed in this article are data variety, big data & data mining and DT dynamics. The current research proposes a

novel concept of DTontology model and methodology to address these data management challenges. The DTontology

model captures and models the conceptual knowledge of the DT domain. Using the proposed methodology, such
domain knowledge is transformed into a minimum data model structure to map, query and manage databases for DT

applications. The proposed research is further validated using a case study based on Condition-Based Monitoring (CBM)

DTapplication. The query formulation around minimum data model structure further shows the effectiveness of the cur-
rent approach by returning accurate results, along with maintaining semantics and conceptual relationships along DT life-

cycle. The method not only provides flexibility to retain knowledge along DT lifecycle but also helps users and

developers to design, maintain and query databases effectively for DT applications and systems of different scale and
complexities.
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Introduction

Digital Twin (DT) is the combination of logically inte-

grated models of a physical asset to give useful insights

using data associated with those models. The concept

DT has been introduced by Grieves and Vickers1 at the

University of Michigan in 2002 refereeing it as the con-

ceptual ideal for the Product Lifecycle Management

(PLM). DT is predicted to play a significant role in

improving consistency, seamless development process

and the possibility of reuse in subsequent stages along

the product lifecycle.2 DT is built on three main pillars:

(a) a physical product in real space, (b) a virtual prod-

uct in virtual space and (c) the connection of data and

information which ties together both the spaces.3

Today, the lower costs and improved power and cap-

abilities resulted in leaders to combine Information

Technology (IT) and Operational Technology (OT) to

enable the creation and use of DT.4 The principle

approach of the DT by Boschert and Rosen2 explains

how DT uses digital information from IT systems, such

as PLM, PDM (Product Data Management), SCADA

(Supervisory Control and Data Acquisition), and

makes it available for phase-specific analysis within the

lifecycle. DT encapsulates software object/model that

mirrors physical asset, and perform analytics based on

this digital information. Ideally, this information is

based on product-related and historical data along with

the enterprise system. A well defined DT can consider-

ably improve decision making in the enterprise at vari-

ous level of complexity and scale. As they are lined or

linked to their physical counterparts, are used to ana-

lyse the state of the product or system or process,

respond to the changes, improve operations and, add

value to the overall enterprise atmosphere.
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As the concept of DT is novel, there are several chal-

lenges exist in its development and implementation. Such

challenges have been summarised in Singh et al.5 for pres-

ent high-value manufacturing industries under five differ-

ent themes. The existing research focusses on the data

management challenges for DT. High-value manufactur-

ing industries, such as aircraft manufacturing industry,

often evolve and perform in the complex data ecosystem.

The data management around DT is not explored well in

the existing literature. Only a few research works6–12

focus on the information and data side of DT. Data

management is an essential part of any software project

so thus becomes essential for DT for different order scale

and applications. Therefore, it is important to understand

not only the minimum level of a data structure but also

knowledge to represent it. Such knowledge will help in

understanding data flow, data properties and constraints

that DT may exert on the overall system and databases.

In this paper, an approach based on ontology and data

modelling is proposed to address such data-related issues

for DT. The approach is further validated using a case

study which reflects the potential for wider applications.

The key contributions of this paper are (a) under-

standing the information flow and need of efficient

data management for a concept like DT, (b) novel

method to propose minimum data structure to model

data for DT, (c) use of ontologies to define semantics,

restrictions and data structure for DT to domain appli-

cation, (d) accessibility to the user to the most significant

data to query databases using directly from DT domain

ontology. The contributions are validated through a case

study based on Condition-Based Monitoring (CBM) of

the asset. The rest of the paper is organised as follows:

Section II discussed the data management challenges for

digital twin, section III presents the state-of-the-art

related works in data modelling, ontology modelling and

knowledge graphs in digital twin context. The sections

further describe the digital twin ontology model and the

methodology, section IV details a standard based CBM

application case study, section V is the analysis of results,

and final section VI & VII concludes the paper with dis-

cussion, and conclusion and future work respectively.

The current work is the extension of existing work.13

Data management challenges for Digital

Twin

Data management is one of the important branches of

developing and maintaining almost all variety of infor-

mation system. In this scenario, data management chal-

lenges are for comprehensive DT solutions becomes

obvious. The current trend of transformation from

production-oriented to selling services as products is

becoming common in the current industrial landscape.

This leads to new paradigms of product definition and

development. One of the greatest assets in this shift is

data. Data-driven solutions are driving innovations

and value creation in almost every industry. DT utilised

this data to define boundaries of physical and virtual

systems to simulate and optimise existing products,

process and systems. Although DT has a huge potential

of optimising current businesses, the issues related to

data is much more complex. To understand the data

issues, understanding the data management challenges

for DT is the key. Data management is a classic prob-

lem of existing systems from product design to asset

management and maintenance. The following issues

make the data management for DT difficult:

Data variety

The current manufacturing industries generate a mas-

sive variety of data across the product lifecycle. Starting

with product development, design data in terms of 2D,

3D drawings are very different from the Finite Element

Analysis (FEA) and other simulation data. The manu-

facturing data is structured in completely different for-

mats from design and engineering. The systems like

PLM and SAP/ERP can be considered as an organised

form of such a wide variety of data. There still lack a

bridge that how these systems can be used for a single

integrated platform as DT. Such a large variety of data

raises the data integration, data cleansing and data

fusion issues.3 The existing DT research shows that

most of the DT are application-centric. For example,

utilisation of machine data for shop-floor based DT,

damage tolerance data to build structural based twins,

but lack ways of integrating them into one. This may hin-

der the development of ideal integrated multiple architec-

tures and frameworks for DT. Some of the scenarios are

even hard to capture, for example, shop floor uncertain-

ties can only be managed based on individual user’s expe-

rience and situational response to uncertainties. This

form of knowledge is hard to record or store digitally.

Big data and data mining

The challenges of big data and its mining goes hand in

hand. The data collected from various streams in prod-

uct development and manufacturing, it needs to be

stored in databases, accessed and processes to valuable

information. In DT context, this data becomes key for

the virtualisation of the physical asset. Data mining is

the way of finding useful patterns from data sources,14

therefore it is potentially a key factor for improving the

virtual spaces in DT. A large variety of data during

product lifecycle results in bigger and complex data-

bases making data mining difficult.14 Data mining in

some industries such as manufacturing is limited to

10% for solving problems by applying data mining

techniques. DT models work on continuous improve-

ment of virtual models based on real-time and historical

data but data mining techniques are limited to produc-

tion, fault diagnosis and maintenance phases of the

product lifecycle. Data mining for the converging beha-

viour of physical and virtual spaces in DT is still an

open area of research.
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The convergence of big data is one of the major

problem related to data in the DT context. Data gov-

ernance is an important part of the big data project.15

One of the major problem related to data in DT. Big

data involves the collection of data sets that are so

large and complex that it becomes difficult to process

using hands-on database management tools or tradi-

tional data processing applications. DT linked to big

data acquisition, processes and analytics convergence

of increasing data generated results in storage-related

issues.16 The 6 V’s definition of big data given by Tyagi

and Demirkan15 gives a clear picture of the data. The

concepts of data lakes have been recently welcomed by

enterprises to over big data issues as low cost. Using

data lakes, enterprises can perform better data manage-

ment transformation, processing and analytics around

a specific application. Even though data lakes provide

a new paradigm in data ingestion, transformation, fed-

eration and data discovery, it still lacks data govern-

ance and technology integration reforms.

Digital Twin dynamics

DT dynamics covers multiple aspects of uncertainty,

the exactness of virtualisation and continuous update

of data and information between physical and virtual

spaces. The close one-to-one mapping between physical

and virtual system is incomplete without acknowled-

ging uncertainties involved in both physical observa-

tions and digital models.17 Uncertainties quantification

is not only important for giving reliable results but also

important for the evolution of DT over time. Several

uncertainties parameters are outlined by Kennedy and

O’Hagan.18 The exactness of virtualisation is another

important and challenging element for DT. This refers

to the degree of exactness the physical asset is imitated

in its virtual system. No research claims the degree of

exactness can be fully achieved but measuring tech-

niques can be used to measure based on the application.

The continuous update of data and information

between physical and virtual systems is fundamental for

DT dynamic behaviour. The integration of data from

sensors and machines, historical data and computer-

based models leads to directional analysis and visualisa-

tion of the results. In this process, the continuous chain

of incoming data and change in historical data is desir-

able for keeping the results from DT up-to-date. The

important questions are how the continuous update of

data leads to data management difficulties. Each DT

simulation cycle can lead to changes in existing data

repositories and data structures. Maintaining such data

repositories and structures brings data management

challenges for DT. Connectivity via IoT solutions is

another important aspect. Semantic-based data model-

ling and knowledge graphs are promising methods of

simplifying complexity around continuous updating

behaviour of a DT.

Digital twin, data modelling and ontology

Digital Twin

The DT market is estimated to grow from USD 3.8 bil-

lion in 2019 to USD 35.8 billion by 2025.19 With the

advances in technologies such as the Internet of Things

(IoT)20 and cloud,21 more companies are willing to

adopt DT technology at different levels. As DT is heav-

ily driven by information across the asset/system,

understanding the flow and transfer of information at

each step becomes one of the key aspects. With an

information point of view, we defined the multi-layer

information flow across DT. As shown in Figure 1, the

information flow establishes among each layer contain

a different set of information that can complete the

information cycle along with the DT. The information

flow steps are defined as follows:

A. Physical layer to data layer: The physical layer

denotes the physical entities of the DT such as

asset. The physical layer is restricted to configura-

tion information related to asset and raw sensor

data. Configuration information is used as a sig-

nature throughout DT lifecycle whereas raw sen-

sor data is further filtered and manipulated in the

data layer. The configuration information pro-

vides traceability22 and helps in information orga-

nisation across DT.

B. Data layer to model layer: The data layer denotes

the data fit for analysis and knowledge repositories.

The knowledge repositories hold business rules,

Figure 1. DT information flow.
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logics and historical information about the asset.

This manipulated sensor data is not only fit for mod-

els to run simulation but also increases understand-

ability and accuracy. The knowledge repository

supply historical data and business rules to model

layer to provide valuable insights about the asset.

C. Model layer to physical layer: The model layer

holds model along the lifecycle, behaviour model

and logical models for reasoning. These models

use information from the data layer to provide

actionable insights by predicting failures and

detecting the current state. These insights are

implemented in the physical layer as a mainte-

nance operation and service strategy.

D. Model layer to data layer: The information gener-

ated in the model layer is stored back to the

knowledge repositories in the data layer. Such

information contain analysis reports and recom-

mendations that need to be used for the next DT

analysis cycle. Such information serves back the

model layer as historical data.

Based on such information flow, managing and orga-

nising data is crucial for DT along with this flow. A

user should be able to run queries to understand the

current state of the asset w.r.t. to different variables.

Such flexibility can be achieved by a well-structured

data model. As shown in Figure 2, the DT data model

is an important gateway between the data coming from

the physical layer and knowledge repository to produce

actionable insights and overall decision making.

Data and ontology modelling

Data modelling is the first step in the process of data-

base design. Data models describe relevant concepts,

data structures from an application and inscribe useful

knowledge useful to drive the application behaviour.

Although data modelling is widely used in industries

for more than three decades but often lacks semantics

during the development process. The issues related to

heterogeneous databases and interoperability are often

hard to manage with data models. To overcome such

issues, semantic web technology is known for new ways

of managing data and metadata maintaining a higher

order of logical and conceptual schemas. Semantic web

enables an open-world oriented integration of diverse

data sources that uses distributed incantations of closed

world data dictionaries, schemas and inference rules.

Resource Description Framework (RDF) is widely

recognised as one of the technologies for semantic web.

RDF has real potential when properties and values in

the domain are defined by shared schema or ontology.

An ontology is the explicit formal specification of con-

cepts in the domain and relations among them.23 An

ontology defines a common vocabulary for researchers

who need to share information in a domain.24

Ontologies provide building blocks of RDF based con-

ceptual models by providing a formal definition of a

set of concepts within a domain and the relationships

between those concepts.

Use of ontologies in data management. Ontologies can be

used as a potential guide to validate the domain models

by allowing interaction between data held in different

formats. Ontology models contain the concept defini-

tion and their relationship to a particular domain. This

also includes domain rules such as cardinality, disjoint-

ness, etc. that restricts the semantic concepts and the

conceptual relationships in a specific conceptualisation

of particular application domain. DT requires a

Figure 2. DT data query and response mechanism.
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comprehensive approach to query data from informa-

tion systems. Although ER models are used primarily

for database design, they often do not store domain

knowledge. Therefore, ER based query formulation

approaches25 can not provide reliable approaches to

satisfy the level of comprehensiveness for data queries.

Therefore looking at the challenges of effective DT

data management. Plenty of research has emphasised

on Ontology to database mapping and Database to

ontology transformation approaches. A review of such

work has been conducted by Munir and Anjum.25

Although both methods are important while linking

ontologies to the database design but have their

challenges:

� Most of the ontology to database mapping work

on the assumption that both database and ontology

pre-exists, and produce a set corresponding map-

ping between the relational database schema and

ontology schema.
� The database-to-ontology transformation

approaches are only effective when only a rela-

tional database already exists and an ontology is

produced by applying certain transformation

rules.26 Most of these practices result in ontologies

with a flat structure as the original database.

Considering the issues of continuous update of data

and information in DT lifecycle, choosing the right

transformation and mapping technique is required.

Therefore, the approach of ontology to the data model

is adopted in the current research. The ontology-to-

conceptual data model is used as the core of the five-

step methodology. El-Ghalayini et al.27 proposed map-

ping rules that guide from domain ontology to the cor-

responding schema of the conceptual data model

(CDM). Another method to transform domain ontol-

ogy into a relational database is investigated by

Vysniauskas and Nemuraite28 based on algorithms

embedded in OWL2DB.29 In this approach, OWL doc-

ument analysed to generate corresponding Data

Definition Language scripts. During this analysis and

data transformation, the system first transforms ontol-

ogy classes to data table definitions. Further, the

objects, data type properties and constraints into a

DDL statement and finally database is filled with class

instances. The approach uses a breadth-first search on

the hierarchical levels of ontology classes29 creating a

one-to-one mapping between their classes and sub-

classes. The OWL object properties use again breadth-

first search to transform into table relationships. Based

on the defined cardinality of class properties, one-to-

many or many-to-many relationships between tables

are generated.

The proposed DT ontology contains the definition

concepts and their relationships for specific DT appli-

cation including assertions and domain rules, cardinal-

ity, disjointness, that restricts semantics of concept and

conceptual relationship in specific conceptualisation in

a specific domain. Therefore, the proposed DT ontol-

ogy model contains the conceptual knowledge of DT

domain.

Ontologies are semantically richer than database

schemas. Database schemas only target to establish

relationships between users and domain requirements

and describe logical structure of the data.

Graphs versus relational databases. In relational databases,

to analyse relationships across different table entities,

the time expensive ‘join’ operation is used to combine

the relations. This operation is expensive as it requires

index lookups and matching to related columns in the

tables. This set major drawbacks of graphs. On the

other hand, graphs store entities and their relationships

as nodes and edges that may be augmented at different

attributes retrieving the edge between two entities do

not involve expensive ‘join’ operation.

But graphs have their complexities while using it for

real-world applications and using with legacy IT

systems:

� The complexity of using graph language- currently

the well-known graph query commands are

Gremlin, cypher and SPARQL. Each language uses

a different approach to querying the database.

Casual users may find it difficult to use it on the

first hand. Therefore, users require to query the sys-

tem directly without worrying about learning the

new syntax of the unfamiliar query language.30

Graph databases are language-specific and have

their APIs.
� Multi-user support- relational databases in general

and relational databases specifically have extensive

built-in-multi user support. On the other hand,

many graphs based approaches lack support for a

multi-user environment. Neo4j uses cypher based

query language that forces all user management to

be handled at the application level.31

� The security aspect is further discussed by Vicknair

et al.31 and Miller.32 Relational databases such as

MySQL contains extensive support for Access

Control List (ACL)-based security. Neo4j does not

have any built-in-security support.31 Although

Neo4j website does contain some rudimentary

design for an access control list (ACL) security

mechanism, like multi-user support, ACL manage-

ment is handled only at the application level.

The graph databases lack standardisation on language

for transversal and insertion. This leads to vastly differ-

ent implementations and framework for data interac-

tion. There is a lack of consistency that requires one to

learn all implementations before understanding the

appropriate approach suitable to the problem.32 The

decision of choosing graph-based versus relational

Singh et al. 5



databases is driven by system requirements. Since the

existing applied research is more focussed on developing

a solution to support multi-user environment and stan-

dardised language to query data & information to each

user, the use of graph-based databases is excluded in

this research scope. If the system requires dynamic data

modelling that represents highly connected and complex

data, the graph-based approach is significant.32 GQL

can be used as the future work of the existing research

when the consistency of information retrieval from the

integration of multi-domain DTs be explored.

Related work

Some research works used ontologies in DT domain

but has their drawbacks when comes to highly scalable

and interoperable application. An ontology-based

design framework for co-evolution with complex engi-

neering system by capturing data in terms of variety,

velocity and volume.33 Bao et al.34 proposed an

ontology-based framework to model assembly oriented

part DT. The framework demonstrates the main com-

ponents and dataflow in creating a part DT with infor-

mation filtering and subsequent management. Mehdi35

used ontologies for querying data and semantically

integrate knowledge base to facilitate intelligent diag-

nostics of an industrial turbine. Banerjee36 proposed a

way of formalising knowledge as DT models coming

from sensors of industrial production lines. This

approach uses a graph-based query language (GQL)

equivalent to conjunctive queries and has been enriched

by inference rules. In both cases, even though semantic

approach proves beneficial, they undermine the existing

ways of managing complex data and databases at a

large industrial scale. The use of a single semantic defi-

nition for DT is also not well explored.

Looking at the DT data management side, Zhang

et al.6 proposed an approach to design and develop DT

of production line based on semantic data model as a

reference model and synchronisation of equipment at

the physical level. Angrish7 introduced an architecture

based on a database and generic machine access library

for the virtualisation of the production factories.

Uhlemann et al.9 proposed a multi-model data acquisi-

tion approach to minimise the delay between the time

of data acquisition and creation of production process

DT. Consistency check of DT data model is demon-

strated by Talkhestani11 within manufacturing systems.

Although these approaches suggest significant data

management benefits, still many industries use tradi-

tional database management tools such as Structured

Query Language (SQL). The emergence of GQL is

unlocking new horizons for data storage and visualisa-

tion. Therefore, there is a need for a way to link ontol-

ogy and databases for future DT data management. In

this paper, the potential use of ontologies and data

modelling for future DT data management has been

discussed. For a new concept like DT, understanding

the context of data is important and what questions

should be asked to make sense out of that data. The

freshness and completeness of data, merging of struc-

tured and unstructured data is still an ongoing chal-

lenge for DT. Use of ontology and data modelling can

be one of the viable answers.

DT ontology model

A generic DT ontology model for an asset during its

operational phase of the lifecycle has been proposed as

illustrated in Figure 3. The classes of the ontology

model are inspired by system architecture for the intel-

ligent and predictive maintenance of an asset.37 The

ontology model not only captures domain knowledge

and maintains the semantics of asset functions during

operation but also inherits the basic characteristics of

an asset DT for further simulations and analysis. The

ontology model proposed is the generic representation

of an asset DT during its operational phase. Model ful-

fils both the following requirements:

� Domain knowledge of asset behaviour analysis in

operation with essential semantics
� Potential representation of a DT for an asset in

operation phase

The overall schematics of model is divided into three

predefined information flow layers: physical, data and

model layer which fulfil the open architecture of DT.

Each layer of the model has been assigned with respec-

tive classes.

Methodology

Keeping the current ways of managing data and data-

bases at a large industrial scale, a methodology has

been developed that uses ontology model to create and

manage future databases for DT.

The overall methodology is as follows:

1. Map: Map the classes of proposed ontology model

among functional layers of method/process of asset

behaviour analysis.

2. Define: Define key data elements and their types

for each class of the proposed ontology model.

3. Create: Create ontology model by converting rela-

tions between classes as object properties and

inserting data elements as data properties with

logical restrictions.

4. Convert: Convert ontology model into a relational

data model. Apply keys and cardinality.

5. Populate: Populate the relational data model with

real datasets.

Case study

Ontology model and methodology validation

To validate the proposed methodology, a standard case

of CBM has been used. There are various international
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standards related to CBM approach, e.g. ISO 1337438

addresses the Open System Architecture for CBM, held

by MIMOSA.39 The OSA-CBM represents formats and

methods for communicating, presenting and displaying

relevant information and data. At present, OSA-CBM

comprises of six functional layers: data acquisition,

data manipulation, state detection health assessment,

prognosis assessment and advisory generation, to attain

a well-constructed system. The description of these

functions is shown in Table 1.

Map: The process of mapping is driven by the busi-

ness requirement. The current functions provide the

standard approach for CBM of asset. Therefore, map-

ping of the ontology classes needs to be synchronised

with defined functions. In this case, eight classes of the

ontology model proposed have been mapped among

six functions of OSA-CBM as shown in Figure 4.

� Sensor,Asset 2 f(Data Acquisition) //

defining semantics for asset and sensor

configuration information

� Sensor data, Knowledge base, Model 2

f(Data Manipulation) // defining seman-

tics for data receiving, filtering and

conversion to model readable format.

Further model algorithm for damage

calculations
� Knowledge base, Visualisation & Analysis

2 f(State Detection) // defining seman-

tics for detecting the current state

based on knowledge base historical data

and enhanced visualisation by the user
� Visualisation & Analysis 2 f(Health

Assessment) // defining semantics for

assessing the health based on KPIs such

as health and diagnostic state
� Visualisation & Analysis 2 f(Prognosis

Assessment) // defining semantics for

assessing prognostics available to the

user
� Actionable insights 2 f(Advisory

Generation) // defining semantics for

Figure 3. Digital twin ontology model.

Table 1. OSA-CBM functional layers.38

Functional layers Function

Data acquisition Access to sensor or transducer data and record
Data manipulation Perform single or/multi-channel transformation and may apply specialised feature extraction

algorithms to gathered data
State detection Comparing features against the expected value
Health assessment Determines system’s health undergoing degradation by considering health history
Prognosis assessment Displays the current health state of the asset into the future by considering an estimation

of the future stage
Advisory generation Gives out the recommendation for maintenance actions and modification of asset

Singh et al. 7



recommended actions essential in opera-

tional life.

Define

To define the data elements for an individual class, an

example of aircraft engine display38 from the standard

is used, shown in Figure 5. The example is divided into

five distinct areas to provide end-users with a quick

summary of the situation. This example is used to

derive the potential different data elements and their

data types involved irrespective of how data is physi-

cally stored or accessed, illustrated in Figure 6.

Identification phase describes the configuration aspect

of the asset to identify data types such as asset id,

report id, etc. Recommendation and prognosis phases

provide the idea of different data types associated with

suggestions and prognostic results. Health assessment

shows the potential data type: health index measure

and associated issues identified. State detection phases

are the UI/UX interface to understand the current state

of asset identifying data types such as vibration ampli-

tude per hours (time).

Figure 6 shows different data elements and their

data types that may exist under individual class for air-

craft engine CBM example. This declaration is based

on the author’s assumptions and familiarisation with

the domain. The relation between individual classes is

denoted, which becomes the object property showing

semantic inference.

Create: In this step, software Protégé40 is used for

modelling the proposed ontology model. The prede-

fined semantic relationship is converted as object

Figure 4. Ontology-functional mapping.

Figure 5. Aircraft engine display.38
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property in between the classes. Using high-level data

elements defined in ‘Define’ phase, every single data

element for each class is defined as data property while

creating the ontology model. Each data property is fur-

ther assigned to a suitable data type with restriction

properties. The restriction properties are applied to

each object property among two connected classes.

In this step, software Protégé is used for modelling

the proposed ontology model. The predefined semantic

relationship is converted as object property in between

the classes. For example, ‘Object property: has’ is show-

ing semantics between classes ‘Asset’ and ‘Sensor’, as

illustrated in Figure 7. That means the object property

‘has’ can be assigned with individual domain ‘Asset’

and range ‘Sensor’.

The restriction properties are applied to each object

property among two connected classes. For example,

the restriction property defined in between class ‘Asset’

and sensor with possible cardinality is shown in Figure

8. For class ‘Asset’, 1 is the minimum cardinality

defined for the class- sensor. This means asset has mini-

mum 1 sensor whereas class ‘sensor’ is restricted with

exact cardinality to class ‘asset’. This means each sensor

identified must belong to an individual asset. Similarly,

the restriction properties are established among all the

classes of the ontology model. It is clear in the OWL

script generated that object property ‘has’ show the

relationship between ‘Asset’ and ‘Sensor’ as domain

and range

Using data elements defined in ‘Define’ phase,

every single data element for each class is defined as

data property while creating ontology model. Each

data property is further assigned to a suitable data

type with restriction properties. For example, class

Asset has data forms: Asset ID, Asset name,

Installation_date&time and last_serviced, last service

operation has been defined as data properties with

related data types. On declaring individual ‘A/C

Engine’ for class ‘Asset’, the data property assertion

is illustrated in Figure 9.

Convert: Using the OWL script generated from

ontology model, the process of converting ontology into

a relational database structure is a step by step process:

Ontology class to relational data model: Each class of

ontology model is converted into relational database

table. The OWL script generated shows declaration of

classes in the ontology model. For example, ‘Asset’ and

‘Sensor’ are both classes which are converted into rela-

tional data model tables.

\!--

http://public.cranfield.ac.uk/sxxxxxx/

folder/Test.owl#Asset

--.

\owl:Class rdf:about="http://public.cran-

field.ac.uk/sxxxxxx/folder/Test-.owl#

Asset"/.

\!--

http://public.cranfield.ac.uk/sxxxxxx/

folder/Test.owl#Sensor

--.

\owl:Class rdf:about="http://public.cran-

field.ac.uk/sxxxxxx/folder/Test.owl#

Sensor"/.

Figure 6. Data elements for ontology class.
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Figure 8. Restriction property.

Figure 7. Object property between classes.

Figure 9. Declaration of data properties.
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Ontology Object property to relational data model: Each

object property of the ontology model is converted into

relations between data tables. In ontology, when prop-

erty is defined, it is restricted between the classes with

domain and range. Example of OWL syntax, the object

property is defined as:

owl:ObjectProperty rdf:about="http://pub

lic.cranfield.ac.uk/sxxxxxx/folder/

Test.owl #has".

\rdfs:domain rdf:resource="http://public

.cranfield.ac.uk/sxxxxxx/folder/Test.owl

#Asset"/.

\rdfs:range rdf:resource="http://public

.cranfield.ac.uk/sxxxxxx/folder/Test.owl

#Sensor"/.

\/owl:ObjectProperty.

Classes ‘Asset’ and ‘Sensor’ are restricted by object

property ‘has.’ Therefore, while transforming ontology

to relational data model, object property ‘has’ is

declared as a relation between tables ‘Asset’ and

‘Sensor’.

Ontology Data Property to relational data model:

For transforming ontology data property to relational

database, each data property belong to a single class is

declared as data column for that table. Example of

OWL syntax, the object property is data property

‘Asset_ID’ becomes one of the columns for ‘Asset’

tables of the relational data model. Not only data prop-

erty, but data type of data property is also transformed

into data type for the column. Hence data type ‘string’

for data property ‘Asset_ID’ is transformed into data

type ‘VARCHAR()’ for column ‘Asset_ID’ for table

‘Asset.’

\owl:DatatypeProperty rdf:about="http://

public.cranfield.ac.uk/sxxxxxx/folder/

Test.owl#Asset_ID".

\rdfs:domain.

\owl:Restriction.

\owl:onProperty rdf:resource="http://pub

lic.cranfield.ac.uk/sxxxxxx/folder/

Test.owl #AssetID"/.

\owl:allValuesFrom rdf:resource="http://

www.w3.org/2001/XMLSchema#string"/.

\/owl:Restriction.

\/rdfs:domain.

\/owl:DatatypeProperty.

Ontology Constraint to relational data model: On

transforming the ontology constraints into relational

database, formation of metadata tables takes place

which becomes the part of the overall data model. An

ontology constraint is defined with OWL syntax

‘owl:Restriction’. The ‘owl:OnProperty’ element indi-

cated restricted property. For example, syntax defining

a restriction of class property:

owl:Class rdf:about="http://public.cran

field.ac.uk/

sxxxxxx/folder/Test.owl #Asset".

\rdfs:subClassOf.

\owl:Restriction.

\owl:onProperty rdf:resource="http://pub

lic.cranfield.ac.uk/sxxxxxx/folder/

Test.owl #has"/.

\owl:minQualifiedCardinality rdf:dataty

pe="http://www.w3.org/2001/XMLSchema

#nonNegativeInteger".1\/

owl:minQualifiedCardinality.

\owl:onClass rdf:resource="http://pub

lic.cranfield.ac.uk/sxxxxxx/folder/

Test.owl#Sensor"/.

\/owl:Restriction.

\/rdfs:subClassOf.

\/owl:Class.

Populate: In the final step, the database is made func-

tional by populating data model with real datasets. This

will not only enable developers to understand the data

and data types, logic & constraints for constructing

databases but also manage the flow of data while DT is

in functional mode.

Query formalisation

For query formalisation, certain sets of assumptions

are taken. Health index plays a key role in determining

the status of the current and historical state of the asset.

Therefore, the classification of health index is assumed

among the four categories.

01 – 03: Critical

04 – 06: Poor

07 – 09: Moderate

10: Best

Based on these assumptions, the following query has

been formalised:

Eligibility criteria

Inclusion criteria: to be included, an asset must meet

the following

1. Has a history of maintenance

2. Has failure in last one month

3. Has current health status ranging between critical

to poor

The Ontology Statement (as specified by digital twin

domain knowledge)

Asset

dutiliseknowledge base action report id \ utilise-

knowledgebase heath index \ (hashealthindex min 0 \

hashealthindex 6) \ (hasinsightgenration 2012-06-

10T00:00:00Z \ hasinsightgeneration 2012-05-

10T00:00:Z) \ (hashealthindex 0 \ hashealthindex 3)
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Processed ontology statement

Class case study is a sub class of intersec-

tion of

restrcition on property utiliseknowl-

edgebase some value from class :action-

reportid

Interesection of {restriction on prop-

erty :hashealthindex min 0

restriction on property :hashealthindex

max 6}interesection of

{restriction on property :hasinsight-

generation min 2012-06-10T00:00:Z restri-

ction on property : hasinsightgeneration

min 2012-05-10T00:00:Z} intersection of

{ restriction on property :hashealthin-

dex min 0

restriction on property :hashealthindex

max 3}

is a sub-class of class:analysis&

visualisation

Results

After the transformation of the ontology model, nine

main data tables have been obtained for the data model

in the relational database MySQL,41 as shown in

Figure 10. The class ‘knowledge base’ is further simpli-

fied among two tables: ‘historical data and reports’,

‘logical data for model’. Table 2 shows metadata values

obtained for each restriction property among classes.

In total 10 metadata values exist as cardinality restric-

tions. In the end, this is the minimum database struc-

ture that can be used to create and manage data for an

asset DT for CBM applications.

The proposed ontology model descriptions are based

on DT domain metadata objects which serve as the

foundation of handling changes and extension of the

system. On query formulation, the domain description

is separated from domain metadata from transactional

data, thus enabling ease of maintaining semantics to

evolve while querying data. The ontology model

enables the mapping of classes to data model general

schema restrictions (e.g. Null, unique) to restrict data

entry. DT domain knowledge is expressed in form of

OWL-DL assertions as concept restrictions, which need

to be consistent with the respective ontology schemas.

Modelling restrictions can be complex and may involve

multiple conditions.25 Existing semantics of the ontol-

ogy model, the class restrictions are constructed using

union, intersection, allValuesfrom, someValuesFrom

and complement of OWL-DL ALC (Attributive

Language with Complements) constructs. For the

query formulation, the quantifier restrictions,

someValueFrom and allValuesFrom, and cardinality

restrictions are used with object properties and data-

type properties etc.

Figure 10. DTontology transformed into relational data model.
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Discussion

The data management is a common practice in the

development and sustainment of information systems.

Effective data management around a particular applica-

tion or system not only involves data organisation, pro-

cessing and storage but also include efficient access and

retrieval of information to the users. Multi-layer infor-

mation flow provides the type of important information

to be transferred and exchanged between different DT

conceptual layers. Transfer of information between the

physical layer, data layer and model layer significantly

show the essential information important for bringing

valuable insights from DT back to the physical asset.

Information exchange from model layer to the data layer

signifies the minimum information to be retained as his-

torical information which is essential for DT system sus-

tainment. This covers the information retention element

for DT which is not well explored in the existing litera-

ture. Further, the data model query mechanism explains

the user’s process of interacting with a DT system by

making queries to the DT data model. Query mechan-

isms highlight the importance and role of a comprehen-

sive DT data model that acts as a gateway between user’s

requirements, real-time data and historical data.

With the help of the case study, the proposed DT

ontology model is used to synthesise the minimum data

structure for the DT data model. DT ontology model

encapsulates the DT domain ontological concepts for

semantic data modelling for DT. The five-step metho-

dology proposed to extract DT data model structure

from ontology using ontology-to-conceptual data

model transformation. As a result, nine main data

tables and 10 metadata values as cardinality restrictions

is the minimum data structure for CBM DT applica-

tion. The minimum data structure for DT data model

will play important role in data management right in

the initial design phase and development cycle of DT.

The methodology provides the freedom to map the

existing business functional layers to the ontology

classes combining both DT domain and existing busi-

ness functional knowledge. The minimum data

structure will provide exact data definition required for

DT of particular scale and application saving expensive

and time-consuming efforts of gathering and formalis-

ing knowledge for database design. Extraction of mini-

mum data structure will also provide ease of dealing

with the problems big data and data complexity simply

by providing logical structure for the data model con-

struct. As ontologies are semantically richer than data-

bases, DT ontology model will maintain semantics and

concept definition throughout DT lifecycle. This also

includes domain rules such as cardinality and disjoint-

ness that restricts semantic concept and conceptual

relationships in a specific domain.

The quantifier restrictions generated from minimum

data structure for DT data model and OWL DL script

such as somValuefrom, allValuesFrom and cardinality

restrictions will provide the system to deal with DT

dynamics challenges (except uncertainty). Continuous

update of data within databases is driven by semantic

restrictions of DT ontology model proposed. This con-

tinuous update of data between different data reposi-

tories and IT systems will also aid in maintaining the

level of exactness of physical and virtual spaces of DT.

The query has been formalised with necessary assump-

tions which validate the effectivity of query formulation

of the proposed methodology. Using the current ontol-

ogy model, user can query the data without interpreta-

tion of transactional data, therefore such data need not

be stored as ontology instances. This will help in deal-

ing with the scalability issue of the DT as an interpreta-

tion of data sources within existing IT legacy systems

and applications can be complex and time-consuming.

Thus, the ontology DT ontology model generated plays

a significant role in specifying concept restrictions and

generating relational database queries.

Conclusion and future work

Some of the challenges of data management are obvi-

ous but virtualisation of the physical asset or product,

which is the key validity of DT, brings additional

Table 2. Cardinality metadata table.

Domain class Range class Cardinality Min cardinality Max cardinality

Asset Sensor 1 1 Null
Sensor Sensor data 1 1 Null
Model Visualisation and analysis 1 1 1
Visualisation and analysis Actionable insights 1 1 1
Actionable insights Knowledge base (historical

data and reports)
1 1 1

Visualisation and analysis Knowledge base (historical
data and reports)

1 1 1

Knowledge base (historical
data and reports)

Knowledge base 1 1 Null

Knowledge base (logical
data for model)

Knowledge base 1 1 Null

Sensor data Model 1 Null 1
Knowledge bases (logical data for model) Model 1 Null 1
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challenges. In the beginning, questions have been raised

in the scope of the DT: In what ways DT makes the task

of data management difficult? What is the minimum level

of information required for developing a DT to generate

accurate results? How to utilise a knowledge domain con-

cept to drive DT functions? What is most significant data

to be used for effective data query and information retrie-

val? which became the foundational research questions

of the existing work.

At the small scale, DTs can often evolve indepen-

dently but may need a higher level of data management

for the larger-scale application. Industries manage their

data with traditional Data Base Management (DBM)

systems such as SQL. The question remains that how

DTs are implemented, developed and managed in the

current data ecosystem. Initially, the data management

challenges of DT are identified from the existing litera-

ture. DT brings several challenges associated with big

data, data volume and variety and issues associated

with its dynamics. Such challenges showed the pros-

pects of investigating an effective data management

solution which ensures the encapsulation of DT domain

knowledge, solves the data structuring complexities for

DT and provides the user to build DT data model with-

out having the complete knowledge of the entire

domain. In this regard, the information flow between

three fundamental layers: physical, data and model

layer explained to conceptualise the DT domain knowl-

edge. Based on this knowledge, the DT ontology model

is proposed. DT ontology model contains the concept

definition, their relationship to domain elements, asser-

tions and domain rules for semantic restrictions.

Ontology model not only incorporates the semantics

around DT but also helps understand the interdepen-

dency of one data on another establishing digital conti-

nuity across DT. Ontology model is predicted to be

generic enough to map the current ways of managing

and analysing an asset during the operational phase.

The five-step methodology, validated with CBM based

case study, to extract minimum data structure for DT

data model provide advantages of data structuring right

in the beginning of DT development cycle, mapping busi-

ness functions and segregates the most significant data

logically structured as the data model. The minimum data

structure will provide advantages in terms of DT system

scale-up, adding complexity, and continuous update of

data along DT lifecycle, by maintaining ontology-driven

semantics and domain rules. The mapping of functions to

ontology model classes will enhance participation of

members that may use DT such as engineers, simulation

specialists and teams on the ground. Any change in the

ontology model will result in automatic new relationships

within the existing data repositories and IT systems. DT

ontology model enables the user to run queries without

having prior knowledge of the application domain and

architectures.

DTs can evolve with time by integrating multidisci-

plinary DT solutions. The further extension of the exist-

ing research is to investigate the efficacy of current

concept on the integration of two or more multidisci-

plinary DTs as a single solution for seamless data mod-

elling and information retrieval. Integration of multiple

DTs solutions will not only bring additional complexity

to data and information ecosystem but also the oppor-

tunity to test the efficiency of knowledge graphs for DT

solutions.
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