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a b s t r a c t 

Carbon dioxide-abated hydrogen can be synthesised via various processes, one of which is sorption enhanced 
steam methane reforming (SE-SMR), which produces separated streams of high purity H 2 and CO 2 . Properties of 
hydrogen and the sorbent material hinder the ability to rapidly upscale SE-SMR, therefore the use of artificial 
intelligence models is useful in order to assist scale up. Advantages of a data driven soft-sensor model over ther- 
modynamic simulations, is the ability to obtain real time information dependent on actual process conditions. In 
this study, two soft sensor models have been developed and used to predict and estimate variables that would 
otherwise be difficult direct measured. Both artificial neural networks and the random forest models were devel- 
oped as soft sensor prediction models. They were shown to provide good predictions for gas concentrations in 
the reformer and regenerator reactors of the SE-SMR process using temperature, pressure, steam to carbon ratio 
and sorbent to carbon ratio as input process features. Both models were very accurate with high R 2 values, all 
above 98%. However, the random forest model was more precise in the predictions, with consistently higher R 2 

values and lower mean absolute error (0.002-0.014) compared to the neural network model (0.005-0.024). 

Acronyms 
AI Artificial Intelligence 
ANN Artificial Neural Network 
CaO/C Sorbent to Carbon Ratio 
CaL Calcium Looping 
MAE Mean Absolute Error 
MSE Mean Square Error 
PC Principal Component 
RF Random Forest 
RMSE Root Mean Square Error 
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S/C Steam to Carbon Ratio 
SE-SMR Sorption-Enhanced Steam Methane Reforming 
SMR Steam Methane Reforming 
WGS Water Gas Shift 

1. Introduction 

Aside from the imperative need to reduce greenhouse gas emissions 
from fossil fuel use, there are many other reasons why blue hydrogen, 
produced from fossil fuels with CO 2 capture, is likely to be at the fore- 
front of future energy systems. For instance, it can be produced in several 
ways and from numerous resources, both renewable and non-renewable, 
and upon combustion, no greenhouse gases or other emissions are pro- 
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duced. Hydrogen can also be used to decarbonise several sectors that 
are otherwise difficult to reduce greenhouse gas emissions from [1] . 

Although hydrogen can be produced from various resources, both 
renewables and non-renewables, the most common method at present 
for production of H 2 is via steam methane reforming (SMR). In this pro- 
cess, methane is reacted with steam producing carbon monoxide and 
H 2 , then the carbon monoxide is reacted with steam in water gas shift 
(WGS) reactors to produce CO 2 and more H 2 . 

The reactions that take place in order to produce H 2 from methane 
are reforming (reaction 1) and the WGS Reaction (reaction 2), giving 
the overall SMR reaction (reaction 3): 

C H 4 + H 2 O ↔ CO + 3 H 2 ΔH r , 298 K = + 206 kJ ∕ mol (1) 

CO + H 2 O ↔ C O 2 + H 2 ΔH r , 298 K = − 41 kJ ∕ mol (2) 

C H 4 + 2 H 2 O ↔ C O 2 + 4 H 2 ΔH r , 298 K = + 165 kJ ∕ mol (3) 

Sorbent Enhanced Steam Methane Reforming (SE-SMR) is a process 
which integrates calcium looping (CaL) and SMR. The principal reac- 
tions in CaL are carbonation (forward reaction) and calcination (back- 
ward reaction) described in equation 4 , and the combination of equa- 
tions 3 (SMR) and 4 (CaL) gives the overall SE-SMR reaction shown in 
equation 5 : 

CaO + C O 2 ↔ CaC O 3 ΔH r , 298 K = − 178 kJ ∕ mol (4) 

C H 4 + 2 H 2 O + CaO → 4 H 2 + CaC O 3 ΔH r , 298 K = − 13 kJ ∕ mol 

(5) 

One of the challenges faced in SE-SMR, and in various other thermo- 
chemical processes, is the inability to measure and thus control impor- 
tant variables in a reactor and process control systems due to a variety 
of physical conditional limitations. These variables range from param- 
eters such as product composition, concentration of reactants, spatial- 
temporal temperature and pressure profiles, and the limitations stem 

from reasons including financial, physical, inaccuracies, or competing 
influences [2] . A solution to this challenge is to incorporate artificial 
intelligence (AI) into the energy sector through the use of soft sensors, 
which are inferential estimators using predictions based on data to pro- 
vide real time digital approximations as to the conditions inside the re- 
actor [ 3 , 4 ]. A simpler definition of a soft sensor is that it is a predictive 
model based on large quantities of data available on an industrial pro- 
cess, which can either be first principle models (white-box models) or 
data driven models (black-box models). White box models depend on 
actual mechanical data of the process, whereas the latter uses histor- 
ically collected process data, which makes black-box models far more 
practical and readily applicable to process plants [5] . 

The principle on which soft sensors work is based on the estimation 
of quality through a mathematical model that uses all available mea- 
sured process variables [6] . In further detail, the idea of inference esti- 
mation (soft sensing) is to approximate the values of primary variables 
(e.g. gas composition) by the easily measured secondary variables (e.g. 
temperature), which are correlated to the primary variables. 

For example, if Y is the dependent variable (soft sensor output, e.g. 
concentration) and X 1 , X 2 ...X n are the independent inputs (e.g. temper- 
ature, flow), the mathematical model for the output prediction can be 
described with Equation 6 , where X ̄= Σ(X 1 , X 2 ...X n ) and is the vector of 
the inputs, B is the vector of the model coefficients, and ɛ is the output 
error [6] . 

𝑌 = 𝐹 
(
X̄ , B 

)
+ 𝜀 (6) 

In recent years, soft sensors have been widely studied and used in 
industrial process control to improve the quality of product and assure 
safety in production, and additionally act as backup when hardware sen- 
sors are unavailable or unsuitable [ 7 , 8 ]. In addition, the desired mea- 
surements which are the key indicators of process performance, are nor- 

Table 1 
Aspen Plus SE-SMR baseline process model parameters. 

Baseline Conditions 

Steam to carbon ratio 4 

Sorbent to carbon ratio 1 

Pressure 1 bar 

Reformer temperature 650 °C 

Regenerator temperature 850 °C 

Pressure Swing Adsorber (PSA) efficiency 95% 

Sorbent carrying capacity 20% 

Cyclone separation efficiency 100% 

mally ascertained by off-line sample analyses or on-line product quality 
analysers, which are often costly and require frequent and high cost 
maintenance, and sometimes add delay to the process as the measure- 
ments cannot be used as feedback signals for quality control systems [9] . 

The use of soft sensors is not new and has been extensively imple- 
mented in process industries for the past three decades. Recently, ma- 
chine learning, as a whole, has been used in carbon capture technolo- 
gies, mainly focused on the process modelling and control of amine- 
based post-combustion capture systems [ 10 , 11 ]. However, to the best 
of our knowledge, machine learning algorithms have not been applied 
to sorption enhanced steam methane reforming to develop a soft sen- 
sor model of the process. In this study, artificial neural network (ANN) 
and random forest (RF) algorithms are employed to construct soft sen- 
sor models. A comparison of the models is then conducted against the 
SE-SMR reactions taking place to evaluate their ability to predict op- 
erating parameters including reactor gas concentrations, reformer CH 4 
conversion and overall process H 2 purity at specified conditions. 

2. Methodology 

The development of the data-driven soft sensor followed the typical 
systematic approach as found in literature, with the following being the 
main elements of the process [ 5 , 12 ]: 

1 Data collection, with the secondary variables selected according to 
knowledge of the process 

2 Data pre-processing 
a Outlier detection using univariate analysis 
b Normalisation where necessary 
c Correlation/redundancy elimination using multivariate principle 
component analysis (PCA) 

3 Regression model development 
4 Validation of the soft sensor on independent process data 

For the first step, data collection, a database of 13,756 data points 
was obtained for the machine learning soft sensor, which were produced 
from an Aspen Plus model that was developed to simulate the SE-SMR 
process and then applying a sensitivity analysis to the process across a 
range of commonly employed operating ranges. 

2.1. Process Configuration and Simulation 

The SE-SMR process was simulated using Aspen Plus V10 ( Fig. 1 ) 
using the Peng-Robinson property method and the equilibrium calcula- 
tions were performed, initially using the baseline conditions ( Table 1 ). 

The reformer and regenerator reactors were simulated with RGibbs 
blocks. CO 2 -abated hydrogen (stream 18) was obtained from separating 
hydrogen from the other flue gas components using a pressure swing ad- 
sorber with an efficiency of 95%. Water was separated from the system, 
using flash separators, producing two product streams of water (streams 
16 and 20) and the product stream of CO 2 (stream 19). An oxy-fired 
calciner was added to the process in order to provide heat for the regen- 
eration of the carbonated sorbent. In this case the heat requirement is 
met by combustion of methane (stream 2) and PSA tail gas (stream 17), 
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Fig. 1. Process flow diagram of the SE-SMR process simulated in Aspen Plus. 

Table 2 
Parameter ranges used in the sensitivity analysis to build up the ma- 
chine learning database. ∗ In order to obtain a ratio, the flowrates 
for the steam, methane or sorbent, were altered between the given 
ranges, and a ratio was then calculated 

Parameter Range Intervals 

Steam to carbon ratio 1–7 Various ∗ 

Sorbent to carbon ratio 0.1–5 Various ∗ 

Reformer pressure 1–10 bar 1, 5, 10 bar 

Reformer temperature 500–800 °C Every 50 °C 

Regenerator temperature 700–1000 °C Every 50 °C 

using oxygen (stream 22) from an air separation unit, producing carbon 
dioxide and steam. To ensure these were the only gases formed, excess 
oxygen was supplied to ensure complete combustion of methane. Two 
heat exchangers were used in order to elevate as well as maintain the 
heat in the streams to and from the reactors, thus achieving an efficient 
heat integration of the reactors’ thermal content. With these baseline 
conditions, the H 2 purity was found to be 91.65%. 

A sensitivity analysis was performed to generate a large database 
(13,756) that was implemented in the machine learning models. The 
parameters that were chosen to vary were: steam to carbon ratio (S/C), 
sorbent to carbon ratio (CaO/C), reformer pressure, as well as reformer 
and regenerator temperatures. They were varied over the ranges shown 
in Table 2 . These parameters were chosen as they form the independent 
control/performance variables for the SE-SMR process, and the ranges 
were chosen as they were typically reported in the available literature 
[13–16] . The data sampling was arranged with one change per data- 
point and the rationale for this was to act as if it were an actual reac- 
tor and therefore experiencing slight changes in the conditions in every 
and any direction. For example, for one datapoint the reformer tempera- 
ture, regenerator temperature, S/C and reformer pressure were all kept 
constant with changing CaO/C. Then for the next datapoint, the next 
reformer temperature was chosen, and again the other three parame- 
ters were kept constant, for changing CaO/C, and so forth so that each 
parameter was altered and was combined with all changes in the other 
parameters as well. Additionally, as seen in Table 2 , whilst the pressures 
and temperatures had set intervals, the ratios varied between the given 
ranges as they were calculated from changing flowrates. Again, this was 

chosen to replicate practical operation as the flowrates would be the pa- 
rameters altered as opposed to picking specific ratios. What was ensured 
however was that the ratios were kept within the specified ranges. 

Although oxy-fuel combustion usually occurs in 70–80% CO 2 and 
30–20% O 2 since burning methane in O 2 releases a lot of heat, instead 
of recycling CO 2 from stream 12, only CO 2 from the PSA off-gas was 
recycled. This is because it has been shown in literature, that increasing 
the oxygen concentration in the calciner reduces the amount of recycled 
gas (CO 2 , H 2 O and impurities); thus removing the energy necessary to 
heat the recycled gas stream [17] . To ensure excess air was supplied to 
the process at all times, a calculator block was used, which took into 
account the methane fed to and the CO 2 from the PSA off-gas recycled 
to the calciner and made appropriate adjustments to the flow from the 
ASU. In addition, a design specification was used to ensure the quantity 
of fresh sorbent supplied was equal to the spent sorbent being purged 
from the calciner. The specification also ensured the relative sorbent 
make up (Fresh limestone/Sorbent circulation rate) was 0.04 which is 
in the range of typical rates presented in the literature [18] . 

2.2. SE-SMR process model validation 

In order to validate the SE-SMR process model and thus to ensure that 
the results from the machine learning models were an accurate repre- 
sentation of the system, the literature data were used, as a comparison 
with the model predictions is presented in Table 3 . 

Table 3 shows that the model predictions are in good agreement 
with the experimental data found in literature. The average percentage 
error across the H 2 concentration and CO 2 concentration is 2.2% and 
42.2%, respectively. The deviation for H 2 concentration is deemed ac- 
ceptable to validate the model as 2.2% margin of error for experimental 
results, particularly for this sample size. On the other hand, whilst the 
CO 2 concentration error is much higher, it should be considered that 
CO 2 concentrations are relatively low, and a small deviation in process 
performance can make a significant difference. 

2.3. Machine learning model selection 

The input variables, or features, chosen were S/C (steam to carbon 
ratio), CaO/C (sorbent to carbon ratio), reformer pressure and the re- 
former and regenerator temperatures. The desired soft sensor outputs to 
be obtained from these features were the gaseous concentrations within 
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Table 3 
Comparison of literature data against Aspen Plus data for validation purposes. 

Li et al. [19] Johnsen et al. [20] Arstad et al. [21] 

Process parameters 

S/C ratio 5 3 4 

CaO/C ratio 0.125 0.18 1.1 

Reformer pressure (bar) 1 1 1 

Reformer temperature (°C) 630 600 575 

Regenerator temperature (°C) 850 850 895 

Literature data 

H 2 concentration (%) 95.6 98.4 95.8 

CO 2 concentration (%) 2.7 0.4 0.7 

Model predictions 

H 2 concentration (%) 97.3 96.9 98.9 

CO 2 concentration (%) 1.5 0.5 0.3 

the reformer (H 2 O, CO, H 2 ) and regenerator (H 2 O, CO 2 ). Another val- 
ued output to be found during process operation was the reformer CH 4 
conversion efficiency ( Equation 7 .) defined as the moles of CH 4 reacted, 
divided by the moles of CH 4 going entering the reformer [22] . 

C H 4 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ( % ) = 

𝑛 C H 4 ,𝑖𝑛 
− 𝑛 C H 4 ,𝑜𝑢𝑡 

𝑛 C H 4 ,𝑖𝑛 

× 100 (7) 

With the five input features and the desired output performance in- 
dicators selected, a machine learning algorithm was developed. As the 
information gathered was all numerical, very little data pre-processing 
was required at this stage. One action taken on the data was randomising 
the order of the data as it had been collected in order of increasing vari- 
able e.g. S/C, CaO/C, temperature, pressure. This was an action taken to 
prevent the models from overfitting the data, by recognising a sequential 
pattern. Additionally, the data was scaled once it was implemented into 
Python, more specifically normalised to have a value between zero and 
one, which prevented the models attributing a higher ‘importance’ to 
larger values, and thus giving it higher influence on the overall results. 

The next step in the process to develop the soft sensor, was to select 
appropriate machine learning models that were suitable for the type of 
data collected. The type of machine learning chosen was ‘supervised 
learning’ since the system was presented with labelled input-output 
data in order to learn from it. Of the two types of supervised learning 
categories- classification and regression, regression was the type to be 
used as the data was continuous and numerical. The two models chosen 
were random forest and artificial neural network. 

3. Machine learning theory and calculations 

3.1. Random forest 

The random forest model is a combination of decision tree predic- 
tors, where each tree depends on the values of a random vector sampled 
independently, as well as with an equal distribution across all trees [23] . 
They are able to overcome the problem of overfitting as they introduce 
the randomness into each individual tree by growing each tree on a 
bootstrap sample of the training data and only using random subsets 
of the available predictors when creating the split. The formula for the 
predictions is given in equation 8 , where 𝑥 ′ is unseen samples, 𝑓 𝑏 is each 
tree and 𝐵 is the number of trees after the spilt. 

𝑓 ( 𝑥 ) = 
1 

𝐵 

𝐵 ∑

𝑏 =1 

𝑓 𝑏 
(
𝑥 ′
)

(8) 

Two principal features of the RF algorithm are out-of-bag (OOB) 
error estimates and feature importance rankings. Out-of-bag samples 
refers to a third of samples not being used for fitting a particular regres- 
sion tree in the forest. The OOB score provides a similar measure of the 
model’s generalization error and is calculated by constructing the pre- 
dictor for each observation with the trees that apply for that specific ob- 
servation that was out-of-bag. The overall OOB score is then computed 

as the average error of all OOB predictions [24] . The feature importance 
is calculated by recording the improvement in the split-criterion at each 
split and in each tree. These improvements are then attributed to the 
feature that were used to split these particular nodes and summed over 
all trees and for all feature separately [25] . 

The primary reasons for the random forest algorithm being beneficial 
for this type of dataset includes that they are quite resistant to overfit- 
ting, with the addition of more trees and they do not require complicated 
or time-consuming processes of variable selection [26] . Additionally, RF 
can handle missing values and maintain the accuracy of a large propor- 
tion of data. An annotation of how this random forest works through 
the ‘trees’ is shown in supplementary materials (Figure S.1) 

3.2. Artificial Neural Network (ANN) 

ANN is a non-parametric, information processing, statistical 
paradigm, which does not require any pre-assumption of the input–
output relationship. ANNs consist of three principal layers: an input 
layer, several hidden layers and an output layer, which are made up 
of various numbers of connected ‘neurons’ or ‘nodes’ in each layer. The 
quantity of hidden layers defines the depth of the architecture. The data 
is transferred from the input node, along to the hidden layer nodes, 
eventually reaching the output layer to achieve the results or predictions 
[27] . It has also been shown that ANNs have the ability to approximate 
any non-linear system with high interpolation capacity. ANNs have a 
high ability to effectively approximate non-linear systems which is down 
to the use of one or more hidden layers and non-linear transfer functions 
in the hidden layer’s neurons. A unique attribute of ANNs is that they 
are adaptive, but with the requirement that the input data is presented 
to the network in order to recognize the process i.e. it must be trained 
first, therefore, ANN is a ‘supervised learning’ algorithm. The training 
process of the ANNs aims to achieve the highest coefficient of determi- 
nation (R 2 ) and the lowest root mean square error (RMSE) and mean 
absolute error (MAE) equations 9 and (10) , where n is the quantity of 
data required for the network training, 𝑦 𝑖 is the predicted output and 𝑡 𝑖 
is the target output. This is done by fine-tuning the weights and biases 
according to the training algorithms [ 10 , 28 ]. 

𝑅𝑀𝑆𝐸 = 

√ √ √ 
√ 1 

𝑛 

[ 
𝑛 ∑

𝑖 =1 

(
𝑡 𝑖 − 𝑦 𝑖 

)2 
] 

(9) 

𝑀𝐴𝐸 = 
1 

𝑛 

[ 
𝑛 ∑

𝑖 =1 

||𝑡 𝑖 − 𝑦 𝑖 
||

] 

(10) 

The use of ANN as a tool for nonlinear soft sensing modelling has 
been widely used in the recent years, particularly regarding the pre- 
diction accuracy and saving of computational costs in many industrial 
fields [29] . Some examples of the applications include estimation of out- 
puts based on industrial data [11] , reduction of costs involved in com- 
putational methods [30] , and prediction of behaviour for control and 
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Table 4 
Random Forest feature importance for each output parameter. (Ref = Reformer, Reg = Regenerator, T = Temperature, P = Pressure) 

Level of importance Reformer [H 2 O] Reformer [CO] Reformer [H 2 ] Regenerator [H 2 O] Regenerator [CO 2 ] [CH 4 ] reformer conversion 

Most S/C Ref T S/C CaO/C Reg T S/C 

Reg T Ref P Reg T S/C CaO/C Ref T 

Ref T S/C Ref T Reg T Ref T Ref P 

Ref P Reg T Ref P Ref T Ref P Reg T 

Least CaO/C CaO/C CaO/C Ref P S/C CaO/C 

optimization systems [ 31 , 32 ]. Benefits of this model include that it has 
the ability to model highly non-linear functions and can be trained to 
accurately generalise when presented with new, unseen data [33] . 

3.3. Multivariate analysis 

As previously mentioned in the Section 3.1 , a feature commonly used 
within the random forest model is the feature importance ( Table 4 ), 
which is found by the OOB data. When the training set for the current 
tree is drawn by sampling with replacement, as explained in section 3.1 , 
only a third of the cases are left out of the sample. This OOB data is used 
to get a running unbiased estimate of the classification error as trees are 
added to the forest, and also used to get estimates of feature impor- 
tance, which has proven to be unbiased in many tests [23] , (full list of 
data in supplementary materials Table S.2). In addition, another popu- 
lar method to quantify the importance of the features on the impact it 
has on a model, is to permute the values of each feature and measure the 
effect of permutation on the accuracy of the model. This essentially cre- 
ates a cut-off point in the feature importance values [34] . An example of 
this is applied to the CO 2 concentration in the regenerator. Table 4 indi- 
cates that regenerator temperature and the sorbent to carbon ratio are 
the most influential in the CO 2 concentration, and it is clear from per- 
muting the values of the other three features, that the former two are 
the only important features in predicting CO 2 concentration from the 
calciner, which is expected. From this it can also be inferred that the 
value of 0.1 for variable importance acts as a good cut-off point as the 
R 2 value remained at > 0.99 with the permuted features. This was con- 
firmed by testing the other concentrations and permuting values until 
a significant change in accuracy was found, and across each parame- 
ter it was clear that features with an importance greater than 0.1 was 
considered ‘important’. 

The equivalence of this application in ANN is backward stepwise 
elimination to the ANN model (assessing change to RMSE with each 
input node removal) [35] . However, it has been reported in literature 
[ 36 , 37 ] that the method of backward stepwise elimination is not always 
a preferable method of quantifying variable importance, as the method 
is usually only successful in measuring the most influential variable as 
opposed to the whole input dataset. 

ANN is often seen as a black box, from which it is very difficult 
to extract useful information for another purpose like feature impor- 
tance/explanations [38] . Although it is possible, for this reason, to anal- 
yse the input features for the ANN model and compare against the ran- 
dom forest variable importance, principal component analysis (PCA) 
was performed as an effective procedure for the determination of input 
parameters [39] . PCA is a mathematical model that is used to reduce 
the dimensionality of a dataset, whilst retaining most of the variation 
in the dataset, which allows for better interpretation of the data. Some 
features in a dataset measure related properties and are effectively re- 
dundant and therefore should be removed for effective analysis, which 
is what PCA aims to do. The reduction of features is achieved by identi- 
fying the directions (principal components) that the variation is highest 
[ 40 , 41 ]. 

The PCA was calculated in Python using ‘scikit-learn’s PCA package’, 
firstly to check the interaction and redundancies of the five input vari- 
ables. Fig. 2 shows the correlation plot of the inputs. From this, it is 
inferred that the reformer pressure and regenerator temperature, are in- 

Fig. 2. Correlation heatmap of input features (Ref = Reformer, Reg = Regener- 
ator, temp = Temperature). 

Fig. 3. Heatmap showing dependencies of 5 principle components on input fea- 
tures (Ref = Reformer, Reg = Regenerator, temp = Temperature). 

versely correlated, meaning as one increases the other decreases. It can 
also be seen that regenerator temperature has little linear correlation 
with reformer temperature, but is positively correlated to steam to car- 
bon ratio, as the former value is close to zero, and the latter, close to one. 
Additionally, it is evident that none of the input variables are redundant 
as none of the variables correlate perfectly throughout, i.e. none of the 
values are significantly close to one, so they are independent of each 
other, therefore all inputs are retained for the model development. 

Secondly, Fig. 3 was generated to examine the interrelation among 
a set of variables in order to identify the underlying structure of those 
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Fig. 4. Number of epochs vs MAE for reformer H 2 O concentration: a) 30 epochs, b) 100 epochs. 

variables. As mentioned before, PCA allows a reduction in components 
by looking at the independence ( Fig. 2 ) as well as how they contribute 
to the variance, i.e. how the variables combine to form the principal 
components. This can be found by measuring the variance ratio of the 
principal components. 

The results for this dataset was found to be that the first PC explains 
32.1% of the variance, PC2 explains, 21.2%, PC3 and PC4 explain 20% 

each and PC5 explains 0.07%. This indicates a fairly even distribution of 
variable influence across the first four principal components, and there- 
fore not essentially necessary to remove any parameters. On relatively 
small data sets, and in examples from literature [40] , the first two com- 
ponents normally contribute to around 70–95% of the total variance, 
hence why PCA is normally depicted with two principal components. 
PCA becomes a valid method for feature selection, only when the most 
importance features, are the ones that happen to have to most varia- 
tion in them, which is usually not true, and therefore features with low 

variation should not automatically be disregarded [42] . 
In addition to explaining the variance, Fig. 3 also explains feature 

importance. From this plot it can be calculated that the top three fea- 
tures that contribute to the five PCs of reformer methane conversion, are 
the reformer and regenerator temperature, and the steam to carbon ra- 
tio, which corresponds to the random forest variable importance results 
( Table 4 ). 

3.4. Machine learning model setup 

The models were coded in Python 3.8 using the PyCharm integrated 
development environment with the Keras and TensorFlow libraries as 
the backend. Keras is a library of open sources of the neural network 
developed in Python, which is focused on minimization, modularity, 
and scalability. Additionally, TensorFlow is an open-source software li- 
brary which provides an interface for expressing and executing various 
machine learning algorithms [43] . Firstly, with the ANN model, various 
network configurations were tested trialled and compared with their 
R 2 and MAE values. The elbow-curve method was employed to find the 
configuration with the least number of nodes per layer that still resulted 
in high prediction accuracy metrics and minimised computational time. 

Alongside the number of nodes per layer, the number of epochs and 
batch size are two important variables that influence the run time of the 
model as well as the accuracy of prediction. Simple descriptions of these 
parameters are: 

• Batch size: The number of samples worked through by the model 
before updating the internal node parameters. 

• Epoch: The number of times that the machine learning model works 
through the full dataset provided whilst training. 

The optimal combination was found, by methods recommended in 
the literature, through multiple iterations and by plotting network ac- 
curacy vs epochs [44] . 

The metrics used to give the accuracy of the models were the coef- 
ficient of determination (R 2 ), the MAE and the root mean square error 
(RMSE). An indication of a well fitted and highly accurate model was 
one with low RMSE and MAE values as well as a high R 2 . Fig. 4 shows 
plots of accuracy using the MAE, on the training and validation datasets 
over training epochs, for CH 4 conversion. Whilst it is clear the variation 
is lesser with more epochs, the actual MAE at the end of both iterations 
is very close and the difference is almost negligible after ~10 epochs. 
Due to this, 10 epochs was tested against the dataset to further reduce 
computation time, however, it was found that this resulted in error and 
therefore there is a minimum limit of epochs for the size of dataset used, 
which in this case was 30. 

In literature, it is suggested that a larger number of epochs gives 
higher accuracy for prediction as the model is able to go through the 
dataset more times. However, with this dataset and model scenario, it 
was found that a sufficiently high R 2 and MSE were obtained with low 

batch sizes and epochs. Reasons for this outcome is thought to be down 
to the use of a relatively simple and clean dataset obtained from thermo- 
dynamic calculations in Aspen Plus, as opposed to using experimental 
data that will contain experimental error leading to deviations in the 
dataset. A model with 100 epochs ( Fig. 4 b) and batch size of 10 gave an 
R 2 value of 0.95 whereas a model with 30 epochs ( Fig. 4 a) and batch 
size of 10, and a lower model run time, gave R 2 value of 0.92. The small 
difference in error from these two examples hides the computational 
time required, thus, to minimise computational time (from 907 seconds 
to 245 seconds), and error a low epoch size (30) was applied. 

For the model developed, the batch size chosen was 2 and 30 epochs. 
To give an insight into what that meant for the data provided: 

• With a dataset with 13,756 samples, the dataset was divided into 
6,878 batches, each with 2 samples. 

• The model weights were updated after each batch of 2 samples. One 
epoch will involve 6,878 batches i.e. 6,878 updates to the model. 

• With 30 epochs, the model will go through the whole dataset 30 
times. 

• Resulting in a total of 206,340 batches during the entire training 
process. 

An additional factor in the ANN setup to be considered was the acti- 
vation function used, which defines the output signal of that node, given 
an input or set of inputs [45] . From literature [ 11 , 39 ], it was found that 
whilst the Rectified Linear Unit (ReLU), was the most commonly used 
due to its speed, functions such as hyperbolic tangent (tanh) and sig- 
moid functions were more appropriate functions to be used with the 
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Fig. 5. Actual vs Predicted plots by the ANN algorithm for: a) reformer [H 2 O], b) reformer [CO], c) reformer [H 2 ], d) regenerator [H 2 O], e) regenerator [CO 2 ], f) 
reformer CH 4 conversion modelled. Black lines in each figure represent y = x . Red lines indicate the line of best fit. 

Figure 6. Actual vs Predicted plot by the random forest algorithm for: a) reformer [H 2 O], b) reformer [CO], c) reformer [H 2 ], d) regenerator [H 2 O], e) regenerator 
[CO 2 ], f) reformer CH 4 conversion modelled. Black lines in each figure represent y = x . Red lines indicate the line of best fit. 

dataset provided. This was investigated in order to reach the optimal 
function and it was found that a combination of both the ReLU and sig- 
moid functions in between the layers of nodes gave the highest accuracy 
metrics. A comparative view of the functions is shown in supplementary 
materials (Figure S.2). 

The calculations involved in the random forest model are less de- 
pendent on the inputs from the user as the model has a more automatic 
analysis process [46] . What does have to be specified however is the sub- 
sample size (the number of preselected directions for splitting the data) 
the tree depth (which can be specified in different ways) and the num- 
ber of trees. However, there is a general consensus that implemented de- 
fault values for these parameters produce good empirical performance 
in prediction, which is partially why random forests are so popular as a 
machine learning tool [47] . 

4. Results and discussion 

The results are graphically presented in the form of predicted against 
actual plots, which shows the accuracy of the model. These plots indi- 
cate how well the predicted data fits to with actual data, and whether 
the patterns in the actual data be reproduced by themodel [48] . A model 
that performs well would produce a scatter of data that are close to the 
y = x line. Figs. 5 and 6 depict the calculated Aspen data as ‘Actual’ 
data plotted against the ‘Predicted’ data from the two machine learn- 
ing models. From both figures and the supporting metrics, it is evident 
that the random forest performed better than the neural network in the 
ability to predict the concentration of the gas in each reactor, due to 
achieving higher R 2 and lower RMSE and MAE values (presented in 
Table 5 ). Another comparison of the two models is the prediction of the 
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Table 5 
Neural network vs random forest soft-sensor concentra- 
tion predictions 

Neural Network Random Forest 

R 2 MAE R 2 MAE 

Reformer [H 2 O] 0.98 0.012 0.99 0.007 

Reformer [CO] 0.99 0.005 0.99 0.003 

Reformer [H 2 ] 0.98 0.016 0.98 0.014 

Regenerator [H 2 O] 0.99 0.011 0.99 0.010 

Regenerator [CO 2 ] 1.00 0.007 1.00 0.002 

CH 4 Conversion 0.98 0.024 0.99 0.012 

conversion of CH 4 within the reformer, Fig. 5 f (ANN) and Fig. 6 f (RF). 
In this comparison, both the neural network and random forest give a 
high R 2 value (0.98 and 0.99, respectively), indicating that they produce 
an accurate prediction of the efficiency of the reaction taking place in 
the reformer, at any given moment. In practical terms, this translates 
to allowing an operator to observe if the set conditions (pressure, tem- 
perature, flowrates) are giving a sufficient conversion rate and product 
purity in real time and make appropriate changes to achieve the desired 
product. 

In the plots, the red line represents the line of best fit for the data, 
with the black line representing y = x . For the neural network, the one 
main difference is that there is a higher spread of data, and this can be 
explained by MAE value, which gives the magnitude of model predic- 
tion error, and is higher for the neural network. For all plots it is clear 
that that line of best fit almost overlaps the y = x line for most plots, 
specifically regenerator CO 2 concentration ( Fig. 6 e, 5 e). This is due to 
the Aspen model calculation, which is able to calculate the most sta- 
ble species in a gas stream at each temperature, which in this case at 
the given temperature range, is CO 2 . This is translated into the Python 
models, as the set of five features used from Aspen, allows the model to 
obtain a more accurate prediction. 

Whilst the majority of the graphs are fairly uniform in the points plot- 
ted around the line of best fit and y = x line, there are some apparent 
anomalistic datapoints seen in both Fig. 5 f and Fig. 6 c. For Fig. 5 f, neu- 
ral network CH 4 conversion, there is a clear curve of data points above, 
and a few points below the line of best fit and y = x line. To eliminate 
this being a mistake, this plot was run in Python multiple times, with 
different epochs and number of nodes in the layers, with the same pat- 
tern being detected. An explanation for this is down to the raw data and 
potentially, that an insufficient set of features was selected to identify 
all reactions occurring. When analysing the raw data, it is evident that 
whilst 0.99% was the maximum for the conversion, at the lower end, 
0.02% was the minimum however this was for a specific set of inputs, 
i.e. the results go from 0.99 to 0.02% in a set pattern, with little to no 
results at 0–0.4% for higher input feature conditions, and the same at 
0.6-0.99% for lower input feature data, creating a curve in the overall 
raw dataset. 

For the Fig. 6 c, random forest H 2 concentration in the reformer, an 
explanation for the plateau of datapoints at around 0.5% and again be- 
tween 0.7–0.8%, is that since H 2 is the final and main product gas from 

all the reactions taking place in the reformer, it is the essentially least 
affected by slight changes in input features. This is because it is the ag- 
glomeration of 3 different reactions equations 1 , 2 and (4) , thus a lot 
of the different combinations of inputs (S/C, CaO/C, temperature, pres- 
sure), result in the same H 2 concentrations, which can be seen when 
analysing the raw data, and can also be seen practically. The data in 
this study is theoretical and manually adjusted in the Aspen model how- 
ever, in literature concerning experimental studies on SE-SMR [49–51] , 
there are a number of different conditions that are accepted as ‘optimal’, 
and therefore the reason behind different conditions resulting in a high 
H 2 concentration. This pattern in data can vaguely be seen in the neu- 
ral network plot as well ( Fig. 5 c), particularly around 0.7%, but not as 

clearly. Reasons for this fall under the fact that the ANN is a connected 
network of neurons, that are grouped in layers and process data in each 
layer sequentially before passing forward onto next layers, therefore, 
each message is passed on until the very last end results, and the out- 
put is a more holistic representation of the input features. On the other 
hand, random forests are made up of decision trees, where within each 
tree, the input is processed and an output is predicted, independent of 
all the other trees [52] . Additionally, an assumption that RF takes on 
is that it relies on sampling being representative. For example, if one 
class consists of two components and in the dataset one component is 
represented by 100 samples, and another component is represented by 
one sample - most individual decision trees will see only the first com- 
ponent and RF will misclassify the second one. RF on the whole does a 
good job at classification but not as much for regression in some cases, 
as it does not give precise continuous nature prediction. In the case of 
regression, it does not predict beyond the range in the training data and 
can sometimes lead to nonsensical predictions if applied to extrapolation 
domains, as seen in Fig. 6 c [53] . 

Advantages of a data driven soft-sensor model, as opposed to a math- 
ematical modelling program such as Aspen Plus, is that one is able to 
obtain real time variable measurements dependent on actual process 
conditions instead of manually inputting each component conditions in 
order to obtain a parameter output. Despite how thermodynamically ac- 
curate an Aspen Plus model is over a soft sensor, in practical terms the 
use of a representative model is more beneficial. The use of an ANN or 
RF model acts as the code within a control system which in turn pre- 
dicts the concentration of the gases, thus bypassing the use of hardware 
components, and with the metrics shown in Figs. 5 and 6 , the predic- 
tions are highly accurate. Mathematical programming software such as 
Aspen Plus, have the feature of performing reactions at equilibrium, 
whereas actual experimental processes experience various limitations 
such as diffusional limitations and axial dispersion. For this reason, the 
use of a soft sensor is highly advantageous over a simulation program, 
due to the use of actual historical process data. In addition, in practical 
terms, a soft-sensor can be used as a backup sensor, when the hardware 
sensor is faulty or is removed for maintenance or replacement, or it can 
be used in the process of quality control, in place of laboratory analysis, 
which is often not exhaustive enough [ 6 , 54 ]. 

5. Conclusion 

In this work, a soft sensor model was developed through the appli- 
cation of artificial neural network (ANN) and random forest (RF) al- 
gorithms for the hydrogen production process by sorption enhanced 
steam methane reforming (SE-SMR). The choice and development of 
the models were discussed as well as parameters that were necessary to 
produce accurate predictions of the dataset provided. From the results, 
both models were shown to provide good performance predictions for 
gas concentrations in the reformer and regenerator reactors using five 
specified process features, in particular those of high concentrations. 
Additionally, the CH 4 conversion within the reformer was calculated 
and predicted with both models able to reflect the efficiency of the re- 
action very accurately. The random forest model indicated higher levels 
of accuracy with consistently higher R 2 values and lower mean abso- 
lute error (0.002–0.014) compared to the neural network model (0.005–
0.024). Overall, this study concludes that ANN and RF algorithms can 
successfully model a nonlinear process such as SE-SMR. The developed 
models can be applied as a soft sensor for analysis and evaluation of 
a SE-SMR based hydrogen production plant and to predict key process 
performance indicators. The chemical properties of hydrogen and the 
sorbent material hinder the ability to rapidly upscale this process, there- 
fore the use of machine learning models, that are a realistic represen- 
tation of experimental data, is very useful, in order to overcome such 
limitations. With hydrogen fast becoming a leader in clean energy sys- 
tems, it is essential that all efforts are made to simplify and ensure the 
safety and feasibility in the process of up-scaling hydrogen production. 
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The use of a data-driven soft sensor does exactly that and allows for 
further exploration and incorporation of artificial intelligence into this 
energy field. Future directions for this study would be to implement the 
soft sensor experimentally in order to compare the success rate of the 
soft sensor against hardware sensors, and thus further validating this 
machine learning application for the process of SE-SMR. 
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