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ABSTRACT

Antibiotic resistance is a worldwide health threat, as bacteria continue to evade
antibiotic treatment. In order to survive, bacteria utilize a number of resistance
mechanisms, including efflux pumps, which efficiently export antibiotics outside of the
cell to reduce intracellular damage. While such mechanisms are well known, there remains
a significant gap in knowledge regarding how different environmental dynamics, such as
the rate of antibiotic introduction or the diversity within a microbial community, play a role
in resistance. In this work, we used the AcrAB-TolC efflux pump as a case study to explore
how such complex dynamics promote antibiotic resistance and its evolution. First, through
a combined effort using experiments and mathematical modeling, we discovered that the
rate of antibiotic introduction impacts the fraction of resistant bacteria in a population. We
then explored the impact of mixed populations on survival following antibiotic treatment.
In mixed microcolonies, we found that resistant cells can harm their susceptible neighbors
by exporting antibiotics to increase the local concentrations of these drugs. Next, we aimed
to understand how these environmental effects may impact longer-term survival of an
antibiotic treatment, focusing on the evolution of resistance over ~72 hours. Through a

series of adaptive evolution experiments, we identified that near-MIC treatments were the



most likely to promote antibiotic resistance, regardless of whether the strains contained the
AcrAB-TolC pump at wild type or overexpressed levels, or whether the strains lacked the
pump altogether. In studying antibiotic introduction rates on evolution, we found that
slower introduction rates facilitated the evolution of high levels of resistance with a
minimal fitness cost. Meanwhile, mixed populations demonstrated limited evolvability
after rapid antibiotic introductions. This work provides important insights into the impacts
of environmental factors, such as the rate of antibiotic introduction and the homogeneity
of populations, on the promotion and evolution of antibiotic resistance. These lessons may
help inform future policies on antibiotic use and mitigate the continued pattern of resistance

evolution.
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PREFACE

After a two-week vacation in 1928, Alexander Fleming returned to his lab at St.
Mary’s Hospital in London to continue his research on the influenza virus from the 1918
pandemic. There Fleming found an old plate of Staphylococcus had been contaminated
with mold. Under closer inspection, he observed that the growth of the contaminated mold
had produced a zone of inhibition, in which the bacterial colonies were smaller and were
lysing. The mold was penicillin-producing Penicillum rubens. By 1941, Howard Florey
and Ernst Boris Chain from the Radcliffe Infirmary had scaled-up the research of penicillin
for mass production.

Yet, in 1940, Ernst Boris Chain and Edward Abraham already reported an
Escherichia coli stain that inactivated penicillin. After the clinical trials in 1942, four
clinical strains of Staphylococcus aureus demonstrated resistance to penicillin. By 1970,
over 80% of all S. aureus strains collected from communities and hospitals were penicillin-
resistant. As of 2019, nearly 3 million cases of antibiotic-resistant infections are reported

every year in the United States alone.
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1. INTRODUCTION
1.1. Antibiotic Resistance

Antibiotic resistance remains a global health crisis as the number of resistant
infections continues to rise (1-3). Each year in the United States, there are over 2.8 million
cases of antibiotic-resistant infections resulting in over 35,000 deaths (4). While antibiotics
are still essential for both medicine and science, over-prescription has led to high levels of
resistant infections in the clinic (2, 5). While this over-prescription was an early contributor
to the spread of resistance, the anthropological use of antibiotics for sterilization has only
aggravated the problem (5-7). Such applications include agriculture, veterinary care,
industrial and household cleaning processes, and wastewater treatment (5, 8). Together
these applications have resulted in the rapid spread of antibiotic resistant microbes not only
through person-to-person transmission, but also in our soil, water, and food (2, 5, 9-11).
The ability for microbes to so quickly acquire resistance requires a deeper dive into how

antibiotic resistance mechanisms allow microbes to survive antibiotic treatment (2).

1.1.1. Mechanisms of Antibiotic Resistance
The first step in understanding why antibiotics fail is understanding how they fail
(12). Mechanisms by which microbes become resistant include altering drug targets,
producing enzymes for antibiotic degradation or modification, tuning gene expression,
reducing cell membrane permeability, and increasing active efflux (5, 13, 14) (Table 1-1).
For example, in order to protect itself against an antibiotic treatment with a B-lactam, a
bacterium can actively alter gene expression to increase the target to antibiotic ratio (15).

However, it is also important to note that microbes do not need to rely solely on one



resistance mechanism to survive and that microbes simultaneously use multiple strategies
to increase their chance of survival (1). For example, in the presence of a B-lactam, a cell
may achieve resistance by reducing membrane permeability, increasing efflux, and
modifying the target protein, in addition to degrading the antibiotic with B-lactamases (13).
Most of the time, bacteria using multiple mechanisms are resistant to a larger range
antibiotics; however, in some cases, mutants which evolved resistance mechanisms to

combat one antibiotic simultaneously become more sensitive to other antibiotics (16).

Mechanism of Resistance | Example Antibiotics Antibiotic Targets

Antibiotic efflux Amphenicol (e.g. chloramphenicol) 50S Ribosome
Tetracyclines (e.g. deoxycycline) 30S Ribosome
Bacitracin (e.g. bacitracin) Cell wall
Nitrofurans (e.g. nitrofurantoin) DNA

Reduced permeability Rifamycins (e.g. rifampicin) mRNA Transcription
Glycopeptides (e.g. vancomycin) Cell wall
Macrolides (e.g. azithromycin) 50S Ribosome
Aminoglycosides (e.g. gentamicin) 30S Ribosome

Expression changes B-lactams (e.g. ampicillin) Cell wall
Sulfonamides (e.g. sulfamethoxazole) | Nucleic Acid synthesis
Fusidanes (e.g. fusidic acid) 50S Ribosome
Isoniazid (e.g. isoniazid) Cell wall

Antibiotic modification Quinolones (e.g. ciprofloxacin) DNA gyrase

or degradation Nitroimidazoles (e.g. metronidazole) | DNA

Fosfomycin (e.g. fosfomycin) Cell wall
Lipopeptide (e.g. daptomycin) Cell membrane

Target modification Polymyxin (e.g. colistin) Cell membrane

or protection Mupirocin (e.g. mupirocin) RNA synthetase

Oxazolidinone (e.g. linezolid) 50S Ribosome
Trimethoprim (e.g. trimethoprim) Nucleic Acid synthesis

Table 1-1. Mechanisms of Antibiotic Resistance.

The key mechanisms of antibiotic resistance are shown here, along with examples of
antibiotic classes, antibiotics, and the targets of the associated antibiotics (5, 13, 14).



Different mechanisms of antibiotic resistance can be achieved by both permanent
and transient changes to the cells’ physiology (17, 18). One method by which cells can
permanently acquire antibiotic resistance mechanisms is through the uptake of antibiotic
resistance genes via horizontal gene transfer (HGT) (19-21). This transfer is facilitated
through conjugation of plasmids, transduction by bacteriophages, or natural transformation
of extracellular DNA (22, 23). HGT allows for microbes to be shared through a larger and
more diverse genetic pool and can provide resistance faster than spontaneous mutations
(21, 22). Yet, the prevalence of HGT in clinics remains unknown as HGT likely fluctuate
depending on environmental conditions (22, 24).

Resistant genotypes are also often inherited through vertical gene transfer, in which
a fixed genetic mutation is passed down to an offspring (14). One type of mutation that
contribute to increased resistance are single point mutations; these include missense point
mutations, which may alter protein function by using an alternative amino acid, and as well
as insertions, deletions, and nonsense mutations, which may disrupt protein function more
severely through frameshifts (13). Such point mutations often affect gene expression,
protein binding, or protein inactivation (20). Additionally, mobile genetic elements, such
as insertion sequences or transposons from the host’s own chromosome, rapidly integrate
into target genes (5, 23, 25) to disrupt local stress response regulators (26). These mobile
genetic elements can also cause larger chromosomal rearrangements (27) and can provide
an intermediate pathway to gene duplication (28, 29), which can lead to increased copy
numbers of antibiotic resistance genes (23, 30, 31).

Nevertheless, bacteria do not survive antibiotic treatment exclusively through



permanent changes, but can also survive through transient measures; therefore, it is
important to make the distinction between permanent antibiotic resistance and transient
antibiotic tolerance. Bacteria exhibiting the aforementioned permanent genetic changes,
such as a gene encoding for a resistance factor from Table 1-1, are considered resistant
(32). Populations of resistant bacteria are capable of growing and surviving at
concentrations of antibiotics that susceptible cells cannot (32). Thus, since a higher
antibiotic concentration is required to kill the resistant population, the minimum inhibitory
concentration (MIC) for resistant cells is higher than the MIC for susceptible cells (32-34).
Yet, there are cases where bacterial populations do not encode for a resistance factor,
similarly to susceptible cells, but are able to survive much higher antibiotic concentrations,
similarly to resistant cells (32, 35). Such bacteria are defined as tolerant and enable a sub-
population to survive at higher antibiotic concentrations through dormancy or persistence
(32). For example, one subset of tolerant cells — persister cells — present a resistant
phenotype to survive conditions with a susceptible genotype that should otherwise lead to
cell death (32). This tolerance can emerge either spontaneously or as a result of a trigger,
such as starvation, cell density, or chemical stressors (32, 36). For example, diversity in a
general stress response activator, MarA in E. coli, improves single-cell survival against
carbenicillin; yet, the single cells that survive do not retain resistance (37). Thus, bacteria
can leverage transient changes to their physiology to improve a bacterial population’s
survival (5, 14). Today, it is well understood that bacteria have the innate and robust ability

to both evolve permanent and employ transient antibiotic resistance mechanisms.



1.1.2. Early Efforts to Combat Rising Levels of Antibiotic Resistance

Many of these mechanisms were first identified in early antibiotic resistance
surveillance studies (38). In 1994, the World Health Organization revealed a surveillance
study which found antibiotic resistance to be wide-spread across 22 countries (39). Since
then, surveillance efforts have aimed to study the spread of antibiotic resistance (40—43).
Such surveillance efforts identified the over-prescription and over-medication of
antibiotics (8, 44-46), as well as the downstream environmental impact of antibiotics use
for non-medical applications (47—49). These studies have played a key role in identifying
how antibiotic applications increased levels of antibiotic resistant microbes in our soil,
food, and waterways (2, 5, 9—11).

Though these studies have helped policy makers and physicians reduce superfluous
antibiotic use, the resistance in microbes continues to outpace the discovery of novel
treatments (6, 7, 12). In an effort to combat the lack of usable antibiotics, policy makers
created the 10 x ’20 initiative in 2010 with the goal to discover at least 10 novel antibiotics
by 2020 (50). During this past decade, numerous novel antibiotics have been identified and
subsequently approved by the U.S. Food and Drug Administration (FDA); however,
clinical and laboratory studies have already reported resistant microbes for a significant
portion of these novel antibiotics (51-56). Additional efforts have also begun to explore
antimicrobial peptides or antibiotics linked to antimicrobial peptides in the hope that these
more complex chemicals will curtail the ability of bacteria to resist treatment (57).
However, resistance to antimicrobial peptides has also already been reported (12, 58).

Combinatorial treatments with multiple drugs have also been explored for their potential



to preserve legacy antibiotics (59, 60). That said, combinatorial therapeutics need to be
carefully assessed to ensure that the effect of the drug combination is indeed additive, and
not antagonistic (61-63). Misused combinatorial treatments could be another threat to
promoting antibiotic resistance, especially Liu et al. found that bacteria could still evolve

resistance to such treatments within days (64).

1.1.3. The Continued Threat of Antibiotic Resistance

One novel antibiotic produced by the 10 x *20 initiative is eravacycline (previously
known as TP-434), which belongs to the tetracycline antibiotic class (65). While it was
found to have a broad range of antimicrobial activity, treatment failure of Enterococcus
faecalis in clinics has already been noted; these microbes evolved resistance by mutating
the target and upregulating antibiotic efflux (51). In a similar fashion, the discovery of
omadacylcine also of the tetracycline family, touted the potential against multidrug
resistant bacteria, such as MRSA (66, 67); unfortunately, due to gene expression
regulation, resistance of S. aureus isolates from Chinese clinics were found only two years
after its clinical trials (52). Such a pattern has been omnipresent, as even the novel
antibiotic, daptomycin (68), from 2004 had resistance reported within a few years (69).
Today, every class of antibiotics can be negated by at least one resistance mechanism (13);
Pseudomonas aeruginosa alone has developed a resistance mechanism against every class
of its intended antimicrobials (1). As such, we stand in a more ominous position as the
discovery of resistance to novel antibiotics outpaces the discovery of novel antibiotics (7).
One hope is for us to understand how and why resistance is emerging before these novel

antibiotics are used in clinics.



Since the 1990s, antibiotic resistance studies in the clinic have focused on
uncovering what and how resistance mechanisms evolve (19, 70, 71). Such studies have
also led to observations of cross-resistant phenotypes in clinical isolates from treatment
with a single antibiotic (72). Additionally, these studies have found resistance after sub-
inhibitory antibiotic exposure (73). Further, they have helped identify certain combinations
of antibiotics, microbes, and treatments that promote the emergence of multidrug antibiotic
resistance (74). On the other hand, these studies are often dealing with lethal consequences
of already evolved antibiotic resistance in real time and not in a predictive fashion (75). In
addition to this, studying the evolution of antibiotic resistance in the clinics remains
restrictive and time-consuming; as a consequence, there have been an uptick in laboratory

evolution studies of antibiotic resistance (19).

1.1.4. Driving Factors of Antibiotic Resistance and its Evolution

Prior to the last decade, many of the laboratory studies focused on understanding
why antibiotic resistance lingered and how the quantity of resistant cells in bacterial
populations could be reduced (76, 77). Unfortunately, simply reducing the presence of
resistant population members is not a robust solution to combat pathogenic bacteria; this
solution is only viable if resistance phenotypes are costly to the microbe, which is not
always the case (78, 79). While strategies for reducing resistance in a population aligns
with policies to avoid antibiotic use (77), there remain many cases where antibiotic
treatment is appropriate and essential (80). As such, researchers have turned their efforts
to exploring other contributing factors to antibiotic resistance that were not previously

studied: microbial population variations, such as variations in diversity and density, and



fluctuations in inhibitory antibiotic concentration (78, 81-83). The goal of these studies
was to identify which combinations of environmental factors and antibiotic treatments
could eliminate resistant cells in a population (78). This ability to reverse antibiotic
resistance during treatment requires extensive forethought and planning to properly
eradicate resistant sub-populations (84, 85). As a result, new efforts have begun to
investigate the stability of resistance in bacterial populations (78).

Resistant and susceptible cells can stably co-exist in a population at sub-inhibitory
antibiotics concentrations; this has been observed in waterways and in soil (86). The effect
of low antibiotic concentrations on the emergence of antibiotic resistance has only recently
become studied more in depth. While bacterial evolution at sub-inhibitory concentrations
are less often studied, Wistrand-Yuen et al. found that bacteria grown in sub-inhibitory
concentrations were still able to achieve high-levels of resistance through unique
evolutionary pathways (87). The divergence of evolutionary trajectories at different
concentrations suggests that elements of bacteria’s evolutionary landscapes remain
unexplored. In a recent publication, Russ ef al. found that the emergence of escape
mutations was more likely under certain antibiotic concentrations (88). Additional studies
have also reported problematic levels of antibiotic resistance after sub-inhibitory antibiotic
exposures (89-91). Thus, antibiotic concentrations may influence the emergence of
antibiotic resistance.

The activity of bacterial communities, such as in cells in a biofilm, also influences
the presence of resistant phenotypes (92-96). Further, bacterial population dynamics,

including diversity, density, and spatial organization, impact antibiotic resistance



independent of biofilms (97). For example, one study identified how population diversity
hindered the effectiveness of antibiotic cycling — a treatment strategy where an infection
is targeted with one antibiotic then another in a cyclic manner (98). Even changes in
experimental parameters alone can cause large fluctuations in population diversity (99).
These studies indicate that the impact of population dynamics on antibiotic resistance could
more complicated than previously thought (64, 92).

Evolution studies have also been key in unveiling important factors in the
emergence of antibiotic resistance (19). The Lenski experiments uncovered the power of
experimental evolution to study the long-term effect on bacterial populations in a predictive
fashion (100, 101). Previously, evolution using serial dilutions was the traditional set up;
today, more researchers have begun using bioreactors to study long-term dynamics, either
with turbidostats or chemostats (97, 102—-104). Toprak et al. developed a turbidostat-
derivative — the morbidostat — to direct bacteria to evolve by only providing nutrients
along with higher antibiotic concentrations (102, 103, 105). This method pushes the
evolved MIC to astronomically high levels. Likewise, the MEGAplate experiment was key
at understanding how and what genotypes can lead to this high level survival (106). While
the morbidostat experiments revealed the extent of the evolutionary pathway of the
bacteria, it is unlikely that such a treatment would be possible for patients due to antibiotic
toxicity (107). On the other hand, scientists have often explored the evolution of antibiotic
resistance at antibiotic concentrations that fall between inhibitory for bacteria and non-
toxic for patients (13, 64, 108). Such evolution studies have elucidated how bacteria might

respond to stressful static environments, changing environments (e.g. drug switching or
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rising antibiotic concentration), and realistically complex environments (e.g. mouse
models) (97).

Predictive modeling has also improved the understanding of antibiotic resistance,
beyond current laboratory studies (109, 110). One model by Marrec and Bitbol identified
how the timing of environmental switching could have dramatic consequences on the
emergence of antibiotic resistance (111). Another model by Chevereau et a/. identified how
heterogeneity in resistance could accelerate or delay the evolution of antibiotic resistance
(112). Yet, novel factors in the evolution of resistance still need to be better understood to
produce improved models (110). Luckily, these factors are now being elucidated in
laboratory and clinical studies (113). One such study found that different bacterial
populations evolved convergent, resistant phenotypes (114). In the future, predictive
modeling can give us a glimpse into the consequences of different environments on the

evolution of antibiotic resistance (110).

1.1.5. Gap in Knowledge of Complex Environments

Despite the attributes that these predictive models provide, there still remains a lack
of understanding of antibiotic resistance in complex and dynamic environments (111, 115—
117). Such conditions need to be explored experimentally before including them in models
(110). Furthermore, despite the incredible attributions from these cumulative works, the
overarching conclusions are difficult to interpret due to variations in experimental
parameters, such as conditions, species, antibiotics, and temporal changes to antibiotic
concentrations (118, 119). Another example of this comes from a recent study by Hallinen

et al., who demonstrated how a combination of factors could lead to both population
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survival or extinction after identical treatments (120). The emergence of antibiotic
resistance is dependent not only on genotypes and phenotypes, but also on the type of
antibiotics, antibiotic concentrations, and population composition; thus, there remains a
need to more systematically explore how these complex environmental dynamics —
including fluctuations in antibiotic doses and diversity within microbial populations —
may promote antibiotic resistant populations and their emergence (118, 121).
1.2. Efflux Pumps and Antibiotic Resistance

One mechanism capable of providing high levels of resistance to many different
drugs are efflux pumps (122—125). Efflux pumps are an energy-dependent mechanism for
the active export of a substrate from a cell (126). This mechanism is ubiquitous across both
prokaryotic and eukaryotic cells (127); for example, even cancer cells to express efflux
pumps that actively export anti-cancer drugs (128). This ability for cells to maintain low
intracellular concentrations of toxic substrates improves survival rates (44, 125). As such,
many different classes of efflux pumps have evolved to export out heavy metals, bile salts,

antimicrobial lipids, and antibiotics (129—-132).

1.2.1. AcrAB-TolC Efflux Pumps
The AcrAB-TolC efflux pump was first identified in E. coli as providing resistance
to acriflavin through a mutation in acrB in 1978 (133). It is now known to export a plethora
of substrates from E. coli cells, from antibiotics to biofuel precursors (Table 1-2) (134).
AcrAB-TolC efflux pumps are found in gram-negative bacteria, including Salmonella
enterica and Yersinia pestis (135, 136). Many homologs of AcrAB-TolC can also be found

widely throughout other gram-negative bacteria, including MexAB-OprM from
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Substrate Type Substrate Fold change References
in MIC*
Antibiotics Ampicillin 2-4 (134, 219, 258)
Chloramphenicol 2-8 (134, 189, 219)
Ciprofloxacin 4 (134, 258, 352)
Cloxacillin 256 (145, 353)
Erythromycin 16-64 (134, 145, 258, 353)
Enoxacin 4 (145)
Florfenicol 8 (134)
Fusidic Acid 128 (134, 353)
Minocycline 4-8 (145, 352)
Nalidixic Acid 2-8 (134, 219)
Norfloxacin 1-4 (134, 145, 353)
Novobiocin 32-256 (134, 145, 258, 353)
Puromycin 32-64 (134, 219)
Rifampicin 1-2.5 (134, 145, 219)
Tetracycline 2-10 (134, 219, 258, 353)
Antiseptics Acriflavine 32-64 (134, 145)
Proflavin 8 (134)
Dyes Carbonyl Cyanide 2 (134)
Chlorophenylhydrazone (CCCP)
Crystal Violet 8-32 (134, 145, 353)
Ethidium Bromide 128-256 (134, 145)
Plumagin 4 (134)
Rhodamine 6G 256-512 (134, 145)
Detergents Benzalkonium Chloride 32-64 (134, 145)
Dequalinium 128 (134, 145)
Sodium Dodecyl Sulfate (SDS) 128 (134, 353)
Terpenes o-Pinene 4 (189)
Salts Tetraphenylphosphonium 256 (134)
Tetraphenylarsonium 512 (134)
Acids Deoxycholate (134)
Antifungals Clotrimazole (134)
Anti-cancer drugs | Methotrexate (134)

Table 1-2. Substrates of AcrAB-TolC Efflux Pumps in E. coli.
 The fold change in the MIC of each substrate for strains with and without the AcrAB-TolC efflux pump.
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Pseudomonas aeruginosa and MacAB-TolC from Actinobacillus (14, 125).

The AcrAB-TolC complex is comprised of three different proteins: TolC, the outer-
membrane channel protein (137), AcrA, the periplasmic linker protein (138), and AcrB,
the inner membrane protein (139). AcrB is the functional unit of the efflux pump, which
uses the proton motive force to actively expel substrates from the cell (Figure 1-1) (139-
141). In order to assemble the AcrAB-TolC efflux pump, an AcrAB subcomplex first forms
containing a 6:3 ratio AcrA to AcrB proteins (142). It is hypothesized that the AcrAB
subcomplex then walks along the inner membrane until it encounters a TolC trimer and
then forms AcrAB-TolC (142, 143). In this configuration, AcrB can recruit and expel
substrates in a single direction (144) through conformational changes (140-142).

Additionally, AcrB has multiple channels through which it recruits substrates (145, 146).

Extracellular
i Outor Membrane WA Toic FARMERIEARAEARIEAARACHIAD

Peptidoglycan

Periplasm

e T

Cytoplasm

Figure 1-1. Schematic of an AcrAB-TolC efflux pump.

The AcrAB-TolC efflux pump consist of the functional pump unit, AcrB, the periplasmic
linker protein, AcrA, and the outer membrane channel, TolC. Substrates can be exported
through AcrAB-TolC by either entering AcrB channels located in the cytoplasm or the
(141, 143).
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The different channels could explain how AcrAB-TolC can export such a broad spectrum
of substrates (145, 147); for example, ethidium bromide prefers one channel, while
erythromycin prefers another channel (142).

The outer membrane channel, TolC, is also important as a porin (148), a cell-
surface receptor (149), and a component of numerous other efflux pumps in E. coli,
including AcrEF-TolC, MdtEF-TolC, EmrAB-TolC, EmrKY-TolC, MdtABC-TolC, and
MacrAB-TolC (150-155). However, TolC primarily provides resistance through the
AcrAB-TolC complex as only these TolC-related genes have been found to be upregulated
in clinical isolates (156). Additionally, due to its role in numerous and critical cellular
functions, including cell division, metabolite regulation, and growth, TolC exists in excess
relative to AcrA and AcrB (157, 158). Gene expression of t0/C also follows the same
upregulation and downregulation under different stressors (159, 160) as it has a upstream
DNA binding regions to the acr4B operon (161). Thus, acrAB expression governs the

quantity of AcrAB-TolC efflux pumps and the levels of antibiotic resistance.

1.2.2. Regulation of AcrAB-TolC Efflux Pumps
Both 70/C and the acrAB operon are upregulated via a ‘marbox’ or a binding site
for transcriptional stress response activators, MarA, SoxS, and Rob (161, 162). The marbox
is located upstream of acrA4’s promoter in the coding region of acrR (163). The different
stress response activators SoxS, Rob, and MarA are upregulated by different stress
response signals and turn on a suite of over 60 downstream genes, including efflux pumps,
porins, and enzymes (164—166). SoxS is upregulated in the presence of oxidative stress by

the active form of its local regulator SoxR (167). Rob is post-translationally activated in
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the presence of osmotic stress, such as bile salts, fatty acids, and antimicrobial peptides
(168, 169). MarA is regulated by the positive-negative feedback loop of the marRAB
operon (165, 170, 171). The activator, MarA, is upregulated when its repressor, MarR,
binds to the stressor, such as salicylate, and becomes inactive (172, 173). The marbox
allows robust upregulation of acr4B under the presence of a wide variety of stressors (165)
(Figure 1-2).

Meanwhile, the acrAB operon is primarily downregulated by the operon’s local
repressor, AcrR (163, 174). AcrR binds upstream of acr4 on the coding region of acrR
(174, 175) (Figure 1-2). Deletion of acrR leads to a 1.5- to 6-fold increase in acrAB gene
expression compared to wild type (157, 159, 175). Studies have found that acrR knockout
strains display increased swimming motility, biofilm formation, and virulence (175-177).
The AcrR homodimer can also be post-translationally regulated by certain substrates of the
AcrAB-TolC efflux pump, such as ethidium bromide, proflavine, and rhodamine 6G (178,
179). The acrAB operon can also be repressed by overexpression of AcrS (formerly EnvR),
which is the local repressor for another multidrug efflux pump, AcrEF-TolC (180).
Additionally, it is hypothesized that both MprA (formerly EmrR), which is the
transcriptional regulator of the emr4B operon for EmrAB efflux pump (181), and
phosphorylated PhoP, which is a transcriptional regulator responsible for the stress
response of magnesium starvation (182), can repress acrAB expression due to consensus
in their binding sites with the promoter region of acr4 (182, 183). The quantity of AcrAB-
TolC efflux pumps is carefully tuned by its local and global regulators under a variety of

stresses and different conditions.
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Figure 1-2. Native regulation of the acr4B operon.

The global stress response mar operon and the local repressor acrR are the main pathways
to upregulate acrAB in response to aromatic stress compounds, such as chloramphenicol.

1.2.3. Importance of AcrAB-TolC Efflux Pumps in Complex Environments

Increased levels of multidrug resistance are often attributed to the AcrAB-TolC
efflux pump system (156, 184—186). While this correlation between efflux pumps and
resistance is well understood, the role of efflux pumps in more realistic and dynamic
conditions remains relatively unknown due to these experimental parameters being less

often studied (187). For example, the concentration of an antibiotic at the site of a bacterial
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infection will slowly increase over time opposed to a sudden treatment (188); yet, most in
vivo studies hold the antibiotic concentration constant (189). Additionally, in industrial
biosynthesis, cells may be engineered to produce a toxic compound, causing the
intracellular toxicity to slowly rise (190). Recent findings have also identified how the
expression of efflux pumps, such as AcrAB-TolC, can affect mutation rates (191, 192).
Here, we use the AcrAB-TolC efflux pumps to explore how antibiotic resistance genes
impact survival and evolution in different environmental conditions.
1.3. Summary

The objective of this work was to gain insight into how complex dynamics, such as
fluctuations in antibiotic concentration and differences in population diversity, affect
antibiotic resistance and its evolution using the AcrAB-TolC efflux pumps as a case study.
In Chapter 2, we explored how different rates of antibiotic introduction impact population
diversity and increase resistant phenotypes. We found that faster rates of antibiotic
introduction could reduce the benefit of having an antibiotic resistance gene and, thus,
improve treatments. In Chapter 3, we studied heterogenous microcolonies treated with
antibiotics. We observed that, within these microcolonies, cells containing efflux pumps
could have a detrimental effect on their neighboring cells. In doing so, we identified how
both antibiotic introduction rates and mixed populations impact the short-term emergence
of antibiotic resistance.

To further understand how these two factors could impact long-term antibiotic
resistance and its evolution, we turned to adaptive evolution experiments. In Chapter 4,

we investigated how antibiotic concentrations and genotypic backgrounds may promote
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survival of antibiotic treatments. High levels of resistance were more likely to evolve under
near-MIC treatments, regardless of the starting genotype. Yet, depending on the presence
of efflux pumps, different genetic backgrounds followed distinct genetic pathways to reach
this phenotypic convergence. Next, in Chapter 5, we explored how complex dynamics —
variations in antibiotic introduction rate and population diversity — could further promote
the emergence of antibiotic resistance. We identified that slow introduction of antibiotic
resistance could provide high levels of antibiotic resistance, while reducing fitness burdens.
Meanwhile, we found that co-cultured populations were significantly less likely to evolve
antibiotic resistance under fast changing stress introductions opposed to slow changing
stress introduction rates.

This work provides insight into the complex and confounding factors that
contribute to the evolution of antibiotic resistance, and what lessons may help us mitigate

this continued pattern of evolution of antibiotic resistance.
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2. STRESS INTRODUCTION RATE ALTERS BENEFIT OF
AcrAB-TolC EFFLUX PUMPS
2.1. Disclosure & Copyright Statement
This chapter is a modified version of “Stress Introduction Rate Alters Benefit of

AcrAB-TolC Efflux Pumps” by Ariel M. Langevin and Mary J. Dunlop, 2017. Journal of

Bacteriology, 200 (1) €00525-17. ©2017 by American Society for Microbiology. The
publisher allows authors to retain the right to reuse full article in dissertations.
2.2. Abstract

Stress tolerance studies are typically conducted in an all-or-none fashion. However,
in realistic settings—such as in clinical or metabolic engineering applications—cells may
encounter stresses at different rates. As such, how cells tolerate stress may depend on its
rate of appearance. To address this, we study how the rate of introduction affects bacterial
stress tolerance by focusing on a key mechanism for stress response. Efflux pumps, such
as AcrAB-TolC from E. coli, are membrane transporters well known for their ability to
export a wide variety of substrates, including antibiotics, signaling molecules, and biofuels.
Although efflux pumps improve stress tolerance, pump overexpression can result in a
substantial cost to the cells by altering membrane fluidity and slowing growth. We
hypothesized that the ideal pump expression level would involve a rate-dependent trade-
off between the benefit of pumps and the cost of their expression. To test this, we evaluated
the benefit of the AcrAB-TolC pump under different rates of stress introduction, including
a step, fast ramp, and slow ramp. Using two chemically diverse stresses, the antibiotic

chloramphenicol and the bio-jet fuel precursor pinene, we assessed the benefit provided by
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the pumps. A mathematical model describing these effects predicted the benefit as a
function of the rate of stress introduction. Our findings demonstrate that as the rate of
introduction is lowered, stress response mechanisms provide a disproportionate benefit to
pump-containing strains, allowing cells to survive beyond the original inhibitory
concentrations.
2.3. Introduction

In realistic conditions, the environments bacteria are exposed to are seldom as
constant as those in the laboratory. For example, in clinical applications, antibiotic
concentrations at the site of the infection will depend on in vivo drug absorption and
elimination (193). In metabolic engineering, the synthesis of a product such as a biofuel
can depend heavily on the cell cycle or stage of the production process, and thus changes
dramatically with time (194). Studying how bacteria respond to dynamic, stressful
environments is key to both understanding drug resistance, as well as harnessing their
power for metabolic engineering applications. Although recent literature has begun to
explore the effect of fluctuating environments on bacterial fitness, the focus has primarily
remained on step changes, such as switching suddenly from a non-stressful to a stressful
environment (195-199). Other studies have focused on the long-term effects of changing
environments, including the impact of spatial gradients on mutations and the response of a
general stress response pathway to environmental change (106, 200, 201). In contrast, here
we study how varying the rate at which stress is applied over short, key periods of time
affects fitness.

To survive in stressful environments, cells utilize numerous stress response
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mechanisms. Examples include efflux pumps, inactivating enzymes, and outer membrane
protein channels (79, 202, 203). However, despite the substantial benefit these mechanisms
can provide, they can also be costly and thus place an extraneous burden on the cell (109,
204). As such, expression of stress response genes may introduce negative fitness effects.
Understanding how cells balance these cost-benefit trade-offs will provide insight into how
cells respond and cope with stressful environments.

As a case study, we focused on a well-known multidrug resistance pump, AcrAB-
TolC from E. coli. Multidrug resistance pumps have been studied extensively for their
ability to export a wide variety of compounds, including antibiotics, biofuel intermediates,
signaling molecules, dyes, and detergents (140, 205). The pumps maintain low intracellular
concentrations of stressors through active efflux via the proton motive force (206-208).
These membrane transporters are found across prokaryotic and eukaryotic species (209).
In eukaryotic cells, efflux pumps present a significant hurdle as they provide resistance to
anticancer drugs (210). In prokaryotic cells, efflux pumps increase the antibiotic dose
required for treatment of infections and also play a role in quorum sensing and biofilm
formation (140, 211). Along with their clinical relevance, efflux pumps offer potential as
a metabolic engineering tool. For instance, efflux pumps are able to improve fitness and
solvent tolerance of cells with engineered biofuel production pathways (212-215). Thus,
efflux pumps are a significant stress tolerance mechanism that operate on a diverse range
of substrates.

In this work, we investigated how the trade-off between the benefit of the pumps

and the cost of pump expression depends on the rate of stress introduction. By analogy,
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consider a bilge pump on a boat. If water leaks slowly into the boat, the pump can keep up
and the boat will stay afloat. However, if the same volume of water appears rapidly, the
boat may sink. We asked whether stress tolerance has a similar rate-dependent effect. To
study this, we evaluated the benefit of the AcrAB-TolC pump under time-varying stress
environments. We assess the performance of cells with and without pumps when the
stressors were presented in different forms—as a step, a fast ramp, or a slow ramp. Our
overall goal was to quantitatively determine the trade-off between stress tolerance and
growth advantage for cells with pumps. To achieve this, we co-cultured cells with and
without AcrAB-TolC efflux pumps. The relative fraction of cells with and without the
pumps changed with time and depended on the rate of stress introduction. We validated
our results using two structurally distinct pump substrates, the antibiotic chloramphenicol
and the bio-jet fuel precursor pinene. We developed and experimentally validated a
mathematical model that captures the system behavior. Using this model to evaluate the
cost-benefit landscape of pump expression, we found that slower rates of stress
introduction exaggerate the benefit of the pumps. This work demonstrates that the rate at
which stress is applied can have a dramatic impact on bacterial fitness.
2.4. Results

We began by quantifying the benefit and cost of expressing efflux pumps in an
environment with a constant, unchanging level of stress. We initially used chloramphenicol
as a stressor because it is often considered for treatment of bacterial infections (216, 217).
It is a bacteriostatic agent that works by inhibiting protein synthesis (218).

Chloramphenicol is a known substrate of the AcrAB-TolC pumps; the pump conveys a
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five-fold increase in the minimum inhibitory concentration (219). To measure the benefit
of pumps, we initially grew cells with and without acrB in different levels of constant
chloramphenicol. Since the AcrB protein is the active pumping unit and produces efflux
driven by the proton motive force, deleting acrB renders the entire AcrAB-TolC efflux
pump non-functional (206). We conducted experiments in wild type E. coli and in the same
strain with an acrB deletion, and confirmed that the efflux pump provides protection
against chloramphenicol (Figure 2-1A). We were able to recover chloramphenicol
tolerance by complementing AacrB cells with a plasmid containing an IPTG-inducible
version of the acrAB operon, acrAB-sfgfp. Even without induction, the basal expression
was sufficient to restore wild type levels of chloramphenicol tolerance. Therefore, the
AcrAB-TolC efflux pumps provide a benefit under constant chloramphenicol conditions.
Next, we asked whether there was a cost associated with expressing these pumps.
Although it is known that overexpression of membrane proteins can be costly to cells (220—
222), the mechanisms behind the fitness cost of efflux pumps are not entirely clear (222).
One potential mechanism is due to a change in intracellular pH that impacts cellular
metabolic pathways (223). When inducing the acrdAB-sfgfp strain with IPTG, we found
that at high induction levels there was a severe growth cost, indicative of the harmful effects
of overexpression (Figure 2-1B). As a result, we conducted subsequent experiments
without IPTG induction to balance the chloramphenicol-tolerance benefit against the cost

of the pumps.
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Figure 2-1. Benefits and costs of AcrAB-TolC efflux pumps.

(A) Cell density as a function of chloramphenicol concentration. Wild type is E. coli BW25113, the knockout strain is E. coli BW25113
AacrB, and acrAB-sfgfp is E. coli BW25113 AacrB transformed with the plasmid pBbASk-acrAB-sfgfp, which contains an IPTG-
inducible promoter controlling a transcriptional fusion of the acrAB efflux pump operon and super folder green fluorescent protein
gene, sfgfp. AOD7q is the difference in optical density at 700nm between the initial sample at t = 0 h and after t = 24 h. (B) Induction
of acrAB-sfgfp reduces cell growth. Error bars in (A-B) show standard deviations of n = 3 biological replicates. (C) Growth of two
competing strains under different chloramphenicol doses. The full dose of chloramphenicol is added at the beginning of the
experiment, t = 0 h. The plots depict the total cell density of the co-culture, and the stacked shaded areas under the curve quantify the
fraction of the culture containing either a rfp or sfgfp plasmid (Figure 2-2). As a control, top row shows competition between two
strains lacking efflux pumps, sfgfp and rfp. The bottom row shows competition between a strain with the efflux pump, acrAB-sfgfp,
and one without the efflux pump, rfp. Dots show experimental data with error bars corresponding to standard deviations of n = 3
biological replicates. Lines are the computational model predictions for the total population (solid line) and the rfp strain (dashed line).
(D) Data extracted from the multispecies competition experiments shown in (C) comparing strains with and without pumps. Biomass
of acrAB-sfgfp (green) compared with biomass of sfgfp (blue) after t = 8 h. Data points show mean and standard deviations of n =3
biological replicates; solid lines show mathematical model predictions.
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To determine whether the benefit and cost of efflux pumps change in dynamic stress
environments, we competed strains with and without pumps against each other and
recorded the relative population sizes over time under different antibiotic treatment
conditions. In clinical settings, bacteria that contain efflux pumps are able to outcompete
those without and are found at a higher frequency in clinical isolates (224), motivating our
use of a competition assay. This assay can identify subtle differences in growth among
strains because more fit strains become overrepresented in the population (198, 213).

We began by competing strains with and without efflux pumps in a constant
environment where we added antibiotics at t = 0 h. First, we conducted a control experiment
with two AacrB strains, one harboring a plasmid encoding super-folder green fluorescent
protein (sfgfp) and a second with a plasmid encoding red fluorescent protein (rfp) (Figure
2-1C). We first measured the optical density of the co-cultured competing strains (Figure
2-2A). The fluorescent reporters allowed us to quantify the fraction of each cell present in
the co-culture over time using flow cytometry (Figure 2-2B). Consequently, we were able
to quantify the relative proportions of the two competing strains by using the fraction of
sorted cells containing 7fp or sfgfp to estimate the fraction of the total population harboring
each plasmid (Figure 2-2C-D). We recorded cumulative cell density and the proportion of
the two competing strains in the co-culture as a function of time.

As expected, the sfgfp and rfp strains performed similarly under all levels of
antibiotics since the only difference between the strains was the color of fluorescent
reporter. Next, we competed a AacrB strain complemented with acrAB-sfgfp, against the

same strain with 7fp alone. We found that in the absence of antibiotics, the strain without
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Figure 2-2. Schematic of methodology and data collection.

(A) Multispecies growth curves depicting the raw optical density readings at 700nm for
the co-cultured samples. The error bars are the standard deviations of the optical density
for n = 3 biological replicates. (B) Flow cytometry data is collected for a subset of the
samples. Error bars are standard deviations of n = 3 biological replicates. (C) The fraction
of biomass attributed to each strain in the co-culture is approximated by multiplying the
optical density by the fraction of these strain. (D) OD7oo for the sfgfp-containing strains
extracted from the co-culture data sets. (C-D) Data points and their error bars are based
upon the standard deviations for the raw optical density and sorted flow cytometry data.
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pumps outperformed the strain with pumps (Figure 2-1C). Because efflux pumps are costly
and unnecessary in conditions without antibiotics, the strain with no pumps was able to
dominate. In contrast, under conditions with low doses of chloramphenicol, the efflux
pump containing strain dominated. Beyond a certain concentration of antibiotic neither
strain was able to survive. These results are consistent with our earlier findings that the
benefit of the pumps exists only for certain antibiotic doses (Figure 2-1A).

In order to explore the effects of antibiotic addition and the benefit of pumps, we
developed a mathematical model using a system of coupled ordinary differential equations
to describe the competition between the species. The model is based on the Van Impe et
al. bacterial growth model, which builds upon the Monod equation for growth kinetics
(225-227). The state variables describe the population size for each of the species, and the
substrate consumed by both species. The growth rate of each population depends upon the
available substrate and also the concentration of the antibiotic in the environment. The
model parameters were estimated by minimizing the sum of squared residuals and using
the growth and toxicity curves for the single species experimental data (Figure A-1). The
multispecies growth was then fit using the parameters determined from the toxicity curves
and single species data. The model shows good agreement with the trends in our
experimental findings, both in the overall growth of the two species as well as the
approximate proportion of each species in the culture.

To visualize the relative effect of efflux pumps, we plotted the data from sfgfp
alongside acrAB-sfgfp (Figure 2-1D). These data are extracted from the co-culture

experiments shown in Figure 2-1C where sfgfp is competed against 7fp (top) and acrAB-
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sfgfp is competed against rfp (bottom). This comparison allows us to directly highlight the
growth differences across environments and strains without and with efflux pumps. The
model captures these trade-offs, demonstrating its predictive power in estimating where
strains outcompete each other in competitive growth conditions.

Next, we asked how differences in the rate of antibiotic addition affected the cost
and benefit trade-offs for efflux pump expression. We tested dynamic environments where
antibiotics were applied at different rates during the exponential growth phase. We kept
the cumulative amount of antibiotic added constant, but varied the ramp rate (Figure 2-3A-
C). We first considered a step increase in antibiotics at t = 3 h (Figure 2-3A, D). Under
these conditions the cells grew rapidly prior to addition of antibiotics, with sfgfp
outperforming acrAB-sfgfp prior to t = 3 h, making it difficult for acr4B-sfgfp to recover
after antibiotic was added, even in conditions where the pumps offer an advantage.

When we decreased the rate of chloramphenicol addition, the acrAB-sfgfp strain
was able to outperform the sfgfp strain under a broader range of chloramphenicol
concentrations. First, we spaced the addition of chloramphenicol out over the range from t
=2 to 4 h (Figure 2-3B, E). As predicted by the mathematical model, at intermediate
chloramphenicol concentrations we observed a modest benefit to the pumps. For the
slowest antibiotic addition rate, we added chloramphenicol from t = 0.5 to 5.5 h (Figure 2-
3C, F). In this case, we found a more dramatic increase in the benefit of the pumps. In
particular, we observed a substantial benefit in fitness for efflux pump containing strains
that exists well above their minimum inhibitory concentration of 1 pg/mL (Figure 2-1A-

B). This finding emphasizes the importance of the rate at which stresses are introduced.
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Figure 2-3. Rate of chloramphenicol addition affects survival.

(A-C) Three different rates of chloramphenicol introduction: (A) step introduction, (B) fast
ramp, and (C) gradual ramp. The thick solid line shows the values used in the mathematical
model; thin solid line shows experimental treatment used to approximate the constant
introduction rate. The total amounts of chloramphenicol added in (A-C) are equal. (D-F)
Competitive growth under different rates of chloramphenicol addition. The growth of
acrAB-sfgfp (green) compared against growth of sfgfp in the competition experiments
(dots) and model predictions (solid lines) for different chloramphenicol introduction rates
as shown in (A-C), respectively. As in Figure 2-1D, these data have been extracted from
competition experiment data. Note that dead cells can still cloud the solution; therefore,
non-zero optical densities do not necessarily imply that cells are alive. Data points show
mean and standard deviations of n = 3 biological replicates.

Building on the success of our model predictions, we next used the model to
quantify the benefits and costs of efflux pump expression as a function of the total amount
of antibiotic added and the rate at which it is introduced. In order to quantify the growth
advantage provided by the efflux pumps, we calculated the ‘benefit ratio’ provided by the
pumps, which we defined as the ratio of the biomass of acr4B-sfgfp to biomass of sfgfp
after 8 hours (228). As a result, a benefit ratio greater than one means that strains with
efflux pumps are able to outcompete cells without, while a value less than one means that

pump expression hinders growth. Using our model, we calculated the benefit ratio across
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a range of chloramphenicol introduction rates and total antibiotic amounts (Figure 2-4A).
At very low concentrations of chloramphenicol, pumps are unnecessary and there is a cost
to their expression so the benefit ratio is below one, regardless of the rate of introduction.
At very high concentrations, neither strain can grow so the benefit ratio is approximately
one for all introduction rates. Meanwhile, at intermediate chloramphenicol concentrations,
we observed dramatic rate dependent differences between the strains. When the stress
appears slowly, the strains with the pumps are at a significant advantage. In fact, this
phenomenon can result in conditions where bacteria are able to survive antibiotic doses
well beyond those they can tolerate with rapid drug introduction. This benefit is likely due
to the ability of bacteria to maintain low intracellular levels of antibiotics using efflux
pumps when undergoing slow antibiotic introduction. Therefore, the rate at which an
antibiotic or stressor is added will have a critical impact on bacterial survival.

To verify the model predictions, we calculated the benefit ratio from the
experimentally measured data from Figure 2-3D-F by evaluating the ratio of acr4AB-sfgfp
to sfgfp biomass under the same antibiotic treatment profiles. When the rate of introduction
is a quick step introduction, cells with efflux pumps have a negligible benefit (Figure 2-
4B); as the introduction rate is slowed, the benefit of the pumps slightly increases at
intermediate chloramphenicol concentrations (Figure 2-4C) and slowing the rate further
provides even greater benefit (Figure 2-4D). We note that the model was fit to raw data
from toxicity curves and growth curves performed without antibiotics (Figure 2-2).
Without further fitting, the model is able to predict trends in the benefit of the efflux pumps

given different rates of stress introduction. Statistical analysis suggests that the model
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Figure 2-4. Model predictions and experiments measuring benefit of pumps.

(A) Contour plot of the benefit ratio of the efflux pumps. Model predictions for biomass,
N, of an acrB-containing strain in relation to an AacrB control strain after t = 8 h are used
to predict the benefit ratio landscape. Plot shows results for different maximum levels of
chloramphenicol (x-axis) and different rates of chloramphenicol addition (y-axis). (B-D)
Experimental results (dots) showing benefit of efflux pumps compared to model
predictions (solid line). Data is ratio of biomass of acrAB-sfgfp strain to sfgfp after t = 8 h.
Rate of antibiotic introduction is shown in Figure 2-3A-C, respectively, and denoted on the
contour plot in (A) with white dashed lines. Error bars show standard deviation for n = 3
biological replicates.

agrees well with the data, with Pearson’s correlation coefficients close to 1 (Table A-1).
Additionally, we performed experiments where the initial biomass was an order of
magnitude lower than in the original conditions (Figure 2-5). The data show good
qualitative agreement with the model predictions, where slow antibiotic introduction
results in a greater benefit of pumps. These results indicating that our findings are not

specific to one set of initial conditions.
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Figure 2-5. Benefit ratios for lower initial inoculum size.

(A-B) Experimental results (dots) showing benefit of efflux pumps compared to model
predictions (solid line). Data is ratio of biomass of acr4B-sfgfp to sfgfp after t =24 h. These
co-cultures were tested under a gradual ramp (A) and step at t =3 h (B) over 6 hours. Error
bars show standard deviations for n = 3 biological replicates.

We next asked whether our findings on the rate-dependent benefit of efflux pumps
would generalize to other stressors. To do this, we conducted experiments with a
structurally and functionally dissimilar efflux pump substrate. Pinene is a bio-jet fuel
precursor that can be synthesized by E. coli; however, pinene is also toxic to the cells (229).
The AcrAB-TolC efflux pump is known to increase tolerance to pinene and other solvents
(213, 230). We first measured the benefit of the pumps and, as expected, observed an

increase in pinene tolerance in strains with the efflux pump (Figure 2-6A). We next

measured the cost of pump expression in the presence of pinene using the IPTG-inducible
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acrAB-sfgfp strain (Figure 2-6B). As acrAB-sfgfp is induced, there is an impact on cell
growth. However, low levels of induction do convey a slight benefit compared to basal
levels (Figure A-2), therefore we conducted the subsequent experiments using 5 uM IPTG,
as this induction level best mirrors wild type in the presence of pinene (Figure 2-6A). The

cost-benefit characteristics of pinene closely mirror the trade-offs that we observed for
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Figure 2-6. Benefit and cost trade-offs of AcrAB-TolC efflux pumps in pinene.

(A) Cell density as a function of pinene concentration. Wild type is E. coli BW25113, the
knockout strain is E. coli BW25113 AacrB, and rescue strain is acrAB-sfgfp. AOD7o is
the difference in optical density between the initial sample at t = 0 h and after t = 8 h. (B)
Induction of acrAB-sfgfp reduces cell growth in the presence of pinene. Error bars in (A-
B) show standard error of n = 3 biological replicates. (C) Contour plot of the benefit ratio
of the efflux pumps. Model predictions for biomass of an acrB-containing strain in relation
to an AacrB strain after t = 8 h. Plot shows results for different maximum levels of pinene
(x-axis) and different rates of pinene addition (y-axis). (D-F) Experimental results (dots)
showing benefit of efflux pumps compared to model predictions (solid line). Data is ratio
of biomass of acrAB-sfgfp to sfgfp after t = 8 h. The rate of pinene introduction is shown
in Figure 2-3A-C, respectively, and denoted by white dashed lines on the contour plot in
(C). Error bars show standard deviation for n = 3 biological replicates.
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chloramphenicol in a constant environment.

To accurately capture the effect of pinene we modified our mathematical model to
include a term that allows for cell lysis. Chloramphenicol is bacteriostatic so optical density
measurements remain roughly constant after the cells have died (231). In contrast, we
observed decreases in optical density following pinene treatment (Figure A-3). To
accommodate the bactericidal effect of pinene, we adjusted our model to include a term
describing this effect. We simulated the trade-off landscape for different rates of pinene
addition (Figure 2-6C) and observed a general trend where, as with chloramphenicol, the
benefit ratio is high at intermediate levels of pinene stress when the rate of introduction is
low. However, the peak for pinene is taller, as the efflux pumps convey an even larger
benefit.

We next used the model to select pinene rates that show low, moderate, and high
benefit ratios and conducted competition experiments under these conditions (Figure A-4).
Extracting these data, the experimental and computational results demonstrate that there is
a dramatic benefit conveyed for slow introduction rates (Figure 2-6D-F). We observed that
cells with pumps can survive significantly higher levels of pinene when it is added slowly
than they can when it is added all at once.

2.5. Discussion

In this study, we focused on the rate-dependent nature of the benefit of efflux
pumps, which is significant given the role pumps play across diverse fields. Our work here
extends to both understanding antibiotic tolerance and potential applications in

biosynthetic processes. By studying two unique substrates of the AcrAB-TolC pump, we
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were able to validate that under slow introduction of stress, pumps provide a
disproportionate benefit that is not unique to the individual substrate. Understanding
complex strategies bacteria employ to tolerate stress can provide insight into development
of therapeutic techniques and can enable us to exploit these effects in biochemical
engineering. By determining conditions where efflux pump containing strains lack a
competitive edge, we can identify domains where antibiotic tolerance is reduced. For
metabolic engineering applications, this optimization can help characterize and improve
yields of biosynthetic compounds such as biofuels (232, 233).

In realistic conditions, cells are rarely exposed to environments as constant as in
laboratory experiments. Since the environment can have a large impact on how bacteria
respond to stress, it is important to study the behavior of cells in time-varying conditions.
These ideas have been explored previously in the context of extended exposure to stress
and through temporal and spatial gradients. In spatially-distinct environments, studies have
demonstrated that prolonged exposure to a stressful spatial barrier can be overcome by
cells adapting to the stress through tolerance, then resistant mutants (106). Similarly,
graded increases in antibiotic concentrations across several days can lead to mutations
(201). Thus, even a subtle benefit in fitness on a short-term scale, can result in mutants in
daughter cells in stressful environments. Additionally, on a shorter time scale, stress
response pathways have been shown to depend on the rate of environmental change. For
example, Bacillus subtilis turns on stress-specific or general stress response pathways
depending on the rate at which stress is applied (234). By studying time-varying stress, we

can better understand how stress response mechanisms operate under realistic



36

environments.

In this work, we have demonstrated that the benefit of efflux pumps depends
heavily on the rate of stress introduction. We found that strains exposed to slower stress
introduction rates were able to tolerate cumulative concentrations well beyond what they
could survive if the stress appeared suddenly. We also confirmed this through mathematical
modeling; fits to data where the stressor was added all at once allowed us to accurately
predict the benefit that pumps confer under different stress introduction rates. We found
that efflux pumps provide a disproportionate benefit when the rate of stress introduction is
slow.

2.6. Contributions Statement

The authors of this work were Ariel M. Langevin (A.M.L.) and Mary J. Dunlop

(M.J.D.). AM.L. conducted the experiments, analyzed the data, and performed the

modeling, M.J.D. supervised the research. Both authors wrote the manuscript.

2.7. Methods
2.7.1. Strains and Plasmids
We used E. coli strains BW25113 and BW25113 AacrB. The wild type strain
BW25113 is the parent strain for the Keio collection (235). BW25113 AacrB was derived
from Keio collection strain JW0451 (BW25113 AacrB::kan), where we removed the
kanamycin resistance marker following the pCP20 protocol from (236).
We used the plasmids pBbASk-rfp, pBbASk-sfgfp, and pBbASk-acrAB-sfgfp in

experiments. The plasmid pBbASk-rfp is from the BglBricks library (237, 238). The
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pBbASk vector contains a medium-copy number (p15A) origin of replication, a Placuvs
promoter, and a kanamycin resistance marker. pBbASk-sfgfp was constructed using the
pBbASk vector and sfgfp from pBbSFk-sfgfp (239). Plasmid pBbASk-acrAB-sfgfp is a
transcriptional fusion of acrAB and sfgfp. We constructed it using the pBbASk-acrAB
plasmid (213) and sfgfp, retaining the ribosome binding site of sfgfp from pBbSFk-sfgfp
(239) in the cloning process. For all constructs, we used the Gibson assembly method and
verified results by sequencing (240). Primers for all constructs are listed in Table A-2.
Plasmids were transformed into E. coli BW25113 AacrB and isolated on Luria Broth (LB)

plates with kanamycin (30 pg/mL).

2.7.2. Bacterial Growth Conditions

For all experiments, overnight cultures were inoculated from a single colony in 5
mL LB with 30 pg/mL kanamycin, where necessary. Overnight cultures were then grown
at 37°C with 200 rpm orbital shaking. Following this, precultures were prepared by diluting
the overnight culture 1:50 in LB with 30 pg/mL kanamycin, where necessary. The
precultures were grown at 37°C with 200 rpm orbital shaking for 2 hours and then diluted
back to an optical density at 700nm (OD700) of approximately 0.2. We used OD7po to
minimize overlapping of the RFP emission spectrum (241, 242). These 800 pL cultures
were then aliquoted into 24-well plates and chloramphenicol, pinene, or IPTG was added,
as described below.

For toxicity curves of the individual species and single species growth parameters,
800 puL of these cultures were aliquoted into 24-well plates and chloramphenicol, IPTG, or

pinene was added, as described below.
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For the competition experiments, co-cultures were created by mixing 400 pL each
of the two competing strains, acrAB-sfgfp and rfp or sfgfp and rfp, after individually
diluting the strains back to OD7¢o 0.2 as described above. As a result, there was a total of

800 pL per well in a 24-well plate with the final OD7o9 of 0.2.

2.7.3. Toxicity Experiments

To determine the toxicity of chloramphenicol, we added a final concentration of 0,
0.1, 0.2, 0.5, 1, 2, 5, or 10 pg/mL to each culture. To evaluate the benefit of pump
expression, Piacuvs was induced with 0, 1, 10, or 100 uM of IPTG. The samples were sealed
with evaporation-limiting membranes (Thermo Scientific AB-0580) and grown in 24-well
plates at 37°C with 200 rpm orbital shaking. OD7¢o readings were taken using a BioTek
Synergy Hlm plate reader before incubation (t = 0 h) and after antibiotic exposure (t = 24
h). All experiments were performed in triplicate using biological replicates.

Mirroring to the chloramphenicol toxicity experiments, pinene (o-pinene, Sigma
Aldrich P45680) was added to each culture to a final concentration of 0, 0.1, 0.2, 0.5, 1, or
2 (v/v) %. To evaluate the benefit of pump expression, Pi.cuvs was induced with 0, 1, 5, 10,
50, or 100 uM of IPTG. OD7¢o readings were taken before incubation (t = 0 h) and after

the end of exponential growth phase (t = 8 h).

2.7.4. Competition Experiments
Co-cultures were created by mixing 400 uL each of the two competing strains,
acrAB-sfgfp and rfp or sfgfp and rfp, for a total of 800 puL per well in a 24-well plate.

Cultures were treated with increasing concentrations of substrates as shown in Figure 2-
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3A-C. The OD7p0 was measured at intervals, every hour for chloramphenicol and every
other hour for pinene, through exponential growth phase. In addition, after the OD700
readings, 15 puL samples from each culture were diluted 1:10 in phosphate buffered saline
(PBS) and measured using a Guava easyCyte HT Sampling Flow Cytometer. Excitation
and emission values were 485 and 510 nm for sfgfp (sfGFP) and 555 and 584 nm for rfp
(RFP) fluorescent channels (243, 244).

Flow cytometry data was collected as FCS 3.0 files and was analyzed with custom
Matlab scripts. To avoid crosstalk between the red and green channels, control experiments
using single-color strains were performed to identify a threshold for classifying a cell as
containing sfGFP or RFP during post-processing. The same thresholds were applied for all

experiments.

2.7.5. Mathematical Model
To fit the growth of single strains under different environmental conditions, we
used a single species model for predicting biomass N (Eq. 1) and substrate availability S
(Eq. 2) based on the Van Impe et al. model of cell growth (212, 227, 245). This model
incorporates environmental conditions, such as a substrate limiting term based on the
physiological environment. For the version presented here, we include a term describing
the effect of a stressor, £ (225).

2.7.5.a. Single species model

dN 0y 1
Eq. 1
— = N(t q.
dt “”m“"<1<s+s) LB ©

R
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ds 1

s
— == N Eq.2
dt | ylmaex (KS n S) N@©

The maximum growth rate is fimax, the growth yield provided by the substrate is y, and the
half-saturation constant is Ks. & is a normalizing term that converts the biomass from cell
concentration to optical density. The parameters for these models were selected using a
least-squares regression minimizing the sum of the residuals for the best fits to the growth
curves and the toxicity curves. The coefficients from the models were fit simultaneously.
The values for tma, 7, and Ks were selected based upon the growth curves of individual
strains (Figure A-1A-B). Parameter values are listed in Table A-3. Additionally, we added
a stressor term to adjust the growth based on the effect of a given stressor concentration £

at time ¢, where

0 t<3

Estep = {1 =3 Eq.3
0 t<1.5
t—1.5
Efast ramp — < 3 ) 1.5<t<45 Eq. 4
1 t>45
0 t<o0 Ea.5
Eslow ramp = {t/6 0<t<e6 q.
1 t=>6

The Hill coefficient » and tuning parameter R were fit to the species’ toxicity curve (Figure

A-10):

Vi(t) =




41

The single species model was extended to a multispecies model based upon (226),
which models the growth of two species N; (Eq. 3) and N: (Eq. 4), as well as the substrate
availability S (Eq. 5). We used two different multispecies models, one for bacteriostatic
stressors such as chloramphenicol, which stop cells from growing, and one for bactericidal
stressors such as pinene, which cause cell lysis (246).

2.7.5.b. Multispecies bacteriostatic model

dN S
dN S
ds 1 S
E - ; <m) (.umax,lNl (t) +.umax,2N2 (t)) Eq. ?

For the multispecies bacteriostatic model, the growth yield provided by the
substrate , and the half-saturation constant Ks, were fit using the growth curves of a co-
culture of the two strains with equal initial biomasses. The maximum growth rates for each
individual species (Limax,; and fimax,2) were derived from the individual growth curves and
the coefficients for the antibiotic terms (R;, R>, n; and nz) were fit to individual species’
toxicity curves. Additional information on the accuracy of model fits to the growth and
toxicity curve data can be found in Table A-4.

2.7.5.c. Multispecies bactericidal model

dN, S 1 z

I = Z0Hmaxa (m) (1 - m) M(®) Eq. 10
2

— b, (ﬁ) Ny ()



42

dn, 2

S 1
“2_5 2 VM1-——) N

dt  “OHmax2 <K5+S)< 1+(CZE)”2) 2(0) Eq. 11
2

— b, (#ZE)"Z) N, ()

ds 1 S
E = - ;.umax,lﬂmax,z <m

JIAGIAO Eq-12
The parameters of the bactericidal multispecies model were fit as described above.
We calculated the sum of squared residuals to estimate the relative precision of the model,

along with the maximum and average error for the model sets. In addition, we evaluated

the goodness-of-fit by calculating the Pearson’s correlation coefficient (247).
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3. ANTIBIOTIC EXPORT BY EFFLUX PUMPS AFFECTS GROWTH OF
NEIGHBORING BACTERIA
3.1. Disclosure & Copyright Statement
This chapter is a modified version of “Antibiotic Export by Efflux Pumps Affects

Growth of Neighboring Bacteria” by Xi Wen, Ariel M. Langevin, and Mary J. Dunlop,

2018. Scientific Reports, 8 15120. ©2018 by Springer Nature. The publisher allows
unrestricted use or reproduction provided proper citations of the original work.
3.2. Abstract

Cell-cell interactions play an important role in bacterial antibiotic resistance. Here,
we asked whether neighbor proximity is sufficient to generate single-cell variation in
antibiotic resistance due to local differences in antibiotic concentrations. To test this, we
focused on multidrug efflux pumps because recent studies have revealed that expression of
pumps is heterogeneous across populations. Efflux pumps can export antibiotics, leading
to elevated resistance relative to cells with low or no pump expression. In this study, we
co-cultured cells with and without AcrAB-TolC pump expression and used single-cell
time-lapse microscopy to quantify growth rate as a function of a cell’s neighbors. In
inhibitory concentrations of chloramphenicol, we found that cells lacking functional efflux
pumps (AacrB) grow more slowly when they are surrounded by cells with AcrAB-TolC
pumps than when surrounded by AacrB cells. To help explain our experimental results, we
developed an agent-based mathematical model, which demonstrates the impact of
neighbors based on efflux efficiency. Our findings hold true for co-cultures of E. coli with

and without pump expression and also in co-cultures of E. coli and Salmonella
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typhumirium. These results show how drug export and local microenvironments play a key
role in defining single-cell level antibiotic resistance.
3.3. Introduction

Despite intensive study, antibiotic resistance remains an essential problem, in part
due to the myriad of mechanisms by which cells can evade drug treatment. Classical tests,
such as measurements of the minimum inhibitory concentration (MIC), are important for
quantifying drug resistance, but can obscure single-cell level differences in resistance (17).
This is a significant problem because cell-to-cell differences in antibiotic resistance can
establish concentration gradients, which can accelerate the resistance acquisition process
(248, 249). In addition, sub-populations of antibiotic resistant or tolerant cells can decrease
treatment efficacy (37, 201).

Individual cells can exhibit phenotypic differences in drug resistance even in the
absence of community-level effects. For example, persister cells use dormancy or slow
growth to evade antibiotic treatment (17). Single-cell level resistance can also affect group
growth. For instance, Streptococcus  pneumoniae cells  with  chloramphenicol
acetyltransferase can deactivate chloramphenicol, resulting in a decrease in both the
intracellular and environmental chloramphenicol concentrations (250). Bacteria also
transiently express resistance-conferring genes such as drug export pumps or those that
modify membrane permeability, resulting in cell-to-cell difference in susceptibility (37,
239).

Antibiotic efficacy can also be dependent on community-level phenomena. For

example, the inoculum effect describes the cell density dependence of the MIC, where
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more dense cultures are less susceptible to antibiotics resulting in increases in the MIC
(251, 252). Cell density plays an essential role in influencing group behaviors, such as
quorum sensing and biofilm formation, which in turn can dramatically increase the
antibiotic resistance of the population (253, 254). Furthermore, certain cells within a
community may exhibit altruistic behavior, such as those that release resistance proteins
upon death to enable other cells to survive (253, 255). These examples highlight the
importance of cellular interactions and collective behavior in antibiotic resistance.

Bacterial efflux pumps are an important source of multidrug resistance (219, 256).
These pumps export antibiotics from the cell, increasing their antibiotic resistance. Their
expression can be taxing, reducing growth and imposing a fitness cost (189, 257);
therefore, their expression is often regulated to limit the burden. The primary multidrug
resistance efflux pump in E. coli is AcrAB-TolC. This pump is composed of three proteins
that span the inner and outer cell membrane: a periplasmic linker protein AcrA, the inner
membrane efflux transporter AcrB, and the outer membrane channel TolC (206). Knocking
out acrB, the pump protein responsible for substrate recognition and export via the proton
motive force, leads to a significant increase in antibiotic susceptibility (156, 219). For
instance, the MIC of E. coli AacrB to chloramphenicol is an eighth of that of wild type
cells (134). Complementing AacrB with the acrAB operon is sufficient to restore drug
resistance (189). Efflux pumps have been recognized to play a major role in clinical isolates
in the emergence of resistant strains of E. coli, S. enterica, and other pathogens, and thus
have been identified as clinical targets (258, 259).

Recent studies have shown that AcrAB-TolC expression is heterogeneous across
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populations (260, 261), suggesting that differential pump expression exists even within
isogeneic populations. Since the cost and benefit of expressing pumps can both be
significant, these cell-to-cell differences may have important implications for bacterial
populations. Here, we asked how efflux pump export of antibiotics affects the growth of
neighboring cells and, ultimately, the composition of the population.

To accomplish this, we focused on differential expression of acrAB. We monitored
single-cell growth rates using time-lapse microscopy, and analyzed growth of cells as a
function of whether their neighbors have AcrAB-TolC efflux pumps. We found that
individual bacteria that are surrounded by AcrAB-expressing neighbor cells will tend to
grow more slowly than when the same cells are surrounded by AacrB neighbors under
antibiotic exposure. By developing a mathematical model, we were able to characterize
this effect and predict the cell growth in the presence of a different antibiotic. Furthermore,
we tested co-cultures of E. coli and S. enterica serovar Typhimurium (hereafter referred to
as S. typhimurium) and observed the same neighbor dependence, which has implications
for the broader relevance of our findings since these results likely extend to mixed-species
communities. This work contributes additional evidence for the critical role of single-cell
level effects in antibiotic resistance.

3.4. Results

To examine the effect of drug efflux on neighboring cells, we designed an
experiment where AacrB cells were surrounded either wild type cells containing functional
AcrAB-TolC pumps or by identical AacrB cells (Figure 3-1A). We hypothesized that

AacrB cells which had wild type neighbors would experience a higher local concentration
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of antibiotics due to drug efflux in their immediate vicinity, leading to a reduced growth
rate relative to cells with neighbors lacking pumps. To test this, we conducted experiments
with E. coli growing on agarose pads and measured single cell growth rates under different
levels of antibiotic exposure.

To visualize the two cell types, we labeled the AacrB cells with red fluorescent

protein (denoted AacrB-RFP) and wild type cells with green fluorescent protein (WT-
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Figure 3-1. Neighbors with pumps impact cell growth.

(A) Schematic showing when AacrB cells are surrounded by cells with AcrAB-TolC
pumps they grow more slowly than when surrounded by other AacrB cells. (B) Growth
rates of wild type cells expressing gfp (WT-GFP) and AacrB cells expressing rfp (AacrB-
RFP). Cells were mixed in ratios of 5:1 and 1:5 and the growth rate of AacrB-RFP cells
was then quantified for the two different ratios. (C) Growth rates of wild type cells, given
WT-GFP or AacrB-RFP neighbors. For (B, C) statistical significance was calculated using
the Kolmogorov-Smirnov test, where ***p <0.001, n.s.: not significant. Gray bars show
mean growth rate. Distribution mean, standard deviation, and p-values are listed in
Table S1 from reference (337). Plot axis limits were set to show >97% of cells; however
full data set including outliers and n values (number of cells) for each are shown in Figure
B-1. Schematics under (B, C) show the type of neighbors surrounding the cell in the middle
whose growth rate is calculated. Background color indicates presence of antibiotics.
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GFP).! Chloramphenicol is a broad-spectrum antibiotic which diffuses through the
bacterial cell membrane and reversibly binds to the ribosome to inhibit protein synthesis.
We quantified the growth rates of AacrB-RFP cells surrounded by either WT-GFP or
AacrB-RFP neighbors. To do this, we mixed AacrB-RFP with WT-GFP cells in ratios of
1:5 and 5:1 to bias the community structure.

Growth rates for cells were similar for both ratios for conditions with no
chloramphenicol. However, under chloramphenicol treatment just below the MIC (1 pg/ml,
Figure B-2), we found that the growth rate of AacrB cells with WT-GFP neighbors was
lower than those with AacrB-RFP neighbors (Figure 3-1B), indicating that the influence of
drug efflux by neighboring cells is important in local growth inhibition. When we
compared the growth of WT-GFP cells with WT-GFP or AacrB-RFP neighbors, we
observed more modest differences in growth rates under chloramphenicol treatment. This
is likely because cells with pumps are able to maintain low intracellular antibiotic
concentrations regardless of their neighbors (Figure 3-1C).

Building upon these results, we next conducted a series of experiments where we
used AacrB as the strain background for both types of cells in the co-culture, allowing us
to isolate the effect of efflux pumps independent of endogenous regulation. We tested
microbial communities with AacrB-RFP cells and a AacrB strain overexpressing acrAB,
which we labeled with green fluorescent protein (denoted AcrAB-GFP). We then

monitored the growth of the AacrB-RFP cells surrounded by either AcrAB-GFP or AacrB-

! For consistency, these appear as defined in the original manuscript; however, please note that the
names and definitions of each strain differ from Chapter 2, 4, and 5.
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RFP neighbors. As before, we found that AacrB-RFP cells grow more slowly when they
are in the vicinity of AcrAB-GFP neighbors than when they are surrounded by AacrB-RFP
neighbors (Figure 3-2A). Differences in the growth rate are apparent in measurements of
cell length over time. As a negative control, we also measured AacrB-RFP cells mixed with
AacrB-GFP cells and found no differences in growth rate (Figure 3-2B).

To confirm our findings across measurements of hundreds of individual cells, we
quantified the growth rates of single cells with AacrB-RFP or AcrAB-GFP neighbors. We
found statistically significant differences in the growth rates in conditions where antibiotics
were applied (Figure 3-2C). In addition, we observed a shift in the mean growth rate in the
opposite direction without antibiotic treatment, indicative of the cost of efflux pump
expression. Under sub-MIC levels of chloramphenicol (0.2 pg/ml), the neighbor effect was
more apparent than chloramphenicol concentrations near the MIC (1 pg/ml). This is likely
because at the higher antibiotic concentration growth of both AacrB-RFP and AcrAB-GFP
cells is impacted by chloramphenicol treatment. As expected, control experiments with
AacrB-RFP and AacrB-GFP cells showed no statistical difference in growth rates,
regardless of the antibiotic concentration (Figure 3-2D). These results indicate that the
AcrAB-TolC efflux pump plays a role in attenuating growth of neighboring cells in
conditions where antibiotics are present.

Since competition will change the composition of cells in mixed species
communities, we next extended our analysis to ask what the implications were for co-
cultures. To do this, we compared the biomass of the AacrB-RFP cells at the start of the

co-culture experiment to the end. More specifically, we quantified the relative abundance
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Figure 3-2. AacrB cells with and without acrAB complementation show neighbor-
dependent differences in growth.

(A) AacrB-RFP and AcrAB-GFP cells were mixed in ratios of 1:5 and 5:1 and grown on
agarose pads with 0.2 pg/ml chloramphenicol. Left panel is representative series of time-
lapse images showing growth of a AacrB-RFP cell surrounded by AcrAB-GFP neighbors.
Right panel shows the cell length over time for the cell indicated with an arrow in the left
panel. (B) AacrB-RFP and AacrB-GFP cells for conditions as described in (A). Length data
for all cells for conditions from (A, B) are shown in Figure B-3. (C) Growth rates of AacrB-
RFP cells with either AcrAB-GFP or AacrB-RFP neighbors quantified at different
chloramphenicol concentrations. (D) Growth rates of AacrB-RFP cells with either AacrB-
GFP or AacrB-RFP neighbors. Statistical significance was calculated using the
Kolmogorov-Smirnov test. ***p <0.001; **p <0.01; n.s.: not significant. Gray bars show
mean growth rate. Distribution mean, standard deviation, and p-values are listed in
Table S1 from reference (337). Full data set including outliers and n values are shown in
Figure B-1. Schematics under (C, D) show the type of neighbors surrounding the cell in
the middle whose growth rate is calculated. Background color indicates antibiotic
concentration.
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of the AacrB-RFP cells by comparing what fraction of the biomass they made up at the end
divided by the fraction at the start. Thus, if there is no change in the composition of the co-
culture then the relative abundance will be one; values below one correspond to AcrAB-
GFP cells outcompeting the AacrB-RFP cells. When no antibiotic was applied we found
that AacrB-RFP and AcrAB-GFP cells grew similarly and the relative abundances of the
two strains were maintained near one (Figure 3-3A). However, under chloramphenicol
treatment the relative abundance of the AacrB-RFP cells decreased when they were
surrounded by AcrAB-GFP cells, but not when they were in close proximity with other
AacrB-RFP cells. We note that under these conditions there are still AcrAB-GFP cells, but
since they are mixed in a ratio of 5:1, the AcrAB-GFP cells are comparatively rare. Control

A E. coli B E. coli
AacrB-AcrAB-GFP + AacrB-RFP y AacrB-GFP + AacrB-RFP
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of AacrB-RFP cells
o o
[e ] ©

0.8

Relative Abundance
of AacrB-RFP cells

0.7

0.7
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Chloramphenicol Chloramphenicol

SIS ES SFRreeR

Figure 3-3. Relative abundance of AacrB cells decreases when they have AcrAB-GFP
neighbors.

(A) Relative abundance was calculated using the data set in Figure 3-2C, where we define
relative abundance as the fraction of the biomass AacrB-RFP cells make up at the end,
divided by their fraction at the start. (B) Relative abundance calculated using the data set
in Figure 3-2D. Dashed line at one indicates value if there is no change in the abundance
of AacrB-RFP cells over time. Error bars show standard deviation between replicates.
Schematics under plots show the type of neighbors surrounding the cell in the middle
whose growth rate is calculated. Background color indicates antibiotic concentration.



52

experiments with AacrB-RFP and AacrB-GFP co-cultures had relative abundance values
near one regardless of the chloramphenicol concentration (Figure 3-3B). Overall, these
results indicate that proximity related inhibition from drug efflux can lead to rapid changes
in the community composition.

To understand the impact of antibiotic export on neighboring cells, we developed a
mathematical model to describe cell growth. The agent-based model applies a fixed spatial
architecture to describe cell proximity. Within each cell, we used a system of ordinary
differential equations to model changes in the intracellular antibiotic concentration due to
drug efflux (Figure 3-4A). Model parameters were estimated from measurements of cell
density in the presence of antibiotics (Figure B-2). We found that cell growth and the
intracellular antibiotic concentration are strongly influenced by the type of neighbors in the
simulation (Figure 3-4B). We next simulated a range of chloramphenicol concentrations
and found that the growth rate decreased significantly for cells with higher efflux compared
to cells with AacrB neighbors (Figure 3-4C), in good agreement with the experimental
results (Figure 3-1B).

A key finding of the model is that the efflux rate is proportional to the neighbor
effect. In other words, if the AcrAB-TolC pump exports a specific antibiotic well, then the
neighbor effect will be more apparent than if the pump does not export it well. To test this,
we conducted additional modeling and experiments with ciprofloxacin, which is a substrate
of the AcrAB-TolC pump, but has a smaller fold reduction of the MIC than
chloramphenicol for AacrB cells (Figure B-2B). Using parameter fits from experimental

data, we lowered the efflux rate of wild type cells to model the lower efflux efficiency for
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Figure 3-4. Model predicts cell growth rate differences under antibiotic conditions.

(A) Schematic depicting the spatial relationship between the focal cell in the center, its
neighbors, and the environment. (B) Biomass and intracellular chloramphenicol
concentration of AacrB cells with wild type neighbors or AacrB neighbors simulated in an
environment with 0.1 pg/mL of chloramphenicol. (C) Cell growth of AacrB cells with
different chloramphenicol concentrations given wild type or AacrB neighbors. Growth rate
is calculated as the average change in biomass divided by the time simulated. Model
parameters and initial conditions are listed in Table B-1. (D) Cell growth under
ciprofloxacin treatment for the same cell configurations as in (C). (E) AacrB-RFP and
AcrAB-GFP cells were mixed in different ratios (1:5 or 5:1) and grown on agarose pads
with ciprofloxacin. Statistical significance was calculated using the Kolmogorov-Smirnov
test, where n.s.: not significant. Gray bars show mean growth rate. Distribution mean,
standard deviation, and p-values are listed in Table S1 from reference (337). Full data set
including outliers and n values for each are shown in Figure B-1. Schematics under (C-E)
show the type of neighbors surrounding the cell in the middle whose growth rate is
calculated. Background color indicates presences of antibiotics.
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ciprofloxacin. The simulated results show a decrease in the impact of neighbors on the
focal cell’s growth rate (Figure 3-4D). We confirmed this experimentally with
ciprofloxacin, observing modest, but not statistically significant differences between the
different neighboring cells (Figure 3-4E). In an extension to the model, we explored how
the neighborhood affected the focal cell’s growth rate. We observed that the overall number
of neighbors was an important determining factor of the focal cell’s growth rate and the
exact spatial arrangement of the neighbors played only a minor role (Figure 3-5).

In microbial communities bacterial cross-species interactions are common.

Therefore, we tested whether the neighbor effect was limited to our single-species co-
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Figure 3-5. Impact of neighborhood on focal cell growth rate.

(A-D) Each row represents a different number of neighbors and each column represents
different neighborhood layouts. When the number of neighbors is one (first row) only the
cell labeled “1” in the schematic is included in the simulation. For two neighbors, cells “1”
and “2” are included, and so on. The neighborhoods evaluated are (A) spread out, but close
to the focal cell, (B) neighbors are closer to each other, (C) neighbors are clustered around
focal cell, and (D) spread out, but further from focal cell. The model was evaluated for
AacrB-RFP cells with AacrB-AcrAB-GFP (blue) and AacrB-RFP (cyan) neighbors
exposed to different concentrations of chloramphenicol.
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cultures with E. coli or if it extended to cross-species interactions. E. coli (e.g. ETEC or
STEC) and S. typhimurium are both foodborne pathogens and their co-existence can lead
to mixed biofilm formation and a higher resistance against sanitization (262). We
investigated the growth of S. fyphimurium co-cultured with E. coli WT-GFP or AacrB-
RFP under conditions with and without chloramphenicol. Consistent with our results from
the single-species co-cultures, we observed that S. typhimurium grows more slowly
with E. coli WT-GFP neighbors than E. coli AacrB-RFP neighbors (Figure 3-6). These

results indicate that the neighbor effect generalizes to cross-species interactions.
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Figure 3-6. E. coli and S. typhimurium co-culture.

S. typhimurium cells were mixed with either WT-GFP or AacrB-RFP E. coli. Statistical
significance was calculated using the Kolmogorov-Smirnov test. ***p <0.001. Gray bars
show mean growth rate. Distribution mean, standard deviation, and p-values are listed in
Table S1 from reference (337). Full data set including outliers and n values for each are
shown in Figure B-1. Schematic under plot shows the type of neighbors surrounding the
cell in the middle whose growth rate is calculated. Background color indicates antibiotic
concentration.
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3.5. Discussion

Single cell level effects are important for bacterial growth and survival under
antibiotic treatment. Here we focused on differences in antibiotic efflux as a mechanism
for generating cell-to-cell differences in antibiotic survival. This work is motivated by
recent studies showing that efflux pump expression is variable across cells within a
bacterial population (260, 261). Using detailed quantitative measurements of single cell
growth rates, we asked how differences in drug efflux affect the growth of neighboring
cells. We found that AacrB cells have a lower growth rate when surrounded by cells with
the AcrAB-TolC pump than when surrounded by like AacrB cells. This effect leads to a
rapid shift in the community composition towards more resistant cells that occurs within a
small number of generations. Further, the effect extends to E. coli and S. typhumirium co-
cultures, suggesting that these findings are likely to be broadly relevant for mixed-species
communities and stress tolerance mechanisms that work by exporting antibiotics or other
compounds into the immediate vicinity.

Efflux pump expression can be burdensome to cells and there is a tradeoff between
the benefit of pumps and their cost (189). Under the conditions we tested here, the cost of
pumps was modest and conditions with no antibiotics produced only minor differences in
growth rates between AacrB-RFP and AcrAB-GFP cells; however, we note that as
experiment durations are extended this burden will become more apparent. These cost and
benefit tradeoffs will likely depend on the environment, as cells balance the burden of
pump expression, the impact of their neighbors, and the local antibiotic concentration to

maximize growth.
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In the future, it will be interesting to study the interaction between drug efflux and
other antibiotic resistance mechanisms that function at the single-cell level. Also, efflux
pump expression is stochastic and can change over time in individual cells (260, 261),
suggesting the potential for experiments that quantify how these dynamics affects growth
of neighboring bacteria. The implications for the eventual evolution of permanent genetic
changes that lead to antibiotic resistance are also an interesting area for future research.
Single cell level effects and how bacteria interact, including their proximity, can have a

profound impact on whether antibiotics are effective.

3.6. Contributions Statement
The authors of this work were Xi Wen (X.W.), Ariel M. Langevin (A.M.L.), and
Mary J. Dunlop (M.J.D.). X.W. conducted the experiments and analyzed the data, A.M.L.

performed the modeling, M.J.D. supervised the research. All authors wrote the manuscript.

3.7. Methods
3.7.1. Strains and plasmids

We used BW25113 as the wild type strain of E. coli. BW25113 AacrB was derived
from the Keio collection strain JW0451 (BW25113 AacrB::kan®) (235), and we removed
the kanamycin resistance marker using the pCP20 plasmid (236). For the Sa/monella co-
culture experiments, we used the model strain S. typhimurium LT2 (263).

Plasmids were constructed using the Gibson assembly method (240). To distinguish
the strains, we used fluorescent reporters encoded on plasmids. For RFP, we used the
plasmid pBbASk-rfp (238), for GFP we used pBbASk-sfgfp (189), and for AcrAB-GFP we

used pBbASk-acrAB-sfgfp (189), where acr4B and sfgfp are transcriptionally fused. All
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plasmids described above have an IPTG-inducible Pucvs promoter controlling gene
expression, a medium copy p15A origin of replication, and kanamycin resistance marker.
The plasmids were transformed into either the E. coli wild type strain (pBbASk-sfgfp to
make WT-GFP), E. coli AacrB strain (pBbASk-rfp for AacrB-RFP; pBbASk-acrAB-sfgfp

for AcrAB-GFP; pBbAS5k-sfgfp for AacrB-GFP), or S. typhimurium strain (pBbASk-rfp).

3.7.2. Growth conditions

E. coli and S. typhimurium were cultured in Luria Broth (LB) medium. For all
experiments, overnight cultures were inoculated from a single colony in LB with 30 pg/ml
kanamycin for plasmid maintenance. Overnight cultures were then grown at 37 °C with
orbital shaking at 200 rpm. Before experiments, cultures were refreshed 1:50 in LB with
kanamycin and grown at 37 °C with orbital shaking. After 5 h, we added 100 uM IPTG and
then incubated an additional 2 h to induce fluorescent protein or AcrAB expression.
For S. typhimurium, 100 uM IPTG was added after cultures were refreshed for 0.5 h and
cells were grown for an additional 2 h induction. Co-cultures were mixed in ratios of 1:5
and 5:1 each for AacrB-RFP and WT-GFP or AacrB-RFP and AcrAB-GFP experiments

(and control with AacrB-RFP and AacrB-GFP).

3.7.3. Time-lapse microscopy
For imaging experiments, the co-cultures were placed on an agarose pad with
100 uM IPTG and with either 0, 0.2, 1 pg/ml chloramphenicol or 0.02, 0.1, 0.3 ug/ml
ciprofloxacin  for E. coli co-cultures, or 0, 1, 3pg/ml chloramphenicol for

the E. coli and S. typhimurium co-culture. We imaged at least three positions per pad,
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resulting in measurements of hundreds of single cells for each position (for n values for
each case see Figure B-1). 1.5% low melting agarose pads were made using M9 minimal
medium containing 0.2% glycerol, 0.01% casamino acids, 0.15 pg/ml biotin, and 1.5 pM
thiamine. Cells were diluted and mixed at ratios as indicated above and placed on pads
containing 100 uM IPTG and chloramphenicol or ciprofloxacin. Images were taken using
a Nikon Ti-E microscope with 100x objective lens for 130 mins at 5 min intervals. The
temperature of the microscope chamber was held at 32°C for the duration of the

experiment.

3.7.4. Data Analysis

Images were analyzed in Matlab. We used the automated image processing package
SuperSegger30 to measure cell growth rates and identify neighboring cells. An individual
cell’s lineage starts just after its mother has divided, forming it and a sister cell, and it ends
when the cell divides into two daughter cells. Growth rate is defined as the natural log of
the ratio of the length of the cell at the end of the lineage to its length at the start of the
lineage, divided by the length of the lineage in minutes. Thus, the growth rate is the
exponential rate constant (264). Custom Matlab scripts were used to analyze growth data

and neighbor effects. Statistical analysis of growth rates was performed in Matlab.

3.7.5. Toxicity experiments
To determine the antibiotic toxicity of the strains, we added a final concentration
0of0,0.1,0.2,0.5, 1, 2, 5, or 10 pg/ml of chloramphenicol or 0, 0.05, 0.1, 0.2, 0.5, 1, 2, or

5 pg/ml of ciprofloxacin to each culture. The samples were sealed with evaporation-
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limiting membranes (Thermo Scientific AB-0580) and grown in 96-well plates at 37 °C
with orbital shaking at 200 rpm. ODeoo readings were taken with a BioTek Synergy Hlm
plate reader every 10 m for 18 h. The toxicity curves represent change in growth for the
first 2 h for consistency with the length of the microscopy experiments. All experiments

were performed in triplicates with biological replicates.

3.7.6. Mathematical model

To simulate cell growth with different neighbors in the presence of antibiotics, we
used an agent-based model with Moore neighborhood architecture to describe the spatial
interactions between cells and the environment (265-267). We represent each cell with two
ordinary differential equations describing intracellular antibiotic concentration (Eq. 13)
and cell biomass (Eq. 14). The model assumes exponential growth, which is valid for the
short durations (~2 h) over which modeling and experiments are conducted. The biomass
equation has a term for the toxicity of the environment, which is derived from Van Impe et

al. (189, 227, 268).

dCin 1 all adjacent Neighbors .1 1
it 6 [Zm (Hms + 7)o

4
+ § Kin Cout
k=all adjacent Neighbors+1

Eq. 13
1 all diagonal Neighbors 1 1
+ E lz <_ Kout,j + _Kin) Cin,j

j=1 2 2
4

+ § Kin Cout
k=all diagonal Neighbors+1

aN _ N 1 Eq. 14
h
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The total antibiotic concentration at each time point is assumed to be equal to the antibiotic
concentration in the environment and inside cells. We assume instantaneous diffusion

within environments separated by a membrane.

all cells
Ctotal = Cout + Z Cin,i Eq. 15

i=1

Our model focuses on the focal cell and its neighbors. Ci is the intracellular antibiotic
concentration, and Cou is the extracellular concentration. N is biomass of the cell, and p is
the maximum growth rate. Ki» and K.« are antibiotic entry and exit based on the presence
of efflux pumps. We assume that if two cells are close together, the efflux from the
neighbor will create a small area with a higher relative antibiotic concentration. We model
this as the influx into the focal cell where an edge with a neighbor has an influx rate of
Y2 Koutneighvor + ¥2 Kin. The first term represents the effect of the gradient produced by
efflux from the neighboring cell with some loss to the environment and the second term
represents passive influx that may occur. The second term sets a lower bound so
that %2 Koyt neighvor + 2 Kin = Kin.

For the effect of antibiotics on change in biomass, we fit experimental data to a Hill
function. Parameters for the toxicity term, h. and K., were fit to AacrB toxicity curves for
chloramphenicol and ciprofloxacin (Figure B-2). For modeling cell growth under
ciprofloxacin, we decreased Kou by using fits to experimental data. All model fits were
conducted by minimizing least-squares error. All model parameters are listed in Table B-

1.
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4. MAPPING THE ROLE OF AcrAB-TolC EFFLUX PUMPS IN THE
EVOLUTION OF ANTIBIOTIC RESISTANCE REVEALS NEAR-MIC
TREATMENTS FACILITATE RESISTANCE ACQUISITION
4.1. Abstract

Antibiotic resistance has become a major public health concern as bacteria evolve
to evade drugs, leading to recurring infections and a decrease in antibiotic efficacy.
Systematic efforts have revealed mechanisms involved in resistance; yet, in many cases,
how these specific mechanisms accelerate or slow the evolution of resistance remains
unclear. Here, we conducted a systematic study of the impact of the AcrAB-TolC efflux
pump on the evolution of antibiotic resistance. We mapped how population growth rate
and resistance change over time as a function of both the antibiotic concentration and the
parent strain’s genetic background. We compared the wild type strain to a strain
overexpressing AcrAB-TolC pumps and a strain lacking functional pumps. In all cases,
resistance emerged when cultures were treated with chloramphenicol concentrations near
the MIC of their respective parent strain. The genetic background of the parent strain also
influenced resistance acquisition. The wild type strain evolved resistance within 24 h
through mutations in the acr4B operon and its associated regulators. Meanwhile, the strain
overexpressing AcrAB-TolC evolved resistance more slowly than the wild type strain; this
strain achieved resistance in part through point mutations in acrB and the acrAB promoter.
Surprisingly, the strain without functional AcrAB-TolC efflux pumps still gained
resistance, which it achieved through upregulation of redundant efflux pumps. Overall, our

results suggest that treatment conditions just above the MIC pose the largest risk for the
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evolution of resistance and that AcrAB-TolC efflux pumps impact the pathway by which
chloramphenicol resistance is achieved.
4.2. Introduction

Despite the new wave of antibiotic discovery (269-273), bacteria continue to
acquire resistance shortly after the introduction of new drugs for medicinal and industrial
applications (5, 274). This is due in large part to the overuse of antibiotics, which results
in pressures that drive resistance (275). With limited novel antibiotics and numerous futile
antibiotics, doctors and scientists alike are presented with the challenge of how to best treat
infections while keeping the evolution of resistance in check.

Adaptive evolution studies have begun exploring how certain antibiotic pressures
influence the evolution of resistance. For instance, studies using a ‘morbidostat’—a
continuous culture device that dynamically adjusts antibiotic concentrations to inhibitory
levels—have found numerous targets that can be readily mutated to promote resistance
(102, 103, 105) and have also identified how drug switching can limit the evolution of
resistance (276). While these studies have provided pivotal insights for this field, the
morbidostat design causes antibiotic concentrations to rise to levels that exceed clinically
relevant concentrations due to toxicity for patients (107). In recognition of the drug
concentration-dependent nature of evolution, researchers have begun to explore bacterial
evolution under treatment conditions with lower antibiotic concentrations as well.
Wistrand-Yuen et al. found that bacteria grown in sub-inhibitory drug concentrations were
still able to achieve high levels of resistance (87, 277, 278). Notably, the study identified

that the same antibiotic produced unique evolutionary pathways when cells were treated
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with sub-inhibitory concentrations as opposed to inhibitory concentrations (87).

One limitation of current studies within the field is that they can be difficult to
compare due to variations in experimental parameters, such as species, antibiotics, or other
experimental conditions (118). Given the unique evolutionary pathways at different
antibiotic concentrations, systematic mapping of these evolutionary landscapes could
provide an improved understanding of which conditions pose the highest risk by allowing
direct comparisons between different antibiotic concentrations. For instance, Jahn et al.
demonstrated that variations in treatment dynamics can significantly alter evolved
resistance for some antibiotics, such as tetracycline, but not others, such as amikacin and
piperacillin (279). Other evolution experiments that were systematically conducted using
a range of concentrations for beta-lactams (88) and erythromycin (280) have highlighted
the concentration-dependent adaptability of E. coli.

There are many mechanisms by which antibiotic resistance can be achieved,
including enzymatic inactivation, alteration of antibiotic binding sites, and increased efflux
or reduced influx of antibiotics (281, 282). Efflux pumps are omnipresent in prokaryotic
and eukaryotic cells alike, and are an important contributor to multidrug resistance (222).
AcrAB-TolC in E. coli is a canonical example of a multidrug efflux pump, providing
broad-spectrum resistance and raising the MIC of at least nine different classes of
antibiotics (283). The pump is composed of three types of proteins: the outer membrane
channel protein, TolC; the periplasmic linker protein, AcrA; and the inner membrane
protein responsible for substrate recognition and export, AcrB (222). Using the proton

motive force, AcrB actively exports antibiotics from the cell (222, 230). The presence of



65

AcrAB-TolC efflux pumps can increase the MIC by ~2-fold to ~10-fold, depending on the
antibiotic (145, 189, 219). Furthermore, genes associated with these multidrug resistant
efflux pumps, including their local and global regulators, are common targets for mutation
as strains evolve high levels of drug resistance (106, 277, 284-286).

Recent studies have indicated that in addition to providing modest increases in the
MIC due to drug export, pumps can also impact mutation rate and evolvability of strains,
which may ultimately be more important for the acquisition of high levels of drug
resistance. Firstly, mutants overexpressing acr4AB emerge first and then are able to further
evolve facilitate high levels of quinolone resistance (287). Secondly, heterogeneity in
efflux pump expression can also predispose subsets of bacterial populations to mutation
even prior to antibiotic treatment (191). Deleting genes associated with efflux pumps, such
as tolC, can also reduce evolvability under antibiotic exposure (288). Further, a recent
study in S. aureus found that higher NorA pump levels increased evolvability, and that
adding a pump inhibitor could prevent resistance evolution (192). These studies provoke
the question of how AcrAB-TolC efflux pumps can serve to promote or attenuate the
evolution of drug resistance.

Our overall goal in this study was to identify temporal, phenotypic, and genetic
patterns in how strains with different AcrAB-TolC genotypes evolve antibiotic resistance
under a range of chloramphenicol concentrations. Chloramphenicol is both a well-
validated substrate of AcrAB-TolC and can serve as a last resort antibiotic in multi-drug
resistant infections, as most clinical isolates are still susceptible to this drug (289, 290). To

identify how AcrAB-TolC impacts the evolution of resistance, we used a turbidostat as an



66

evolutionary platform (291) and measured changes in fitness and resistance. We evolved
three strains with different levels of AcrAB-TolC: a wild type strain with the native
regulatory network controlling AcrAB-TolC expression (WT); a strain which lacks the
local regulator AcrR (AcrAB+), which results in a 1.5 to 6-fold increase in expression of
the pumps (157, 159, 175); and a strain lacking functional AcrAB-TolC efflux pumps
(AacrB).2 We allowed the cultures to grow and evolve for 72 h in continuous culture while
continuously recording growth rates. We periodically sampled the cultures and assessed
the population’s resistance. We then charted the evolutionary landscapes for each strain
under different chloramphenicol concentrations to identify which circumstances gave rise
to resistance.
4.3. Results

In order to systematically evaluate the evolutionary landscape of efflux pump-
mediated antibiotic resistance, we used the eVOLVER, a modular turbidostat capable of
growing independent cultures in parallel (291). This platform allowed us to track a
culture’s fitness by measuring growth rate continuously over multi-day experiments. In
addition to this, we collected samples at selected intervals and, with these samples,
performed antibiotic disc diffusion assays to assess the population’s resistance and spot
assays to quantify the presences of high-resistance isolates within the population (Figure

4-1).

2 For consistency, these appear as defined in the original pre-print; however, please note that the
names and definitions of each strain differ from Chapter 2, 3, and 5.
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Figure 4-1. Evolution experiment schematic.

We used the eVOLVER, a modular turbidostat, as an evolutionary platform to measure and
record absorbance data at 600 nm (ODsoo). We calculated growth rate after each dilution
event and collected samples at defined timepoints (t = 0, 1, 3, 6, 12, 24, 48, 72 h). We
performed antibiotic disc assays and spot assays for all samples.

We mapped growth rates over time for cultures subjected to a range of
chloramphenicol treatment concentrations (Figure 4-2A & Figure C-1). To compare across
strains, we defined MIC%ent as the MIC of the parent strain (MIC%wr = 2 pg/mL,
MICcrag+ = 2 pg/mL, MIC%%e= 0.5 pg/mL). We found similar values for MIC%t and
MIC Acran+ (Figure C-2), which may be due to induction of efflux pump expression in the
WT strain in the presence of chloramphenicol. Prior studies have shown that the presence
of stress can increase pump expression by 4-fold (157, 292), which is comparable to the
impact of deleting acrR (157, 159, 175). We found that treatment with high concentrations
of chloramphenicol repressed bacterial growth for multiple days. We observed this growth
inhibition at ~10 pg/mL for WT and AcrAB+, and at ~2 pg/mL for AacrB. These inhibitory
concentrations represent treatments of ~5x MIC%qrent for all three strains. We found that
cultures grown in lower chloramphenicol concentrations were able to recover growth. For

example, when we treated cultures with ~1-2x MIC%uen, we observed a significant
p p g
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Figure 4-2. Temporal based on treatment concentration of

chloramphenicol.

landscapes

(A) Average growth rate. Growth rates are normalized to growth of strains at t = 0 h; for
raw data see Figure C-1. Lighter areas represent growth rates closer to pre-treatment
values; darker areas represent reduced growth rates. MIC? concentration is denoted with a
bold dashed line for each strain (Figure C-2). (B) Average resistance. Diameter of
inhibition zones were plotted for each time and treatment. Smaller inhibition zones are
shown in red and correspond to resistant cells (<12 mm) and larger inhibition zones are
shown in blue and represent susceptible cells (=19 mm); intermediate inhibition is shown
with color scale from orange to green. MIC%urent is denoted with a bold dashed line. (C)
Final resistance at 72 h based on treatment concentration normalized to MICarent. The
calculated, absolute final MIC is based on data from Figure C-5. Data points show the
mean of three biological replicates. Shaded error bars show standard deviation.
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decrease in the growth rate between 0 and 12 h (Table C-1). However, after 12 to 24 h,
growth in these populations was partially restored. At lower treatment concentrations (<1x
MICparent), all cultures were able to grow, though usually at a deficit compared to the 0
pg/mL chloramphenicol condition. For all three strains, there were qualitatively similar
growth recovery patterns, with an initial growth repression phase followed by a partially
restored growth phase (Figure C-1).

The growth rate results suggested the evolution of drug resistance within the
population (102, 279). To quantify this, we used an antibiotic disc assay to map the
corresponding resistance levels (Figure 4-2B & Figure C-3). We found distinct increases
in resistance levels that corresponded to populations which recovered growth. While there
were qualitative similarities for the three strains, the timing and level of resistance achieved
was dependent on the strain background. We classified populations as resistant when their
inhibition zone diameters were smaller than 12 mm, following established standards for
antimicrobial susceptibility testing (293). The WT strain gained resistance under a broad
range of chloramphenicol treatment concentrations; this resistance emerged within 24 h
when cells were treated with ~1-2x MIC%r. The AcrAB+ strain, where efflux pumps are
overexpressed, was able to evolve resistance as well, albeit at a slower rate and at lower
levels than WT. AcrAB+ achieved resistance within 48 h when treated with 2.5x
MICPAcraB+, but the range of chloramphenicol concentrations that resulted in resistance was

narrower than for the WT strain. The AacrB cells achieved resistance more slowly, but for

the range of ~1-2x MICuc3 chloramphenicol cultures were still able to reach resistant

levels (Figure 4-2B & Figure C-3).
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To compare the ultimate evolved resistance levels, we calculated the final, absolute
MIC of the populations at 72 h. When we normalized the treatment concentration by
MIC qrent, we found that treatments concentrations ~1-2x MIC%arent €volved the most
resistant populations (Figure 4-2C). Selective pressures of subinhibitory antibiotic
concentrations have often been considered high-risk for the evolution of resistance (87,
294). Yet, our results indicated that concentrations near or just above MICarent lead to the
highest resistance levels in these conditions. In short, all three strains were able to evolve
resistance when treated with ~1-2x MICarent chloramphenicol, with WT achieving the
highest final, absolute MIC of the three strains. WT evolved more rapidly than AcrAB+ or
AacrB. Moreover, the relative range of chloramphenicol concentrations that supported the
evolution of resistance in the AcrAB+ strain was narrower than for WT or AacrB strains.

We next asked how resistance and growth changed through time. We found that in
the absence of antibiotics, the trajectories trended largely towards faster growth, with
minimal changes to resistance levels (Figure 4-3). With subinhibitory chloramphenicol
treatments, we observed that the populations first experienced a slight growth decrease,
followed by increased resistance, and then restored growth within 48 h. While these
populations did gain resistance, they did not tend to reach very high final MIC values in
absolute terms, with inhibition zone diameters just at the border of being defined as
resistant. In contrast, with inhibitory chloramphenicol treatment, there was a more dramatic
reduction in growth within the first 12 h. Though growth was impacted, the populations
tended to walk towards high resistance during this period. As depicted in the schematics,

the zig-zag patterns trending towards high resistance may be indicative of the cultures
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Figure 4-3. Resistance and Fitness Evolution Trajectories.

(A) Average diameter of inhibition zone and average growth rate plotted against each other.
Lighter purple markers represent trajectories occurring earlier; darker purple are later
timepoints. The longer the distance between markers, the greater the change between time
points. Colors of boxes indicate the absolute treatment concentration for the depicted
trajectories. (B) Schematics summarize patterns for each treatment concentration
(XMICarent). Schematic plots show growth rate in terms of initial growth rate (GRo) and
maximum physiological growth rate (GRmax). Resistance is shown in terms of relative
diameter of inhibition, where Dy is the diameter of inhibition at t = 0 h and Dmin is the
diameter of the antibiotic disc.

acquiring resistant mutations and compensating for the associated fitness costs of these
mutations. Finally, at high chloramphenicol concentrations, bacteria first became more
susceptible and then stopped growing entirely within 12 h; growth was never restored for

these populations. We found that all strains followed similar evolutionary trajectories while
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balancing the trade-off between growth and resistance. These findings highlight the
importance of using antibiotic concentrations that are sufficiently inhibitory.

While these results tell us about the growth rate and resistance of the overall
population, it is difficult to determine if sub-populations of cells within the culture have
acquired high levels of resistance from disc assays alone. First, because the disc assays do
not quantify resistance associated with individual cells in the culture, they cannot reveal
the presence of sub-populations of resistant and susceptible cells. Second, beyond a certain
resistance level, cells will grow up to the boundary of the disc; thus, it is not possible to
quantify resistance increases beyond this. Determining which conditions can give rise to
high levels of resistance is important for revealing particularly dangerous treatment
regimes. In addition, sub-populations with increased resistance to one antibiotic can
promote cross-resistance to other drugs (294).

To quantify the fraction of resistant cells that emerged during our evolution
experiment, we conducted a spot assay, in which we measured the fraction of the
population capable of surviving on specific chloramphenicol concentrations. For all three
strains, we observed sub-populations that were capable of growing on 10 pg/mL
chloramphenicol (Figure 4-4A & Figure C-4). Interestingly, these cells primarily emerged
from treatment conditions with lower levels of chloramphenicol, and not from conditions
where cells were subjected to 10 pg/mL chloramphenicol. For example, at least 0.1% of
the population from each of the three WT replicates that were treated at 2 ug/mL
chloramphenicol could survive on 10 pg/mL at the end of the experiment. We did find

cases where WT cells treated with 10 pg/mL evolved resistance to 10 pg/mL, however this
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Figure 4-4. Number of Biological Replicates with Highly Resistant Sub-populations
through Time.

Number of biological replicates that had a sub-population greater than 0.1% of their total
population, which could grow on LB plates containing (A) 10 ug/mL or (B) 20 pg/mL
chloramphenicol. Raw data is shown in Figure C-4. Initial populations contained ~10’
CFUs. MIC®arent compared to treatment concentration is denoted with a bold dashed line
(Figure C-2).

was less frequent compared to lower treatment concentrations. Thus, cultures were able to
evolve resistance to higher levels of chloramphenicol than they were exposed to, a feature
that was most pronounced when treatments were just above or at MIC . These results
closely match trends in the population’s overall resistance (Figure 4-2B). We also found
isolates capable of growing on 20 pg/mL chloramphenicol, albeit with a reduced frequency

relative to 10 pg/mL (Figure 4-4B & Figure C-4).

In contrast, the AcrAB+ strain was capable of evolving resistance to 10 pg/mL
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when treated with 5 pg/mL chloramphenicol; yet, surprisingly, AcrAB+ never produced a
sub-population that was able to grow on 20 pg/mL as the WT did. Meanwhile, despite the
higher initial susceptibility of AacrB (MIC%%ucz < MIC%wt and MIC®acraB+), the AacrB
strain consistently produced sub-populations that were able to grow at 20 pg/mL
chloramphenicol by 72 h. This sub-population appeared for chloramphenicol
concentrations around 2 pg/mL, similar to the WT strain.

A key question remained: which mutations were responsible for the increases in
resistance we observed? To address this, we used whole genome sequencing to analyze
three biological replicates from the 72 h timepoint for the WT, AcrAB+, and AacrB strains
(Table 4-1). For the WT strain, each of the sequenced isolates contained a single point
mutation in the DNA binding region of marR, which can upregulate AcrAB-TolC efflux
pumps and expression of other stress response genes (295). Two of these point mutations
were missense mutations in marR and have been observed in other studies (35, 296-299).
Additionally, one isolate had a missense mutation in the periplasmic encoding region of
acrB. The other two isolates had an IS1 or IS5 insertional sequence interrupting acrR,
which is known to upregulate acrAB (300). One question these results raise is why the
AcrAB+ strain, where acrR is removed, is outperformed by WT strains with mutations in
acrR. A potential explanation for this is that the ‘marbox’ through which acr4B is
upregulated sits within acrR (163). The AcrAB+ strain lacks this marbox (235), while in
the sequenced isolates the insertion sequence is located further upstream in acrR and the
marbox remains intact, providing global stress response regulation while eliminating the

impact of the local repressor. Thus, the exact position of the insertion sequence matters.
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These sequencing results indicate that strains containing AcrAB-TolC efflux pumps use

mutations related to the pumps and their regulation to optimize survival and increase

resistance in the presence of chloramphenicol.

When we evolved the AcrAB+ strain and performed whole genome sequencing of

the most resistant isolates, all isolates had mutations in the noncoding, promoter region of

acrAB (Table 4-1). These mutations indicate that the AcrAB+ strain might require further

rrsG +58 b 2,723,638
Isolation [Cm] (ug/mL) | 20 | 20 | 20 ] 10 | 10 | 10} 10 | 5 | 5

Parent Strain WT AcrAB+ AacrB
Treatment Concentration | 2 pg/mL Cm | 5 pg/mL Cm | 1 pg/mL Cm

Region | Mutation Position
werR | |ASLH4bp 481,420 X ‘

IS5 + 8bp 481,481 | X

IS2 + 4bp 481,163 X
Pucrrap | A lbp 481,174 X

T=>C 481,187 X
g Q6L 478,154 X X ‘:

V139F 479,445 X

+ 1bp 1,613,590 X
marR T72P 1,613,590 | X

V84E 1,613,267 X
acrS IS5 + 4bp 3,407,126 X | X

IS2 + 4bp 3,407,133 X
rpoB K126Q 4,174,956 X
fimD T393N 4,536,090 X
yhjB 1S4 + 12bp 3,664,650 X
clpX IS186 + 2bp 454,251 X
selA D441G 3,753,288 X

X

Table 4-1. Summary of whole genome sequencing results.

Non-clonal mutations for each resistant isolate from eVOLVER experiments. Each isolate
from each parent strain is derived from a different biological replicate. In addition to the
mutations, the table also lists the treatment concentrations that each isolate evolved at, as
well as the concentration of chloramphenicol that the isolate was selected on at t = 72 h.
Genetic regions that do not exist in the parent strain are grayed out.
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tuning of acr4B expression for improved resistance. Further, two of these isolates also had
missense mutations in the coding region of acrB as well. Of these, the V139F missense
mutation is known to produce high levels of multidrug resistance by accelerating export
for a number of AcrAB-TolC substrates (105, 279, 301, 302). We observed acrB Q569L
evolve from two different parent strains, WT and AcrAB+, suggesting it plays a role in
chloramphenicol export. Additionally, the evolved AcrAB+ isolates all had other mutations
less directly related to the AcrAB-TolC efflux pump and its regulators, such as genes
related to transcription (rpoB, yhjB), fimbriae assembly (fimD), or degradation (c/pX)
(Table 4-1).

In contrast, when we evolved the AacrB strain, we found that all three isolates had
an insertion sequence located in acrS (Table 4-1). AcrS is the local regulator of the AcrEF-
TolC efflux pump, a homolog to AcrAB-TolC (180). This result agrees with findings from
Cudkowicz & Schuldiner, who showed that the AacrB strain gained high resistance by
upregulating redundant efflux pumps in E. coli, such as AcrEF-TolC or MdtEF-TolC (105).
One of the three isolates also contained a missense mutation in the tRNA for selenocysteine
(selAd) and a short insertion sequence in the 16S rRNA of the 30S subunit (77sG), though

whether or how these play a role in chloramphenicol resistance is unclear.

4.4. Discussion
In this work, we identified that treating strains with antibiotic concentrations close
to MIC parent promotes the evolution of resistance; however, the evolvability and ultimate
resistance level achieved differed between WT, AcrAB+, and AacrB strains. WT

populations evolved mutations that conferred high levels of resistance within 24 h after
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antibiotic exposure. Maximal resistance was evolved at ~1x MIC%yr, however 0.25-2.5x
MIC%yr chloramphenicol treatment concentrations all gave rise to resistance. We observed
similar trends WT treated with another antibiotic, ciprofloxacin, as well (Figure C-6). In
contrast, AcrAB+ evolved resistance, but this was only possible at precise chloramphenicol
concentrations at 2.5x MIC¢as+. The evolved AcrAB+ populations were less resistant
than their WT counterparts, and spot assays determining resistance confirmed this trend.
In contrast, the AacrB strain was able to evolve resistance under 1-4x MIC%sucr
chloramphenicol treatments, and ultimately achieved absolute resistance levels comparable
to those observed in the WT strain.

Our results identify that antibiotic treatments near MIC aren are especially prone to
evolving resistance. Reding et al. observed this hotspot for adaptability of E. coli in the
presence of another antibiotic, erythromycin, just below the MIC of their parent strains
(280). While doctors measure resistance of bacterial infections, they sometimes prescribe
antibiotic treatment prior to obtaining the results of this assay (303) or use a treatment
concentration too low to effectively penetrate the infection site (304). This blind treatment
could lead to increased levels of resistance (305, 306). These results highlight the presence
of regimes that are especially problematic and which should be avoided to limit the
evolution of antibiotic resistance.

While we observed that all strains were capable of evolving resistance, sequencing
revealed the different pathways that each strain took to achieve this. WT achieved
resistance through mutations and insertion sequences in the regulators AcrR and MarR,

suggesting that WT cells can fine-tune expression of the AcrAB-TolC pumps to gain
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resistance to chloramphenicol. Interestingly, these mutations may produce cross-resistance
to other antibiotics as well since these regulators control many genes involved in multi-
drug resistance (164, 165). AcrAB+ cells utilized mutations in acrB and the promoter
region controlling its expression to achieve resistance. AacrB populations achieved
resistance by targeting homologous efflux pump systems, such as AcrEF-TolC. Although
resistance was slow to emerge in this strain compared to WT or AcrAB+, this alternative
pathway for achieving resistance ultimately resulted in levels comparable to those achieved
by the WT strain. By charting evolutionary landscapes across different antibiotic
concentrations, we have gained insight into treatments that impact the emergence of

antibiotic resistance and the effect of efflux pumps on this process.

4.5. Contributions Statement

The authors of this work were Ariel M. Langevin (A.M.L.), Imane El Meouche
(I.LE.M.), and Mary J. Dunlop (M.J.D.). A M.L. and [.LE.M. designed experiments, A.M.L.
conducted the experiments and analyzed the data, M.J.D. supervised the research. All
authors wrote the manuscript.

4.6. Methods
4.6.1. Strains and Plasmids

We used E. coli strains BW25113 (WT), BW25113 AacrB (AacrB), and BW25113
AacrR (AcrAB+). The wild type strain BW25113 is the parent strain for the Keio collection
(235). BW25113 AacrB was derived from Keio collection strain JW0451 (BW25113
AacrB::kan®) (189). For BW25113 AacrR, we designed primers with homology regions on

acrR and amplified the kanamycin resistance marker and FRT sites of pKD13 (235).
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Primers are listed in Table C-2. The linear DNA was then treated using a Dpnl digest and
PCR purification. We electroporated the purified linear DNA into competent BW25113
cells containing the plasmid pSIM6 (307). We removed kanamycin resistance markers
from JW0451 and BW25113 AacrR::kan® following the pCP20 protocol from Reference

(308).

4.6.2. Determination of MIC

For all experiments, overnight cultures were inoculated from a single colony in 10
mL LB and grown in a 50 mL Erlenmeyer flask at 37°C with 200 rpm orbital shaking.
After overnight growth, the optical density at 600 nm (ODsgoo) was measured, and the initial
volume was diluted back to ODgoo = 0.1. To determine the MIC of the parent strains (Figure
C-2), we added a final concentration of 0, 0.2, 0.5, 1, 2, 4, §, or 12 ug/mL of
chloramphenicol to each culture; to determine the MIC of the evolved strains (Figure C-
5), we added 0, 0.5, 1, 2, 5, 10, 20, or 50 pg/mL to each culture. Chloramphenicol stocks
were prepared with 100% ethanol. The samples were sealed with evaporation-limiting
membranes (Thermo Scientific AB-0580) and grown in 24-well plates at 37°C with 200
rpm orbital shaking. ODsoo readings were taken using a BioTek Synergy H1m plate reader
before incubation (t = 0 h) and after antibiotic exposure (t = 24 h). As Tween20 is a
detergent and a potential substrate of the AcrAB-TolC efflux pumps, we also conducted
the toxicity curve experiments with Tween20 at our working concentration 0.2% (v/v). We
found there was no significant change in resistance for any of the strains under the presence
of Tween20 (Figure C-7). All experiments were performed in triplicate using biological

replicates.
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4.6.3. Experimental Conditions in the eVOLVER

In the eVOLVER, cultures were inoculated from a single colony in LB at 37°C. A
stir bar mixed the cultures on a medium setting, or approximately 1000 rpm (291). The LB
was supplemented with the detergent Tween20 (Sigma Aldrich Cat. # P1379) at 0.2% (v/v)
to reduce spurious ODgoo measurements caused by biofilm growth on the flask. As
Tween20 is a detergent and a potential substrate of the AcrAB-TolC efflux pumps, we also
conducted the toxicity curve experiments with Tween20 at our working concentration 0.2%
(v/v). We found there was no significant change in resistance for any of the strains in the
presence of Tween20 (Figure C-7 & Table C-4).

Cells were inoculated in the eVOLVER overnight (t = -16 — -14 h) prior to the
beginning of the experiment (t = 0 h) to establish steady-state exponential growth. We set
the eVOLVER using an upper ODgoo bound of 0.2 and a lower bound of 0.1; thus, cultures
were grown to a turbidity of 0.2 and then diluted back to 0.1 to maintain the turbidostat at
approximately constant cell density. Samples were collected during the experiment at set
time points (t =0, 1, 3, 6, 12, 24, 48, and 72 h) and used for downstream analysis. All
experiments were performed in triplicate using biological replicates.

At t = 0 h, we introduced chloramphenicol at a predetermined final treatment
concentration ([Cm] = 0, 0.2, 0.5, 1, 2, 5, 10, or 20 pg/mL). This introduction was
implemented by switching the media source from one containing 0 pg/mL
chloramphenicol to another containing the final treatment concentration; in addition, we
spiked the samples directly with the treatment concentration of chloramphenicol at the

same time to avoid a delay due to the time required for media cycling in the turbidostat.
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4.6.4. Downstream Assays and Data Collection from eVOLVER Samples

4.6.4.a. Growth Rate Measurements

Growth rate measurements were calculated after each dilution event using:

In <0D600,high)

OD
Growth Rate = 600,low Eq. 16

tODGOO,high - tODéOO,low
The growth rate between each dilution was then averaged across sampling time points to
compare against disc diffusion assays and spot assays. For example, the growth rate given
at t = 0 h is the growth rate from t = -6 h to t = 0 h. To evaluate statistically significant
differences in growth rate between two time points, we used the paired-¢ test; to evaluate
statistically significant differences in growth rate between two strains, we used the ¢ test
(Table C-1).

4.6.4.b. Antibiotic Disc Diffusion Assay

We aliquoted samples from the eVOLVER, where the ODgoo from each sample was
between 0.1 and 0.2. We used cotton swabs to cover LB agar plates with a layer of the
sample (309). An antibiotic disc containing chloramphenicol (30 g) (Thermo Fisher
Scientific Cat. # CT0013B) was then placed on the plate. The plate was incubated for 24 h
at 37°C. The diameter of the zone of inhibition around each disc was then measured.
Diameter of inhibition zones were classified as susceptible, intermediate, or resistant based
on Reference (293). Additionally, we calculated the MIC using a linear mapping between
MIC and diameter of inhibition zones for our samples (Figure C-5) (310). To evaluate
statistically significant differences in diameter of inhibition zones or resistance between

two time points, we used the paired-f test; to evaluate statistically significant differences in
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resistance between two genotypes, we used the ¢ test (Table C-4).

4.6.4.c. Spot Assay

The samples from the eVOLVER experiment were diluted in PBS to the following
dilution series: 1, 107!, 102, 1073, 104, and 10->. We then plated 2.5 pL of each dilution on
LB agar plates containing 0, 0.5, 1, 2, 5, 10, and 20 pg/mL chloramphenicol. The plates
were then incubated for 24 h at 37°C. To count colonies, we identified the dilution factor
with the most countable colonies, and recorded the number of colony forming units (CFU)

and dilution factor (d). The CFU/mL for each sample was then calculated by:

CFU +d

CFU/mL = ~—— Eq. 17

where V is the volume plated. We also calculated the proportion of the population able to
grow on different concentrations of chloramphenicol by calculating the CFU/mL from LB

agar plates containing 0, 0.5, 1, 2, 5, 10, and 20 pg/mL chloramphenicol.

4.6.5. Whole Genome Sequencing

DNA was extracted from single isolates and parent strains using the QIAGEN
DNeasy PowerBiofilm kit. For each strain, we selected three isolates to sequence; each of
these isolates originated from a different biological replicate that was evolved under the
same experimental conditions (i.e. each isolate comes from a different eVOLVER culture).
Samples were sequenced at the Microbial Genome Sequencing Center (MiGS) in Pittsburg,
PA, USA, who conducted library preparation and multiplexing using the Illumina Nextera
kit series and then sequenced using a NextSeq 550 platform with 150 bp paired-ends and

an average coverage of 50 reads. We analyzed reads using breseq (311) version 0.35.1.
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Reads were aligned to the BW25113 Keio reference genome (Accession: CP009273) in
consensus mode. The treatment concentrations and isolation concentrations used to select
each isolate are listed in Table 4-1. Whole genome sequencing data for the parent strains
and the isolates are available on GenBank (BioProject: PRINA666010; Accession no.:

CP062239 to CP062250).
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5. ANTIBIOTIC INTRODUCTION RATE AND MIXED POPULATIONS
INFLUENCE THE EMERGENCE OF ANTIBIOTIC RESISTANCE
5.1. Abstract

Antibiotic resistance remains a public health concern as bacteria readily utilize
resistance mechanisms, including efflux pumps, to evade antibiotic treatments. Previously,
we found that the rate of antibiotic administration could compromise the effectiveness of
such multidrug efflux pumps (Chapter 2). For instance, the AcrAB-TolC efflux pump
exports antibiotics out of the cell, increasing resistance levels. These pumps are more
effective when antibiotics are introduced slowly. In this study, we assessed how short-term
and long-term differences in antibiotic introduction rates affect the longer-term evolution
of drug resistance. We monitored this in different genetic backgrounds: E. coli harboring
AcrAB-TolC efflux pumps with their native regulatory networks intact, constitutive
expression of the efflux pumps, and a strain lacking functional pumps. We compared
cultures exposed to a rapid step increase in chloramphenicol to those exposed to a slow
short-term ramp increase. We found that efflux pump expression increases tolerance to
antibiotics and promotes the emergence of resistance through mutations. In genotypes
lacking the native regulation networks, slow rates of antibiotic introduction increase the
number of resistant isolates and decrease the number of susceptible cells compared to rapid
antibiotic introduction. We also identified how slow and long-term antibiotic introduction
rates promote increased fitness over resistant phenotypes relative to step antibiotic
introduction rates. Lastly, we found that in co-cultured populations containing strains with

and without the pumps, the results were not simply the additive response of the single-



85

strain evolution experiments. Co-cultured populations exposed to a step increase in
chloramphenicol produced few resistant isolates, whereas in populations exposed to a
short-term ramp over half of the isolates were resistant. These results highlight the
importance of studying the interplay between the rate of antibiotic introduction, population

composition, as well as the regulatory networks controlling expression of resistance genes.

5.2. Introduction

Although the antibiotic revolution represents a significant advance in modern
medicine, bacteria have historically acquired resistance shortly after the introduction of
new antibiotics (5, 274). Moreover, the discovery of novel antibiotics has dwindled,
presenting doctors and scientists alike with the challenge of how to best treat infections
while keeping the evolution of resistance in check. Overuse of antibiotics results in
pressures further driving resistance (275). A potential solution is to focus not solely on
finding new drugs, but also on leveraging dosing strategies that minimize the frequency of
resistant and tolerant bacteria. Here, we define resistance as a genetically-encoded
mechanism that allows bacteria to survive antibiotic treatment and tolerance as a
phenotypic response that enables survival.

There are many mechanisms by which antibiotic resistance can be achieved,
including enzymatic inactivation, alteration of antibiotic binding sites, and increased efflux
or reduced influx of antibiotics (230). Due to their active role in exporting antibiotics, we
focused on efflux pumps, specifically the multidrug AcrAB-TolC pump in E. coli. The
proteins that compose the pump are the outer membrane channel TolC, the periplasmic

linker protein AcrA, and the functional unit of the efflux pump AcrB. AcrB uses the proton
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motive force to actively export substrates out of the cell (222, 230). Deletion of acrB
eliminates pump functionality, resulting in a five-fold reduction of minimum inhibitory
concentration (MIC) for chloramphenicol (189). Chloramphenicol is often used as a last
resort antibiotic in multidrug resistant infections since most clinical isolates are susceptible
to this drug (289, 290). Despite the pump-mediated increase in resistance, upregulation of
the efflux pumps incurs a growth cost and can increase mutation frequencies (189, 191).

Current antibiotic resistance research primarily explores binary conditions — where
a stress is or is not present; however, realistic environments are seldom as well-defined as
those in the laboratory (193). Our prior results have demonstrated a relationship between
the rate of antibiotic addition and the benefit of efflux pumps on population fitness, where
the efflux pumps’ ability to convey a population-level fitness benefit is amplified when
antibiotics are added slowly (189). We found that cells with constitutive expression of
efflux pumps were more represented than those without pumps when a slow dose of
antibiotics was applied over the course of several hours (189). Further, recent theoretical
results suggest that the emergence of mutations giving rise to antibiotic resistance may also
depend on the dynamics of stress (111). These results prompt the question of whether the
rate of antibiotic addition can influence levels of resistance and tolerance (312).

Our overall goal in this work was to identify how antibiotic resistance and tolerance
emerge based on antibiotic dose dynamics. To achieve this, we used a turbidostat as an
evolutionary platform (291). We introduced chloramphenicol at two different rates: a short-
term ramp over 6 hours and a step over 1 minute. We allowed the cultures to grow and

evolve for 72 hours in continuous culture and then assessed whether resulting colonies
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derived from the culture were either nongrowing, susceptible, tolerant, or resistant to
antibiotics. We conducted these tests in strains with the native regulatory network
controlling AcrAB-TolC expression intact, in strains with constitutive expression of the
pumps, and in strains lacking the pumps. We then identified cases where different antibiotic

introduction rates and the genetic background of the strain play a role in survival.

5.3. Results

5.3.1. Short-term fluctuations can promote fitness from antibiotic exposure

We tested two antibiotic introduction profiles and measured how they impacted
population shifts over the course of 72 hours. We compared a short-term ramp and step
introduction of an antibiotic (Figure 5-1A). For these experiments, we used a final
concentration of 1 pg/mL chloramphenicol, which is the half maximal inhibitory
concentration (ICso) for wild type cells (189). Cultures subjected to both treatment profiles
receive the same amount of antibiotic, but the rate at which it was introduced differs
between the two.

In order to assess the appearance of tolerance and resistance under these treatments,
we grew cells in a modular turbidostat called the eVOLVER (291). The eVOLVER
maintains cultures in exponential phase by using serial dilutions to introduce media when
the optical density reaches an upper threshold so that the optical density, or turbidity, of
the culture stays within a narrow range of values (Figure 5-1B). To investigate whether
differences in antibiotic introduction rates of chloramphenicol would impact the growth,
we first tested wild type cells that have the AcrAB-TolC pump controlled by its native

upstream stress response regulators. Since it is quite rare for advantageous mutations to
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Figure 5-1. Experimental conditions and growth of wild type E. coli in the eVOLVER.

(A) Schematic of two antibiotic introduction rates: a short-term ramp increase to the final
antibiotic concentration (green) and a step increase (blue). (B) ODsoo of an individual
culture exposed to a short-term ramp increase in chloramphenicol. Cells are grown to an
upper bound of ODgoo=0.2 and then diluted back to ODgoo=0.15. Note that the growth rate
decreases after antibiotic introduction begins. (Inset) Schematic showing how the growth
rate is calculated from raw ODsgoo measurements. (C) Actual concentration of
chloramphenicol over time in wild type cultures for a short-term ramp (green) and step
(blue). (D) Growth rates for wild type cultures. n = 3 biological replicates for each
treatment.

appear at a high frequency within hours (313, 314), we allowed the bacteria to grow
continuously for 72 hours. Previous evolution experiments identified trimethoprim-
resistant isolates in under 50 hours (106). This timing allowed us to assess changes in
resistance that emerge from changes in the antibiotic introduction rate. We found that wild
type cells exposed to a chloramphenicol step had a period of growth inhibition followed by
a modest increase in growth rate approximately 24 hours after treatment (Figure 5-1C-D).

The cells exposed to a short-term ramp were similar, though the increase in growth was
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more variable across replicates. On average, after 72 hours the final growth rates were near
0.7 h! for cultures from both the short-term ramp and step treatments. For comparison, we
also ran tests with no chloramphenicol addition and observed growth rates of >1.0 h'!
(Figure D-1A). Therefore, although wild type cells partially recover, their population
distributions are still impacted at 72 hours relative to untreated cultures.

To determine resistance and tolerance levels of cells within the cultures, we plated
samples from the 72-hour time point (Figure 5-2A). To first confirm viability, we used LB
plates; for the antibiotic tests, we plated cells on LB plates with a high concentration of
chloramphenicol (Cm) (25 pg/mL). We were also interested in investigating whether cross-
resistance to other antibiotics could emerge without prior exposure. To test this, we also
plated cells on LB plates containing high doses of tetracycline (Tet) (6 pg/mL) and LB
plates ciprofloxacin (Cp) (0.1 pg/mL) (191, 315, 316).

From each of these plates we isolated three colonies and cultured them individually
in fresh LB medium. Interestingly, cultures derived from a subset of these colonies did not
grow when re-cultured in fresh LB. We categorized these as nongrowing in our subsequent
analysis (Figure 5-2A). For the colonies that we were able to culture, we used an antibiotic
disc assay to further categorize results. In this assay, media containing a single isolate was
plated to confluence and a disc containing antibiotics was placed on the plate. Antibiotic
from the disc diffuses into the surrounding media. At areas close to the disc, known as the
inhibition zone, antibiotic concentrations are high and bacterial growth is inhibited (317).
This test could determine changes in resistance of isolates compared to the original parent

strain, which is the strain that was not subjected to treatment in the eVOLVER. For
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Figure 5-2. Experimental and data analysis workflows quantifying the emergence of
resistance and tolerance for wild type E. coli.

(A) After 72 hours, cultures were plated on a control LB plate and on three high dose
antibiotic plates (25 pg/mL chloramphenicol (Cm), 6 pg/mL tetracycline (Tet), 0.1 ug/mL
ciprofloxacin (Cp)). From each of these plates, three colonies were grown to exponential
phase, then plated and used to perform an antibiotic susceptibility disc assay to determine
changes in resistance relative to the parent strain. (B) Information on each isolate was then
used to classifying strains as nongrowing, susceptible, tolerant, or resistant. (C) Fates of
all isolated colonies from all plates. Results are classified as: nongrowing (navy),
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susceptible (light pink), tolerant (light green), and resistant (burgundy). Ab, antibiotics. N
represents the number of isolates from each experiment that were picked. If no colonies
were found on a high antibiotic plate then no isolate could be picked. Counts are shown at
the end of each bar, listed as a number on the figure. (D) Normalized inhibition zone
diameters for the four antibiotic disc assays: 30 ug chloramphenicol, 10 pg ampicillin
(Amp), 30 pg tetracycline, and 5 pg ciprofloxacin. The inhibition zone diameters were
normalized to the parent strain’s mean inhibition zone, where no change is denoted by the
dashed, black line. The threshold we used to classify colonies as resistant is shown in red.
The symbol shape indicates which plate the colony was originally isolated from: LB only
(circle), LB+Cm (square), LB+Tet (triangle), LB+Cp (diamond). Each individual replicate
for data presented here is shown in Figure D-6.

example, if the inhibition zone diameter is smaller for the isolate than the parent, then the
isolate is more resistant than the parent.

We exposed each isolate to four antibiotic susceptibility discs: chloramphenicol,
ampicillin, tetracycline, and ciprofloxacin (Figure 5-2A). We selected these antibiotics
because of their diverse mechanisms of action, allowing us to test whether the changes in
resistance target a specific antibiotic mechanism or are more general. In addition, the
AcrAB-TolC efflux pump has a range of efficacies for these antibiotics (Figure D-2).
Chloramphenicol is a protein synthesis inhibitor that is actively exported by the AcrAB-
TolC efflux pump (218, 219). Ampicillin is a B-lactam that inhibits cell wall synthesis and
known to be exported by AcrAB-TolC (222, 318). Tetracycline inhibits protein synthesis
and ciprofloxacin inhibits DNA replication (319). We measured the inhibition zone for
each isolate and compared it to the inhibition zone for the parent strain (Table D-1).

We classified results into four different categories (Figure 5-2B). (1) Nongrowing
cells were no longer culturable after the initial plating, as described above, and the isolates
did not grow in LB media or on LB plates. (2) Susceptible cells grew on LB, but did not

grow on any of the high antibiotic plates and had no reduction in inhibition diameter in the
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disc assay relative to the parent strain. (3) 7olerant cells were able to grow in high
concentrations of antibiotics on the plates, but exhibited no reduction in inhibition zone
diameter relative to the parent strain. (4) Resistant cells had a reduction in inhibition zone
diameter compared to the parent strain.

For the wild type strain, we isolated both tolerant and resistant strains, but saw no
significant differences between short-term ramp and step antibiotic treatment, indicating
that regardless of the introduction rate, wild type cells have a similar response (Figure 5-
2C). These results are in contrast to control experiments without antibiotic addition, where
instances of resistance were rare and susceptible isolates were prevalent (Figure D-1B). In
the antibiotic disc assay we tested for resistance and cross-resistance by normalizing
relative to the parent strain’s inhibition zone diameter (Figure 5-2D). Thus, isolates with
data points falling below 100% are more resistant than the parent strain. Here, we again
observed clear differences between the antibiotic treatments and the no antibiotic control,
with chloramphenicol-treated samples acquiring resistance, while those without
chloramphenicol exposure did not (Figure 5-2D, Figure D-1C). Step and short-term ramp
exposures were similar in their effect on the zone of inhibition.

Despite using only chloramphenicol in the eVOLVER continuous culture, we
found many examples of cross-resistance, where cells were resistant to ampicillin,
tetracycline, or ciprofloxacin as well (Figure 5-2D and Figure D-3, Column 4). These
results indicate that the mechanisms involved in resistance extend beyond the impact of a
single stressor. From our whole genome sequencing results from Chapter 4, we speculate

that this observation of cross-resistance may be the consequence of wild type cells readily
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evolving through insertion sequences placed in far-reaching stress response regulators,
such as marR (164—166).

Although results for the wild type strain were similar for both step and short-term
ramp treatments, we asked what impact efflux pump expression had on these findings.
Mutations in the stress response regulators, acrR and marR, are observed in both clinical
and laboratory settings; notably, these regulators primarily improve resistance by
upregulating expression of the AcrAB-TolC efflux pump (106, 285, 320). We expected
that the rate of antibiotic introduction would impact survival in an efflux pump-dependent
fashion (189) and asked how this would translate to differences in the distributions of
nongrowing, susceptible, tolerant, and resistant strains. In these experiments, we compared
strains with two genetic backgrounds: an acrB deletion mutant with the efflux pump genes
expressed on a plasmid (acr4B+) and a strain without efflux pumps (AacrB).? An important
distinction between acr4B+ and wild type is that the native regulation of the acr4B operon
has been removed in acrAB+ and the pump genes are constitutively expressed. For our
experimental conditions, where acr4B+ is exposed to chloramphenicol during exponential
phase, acrAB+ and wild type demonstrate the same dose response to increasing
concentrations of chloramphenicol (Figure 5-3B); for growth on agar plates the
complementation is partial (Table D-1).

To compare fitness after antibiotic treatment for acr4B+ and AacrB, we grew cells

in continuous culture in the eVOLVER and exposed them to a step and a short-term ramp

3 For consistency, these appear as defined in the original and, in this case, unpublished manuscript;
however, please note that the names and definitions of each strain differ from Chapter 2, 3, and 4.
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Figure 5-3. Impact of antibiotic introduction rate and strain background on the
emergence of resistance and tolerance for acrAB+ and AacrB cultures.

(A) Growth rates in acrAB+ and AacrB cultures where the two chloramphenicol
introduction rates are a short-term ramp (green) and a step (blue) as shown in Figure 5-1C.
n = 3 biological replicates for each treatment. (B) Fates of all isolated colonies from all
plates. Results were classified as: nongrowing (navy), susceptible (light pink), tolerant
(light green), and resistant (burgundy). Ab, antibiotics. N represents the number of isolates,
counts shown at end of bar. (C) Normalized inhibition zone diameters for the four
antibiotic disc assays. The inhibition zone diameters were normalized to the parent strain’s
mean inhibition zone (black, --); resistance threshold (red). The symbol shape indicates
which plate the colony was originally isolated from: LB only (circle), LB+Cm (square),
LB+Tet (triangle), LB+Cp (diamond). Each individual replicate for data presented here is
shown in Figure D-7 and Figure D-8.

of chloramphenicol introduction. For both types of treatment, we observed a sharp decrease
in growth rate for cells without efflux pumps (AacrB), whereas cells with efflux pumps

(acrAB+) had a more gradual shift to their minimum growth rates (Figure 5-3A). Cells
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exposed to a step also had a sharper decrease in growth rate than cells exposed to a short-
term ramp. We found that slower introduction of antibiotics led to significantly higher
growth rates in the first 24 hours for acr4AB+ cells, but that at 72 hours the cultures with
the step treatment had recovered (Table D-2). Growth of AacrB cells was severely
impacted at 24 hours for both treatments, however the samples experiencing short-term
ramps were more likely to recover by 72 hours (Figure 5-3A). Thus, the presence of efflux
pumps improves growth immediately after antibiotic treatment. In addition, the antibiotic
introduction rate also influences growth of the culture many hours after it is applied.

At the 72-hour timepoint, we plated cells on LB and plates containing high
antibiotic concentrations and, following the procedures outlined in Figure 5-2A-B, we
classified outcomes of the isolates from the different strain backgrounds and
chloramphenicol treatment profiles. We found that functional efflux pumps were key to
promoting tolerance in contrast this phenotype rarely appeared for AacrB cells (Figure 5-
3B). We also found that cells exposed to short-term ramp treatments were more likely to
exhibit resistance than cells exposed to a step (Figure 5-3B). For AacrB cultures exposed
to a step, 70% of the isolates were nongrowing or susceptible. In contrast, acrAB+ cells
exposed to a short-term ramp had ~35% nongrowing and susceptible cells. AacrB exposed
to a short-term ramp and acrAB+ exposed to a step were intermediate. These results
indicate that both the rate of antibiotic introduction, along with the genetic background of
the cells influences propensity for survival through tolerance and resistance. For the
acrAB+ cells, there were isolates surviving to 72 hours based only on tolerance, without

acquisition of resistance, regardless of the antibiotic introduction rate. For both acrAB+
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and AacrB, populations exposed to a short-term ramp had higher incidences of resistant
isolates compared to those exposed to a step; this can also be observed by a higher
frequency of mutations on 25 pg/mL chloramphenicol plates (Figure D-4, Row 1, Columns
2-3).

We also used the disc diffusion assay to test for changes in resistance relative to the
parent strain. acrAB+ cells exhibited a range of resistance to chloramphenicol, with
examples spanning no change to greatly increased resistance (Figure 5-3C). Comparing the
two introduction rates for acrAB+ cells, results were largely similar in the distribution of
resistance for the antibiotics (Figure 5-3C). In contrast, we observed that the AacrB cells
were divided into two sub-populations for both of the antibiotic introduction rates. One
population remained susceptible to chloramphenicol. We noted that these isolates were all
obtained from the LB plate, so although they survived the continuous culture with
chloramphenicol, they showed no difference in resistance in the disc diffusion assay in
comparison with the parent. Meanwhile, the second population contained isolates that were
resistant to chloramphenicol. Interestingly, for AacrB cells alone, we observed that this
bimodal distribution exists for tetracycline and ciprofloxacin cross-resistance as well and
is most pronounced in the case of the step treatment.

Since the ICso of chloramphenicol for AacrB is lower than the I1Cso for wild type
and acrAB+, we also investigated whether lower chloramphenicol concentrations would
result in higher levels of resistance for the AacrB strain. The higher, instantaneous

concentration of chloramphenicol introduced as a step led to low recovery of AacrB cells;

we became interested in how lower concentrations of chloramphenicol might affect AacrB
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differently. As expected, growth recovered much more quickly when AacrB was exposed
to 0.5 ng/mL instead of 1 pg/mL chloramphenicol (Figure 5-4A). In the case of the step
exposure to chloramphenicol, all replicates maintained growth after treatment. At both
chloramphenicol concentrations, we still observed more resistant isolates and fewer
susceptible and nongrowing cells emerging under short-term ramp treatments, as opposed
to step treatments (Figure 5-4B). Further, while we did find more resistant isolates when
cultures were exposed to a lower dose of chloramphenicol (Figure 5-4B), the degree of
resistance was lower (Figure 5-4C). There were also no colonies isolated on the high dose
chloramphenicol plates (Figure D-4, Row 1, Column 4). Finally, the bimodal distribution
of resistance among isolates that was observed for AacrB populations at 1 pg/mL
chloramphenicol was not observed at lower chloramphenicol concentrations (Figure 5-4C).
While the lower concentrations of chloramphenicol did increase the proportions of resistant
cells, the magnitude of resistance conveyed did not reach that of wild type nor acr4AB+
cells. Interestingly, we found that AacrB cells were only able to reach the same high level
of chloramphenicol resistance when exposed to slower changing, but inhibitory conditions

— a short-term ramp increase to 1 pg/mL chloramphenicol.

5.3.2. Slow introduction of stress promotes growth and resistance
Next, we investigated how even longer variations in antibiotic treatment might
impact the antibiotic resistance and fitness of a population. To do this, we exposed cells to
a long-term ramp over 72 h to a final antibiotic concentration. We then compared this to
conditions with similar antibiotic levels, but different long-term dynamics, including: (1) a

step treatment with the same final concentration of chloramphenicol as the long-term ramp,
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Figure 5-4. Impact of antibiotic introduction rate on the emergence of resistance and
tolerance for AacrB cultures exposed to different concentrations of chloramphenicol.

(A) Growth rates in AacrB cultures where the two chloramphenicol introduction rates are
a short-term ramp (green) and a step (blue) with a final concentration of 1 pg/mL or 0.5
pg/mL of chloramphenicol. n = 3 biological replicates for each treatment. (B) Fates of all
isolated colonies from all plates. Results were classified as: nongrowing (navy), susceptible
(light pink), tolerant (light green), and resistant (burgundy). Ab, antibiotics. N represents
the number of isolates from each experiment that were picked. If no colonies were found
on a high antibiotic plate then no isolate could be picked. Counts are shown at the end of
each bar. (C) Normalized inhibition zone diameters for the four antibiotic disc assays. The
inhibition zone diameters were normalized to the parent strain’s mean inhibition zone
(black). The threshold to classify as resistant is shown in red. The symbol shape indicates
which plate the colony was originally isolated from: LB only (circle), LB+Cm (square),
LB+Tet (triangle), LB+Cp (diamond). Each individual replicate for data presented here is
shown in Figure D-8 and Figure D-9.

and (2) a step treatment with an equivalent area under the curve as the ramp experiment,

which means that it was treated with the same total amount of antibiotic for the same
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amount of time. We first found that wild type cells treated with this long-term ramp to 5
pg/mL chloramphenicol had a distinct fitness advantage when compared to both step
treatments (Figure 5-5A, Column 1); however, this fitness advantage did not translate
increased levels of resistance (Figure 5-5B, Column 2). We also treated wild type cells
with a more inhibitory, long-term ramp reaching a final concentration of 10 ug/mL
chloramphenicol. Under these more inhibitory treatments (Figure 5-5A-B), we found that
populations treated with the long-term ramp had an even greater fitness benefit compared
to populations from both step treatments (Figure 5-5A); yet, again, this did not translate to
higher evolved levels of resistance (Figure 5-5B).

In contrast, AacrB had both significantly higher fitness and resistance levels when
treated with a long-term ramp to 5 pg/mL compared to treatments with a step introduction
of antibiotics (Figure 5-5A-B). Interestingly, all long-ramp conditions experienced small
fitness costs until they reached a very resistant phenotype at 48 h (Figure 5-5C). Yet, by
72 h, all these populations experienced resistance loss along with increased fitness (Figure
5-5C). This reversion is in stark contrast to the step conditions, whose trajectories first
experience significant fitness costs, but are able to start projecting towards resistant
phenotypes by 24 h (Figure 5-5C). For the long-term ramp conditions, this could indicate
that the evolved resistance was either only transiently present or that the mechanisms were

too costly to retain.
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Figure 5-5. Impact of slow, long-term antibiotic introduction rate on populational
fitness and resistance.

Cultures were evolved under a 72 h ramp introduction of chloramphenicol, compared to a
step introduction of chloramphenicol equivalent to the final [Cm] achieved by the ramp or
by the AOC equivalent concentration. Impact of the different dynamics on (A) growth rates
and (B) resistance, measured by inhibition zone diameters for the population. Data is shown
for n = 3 biologically replicated evolution experiments. (C) Fitness-resistance trajectories
mapped through time.

5.3.3. Co-cultures impact how populations survive environmental fluctuations
Competition assays can identify subtle differences in growth; when strains are
forced to compete for survival, more fit strains become overrepresented in the population
(198, 213). We next asked how a 1:1 co-culture of acrAB+ and AacrB cells performed

given either a step or short-term ramp of antibiotic introduction (Figure 5-6). We found
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that while bacteria exposed to a short-term ramp of chloramphenicol acquired resistance,
the three replicates with the step introduction had many fewer resistant isolates (Figure 5-
6B). In addition, co-cultures exposed to the short-term ramp were more likely to be
resistant not just to chloramphenicol, but also to exhibit cross-resistance to ampicillin and
ciprofloxacin (Figure 5-6B). These cells also had an increase in resistance as measured by
the disc diffusion assay. In contrast, co-cultures exposed to a step had similar inhibition

zone diameters to the parent strain for all tested antibiotics (Figure 5-6C). To assess
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Figure 5-6. Impact of antibiotic introduction rate on a co-cultured population.

(A) The growth rates in co-cultures of 1:1 acrdB+ and AacrB. Chloramphenicol
introduction rates were a short-term ramp (green) and a step (blue). n = 3 biological
replicates for each treatment. (B) Fates of all isolated colonies from all plates. Results were
classified as: nongrowing (navy), susceptible (light pink), tolerant (light green), and
resistant (burgundy). Ab, antibiotics. N represents the number of isolates, counts are shown
at the end of bar. (C) Normalized inhibition zone diameters for the four antibiotic disc
assays. The inhibition zone diameters were normalized to the parent strain’s mean
inhibition zone (black, --); resistant threshold (red). The symbol shape indicates which
plate the colony was originally isolated from: LB only (circle), LB+Cm (square), LB+Tet
(triangle), LB+Cp (diamond). Each individual replicate for data presented here is shown in
Figure D-5.
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population composition over time, we measured what fraction of the population were
acrAB+ versus AacrB cells at intermediate time points. We accomplished this by including
a gene for green fluorescent protein (sfgfp) in our acrAB+ strain to allow for
straightforward identification of acr4B+ cells via flow cytometry. Despite an initial ratio
of 1:1, we found that the majority of cells at the end of the experiments for both the short-
term ramp and the step input were acr4AB+ (Figure D-5B). These results were specific to
antibiotic treatment, as control experiments without chloramphenicol were not dominated
by the acrAB+ strain (Figure D-5). We also assessed the parent strain of the isolates, and
found that resistant isolates emerged from the acr4B+ strain over 60% of the time (Figure

D-5B).

5.3.4. Correlations between fitness and resistance for evolution studies

In the eVOLVER continuous culture experiments, cells are maintained within a
small window of optical densities (ODsoo 0.15 to 0.2) before being diluted; however, the
growth rates of cultures within these bounds can vary significantly. Based on qualitative
patterns between early spikes in growth rates and higher final growth rates (Figure 5-3A,
Figure 5-6A), we asked if there was a relationship between the initial growth rate and the
final growth rate. We found a correlation between the maximum initial growth rate and the
maximum growth rate after treatment (Figure 5-7A, Table D-3), as well as between the
number of dilution events until reaching the maximum post-treatment growth and the
maximum post-treatment growth rate itself (Figure 5-7B). Thus, cultures that were growing

faster before antibiotic addition continued to grow faster after treatment.
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Figure 5-7. Correlations between final growth rates of cultures, initial growth rates, and number of dilution events.

(A) Maximum initial growth rate (prior to antibiotic treatment) compared to the maximum growth rate after treatment. (B)
Maximum growth rate after treatment versus the number of dilutions to reach this maximum growth. (C) Final growth rate versus
the final number of dilutions at the end of the experiment. (D-F) Maximum change in resistance for a culture versus the (D)
maximum initial growth rate (prior to antibiotic treatment), (E) the final growth rate, and (F) the total number of dilution events.
These correlations include data for all strains, with replicates: short-term ramp (yellow), step (blue), control (gray). Correlations
are depicted using lines when the p value<0.05 with colors representing which data set the correlation is from; correlations for
all data are shown in black dashed lines. (G) Schematics of the parameters evaluated. There are 48 experiments represented in
total: 15 experiments under short-term ramp conditions, 15 experiments under step conditions, and 18 control experiments.
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In contrast, we found no statistically significant relationship between the total
number of dilutions and the final growth rate for populations exposed to antibiotics (Figure
5-7D), nor between the maximum initial growth rate and the maximum percentage change
in chloramphenicol resistance (Figure 5-7C). However, we did identify a slight correlation,
whereby the most resistant isolates were found in populations with slower final growth
rates (Figure 5-7E), which is in agreement with results in the recent literature showing
correlations between susceptibility and high growth rates (321). We also asked whether the
higher levels of resistance were solely correlated with the number of dilutions, as more
replication events could lead to a higher number of mutations (101). We did find a
correlation between resistance and the number of dilution events; however, this
relationship was only significant for cells that were exposed to a step or no antibiotics
(Figure 5-7F). Under these conditions, growth and resistance were inversely correlated,
which may suggest that the emergence of resistance is driven by spontaneous mutations
(32).

5.4. Discussion

In this work, we have highlighted how the rate of antibiotic addition—in
combination with the genetic background of the strain—can bias populations towards
tolerance or resistance. We found that the native regulation of efflux pump expression
makes cells robust to both ramp and step introductions of stress, whereas cells
overexpressing the pump but lacking upstream regulators (acr4AB+) were more likely to be
nongrowing or susceptible; this effect was also seen in cells without efflux pumps (AacrB).

The regulatory network has likely adapted to achieve fast responses to the introduction of
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stress. This feature may be ideal for costly machinery, such as AcrAB-TolC efflux pumps,
since bacteria can regulate their responses to stress and only turn them on when necessary.

Experiments conducted with strains lacking the native regulation (acr4AB+) or the
efflux pumps altogether (AacrB) revealed clear differences in tolerance and resistance
development that were influenced by the rate of antibiotic introduction. We found that
short-term ramp introduction for acr4B+ cells led to higher levels of tolerance, resistance,
and cross-resistance than the same cells exposed to a step. In addition, acrAB+ cells were
also more likely to have high levels of cross-resistance under short-term ramp antibiotic
introductions. Interestingly, we previously found that cells overexpressing AcrAB-TolC
pumps had higher mutation rates compared to wild type cells (191). While acrAB+ cells
did not appear to have an increase in resistance when compared to wild type after being
treated with antibiotics, we did see a higher incidence of resistance emerging in the absence
of antibiotics. Based on results from Chapter 4 and Reference (191), we speculate that the
heightened mutational rate in our acrAB+ strain increases noise in evolutionary
trajectories. This is beneficial because evolved isolates are more likely to probe a wider
range of mutations (Chapter 4). However, this could also be costly due to the accumulation
of deleterious mutations in the population. In this case, the acr4dB+ genotype would
provide a double-edge sword when populations are attempting to optimize fitness and
resistance.

Meanwhile, AacrB cells did acquire resistance, but never exhibited tolerance.
While AacrB cells exposed to a ramp were more likely to acquire resistance than those

exposed to a step, they were less likely to achieve as high a magnitude of resistance at more



106

inhibitory concentrations at 72 h. Interestingly, from whole genome sequencing in Chapter
4, we identified that evolved AacrB cells repetitively converge to a resistant genotype. This
resistant genotype always had an insertion sequence in acrsS, which is the local regulator
responsible for repressing AcrEF-TolC (180). This could also explain why certain AacrB
populations grown with a step and at inhibitory populations exhibited a bimodal resistance
distribution, where isolates were either resistant (with the insertion sequence in acrS) or
not (without the insertion sequence in acrS). On the other hand, less inhibitory
concentrations lead to a higher frequency of resistant cells in the population, but these cells
were less able to withstand high antibiotic selection pressures. As a result, the AacrB
populations either contained only a few very resistant isolates or a greater number of less
resistant isolates. This along with results from Chapter 4 suggest that emergence of high
levels of resistance evolved from wild type and acr4B+ is indeed facilitated by the AcrAB-
TolC pumps themselves.

This study also highlights the importance of studying how different antibiotic
treatments affect co-cultured populations. For our co-cultured acrAB+ and AacrB
experiments, we found the most distinct differences between the two introduction rates did
not necessarily reflect what we observed in the single-species population results. Clinical
infections and bacterial communities are rarely, if ever, comprised of a single strain (322).
Therefore, it will be interesting to assess more realistic treatments in the context of
microbial communities. Overall, we found that the rate at which a bacterial population
experiences stress can impact the acquisition of resistance and cross-resistance. In addition,

short-term ramp perturbations in antibiotic introduction can increase both tolerance and
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resistance and these effects are pronounced in acr4B+ cells.

5.5. Contributions Statement
The authors of this work were Ariel M. Langevin (A.M.L.), Imane El Meouche
(LE.M.), and Mary J. Dunlop (M.J.D.). AM.L. and .LE.M. collected data. A.M.L. wrote
custom scripts for experiments and data analysis, and preformed statistical testing. A.M.L.

and M.J.D. wrote the manuscript. All authors contributed to this unpublished manuscript.

5.6. Methods
5.6.1. Strains and Plasmids

We used E. coli strains BW25113 and BW25113 AacrB. The wild type strain
BW25113 is the parent strain for the Keio collection (235). BW25113 AacrB was derived
from Keio collection strain JW0451 (BW25113 AacrB::kan®) (189), where we removed
the kanamycin resistance marker following the pCP20 protocol from (236).

We used the plasmids pBbASk-rfp (AacrB and wild type) and pBbASk-acrAB-
sfgfp (acrAB+) in experiments. The plasmid pBbASk-rfp controls expression of red
fluorescent protein, and is included so that all strains contain the same plasmid for
consistency. The pBbASk vector contains a medium-copy number (pl5A) origin of
replication, a Pucuys promoter, and a kanamycin resistance marker (238). Plasmid pBbA 5k-
acrAB-sfgfp is a transcriptional fusion of acrdAB and sfgfp (189). Plasmids were
transformed into E. coli BW25113 and BW25113 AacrB and then isolated on Luria Broth

(LB) plates with 30 pg/mL kanamycin for plasmid maintenance.
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For the long-term ramp experiments, we used BW25113 and BW25113 AacrB

without plasmids.

5.6.2. Bacterial Growth Conditions

For experiments from Sections 5.3.1, 5.3.3, and 5.3.4., overnight cultures were
inoculated from a single colony in 10 mL LB with 30 pg/mL kanamycin and grown in a
50 mL Erlenmeyer flask at 37°C with 200 rpm orbital shaking. After overnight growth, the
optical density at 600 nm (ODgoo) was measured, and the initial volume for each culture
was set so that the initial ODsoo for the culture in the eVOLVER turbidostat was 0.1. If the
experiment was composed of a co-culture, the volumes of each of the strains were
determined based on an initial ODggo contribution of 0.05 each; the calculated volumes for

each strain were added to total an initial ODggo of 0.1.

5.6.3. Experimental Conditions within the eVOLVER

In the eVOLVER turbididostat, cells were grown at 37°C in LB supplemented with
30 pg/mL kanamycin. A stir bar mixed the cultures on a medium setting, or approximately
1000 rpm (291). Cells were grown in the eVOLVER for 2-3 hours prior to the beginning
of the experiment to allow for bacteria to enter exponential growth. We set the eVOLVER
using an upper ODgoo bound of 0.2 and a lower bound of 0.15 so that cultures were grown
to 0.2 and then diluted back to 0.15 to maintain the turbidostat at approximately constant
cell density. Samples were collected after 72 hours and used to assess tolerance and
resistance within the cultures. Growth rates were calculated from ODsggo curves, where the

ODsoo data were smoothed using a moving average across 10 data points.
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Cells were subjected to a ramp, step, or no introduction of chloramphenicol, where
each experiment was conducted with three biological replicates. In the ramp, the
concentration of chloramphenicol increased over 6 hours. The ramp was implemented by
having two media influxes, one containing 0 pg/mL of chloramphenicol and the other 1
pg/mL. The proportion of the chloramphenicol-containing media increased across the 6-
hour window until 100% of the media came from this source. The step was implemented
by switching the media source from one containing 0 pg/mL chloramphenicol to 1 pg/mL.
The samples themselves were also spiked with 1 pg/mL chloramphenicol at the same time
to avoid a delay due to the time required for media cycling in the turbidostat. For the AacrB
strain, we also ran the ramp and step experiment at a lower chloramphenicol concentration
to reflect the strain’s lower ICso, in these cases the final concentration of chloramphenicol
was 0.5 pg/mL instead of 1 pg/mL.

For the long-term ramp experiments, the final concentrations were 5 pg/mL or 10
pg/mL over 72 h. These eVOLVER experiments were inoculated with a single colony for
~15 h before the experimental conditions changed. Samples were collected during the
experiment at t=0, 1, 3, 6, 12, 24, 48, 72 h and used to assess resistance of the population.
Growth rates were calculated from ODgoo curves, following Methods from Chapter 4.

In control experiments, we grew cells in the eVOLVER without any antibiotic
treatment. As this experiment selects for fast growers, we were only able to run control
experiments past 48 hours with great difficulty (i.e. dilution events were so frequent that 1
L media input bottles needed to be changed every 3 hours). We ran one experiment to

completion at 72 hours and then conducted additional experiments using 24 hours as the
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final time point. We confirmed that results for resistance and tolerance were similar
between control samples run for 24 hours and the control that was run for 72 hours (Figure
D-1, Columns 1-4). We also found that replacing the vials every 24 hours helped mitigate
this seeming increase in growth rate; again at 72 hours, there were no resistant isolates
observed (Figure D-1, Column 5). In a separate experiment, we also added the detergent
Tween20 (Sigma Aldrich Cat. # P1379) at 0.1% (v/v) in an effort to reduce spurious ODsoo
measurements caused by biofilm growth on the flask (Figure D-1, Column 6). We found
that this eliminated the increasing growth rate over the 72-hour period, and still reflected

the absence of resistance seen in triplicate 24 hour control experiments.

5.6.4. Measuring Co-culture Distributions

For co-cultures, samples were collected and diluted 1:10 in phosphate-buffered
saline 1X (PBS) and measured with a Guava easyCyte HT sampling flow cytometer. There
were 5000 counts from each read, using a threshold of 15 in the side scatter channel (SSC).
The results were then sorted using a custom script to eliminate other small particles by
thresholding the forward scatter channel (FSC) at 15 and setting thresholds for the red and
green channels based on controls for our fluorescent proteins, RFP and sfGFP.

We additionally classified the parent strain of each isolate. Each isolate was
streaked on an LB + kanamycin plate and incubated overnight at 37°C. After 24 hours, we
measured whether the fluorescence of the isolate was red or green using a blue light
transilluminator (IO Rodeo). For a small fraction of colonies, we were not able to determine

the parent strain based on fluorescence; these samples were marked as undetermined.
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5.6.5. Isolating eVOLVER Mutants

Using samples isolated from the end-point of the eVOLVER experiment, we
diluted samples in PBS and plated them on LB agar. In cases where high antibiotic selection
plates were used, we spun cultures down to concentrate them in advance of plating. The
plates included a control for viable cells on a LB + kanamycin plate, as well as LB plates
containing high doses of antibiotics: 25 pug/mL chloramphenicol, 6 pg/mL tetracycline, or
0.1 pg/mL ciprofloxacin. For plating, samples were diluted by a 10~ and 1076 dilution factor
for LB + kanamycin; all other samples were plated at 10°, 102, 104, and 10 dilution
factors. In addition, to concentrate cells we also spun down 1 mL of the culture at 5000
rpm for 7 min, resuspended the pelleted cells in 100 pL of PBS, and plated all cells. The
control plates were incubated at 37°C for 24 hours and the high dose antibiotic plates were
incubated at 37°C for 48 hours, allowing time for unfit mutants to grow into visible
colonies. To enable accurate colony counts, we aimed for between 10-1000 colonies per
plate. If not enough colonies appeared on the plate (<10), we plated again with a more
concentrated sample; if too many colonies appeared on the plate (>1,000), the samples
were diluted and replated (Supplementary Data).

Three colonies were isolated from each plate. These colonies were regrown in ImL

LB in a 24 well plate with kanamycin at 37°C and shaking at 200 rpm overnight.

5.6.6. Measuring Antibiotic Susceptibility
Colonies from the end-point of the eVOLVER experiment, in addition to colonies
of the parent strains that were not subjected to growth in the eVOLVER, were inoculated

in LB cultures with 30 pg/mL kanamycin at 37°C and 200 rpm shaking overnight. We used
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10 puL of the cultures at a 1/100 dilution in fresh LB with kanamycin. After 4 hours at 37°C
and 200 rpm, we removed the culture and used cotton swabs to cover the LB and
kanamycin agar with a layer of the culture (309).

Antibiotic-containing discs — chloramphenicol (30g), ampicillin (10g), tetracycline
(30g), and ciprofloxacin (5g) (Thermo Fisher Scientific Cat. # CT0013B, CT0003B,
CTO0054B, and CT0425B, respectively) were then placed on the plate. The plate was
incubated for 24 hours at 37°C. The diameter of the zone of inhibition around each disc
was then measured. Based on literature and measurements of variability in replicates’
inhibition zones, we concluded that cells which were within 16% of the diameter of the
parent’s inhibition zone were not resistant (323); 16% is two standard deviations (25) from
the mean for all antibiotics and all strains, and should account for 95% of the variability in
replicate inhibition zones, reducing false positive rates for cells that are resistant (Figure
D-2A & Table D-1). The classification of each isolate depends on which plate it came from
and the difference in the diameter of inhibition between the parent strain and the isolate, as
well as how well the cells regrew after the eVOLVER experiments.

We also measured the dose response of the strains to different concentrations of
chloramphenicol (Figure D-2B). We inoculated overnight cultures of 5 mL LB with
kanamycin for each biological replicate, growing at 37°C and 200 rpm shaking. We then
diluted cultures back to approximately 0.15 ODgoo in 800 pL LB with kanamycin in a 24-
well plate and added a range of chloramphenicol concentrations: 0, 0.1, 0.2, 0.5, 1.0, 2.0,
5.0, and 10 pg/mL. We then covered the plates with an evaporation-limiting membrane

(Thermo Scientific AB-0580). Plates were incubated at 37°C and 200 rpm shaking and
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optical density was measured using a plate reader (BioTek Synergy Hlm) at t = 6 h to
measure toxicity during exponential growth phase.

For the long-term ramp experiments, samples were directly swabbed onto plates for
a snapshot of population level resistance. These samples were only exposed to a

chloramphenicol disc.
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6. CONCLUSION

A deeper understanding of how complex dynamics promote or limit resistance and
its evolution remains imperative. Not only will studies addressing such interactions
improve our ability to select optimal antibiotic treatments in clinics, but they will also
improve our ability to more accurately model both the short-term and long-term outcomes
of antibiotic treatment. In this thesis, we investigated the effect of two previously
understudied parameters — antibiotic introduction rates and mixed populations — on
antibiotic resistance. In order to understand how antibiotic resistance and its evolution may
be unknowingly promoted, we used the AcrAB-TolC efflux pump as a case study. Such
efflux pumps are ubiquitous for providing multidrug resistance and are thought to not only
impact antibiotic resistance, but its evolution as well.

First, we explored the effect of short-term dynamics on antibiotic resistance, more
specifically how varying stress introduction rates over 6 hours impacted antibiotic
resistance. In Chapter 2, we identified that slower stress introduction rates promoted the
presence and fitness of resistant cells in the population. While this could be useful for
applications in industrial biosynthesis, such patterns imply that certain antibiotic treatments
(e.g. oral doses) could promote antibiotic resistance, even under antibiotic concentrations
that are considered inhibitory for microbial growth. The results from this work suggest that
temporal dynamics of antibiotic concentration are important factors in the emergence of
antibiotic resistance.

In Chapter 3, we explored how mixed populations responded to antibiotic

treatment. In contrast to previous studies, which demonstrated that certain
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microenvironments provide a protective benefit for their neighbors (324, 325), we found
that cells with AcrAB-TolC pumps harmed their neighboring cells under stressful
conditions. In this case, cells with the AcrAB-TolC pumps created microenvironments with
increased concentrations of extracellular antibiotics. When the microcolonies were
homogenous, cells containing AcrAB-TolC pumps did not have a harmful impact on their
neighbors; however, when the microcolonies were heterogenous, cells with AcrAB-TolC
pumps had a deleterious effect on their neighbors who lack efflux pumps. Such results
elucidated that certain pressures that more readily promote resistant phenotypes in mixed
populations undergoing antibiotic treatment. Interestingly, when co-cultures were exposed
to a short, 4-hour pulse of antibiotic treatment, we found that susceptible cells were actually
able to recover more quickly at sub-inhibitory concentrations and non-costly resistant
phenotypes were not overrepresented in the population even at very high pulse
concentrations (Figure A-5). Taken together, we found that there are complex relationships
in mixed populations that play a role in short-term survival to an antibiotic treatment.
Next, we explored how different factors may impact long-term outcomes antibiotic
treatment, more specifically how a multi-day antibiotic treatment leads to evolution of
antibiotic resistance. In Chapter 4, we conducted a systematic study of how antibiotic
concentrations and ancestral genotypes impact the temporal evolution of antibiotic
resistance. We identified that near-MIC concentrations most readily promoted the
evolution of antibiotic resistance for all genotypes. Further, we found that these different
genotypes were all able to achieve similar final levels of resistance. Through whole genome

sequencing, we identified how each ancestral genotype evolved resistance through a suite
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of unique genetic mutations. Wild type cells readily upregulated gene expression of
AcrAB-TolC through insertion sequences in its local and global regulators, AcrR and
MarR. Cells constitutively overexpressing AcrAB-TolC efflux pumps evolved resistance
through mutations in the channels of AcrB and in the promoter region of the acr4AB operon
to tune AcrAB-TolC gene expression; these cells also acquired mutations in other genes
that affect transcription, translation, localization, and degradation. These “off’-target
effects could in part be due to the low expression of mutS with acrAB overexpression (191).
Finally, cells without functional AcrAB-TolC efflux pumps upregulated expression of
another multidrug efflux pump, AcrEF-TolC. Thus, Chapter 4 provides a deeper
understanding into how and why bacteria can robustly and rapidly gain high levels of
antibiotic resistance in response to long-term antibiotic treatments.

Lastly, we explored how complex dynamics, including antibiotic introduction rates
and mixed populations, influence the evolution of antibiotic resistance. In Chapter S, we
again identified that all genotypes were capable of robustly evolving antibiotic resistance
in inhibitory conditions. The slower, short-term ramp of antibiotic introduction was most
likely to promote the evolution of antibiotic resistance for all genotypes. The step antibiotic
introduction rate did not prevent the evolution of antibiotic resistance entirely, but —
depending on the initial population — did help to reduce the magnitude of resistance that
evolved. We found variations in cross-resistance for the different starting strains, which
agreed with the evolved genotypes that were reported in Chapter 4. We also observed that
mixed populations undergoing short-term fluctuations were actually more stable and were

less likely to evolve antibiotic resistance.
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Additionally, in Chapter 5, when susceptible genotypes were exposed to more
slowly changing environmental dynamics over 72 hours, we found that these populations
had improved fitness and increased resistance in otherwise restrictive environments. This
conclusion supports earlier work investigated in Chapter 2, that slowly changing stressful
conditions may unnecessarily exacerbate antibiotic resistance and its evolution. We also
found that mixed populations can demonstrate both selfishness, but also stability under
different environmental conditions. In short, this work helps elucidate some otherwise
under-explored factors of antibiotic resistance and contribute to the understanding of

antibiotic resistance to enable predictive modeling in the future.

6.1. Future Directions and Outlook

In this work, we used the AcrAB-TolC efflux pumps as a case study to probe how
complex environmental dynamics — such as antibiotic introduction rate and population
diversity — may promote rising levels of antibiotic resistance and its evolution. Future
studies may continue to explore these systems more thoroughly. For example, to confirm
whether the intracellular concentration of a substrate is indeed higher due to efflux-pump
containing neighbors, one could use a dye to measure the intracellular substrate
concentration (Table 1-2). More complex temporal dynamics could be explored as well in
order to determine how realistic antibiotic dosing treatments could affect resistance. For
example, a study using antibiotic dose curves along with urine-like media in the eVOLVER
could help provide insight to the best treatment methods for a urinary tract infection.
Additionally, there are many antibiotic resistance mechanisms beyond efflux pumps that

are threatening public health (5, 13, 14). Thus, future studies should investigate how other
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antibiotic resistance mechanisms, including efflux pumps (e.g. TetA), antibiotic-
inactivating enzymes (e.g. B-lactamase), or reduced permeability (e.g. OmpF), promote the
evolution of antibiotic resistance as well.

Further, particular interest should be given to studying how more novel therapeutics
— such as antimicrobial peptides (326), novel antibiotics (327), and combinatorial
treatments with efflux pump inhibitors (328, 329) — impact the evolution of antibiotic
resistance. Continued works should also probe the limitations of evolutionary experiments
(97); for example, why the appearance of mutations found in this study have not been
identified in clinical isolates. Finally, merging these lessons to parameterize models, such
as a stochastic process (111) or population genetics framework (330), could help predict
whether a treatment is destined to fail. Together, such studies will be crucial in helping to
inform both how and why novel treatments might lose their efficacy before they fail in the
real world.

Here, we found series of mutations which increased a strain’s resistance. While we
did not further investigate these mutations, it would be interesting to determine the
resistance conference from each mutation, as well as to assess how the mutations could
directly alter DNA binding, protein binding, and protein structures. More broadly, the
increasing accessibility of DNA sequencing will enable a deeper understanding of the vast
microbial diversity evolving and eliciting persistent antibiotic resistant infections (331).
Similarly, the use of transcriptomics and metabolomics to evaluate transient changes, such
as those enabling isolates to survive multi-day antibiotic treatments without resistance, will

also expand our understanding of the unexpected loss of antibiotic efficacy (Chapter 5 &
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Appendix E) (332, 333). Though our goal of outsmarting antibiotic resistant microbes
appears more distant than predicted a decade ago; the sheer effort and perseverance of
clinicians and scientists brings us closer still to a holistic understanding of antibiotic

resistance and greater understanding of what we can practically do to fight back.
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Appendix A: Supplementary Information for Chapter 2

Initial . Mean Error Sum of Mean
OD-ag Dataset Strain (ODy) Squarei Pearson
(OD700) Coef.

Full dose «on sfefp 0.159+0.042 0.114 | 0.915+0.051
(Figure 2-1D) | acrdB-sfgfp | 0.25140.067 | 0.416 | 0.596+0.634
E Step sn sfefp 0.261£0.070 | 0.579 | 0.830+0.036
8 (Figure 2-3D) | acrdB-sfgfp | 0.318+0.045 | 0.825 | 0.661+0.099
g 0 | Fastramp sfefp 0.11340.029 | 0.108 | 0.905+0.097
kS (Figure 2-3E) | acrdB-sfefp | 0.186+0.115 0.369 | 0.859+0.102
S Slow ramp sfefp 0.077£0.031 | 0.054 | 0.772+0.284
(Figure 2-3F) | acrdB-sfafp | 0.14140.068 0.191 0.885+0.187
Benefit Ratio Landscape 055140227 | 1.013 | 0.789+0.293

(Figure 2-4B-D)
0.01 éelzzfet iast:_;‘ndscape 1.09740.325 | 2513 | 0.937+0.078
Step sn sfefp 0.32140.074 | 0.646 | 0.46140.131
(Figure A-4D) | acrdB-sfafp | 0.219+0.119 0.359 | 0.919+0.046
= Fast ramp sfefp 0.310+0.147 | 0.685 | 0.583+0.212
£ | o, |(FigueA4E) |acrdBsfofp | 033130212 | 0881 | 0.787+0.117
Slow ramp sfefp 0.310£0.147 | 0.685 | 0.583+0.212
(Figure A-4F) | acrdB-sfgfp | 0.331+£0.204 | 0.866 | 0.964+0.044
éelzzfet ia;;’_;; ndscape 1226+1.058 | 6.746 | 0.617+0.144

Table A-1. Goodness-of-fit between model and experimental data.

We define error as the absolute value of the difference between the model data and the
mean of the experimental values. The error and sum of squares of the growth curve data
has units of OD790 and OD7¢0?, respectively; the error and sum of squares are dimensionless
for the benefit ratios. For this section, the statistics were taken across all experimental
conditions (i.e. all concentrations of stressors): Eight different conditions for
chloramphenicol and six conditions for pinene. For chloramphenicol at the lower initial
inoculum level, the statistics for the benefit ratio compare four conditions.
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Construct Template Direction | Primer (5’ to 3°)

CACGCATGGTATGGATGAACTGTACAAA
GGATCCAAACTCGAGTAAGG

Forward

pBbASk-rfp (334)
CAGCTCTTCGCCTTTACGCATATGTATA

TCTCCTTCTTAAAAGATCTTTTG

CAAAAGATCTTTTAAGAAGGAGATATAC
ATATGCGTAAAGGCGAAGAGCTG

Reverse

pBbASk-sfgfp
Forward

pBbSFk-sfgfp (335)
CCTTACTCGAGTTTGGATCCTTTGTACA

GTTCATCCATACCATGCGTG

TGGTATGGATGAACTGTACAAATAATAG
TGAGGATCCAAACTCGAGTA

CGGTACCTTTCTCCTCTTTAAAGTTAAAT
GATGATCGACAGTATGGC

GCCATACTGTCGATCATCATTTAACTTT
AAAGAGGAGAAAGGTACCG

pBbSFk-sfgfp (335) TACTCGAGTTTGGATCCT
Reverse CACTATTATTTGTACAGTTCA
TCCATACCA

Reverse

Forward
pBbASk-acrAB (336)

Reverse
pBbASk-acrAB-
sfefp Forward

Table A-2. Primers used for the construct of plasmids.

Bold indicates oligonucleotides for polymerase chain reaction amplification of inserts;
normal text indicates overhangs for Gibson assembly.
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Parameter Symbol Units Value Strain
Normalization term a 1/0D700 10 All
. 2.367 +£0.815 Single species
Half-saturation Constant K mg/mL 4.050 £ 0.354 Multispecies
: 0.0587 + 0.0038 | Single species
Substrate Growth Yield 1% mL/mg 0.0370 £ 0.0085 | Multispecies
0.188 rfp
Maximum Growth Rate Himax OD700/h 0.188 sfefp
0.158 acrAB-sfafp
1.567 WT
Ren 0.0422 AacrB
Repression Coefficient . Dimensionless 0.0100 WT
e 0.0028 AacrB
1.90 WT
_ . e o 2.35 AacrB
Hill coefficient Dimensionless 6.97 WT
nplnene 3 ‘27 Aach

Table A-3. Model parameters.

Parameters for the model derived from growth curve data and toxicity curves.
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. Error Sum of Squares Pearson

Data type Strain(s) (OD700) ( OD73))2 Coef.
Single species rfp 0.248 0.061 0.991
Growth Curves sfefp 0.222 0.049 0.991

acrAB-sfefp 0.071 0.005 0.999
Multispecies rfp & sfefp 0.235 0.055 0.997
Growth Curves | rfp & acrAB-sfgfp 0.150 0.023 0.997
Toxicity Curves | WT 0.057 0.0032 0.999
Chloramphenicol | AgcrB 0.057 0.0033 0.999
Toxicity Curves | WT 0.377 0.142 0.961
Pinene AacrB 0.513 0.263 0.942

Table A-4. Statistics for model parameter selection data.

Error is defined here as the absolute value of the difference between model data and the

mean of the experimental values. The data associated with these statistics can be found in
Figure A-1.
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(A) Single species growth curves determine parameters for specific strains. Growth of rfp, sfgfp, and acrAB-sfgfp over time are
quantified by OD700. Error bars show standard error of n = 6 biological replicates, except for acrAB-sfgfp single species growth
data where n = 2. Single species model is fit to growth data for each strain using least-squares regression to determine parameters
for the model. (B) Co-culture growth curves determine parameters for multispecies model. Growth of 7fp co-cultured with sfgfp
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model parameters. (C) Parameters for toxicity terms are determined by killing curves. The data for toxicity of chloramphenicol
(shown) and pinene (not shown) is fit with Hill functions to minimize least-squares error. Error bars show standard deviation of

n = 3 biological replicates.
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Figure A-2. Benefit and cost trade-offs of AcrAB-TolC efflux pumps in pinene.

Cell density as a function of pinene concentration. Induction of acrAB-sfgfp increases cell
growth up to IPTG concentrations of 5 uM, but higher concentrations reduce cell growth.
Error bars in show standard error of n = 3 biological replicates.
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Figure A-3. Competitive growth in pinene.

(A-C) Three different rates of pinene introduction: (A) step introduction, (B) steep ramp,
and (C) gradual ramp. The solid line shows the values used in the mathematical model;
dashed line shows experimental treatment used to approximate the constant introduction
rate. The total amounts of pinene added in (A-C) are equal. (D-F) Growth of two competing
strains under different pinene treatments. As a control, top row shows competition between
two strains lacking efflux pumps, sfgfp and rfp. The bottom row shows competition
between a strain with the efflux pump, acr4B-sfgfp, and one without the efflux pump, r/p.
Error bars show standard deviations for n = 3 biological replicates.
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Figure A-4. Rate of pinene addition affects survival.

(A-C) Three different rates of pinene introduction: (A) step introduction, (B) steep ramp, and (C) gradual ramp. The thick solid
line shows the values used in the mathematical model; thin solid line shows experimental treatment used to approximate the
constant introduction rate. The cumulative antibiotic levels of pinene in (A-C) are equal. (D-F) The growth of acrA4B-sfgfp
(green) compared against growth of the control, sfgfp, in the competition experiments (dots) and simulations (solid lines) for
different pinene introduction rates as shown in (A-C), respectively. Data points show mean and standard deviations of n = 3

biological replicates.
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Figure A-5. Susceptible cells more readily recover from short-term pulses of antibiotics at sub-inhibitory concentrations.

(A) The growth of acr4B-sfgfp (green) compared against growth of the control, sfgfp, in the competition experiments (dots) for
different t = 4 h pulses of chloramphenicol treatment. (B) Final OD790 measurements t = 16 h after antibiotics were washed out.
Data points show mean and standard deviations of n = 3 biological replicates.
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Appendix B: Supplementary Information for Chapter 3

Parameter Symbol Units Value
Initial Cell Biomass N(0) rel. cell area 1
Initial Cell Antibiotic Concentration Cin(0) pug/mL 0
Chloramphenicol
Cell Doubling Time T4 min 60
Maximum Growth Rate 0 rel. cell area min! | 0.1106
Influx rate via Diffusion Kin min’! 1
Efflux rate via Diffusion Kout.AacrB min’! 1
Efflux rate via Diffusion & Active Efflux | Koutwr min’! 4
Repression coefficient K pug/mL 0.960
Hill coefficient he Dimensionless 1.47
Ciprofloxacin
Cell Doubling Time T4 min 90
Maximum Growth Rate u rel. cell area min! | 0.0737
Influx rate via Diffusion Kin min’! 1
Efflux rate via Diffusion Kout.AacrB min’! 1
Efflux rate via Diffusion & Active Efflux | Kouwr min’! 3
Repression coefficient K. pg/mL 0.247
Hill coefficient hc Dimensionless 0.83

Table B-1. Model parameters.

Parameters for the model derived from data in Figure B-2, are calculated using from
experimental doubling time, or are approximated based on the efflux efficiency (fold
difference in the MIC) of different strains.
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Figure B-1. Full data sets for figures including outliers and number of cells (n).

Data set corresponding to (A) Figure 3-1B-C, (B) Figure 3-2C-D, (C) Figure 3-4E, and (D)
Figure 3-6. Each blue dot indicates the growth rate of a single cell. We note that in all
cases, the plots shown in the main text include >97% of cells. The automated image
analysis process occasionally calculates artificially high or low growth rates, but this is a
rare occurrence (always <3%, but more typically <1% of cells). The full data sets can be
found in Table S1 of reference (337).
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Figure B-2. Toxicity curves and data fitting for model parameters.

(A) Chloramphenicol and (B) ciprofloxacin experimental data for strains: wild type, AacrB,
AacrB-AcrAB-GFP, and AacrB-GFP. Hill function fits for wild type and AacrB strains.
Fits were conducted by minimizing least-squares error. Error bars show standard deviation

of n = 3 biological replicates. Parameters for AacrB Hill function model fit are listed in
Table B-1.
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Figure B-3. Fold change in cell length over time for all individual cells.

(A) AacrB-RFP and AcrAB-GFP cells were mixed in ratios of 1:5 and 5:1 and grown on
agarose pads with 0.2 pg/ml chloramphenicol. Colored lines show all cell traces and black
lines show the mean values, as indicated in the figure legend. A fold change of two at the
final time point indicates that a cell has doubled. (B) AacrB-RFP and AacrB-GFP cells for
conditions as described in (A).
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Appendix C: Supplementary Information for Chapter 4

WT Chloramphenicol, pg/mL

Time 1(h) Time 2 (h) 0 0.2 0.5 1 2 5 10 20
0 1 4.35E-01 9.40E-02 7.02E-02 1.82E-02 1.33E-02 2.48E-02 2.36E-01 1.66E-01
0 3 3.89E-01 3.17E-01 1.71E-02 1.55E-02 4.90E-03 6.18E-02 6.11E-02 7.82E-02
0 6 3.86E-01 7.73E-02 3.90E-03 2.16E-02 2.70E-03 2.48E-02 2.56E-02 5.51E-02
0 12 4.51E-01 6.46E-02 1.54E-02 3.21E-02 6.99E-04 4.85E-02 2.56E-02 7.00E-02
0 24 5.07E-01 7.52E-01 1.42E-01 3.51E-02 3.59E-02 4.70E-02 2.56E-02 5.51E-02
0 48 8.66E-01 1.81E-01 2.52E-01 6.04E-02 4.02E-02 7.70E-02 6.36E-02 5.51E-02
0 72 3.77E-01 1.56E-01 1.92E-01 1.99E-01 7.55E-02 7.46E-02 7.94E-02 5.51E-02

AcrAB+ Chloramphenicol, pg/mL

Time 1 (h) Time 2 (h) 0 0.2 0.5 1 2 5 10 20
0 1 2.63E-01 2.12E-01 3.03E-02 7.27E-02 1.61E-02 3.43E-02 2.72E-01 5.02E-01
0 3 1.18E-01 1.05E-01 3.74E-02 2.97E-02 1.89E-02 1.04E-01 1.85E-01 1.07E-01
0 6 1.45E-01 2.80E-01 4.65E-02 2.08E-02 1.88E-02 3.33E-02 9.74E-02 1.04E-02
0 12 1.77e-01 1.63E-01 3.62E-02 9.00E-03 5.54E-02 9.67E-02 9.74E-02 1.04E-02
0 24 1.80E-01 1.18E-01 4.75E-02 8.40E-03 1.20E-02 8.73E-02 9.74E-02 1.04E-02
0 48 4.00E-01 9.28E-02 7.78E-01 5.12E-02 2.91E-02 1.44E-01 9.74E-02 1.03E-02
0 72 2.93E-01 1.37E-01 8.32E-01 1.75E-01 4.14E-02 2.68E-01 9.84E-02 1.04E-02

AacrB Chloramphenicol, pg/mL

Time 1 (h) Time 2 (h) 0 0.2 0.5 1 2 5 10
0 1 2.75E-01 2.41E-01 3.62E-02 1.91E-01 1.15E-02 2.40E-03 1.83E-01
0 3 3.26E-01 1.49€-01 4.18E-02 6.45E-02 1.15E-02 4.30E-03 7.58E-02
0 6 3.54E-01 2.92E-02 3.25E-02 1.30E-03 1.68E-02 4.30E-03 7.58E-02
0 12 5.40E-01 1.63E-02 2.45E-02 1.28E-01 1.15E-02 4.30E-03 7.59E-02
0 24 8.36E-01 2.05E-02 3.42E-02 2.49E-01 1.15E-02 4.30E-03 7.58E-02
0 48 1.29E-01 3.91E-01 8.39E-02 4.06E-02 4.20E-03 4.30E-03 7.59E-02
0 72 5.96E-01 7.73E-01 2.63E-01 2.88E-01 7.16E-04 4.30E-03 7.58E-02

Table C-1. p values for differences in growth rates for each strain.

P-values from the (paired) #-test for quantifying significant differences in growth rate
between a given time point and the initial time point.

Direction | Primer (5’ to 3°)

Forward ATGTATGTAAATCTAACGCCTGTAAATTCACGAACATATGGTGT
AGGCTGGAGCTGCTTC

Reverse CCTGGAGTCAGATTCAGGGTTATTCGTTAGTGGCAGGATTGATC
CGTCGACCTGCAGTT

Table C-2. Primers for acrR knockout.

Bold letters denote the active priming region to amplify pKD13 from Reference (235).
Primers also contain 40-nt homology regions for acrR.
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Chloramphenicol (ng/mL)
0 10.01]0.02)0.05)0.10|0.15]0.20 025030050 | 1 2
WT 0.3890.355/0.91910.919]0.900]0.567|0.4940.83210.47410.714|0.275|0.107
AcrAB+(0.375/0.510/0.5860.367|0.2250.236 | 0.446 | 0.938 |0.435]0.016|0.039 | 0.053
AacrB |0.032/0.138(0.142|0.089{0.053 |0.809 {0.229{0.429|0.187{0.273]0.430 | 0.058

Table C-3. p values of toxicity curves with and without Tween20.

P-values from the paired #-test to assess statistically significant differences in growth
between samples treated with Tween20 at 0.0% and 0.2% (v/v) as shown in Figure C-7.

WT Chloramphenicol, pg/mL

Time 1 (h) Time 2 (h) (] 0.2 0.5 1 2 5 10 20
0 1 6.27E-01 4.44E-01 8.43E-02 6.82E-01 4.73E-01 1.61E-02 2.83E-01 7.80E-03
0 3 7.62E-01 8.30E-01 5.34E-01 5.21E-01 9.80E-02 6.03E-02 3.04E-01 1.13E-02
0 6 3.64E-01 1.33E-01 4.20E-01 3.12E-01 2.15E-01 3.51E-01 2.62E-01 3.47E-02
0 12 9.11E-01 7.10E-01 1.62E-01 9.82E-01 3.48E-01 4.90E-01 2.94E-01 6.80E-02
0 24 2.78E-02 6.33E-01 9.16E-01 6.00E-04 6.91E-02 3.38E-01 3.88E-01 8.41E-02
0 48 7.97E-01 4.41E-01 8.52E-01 1.84E-01 2.87E-02 4.00E-04 4.63E-01 1.04E-01
0 72 6.71E-01 2.40E-01 4.82E-02 5.43E-01 3.00E-02 1.10E-02 6.02E-01 1.44E-01

AcrAB+ Chloramphenicol, pug/mL

Time 1(h) Time2 (h) ()} 0.2 0.5 1 2 5 10 20
0 1 5.02E-01 3.98E-01 2.19E-01 3.82E-01 4.05E-01 2.50E-03 9.30E-03 6.68E-02
0 3 7.60E-02 7.66E-01 5.85E-01 8.59E-01 5.89E-02 4.04E-02 9.00E-03 3.12E-02
0 6 8.64E-01 3.62E-02 1.44E-01 2.31E-01 3.54E-02 5.34E-02 1.60E-03 1.83E-02
0 12 2.04E-01 9.28E-02 8.99E-01 1.40E-01 3.19E-02 4.28E-01 6.49E-02 1.82E-02
0 24 3.95E-01 6.24E-01 5.65E-01 1.14E-01 7.36E-01 6.98E-01 7.88E-02 1.14E-02
0 48 2.50E-01 3.33E-01 6.27E-01 1.55E-01 5.75E-01 1.41E-02 1.55E-02 1.20E-03
0 72 5.17E-01 2.16E-02 8.37E-01 7.90E-03 1.45E-01 8.11E-02 7.00E-03 1.08E-02

AacrB Chloramphenicol, pg/mL

Time 1 (h) Time 2 (h) 0 0.2 0.5 1 2 5 10
0 1 3.61E-01 2.64E-01 2.12E-01 5.50E-01 9.85E-02 4.70E-03 1.99E-02
0 3 7.17E-01 1.51E-01 9.70E-02 9.40E-01 8.93E-02 2.26E-02 2.29E-02
0 6 3.25E-01 7.11E-02 1.88E-01 8.83E-01 7.70E-03 2.60E-01 4.41E-02
0 12 5.60E-01 5.00E-03 1.10E-01 5.77E-01 1.29E-01 1.48E-02 4.48E-02
0 24 5.82E-01 3.19E-01 3.20E-02 6.78E-02 1.56E-01 2.78E-02 1.32E-01
0 48 5.25E-01 8.00E-03 4.33E-02 1.30E-01 9.03E-01 5.47E-02 1.10E-01
0 72 6.24E-01 6.50E-03 1.39E-01 1.51E-01 6.12E-01 1.68E-02 2.97E-01

Table C-4. p values for differences in inhibition zone diameters for each strain.

P-values from the (paired) t-test for quantifying significant differences in resistance as
measured by the diameter of inhibition zone between a given time point and the initial time
point.
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Figure C-1. Growth rates for each biological replicate and chloramphenicol
treatment concentration.

Mean growth rates for n = 3 biological replicates. Shaded error bars show standard
deviation. Cultures grown without chloramphenicol occasionally accumulated biofilms,
leading to the large variations in the growth measurements for the 0 pg/ml case.
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Figure C-2. Toxicity curves for each parent strain.

Final ODgoo was measured after 24 h. Data points show mean values from n = 3 biological
replicates, error bars show standard deviation.
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Inhibition zone diameters for each biological replicate and
chloramphenicol treatment concentration.

Mean diameter of inhibition zones (Diun) for n = 3 biological replicates. Shaded error bars
show standard deviation.
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Figure C-4. Colony forming units (CFU) per mL counts for each treatment
concentration.

Mean CFU/mL values from n = 3 biological replicates are shown, with error bars denoting
standard deviation.
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Figure C-5. Linear map between the natural log of the MIC and inhibition zone areas.

Data are from inhibition zone diameters and MICo for each parent strains (e.g. AcrAB+)
and the evolved isolates of each parent strain from three different eVOLVER experiments
(e.g. eAcrAB+1, eAcrAB+2, and eAcrAB+3). MICy is defined as the point where ODsoo
is reduced to 10% of normal growth after 24 h (Figure S2). To find the linear correlation,
we calculated the natural log of the MICqo and the inhibition zone areas. The parameters
for this map are Q =30 pg, k=57.8, and K =-0.971, following the notation from Reference
(310).
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Figure C-6. Resistance and fitness of WT cells exposed to ciprofloxacin for 168 h.

(A) Average growth rate. Growth rates are normalized to growth of strains at t = 0 h.
Lighter areas represent growth rates closer to pre-treatment values; darker areas represent
reduced growth rates. MIC.rent concentration is denoted with a bold dashed line (Figure
C-2). (B) Average resistance. Diameter of inhibition zones were plotted for each time and
treatment. Smaller inhibition zones are shown in red and correspond to resistant cells (<15
mm) and larger inhibition zones are shown in blue and represent susceptible cells (=21
mm); intermediate inhibition is shown with color scale from orange to green. MICarent is
denoted with a bold dashed line. (C) Average final resistance after 72 h based on treatment
concentration normalized to MIC®. Data points show the mean of three biological
replicates. Shaded error bars show standard deviation. (D-F) Mean percentage of the
population, which could grow on LB plates containing (D) 0.5 pg/mL, (E) 1 pg/mL or (F)
10 pg/mL ciprofloxacin. Initial populations contained ~107 CFUs. MICarent compared to
treatment concentration is denoted with a bold dashed line.
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Figure C-7. Toxicity curves in the presence of Tween20.

0.5

Strains grown with and without 0.2% (v/v) Tween20. Data points show mean values from
n = 3 biological replicates, error bars show standard deviation.
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Appendix D: Supplementary Information for Chapter 5

Cm Amp Tet Cp
WT 212+£2.7 182+1.7 21.7£2.0 26.1+£2.2
acrAB+ 271+£1.9 202+1.3 26.7+1.6 309+1.9
AacrB 33.54+3.2 24420 29.0+2.1 323+1.9

Table D-1. Inhibition zones for parent strains prior to treatment.

For the different genotypes tested, the mean diameters of the inhibition zones from the
antibiotic disc susceptibility test are indicated in millimeters (mm) + standard deviation. n
= 20 biological replicates. Note that smaller numbers indicate higher resistance.

Distributions are shown in Figure D-2A.

p value at timepoint

t=12 hours t =24 hours t =48 hours t =72 hours
WT 0.343 0.522 0.764 0.727
acrAB+ 0.046* 0.0097* 0.295 0.724
AacrB 0.436 0.376 0.367 0.775
Co-culture 0.166 0.603 0.505 0.223

Table D-2. p values from two-sample t-test for gro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>