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ABSTRACT 

Antibiotic resistance is a worldwide health threat, as bacteria continue to evade 

antibiotic treatment. In order to survive, bacteria utilize a number of resistance 

mechanisms, including efflux pumps, which efficiently export antibiotics outside of the 

cell to reduce intracellular damage. While such mechanisms are well known, there remains 

a significant gap in knowledge regarding how different environmental dynamics, such as 

the rate of antibiotic introduction or the diversity within a microbial community, play a role 

in resistance. In this work, we used the AcrAB-TolC efflux pump as a case study to explore 

how such complex dynamics promote antibiotic resistance and its evolution. First, through 

a combined effort using experiments and mathematical modeling, we discovered that the 

rate of antibiotic introduction impacts the fraction of resistant bacteria in a population. We 

then explored the impact of mixed populations on survival following antibiotic treatment. 

In mixed microcolonies, we found that resistant cells can harm their susceptible neighbors 

by exporting antibiotics to increase the local concentrations of these drugs. Next, we aimed 

to understand how these environmental effects may impact longer-term survival of an 

antibiotic treatment, focusing on the evolution of resistance over ~72 hours. Through a 

series of adaptive evolution experiments, we identified that near-MIC treatments were the 
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most likely to promote antibiotic resistance, regardless of whether the strains contained the 

AcrAB-TolC pump at wild type or overexpressed levels, or whether the strains lacked the 

pump altogether. In studying antibiotic introduction rates on evolution, we found that 

slower introduction rates facilitated the evolution of high levels of resistance with a 

minimal fitness cost. Meanwhile, mixed populations demonstrated limited evolvability 

after rapid antibiotic introductions. This work provides important insights into the impacts 

of environmental factors, such as the rate of antibiotic introduction and the homogeneity 

of populations, on the promotion and evolution of antibiotic resistance. These lessons may 

help inform future policies on antibiotic use and mitigate the continued pattern of resistance 

evolution. 
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PREFACE 

After a two-week vacation in 1928, Alexander Fleming returned to his lab at St. 

Mary’s Hospital in London to continue his research on the influenza virus from the 1918 

pandemic. There Fleming found an old plate of Staphylococcus had been contaminated 

with mold. Under closer inspection, he observed that the growth of the contaminated mold 

had produced a zone of inhibition, in which the bacterial colonies were smaller and were 

lysing. The mold was penicillin-producing Penicillum rubens. By 1941, Howard Florey 

and Ernst Boris Chain from the Radcliffe Infirmary had scaled-up the research of penicillin 

for mass production. 

Yet, in 1940, Ernst Boris Chain and Edward Abraham already reported an 

Escherichia coli stain that inactivated penicillin. After the clinical trials in 1942, four 

clinical strains of Staphylococcus aureus demonstrated resistance to penicillin. By 1970, 

over 80% of all S. aureus strains collected from communities and hospitals were penicillin-

resistant. As of 2019, nearly 3 million cases of antibiotic-resistant infections are reported 

every year in the United States alone.  
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1. INTRODUCTION 

1.1. Antibiotic Resistance 

Antibiotic resistance remains a global health crisis as the number of resistant 

infections continues to rise (1–3). Each year in the United States, there are over 2.8 million 

cases of antibiotic-resistant infections resulting in over 35,000 deaths (4). While antibiotics 

are still essential for both medicine and science, over-prescription has led to high levels of 

resistant infections in the clinic (2, 5). While this over-prescription was an early contributor 

to the spread of resistance, the anthropological use of antibiotics for sterilization has only 

aggravated the problem (5–7). Such applications include agriculture, veterinary care, 

industrial and household cleaning processes, and wastewater treatment (5, 8). Together 

these applications have resulted in the rapid spread of antibiotic resistant microbes not only 

through person-to-person transmission, but also in our soil, water, and food (2, 5, 9–11). 

The ability for microbes to so quickly acquire resistance requires a deeper dive into how 

antibiotic resistance mechanisms allow microbes to survive antibiotic treatment (2). 

1.1.1. Mechanisms of Antibiotic Resistance 

 The first step in understanding why antibiotics fail is understanding how they fail 

(12). Mechanisms by which microbes become resistant include altering drug targets, 

producing enzymes for antibiotic degradation or modification, tuning gene expression, 

reducing cell membrane permeability, and increasing active efflux (5, 13, 14) (Table 1-1). 

For example, in order to protect itself against an antibiotic treatment with a b-lactam, a 

bacterium can actively alter gene expression to increase the target to antibiotic ratio (15). 

However, it is also important to note that microbes do not need to rely solely on one 



 

 

2 

resistance mechanism to survive and that microbes simultaneously use multiple strategies 

to increase their chance of survival (1). For example, in the presence of a b-lactam, a cell 

may achieve resistance by reducing membrane permeability, increasing efflux, and 

modifying the target protein, in addition to degrading the antibiotic with b-lactamases (13). 

Most of the time, bacteria using multiple mechanisms are resistant to a larger range 

antibiotics; however, in some cases, mutants which evolved resistance mechanisms to 

combat one antibiotic simultaneously become more sensitive to other antibiotics (16).   

Mechanism of Resistance Example Antibiotics Antibiotic Targets 
Antibiotic efflux Amphenicol (e.g. chloramphenicol) 

Tetracyclines (e.g. deoxycycline) 
Bacitracin (e.g. bacitracin) 
Nitrofurans (e.g. nitrofurantoin) 

50S Ribosome  
30S Ribosome 
Cell wall 
DNA 

Reduced permeability Rifamycins (e.g. rifampicin) 
Glycopeptides (e.g. vancomycin) 
Macrolides (e.g. azithromycin) 
Aminoglycosides (e.g. gentamicin) 

mRNA Transcription 
Cell wall 
50S Ribosome 
30S Ribosome 

Expression changes b-lactams (e.g. ampicillin) 
Sulfonamides (e.g. sulfamethoxazole) 
Fusidanes (e.g. fusidic acid) 
Isoniazid (e.g. isoniazid) 

Cell wall 
Nucleic Acid synthesis 
50S Ribosome 
Cell wall 

Antibiotic modification     
or degradation 

Quinolones (e.g. ciprofloxacin) 
Nitroimidazoles (e.g. metronidazole) 
Fosfomycin (e.g. fosfomycin) 
Lipopeptide (e.g. daptomycin) 

DNA gyrase 
DNA 
Cell wall 
Cell membrane 

Target modification          
or protection 

Polymyxin (e.g. colistin) 
Mupirocin (e.g. mupirocin) 
Oxazolidinone (e.g. linezolid) 
Trimethoprim (e.g. trimethoprim) 

Cell membrane 
RNA synthetase 
50S Ribosome 
Nucleic Acid synthesis 

Table 1-1. Mechanisms of Antibiotic Resistance. 

The key mechanisms of antibiotic resistance are shown here, along with examples of 

antibiotic classes, antibiotics, and the targets of the associated antibiotics (5, 13, 14). 
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Different mechanisms of antibiotic resistance can be achieved by both permanent 

and transient changes to the cells’ physiology (17, 18). One method by which cells can 

permanently acquire antibiotic resistance mechanisms is through the uptake of antibiotic 

resistance genes via horizontal gene transfer (HGT) (19–21). This transfer is facilitated 

through conjugation of plasmids, transduction by bacteriophages, or natural transformation 

of extracellular DNA (22, 23). HGT allows for microbes to be shared through a larger and 

more diverse genetic pool and can provide resistance faster than spontaneous mutations 

(21, 22). Yet, the prevalence of HGT in clinics remains unknown as HGT likely fluctuate 

depending on environmental conditions (22, 24). 

Resistant genotypes are also often inherited through vertical gene transfer, in which 

a fixed genetic mutation is passed down to an offspring (14). One type of mutation that 

contribute to increased resistance are single point mutations; these include missense point 

mutations, which may alter protein function by using an alternative amino acid, and as well 

as insertions, deletions, and nonsense mutations, which may disrupt protein function more 

severely through frameshifts (13). Such point mutations often affect gene expression, 

protein binding, or protein inactivation (20). Additionally, mobile genetic elements, such 

as insertion sequences or transposons from the host’s own chromosome, rapidly integrate 

into target genes (5, 23, 25) to disrupt local stress response regulators (26). These mobile 

genetic elements can also cause larger chromosomal rearrangements (27) and can provide 

an intermediate pathway to gene duplication (28, 29), which can lead to increased copy 

numbers of antibiotic resistance genes (23, 30, 31).  

Nevertheless, bacteria do not survive antibiotic treatment exclusively through 
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permanent changes, but can also survive through transient measures; therefore, it is 

important to make the distinction between permanent antibiotic resistance and transient 

antibiotic tolerance. Bacteria exhibiting the aforementioned permanent genetic changes, 

such as a gene encoding for a resistance factor from Table 1-1, are considered resistant 

(32). Populations of resistant bacteria are capable of growing and surviving at 

concentrations of antibiotics that susceptible cells cannot (32). Thus, since a higher 

antibiotic concentration is required to kill the resistant population, the minimum inhibitory 

concentration (MIC) for resistant cells is higher than the MIC for susceptible cells (32–34). 

Yet, there are cases where bacterial populations do not encode for a resistance factor, 

similarly to susceptible cells, but are able to survive much higher antibiotic concentrations, 

similarly to resistant cells (32, 35). Such bacteria are defined as tolerant and enable a sub-

population to survive at higher antibiotic concentrations through dormancy or persistence 

(32). For example, one subset of tolerant cells — persister cells — present a resistant 

phenotype to survive conditions with a susceptible genotype that should otherwise lead to 

cell death (32). This tolerance can emerge either spontaneously or as a result of a trigger, 

such as starvation, cell density, or chemical stressors (32, 36). For example, diversity in a 

general stress response activator, MarA in E. coli, improves single-cell survival against 

carbenicillin; yet, the single cells that survive do not retain resistance (37). Thus, bacteria 

can leverage transient changes to their physiology to improve a bacterial population’s 

survival (5, 14). Today, it is well understood that bacteria have the innate and robust ability 

to both evolve permanent and employ transient antibiotic resistance mechanisms. 
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1.1.2. Early Efforts to Combat Rising Levels of Antibiotic Resistance 

Many of these mechanisms were first identified in early antibiotic resistance 

surveillance studies (38). In 1994, the World Health Organization revealed a surveillance 

study which found antibiotic resistance to be wide-spread across 22 countries (39). Since 

then, surveillance efforts have aimed to study the spread of antibiotic resistance (40–43). 

Such surveillance efforts identified the over-prescription and over-medication of 

antibiotics (8, 44–46), as well as the downstream environmental impact of antibiotics use 

for non-medical applications (47–49). These studies have played a key role in identifying 

how antibiotic applications increased levels of antibiotic resistant microbes in our soil, 

food, and waterways (2, 5, 9–11). 

Though these studies have helped policy makers and physicians reduce superfluous 

antibiotic use, the resistance in microbes continues to outpace the discovery of novel 

treatments (6, 7, 12). In an effort to combat the lack of usable antibiotics, policy makers 

created the 10 x ’20 initiative in 2010 with the goal to discover at least 10 novel antibiotics 

by 2020 (50). During this past decade, numerous novel antibiotics have been identified and 

subsequently approved by the U.S. Food and Drug Administration (FDA); however, 

clinical and laboratory studies have already reported resistant microbes for a significant 

portion of these novel antibiotics (51–56). Additional efforts have also begun to explore 

antimicrobial peptides or antibiotics linked to antimicrobial peptides in the hope that these 

more complex chemicals will curtail the ability of bacteria to resist treatment (57). 

However, resistance to antimicrobial peptides has also already been reported (12, 58). 

Combinatorial treatments with multiple drugs have also been explored for their potential 
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to preserve legacy antibiotics (59, 60). That said, combinatorial therapeutics need to be 

carefully assessed to ensure that the effect of the drug combination is indeed additive, and 

not antagonistic (61–63). Misused combinatorial treatments could be another threat to 

promoting antibiotic resistance, especially Liu et al. found that bacteria could still evolve 

resistance to such treatments within days (64). 

1.1.3. The Continued Threat of Antibiotic Resistance 

One novel antibiotic produced by the 10 x ’20 initiative is eravacycline (previously 

known as TP-434), which belongs to the tetracycline antibiotic class (65). While it was 

found to have a broad range of antimicrobial activity, treatment failure of Enterococcus 

faecalis in clinics has already been noted; these microbes evolved resistance by mutating 

the target and upregulating antibiotic efflux (51). In a similar fashion, the discovery of 

omadacylcine also of the tetracycline family, touted the potential against multidrug 

resistant bacteria, such as MRSA (66, 67); unfortunately, due to gene expression 

regulation, resistance of S. aureus isolates from Chinese clinics were found only two years 

after its clinical trials (52). Such a pattern has been omnipresent, as even the novel 

antibiotic, daptomycin (68), from 2004 had resistance reported within a few years (69). 

Today, every class of antibiotics can be negated by at least one resistance mechanism (13); 

Pseudomonas aeruginosa alone has developed a resistance mechanism against every class 

of its intended antimicrobials (1). As such, we stand in a more ominous position as the 

discovery of resistance to novel antibiotics outpaces the discovery of novel antibiotics (7). 

One hope is for us to understand how and why resistance is emerging before these novel 

antibiotics are used in clinics. 
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Since the 1990s, antibiotic resistance studies in the clinic have focused on 

uncovering what and how resistance mechanisms evolve (19, 70, 71). Such studies have 

also led to observations of cross-resistant phenotypes in clinical isolates from treatment 

with a single antibiotic (72). Additionally, these studies have found resistance after sub-

inhibitory antibiotic exposure (73). Further, they have helped identify certain combinations 

of antibiotics, microbes, and treatments that promote the emergence of multidrug antibiotic 

resistance  (74). On the other hand, these studies are often dealing with lethal consequences 

of already evolved antibiotic resistance in real time and not in a predictive fashion (75). In 

addition to this, studying the evolution of antibiotic resistance in the clinics remains 

restrictive and time-consuming; as a consequence, there have been an uptick in laboratory 

evolution studies of antibiotic resistance (19).  

1.1.4. Driving Factors of Antibiotic Resistance and its Evolution 

 Prior to the last decade, many of the laboratory studies focused on understanding 

why antibiotic resistance lingered and how the quantity of resistant cells in bacterial 

populations could be reduced (76, 77). Unfortunately, simply reducing the presence of 

resistant population members is not a robust solution to combat pathogenic bacteria; this 

solution is only viable if resistance phenotypes are costly to the microbe, which is not 

always the case (78, 79). While strategies for reducing resistance in a population aligns 

with policies to avoid antibiotic use (77), there remain many cases where antibiotic 

treatment is appropriate and essential (80). As such, researchers have turned their efforts 

to exploring other contributing factors to antibiotic resistance that were not previously 

studied: microbial population variations, such as variations in diversity and density, and 
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fluctuations in inhibitory antibiotic concentration (78, 81–83). The goal of these studies 

was to identify which combinations of environmental factors and antibiotic treatments  

could eliminate resistant cells in a population (78). This ability to reverse antibiotic 

resistance during treatment requires extensive forethought and planning to properly 

eradicate resistant sub-populations (84, 85). As a result, new efforts have begun to 

investigate the stability of resistance in bacterial populations (78). 

 Resistant and susceptible cells can stably co-exist in a population at sub-inhibitory 

antibiotics concentrations; this has been observed in waterways and in soil (86). The effect 

of low antibiotic concentrations on the emergence of antibiotic resistance has only recently 

become studied more in depth. While bacterial evolution at sub-inhibitory concentrations 

are less often studied, Wistrand-Yuen et al. found that bacteria grown in sub-inhibitory 

concentrations were still able to achieve high-levels of resistance through unique 

evolutionary pathways (87). The divergence of evolutionary trajectories at different 

concentrations suggests that elements of bacteria’s evolutionary landscapes remain 

unexplored. In a recent publication, Russ et al. found that the emergence of escape 

mutations was more likely under certain antibiotic concentrations (88). Additional studies 

have also reported problematic levels of antibiotic resistance after sub-inhibitory antibiotic 

exposures (89–91). Thus, antibiotic concentrations may influence the emergence of 

antibiotic resistance. 

 The activity of bacterial communities, such as in cells in a biofilm, also influences 

the presence of resistant phenotypes (92–96). Further, bacterial population dynamics, 

including diversity, density, and spatial organization, impact antibiotic resistance 
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independent of biofilms (97). For example, one study identified how population diversity 

hindered the effectiveness of antibiotic cycling — a treatment strategy where an infection 

is targeted with one antibiotic then another in a cyclic manner (98). Even changes in 

experimental parameters alone can cause large fluctuations in population diversity (99). 

These studies indicate that the impact of population dynamics on antibiotic resistance could 

more complicated than previously thought (64, 92). 

Evolution studies have also been key in unveiling important factors in the 

emergence of antibiotic resistance (19). The Lenski experiments uncovered the power of 

experimental evolution to study the long-term effect on bacterial populations in a predictive 

fashion (100, 101). Previously, evolution using serial dilutions was the traditional set up; 

today, more researchers have begun using bioreactors to study long-term dynamics, either 

with turbidostats or chemostats (97, 102–104). Toprak et al. developed a turbidostat-

derivative — the morbidostat — to direct bacteria to evolve by only providing nutrients 

along with higher antibiotic concentrations (102, 103, 105). This method pushes the 

evolved MIC to astronomically high levels. Likewise, the MEGAplate experiment was key 

at understanding how and what genotypes can lead to this high level survival (106). While 

the morbidostat experiments revealed the extent of the evolutionary pathway of the 

bacteria, it is unlikely that such a treatment would be possible for patients due to antibiotic 

toxicity (107). On the other hand, scientists have often explored the evolution of antibiotic 

resistance at antibiotic concentrations that fall between inhibitory for bacteria and non-

toxic for patients (13, 64, 108). Such evolution studies have elucidated how bacteria might 

respond to stressful static environments, changing environments (e.g. drug switching or 
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rising antibiotic concentration), and realistically complex environments (e.g. mouse 

models) (97). 

Predictive modeling has also improved the understanding of antibiotic resistance, 

beyond current laboratory studies (109, 110). One model by Marrec and Bitbol identified 

how the timing of environmental switching could have dramatic consequences on the 

emergence of antibiotic resistance (111). Another model by Chevereau et al. identified how 

heterogeneity in resistance could accelerate or delay the evolution of antibiotic resistance 

(112). Yet, novel factors in the evolution of resistance still need to be better understood to 

produce improved models (110). Luckily, these factors are now being elucidated in 

laboratory and clinical studies (113). One such study found that different bacterial 

populations evolved convergent, resistant phenotypes (114). In the future, predictive 

modeling can give us a glimpse into the consequences of different environments on the 

evolution of antibiotic resistance (110). 

1.1.5. Gap in Knowledge of Complex Environments 

Despite the attributes that these predictive models provide, there still remains a lack 

of understanding of antibiotic resistance in complex and dynamic environments (111, 115–

117). Such conditions need to be explored experimentally before including them in models 

(110). Furthermore, despite the incredible attributions from these cumulative works, the 

overarching conclusions are difficult to interpret due to variations in experimental 

parameters, such as conditions, species, antibiotics, and temporal changes to antibiotic 

concentrations (118, 119). Another example of this comes from a recent study by Hallinen 

et al., who demonstrated how a combination of factors could lead to both population 
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survival or extinction after identical treatments (120). The emergence of antibiotic 

resistance is dependent not only on genotypes and phenotypes, but also on the type of 

antibiotics, antibiotic concentrations, and population composition; thus, there remains a 

need to more systematically explore how these complex environmental dynamics — 

including fluctuations in antibiotic doses and diversity within microbial populations — 

may promote antibiotic resistant populations and their emergence (118, 121). 

1.2. Efflux Pumps and Antibiotic Resistance 

One mechanism capable of providing high levels of resistance to many different 

drugs are efflux pumps (122–125). Efflux pumps are an energy-dependent mechanism for 

the active export of a substrate from a cell (126). This mechanism is ubiquitous across both 

prokaryotic and eukaryotic cells (127); for example, even cancer cells to express efflux 

pumps that actively export anti-cancer drugs (128). This ability for cells to maintain low 

intracellular concentrations of toxic substrates improves survival rates (44, 125). As such, 

many different classes of efflux pumps have evolved to export out heavy metals, bile salts, 

antimicrobial lipids, and antibiotics (129–132).  

1.2.1. AcrAB-TolC Efflux Pumps 

The AcrAB-TolC efflux pump was first identified in E. coli as providing resistance 

to acriflavin through a mutation in acrB in 1978 (133). It is now known to export a plethora 

of substrates from E. coli cells, from antibiotics to biofuel precursors (Table 1-2) (134). 

AcrAB-TolC efflux pumps are found in gram-negative bacteria, including Salmonella 

enterica and Yersinia pestis (135, 136). Many homologs of AcrAB-TolC can also be found 

widely throughout other gram-negative bacteria, including MexAB-OprM from 
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Substrate Type Substrate Fold change 
in MICa 

References 

Antibiotics Ampicillin 2-4 (134, 219, 258) 

Chloramphenicol 2-8 (134, 189, 219) 

Ciprofloxacin 4 (134, 258, 352) 

Cloxacillin 256 (145, 353) 

Erythromycin 16-64 (134, 145, 258, 353) 

Enoxacin 4 (145) 

Florfenicol 8 (134) 

Fusidic Acid 128 (134, 353) 

Minocycline 4-8 (145, 352) 

Nalidixic Acid 2-8 (134, 219) 

Norfloxacin 1-4 (134, 145, 353) 

Novobiocin 32-256 (134, 145, 258, 353) 

Puromycin 32-64 (134, 219) 

Rifampicin 1-2.5 (134, 145, 219) 

Tetracycline 2-10 (134, 219, 258, 353) 

Antiseptics Acriflavine 32-64 (134, 145) 

Proflavin 8 (134) 

Dyes Carbonyl Cyanide 
Chlorophenylhydrazone (CCCP) 

2 (134) 

Crystal Violet 8-32 (134, 145, 353) 

Ethidium Bromide 128-256 (134, 145) 

Plumagin 4 (134) 

Rhodamine 6G 256-512 (134, 145) 

Detergents Benzalkonium Chloride 32-64 (134, 145) 

Dequalinium 128 (134, 145) 

Sodium Dodecyl Sulfate (SDS) 128 (134, 353) 

Terpenes a-Pinene 4 (189) 

Salts Tetraphenylphosphonium 256 (134) 

Tetraphenylarsonium 512 (134) 

Acids Deoxycholate 2 (134) 

Antifungals Clotrimazole 2 (134) 

Anti-cancer drugs Methotrexate 8 (134) 

Table 1-2. Substrates of AcrAB-TolC Efflux Pumps in E. coli. 
a The fold change in the MIC of each substrate for strains with and without the AcrAB-TolC efflux pump.  
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Pseudomonas aeruginosa and MacAB-TolC from Actinobacillus (14, 125). 

The AcrAB-TolC complex is comprised of three different proteins: TolC, the outer-

membrane channel protein (137), AcrA, the periplasmic linker protein (138), and AcrB, 

the inner membrane protein (139). AcrB is the functional unit of the efflux pump, which 

uses the proton motive force to actively expel substrates from the cell (Figure 1-1) (139–

141). In order to assemble the AcrAB-TolC efflux pump, an AcrAB subcomplex first forms 

containing a 6:3 ratio AcrA to AcrB proteins (142). It is hypothesized that the AcrAB 

subcomplex then walks along the inner membrane until it encounters a TolC trimer and 

then forms AcrAB-TolC (142, 143). In this configuration, AcrB can recruit and expel 

substrates in a single direction (144) through conformational changes (140–142). 

Additionally, AcrB has multiple channels through which it recruits substrates (145, 146). 

 

Figure 1-1. Schematic of an AcrAB-TolC efflux pump. 

The AcrAB-TolC efflux pump consist of the functional pump unit, AcrB, the periplasmic 

linker protein, AcrA, and the outer membrane channel, TolC. Substrates can be exported 
through AcrAB-TolC by either entering AcrB channels located in the cytoplasm or the 

(141, 143). 
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The different channels could explain how AcrAB-TolC can export such a broad spectrum 

of substrates (145, 147); for example, ethidium bromide prefers one channel, while 

erythromycin prefers another channel (142). 

The outer membrane channel, TolC, is also important as a porin (148), a cell-

surface receptor (149), and a component of numerous other efflux pumps in E. coli, 

including AcrEF-TolC, MdtEF-TolC, EmrAB-TolC, EmrKY-TolC, MdtABC-TolC, and 

MacrAB-TolC (150–155). However, TolC primarily provides resistance through the 

AcrAB-TolC complex as only these TolC-related genes have been found to be upregulated 

in clinical isolates (156). Additionally, due to its role in numerous and critical cellular 

functions, including cell division, metabolite regulation, and growth, TolC exists in excess 

relative to AcrA and AcrB (157, 158). Gene expression of tolC also follows the same 

upregulation and downregulation under different stressors (159, 160) as it has a upstream 

DNA binding regions to the acrAB operon (161). Thus, acrAB expression governs the 

quantity of AcrAB-TolC efflux pumps and the levels of antibiotic resistance. 

1.2.2. Regulation of AcrAB-TolC Efflux Pumps 

Both tolC and the acrAB operon are upregulated via a ‘marbox’ or a binding site 

for transcriptional stress response activators, MarA, SoxS, and Rob (161, 162). The marbox 

is located upstream of acrA’s promoter in the coding region of acrR (163). The different 

stress response activators SoxS, Rob, and MarA are upregulated by different stress 

response signals and turn on a suite of over 60 downstream genes, including efflux pumps, 

porins, and enzymes (164–166). SoxS is upregulated in the presence of oxidative stress by 

the active form of its local regulator SoxR (167). Rob is post-translationally activated in 
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the presence of osmotic stress, such as bile salts, fatty acids, and antimicrobial peptides 

(168, 169). MarA is regulated by the positive-negative feedback loop of the marRAB 

operon (165, 170, 171). The activator, MarA, is upregulated when its repressor, MarR, 

binds to the stressor, such as salicylate, and becomes inactive (172, 173). The marbox 

allows robust upregulation of acrAB under the presence of a wide variety of stressors (165) 

(Figure 1-2).  

 Meanwhile, the acrAB operon is primarily downregulated by the operon’s local 

repressor, AcrR (163, 174). AcrR binds upstream of acrA on the coding region of acrR 

(174, 175) (Figure 1-2). Deletion of acrR leads to a 1.5- to 6-fold increase in acrAB gene 

expression compared to wild type (157, 159, 175). Studies have found that acrR knockout 

strains display increased swimming motility, biofilm formation, and virulence (175–177). 

The AcrR homodimer can also be post-translationally regulated by certain substrates of the 

AcrAB-TolC efflux pump, such as ethidium bromide, proflavine, and rhodamine 6G (178, 

179). The acrAB operon can also be repressed by overexpression of AcrS (formerly EnvR), 

which is the local repressor for another multidrug efflux pump, AcrEF-TolC (180). 

Additionally, it is hypothesized that both MprA (formerly EmrR), which is the 

transcriptional regulator of the emrAB operon for EmrAB efflux pump (181), and 

phosphorylated PhoP, which is a transcriptional regulator responsible for the stress 

response of magnesium starvation (182), can repress acrAB expression due to consensus 

in their binding sites with the promoter region of acrA (182, 183). The quantity of AcrAB-

TolC efflux pumps is carefully tuned by its local and global regulators under a variety of 

stresses and different conditions.  
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1.2.3. Importance of AcrAB-TolC Efflux Pumps in Complex Environments 

Increased levels of multidrug resistance are often attributed to the AcrAB-TolC 

efflux pump system (156, 184–186). While this correlation between efflux pumps and 

resistance is well understood, the role of efflux pumps in more realistic and dynamic 

conditions remains relatively unknown due to these experimental parameters being less 

often studied (187). For example, the concentration of an antibiotic at the site of a bacterial 

 

Figure 1-2. Native regulation of the acrAB operon. 

The global stress response mar operon and the local repressor acrR are the main pathways 

to upregulate acrAB in response to aromatic stress compounds, such as chloramphenicol. 
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infection will slowly increase over time opposed to a sudden treatment (188); yet, most in 

vivo studies hold the antibiotic concentration constant (189). Additionally, in industrial 

biosynthesis, cells may be engineered to produce a toxic compound, causing the 

intracellular toxicity to slowly rise (190). Recent findings have also identified how the 

expression of efflux pumps, such as AcrAB-TolC, can affect mutation rates (191, 192). 

Here, we use the AcrAB-TolC efflux pumps to explore how antibiotic resistance genes 

impact survival and evolution in different environmental conditions. 

1.3. Summary 

The objective of this work was to gain insight into how complex dynamics, such as 

fluctuations in antibiotic concentration and differences in population diversity, affect 

antibiotic resistance and its evolution using the AcrAB-TolC efflux pumps as a case study. 

In Chapter 2, we explored how different rates of antibiotic introduction impact population 

diversity and increase resistant phenotypes. We found that faster rates of antibiotic 

introduction could reduce the benefit of having an antibiotic resistance gene and, thus, 

improve treatments. In Chapter 3, we studied heterogenous microcolonies treated with 

antibiotics. We observed that, within these microcolonies, cells containing efflux pumps 

could have a detrimental effect on their neighboring cells. In doing so, we identified how 

both antibiotic introduction rates and mixed populations impact the short-term emergence 

of antibiotic resistance. 

To further understand how these two factors could impact long-term antibiotic 

resistance and its evolution, we turned to adaptive evolution experiments. In Chapter 4, 

we investigated how antibiotic concentrations and genotypic backgrounds may promote 
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survival of antibiotic treatments. High levels of resistance were more likely to evolve under 

near-MIC treatments, regardless of the starting genotype. Yet, depending on the presence 

of efflux pumps, different genetic backgrounds followed distinct genetic pathways to reach 

this phenotypic convergence. Next, in Chapter 5, we explored how complex dynamics — 

variations in antibiotic introduction rate and population diversity — could further promote 

the emergence of antibiotic resistance. We identified that slow introduction of antibiotic 

resistance could provide high levels of antibiotic resistance, while reducing fitness burdens. 

Meanwhile, we found that co-cultured populations were significantly less likely to evolve 

antibiotic resistance under fast changing stress introductions opposed to slow changing 

stress introduction rates. 

This work provides insight into the complex and confounding factors that 

contribute to the evolution of antibiotic resistance, and what lessons may help us mitigate 

this continued pattern of evolution of antibiotic resistance. 
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2. STRESS INTRODUCTION RATE ALTERS BENEFIT OF 

AcrAB-TolC EFFLUX PUMPS 

2.1. Disclosure & Copyright Statement 

This chapter is a modified version of “Stress Introduction Rate Alters Benefit of 

AcrAB-TolC Efflux Pumps” by Ariel M. Langevin and Mary J. Dunlop, 2017. Journal of 

Bacteriology, 200 (1) e00525-17. ©2017 by American Society for Microbiology. The 

publisher allows authors to retain the right to reuse full article in dissertations. 

2.2. Abstract 

Stress tolerance studies are typically conducted in an all-or-none fashion. However, 

in realistic settings—such as in clinical or metabolic engineering applications—cells may 

encounter stresses at different rates. As such, how cells tolerate stress may depend on its 

rate of appearance. To address this, we study how the rate of introduction affects bacterial 

stress tolerance by focusing on a key mechanism for stress response. Efflux pumps, such 

as AcrAB-TolC from E. coli, are membrane transporters well known for their ability to 

export a wide variety of substrates, including antibiotics, signaling molecules, and biofuels. 

Although efflux pumps improve stress tolerance, pump overexpression can result in a 

substantial cost to the cells by altering membrane fluidity and slowing growth. We 

hypothesized that the ideal pump expression level would involve a rate-dependent trade-

off between the benefit of pumps and the cost of their expression.  To test this, we evaluated 

the benefit of the AcrAB-TolC pump under different rates of stress introduction, including 

a step, fast ramp, and slow ramp. Using two chemically diverse stresses, the antibiotic 

chloramphenicol and the bio-jet fuel precursor pinene, we assessed the benefit provided by 
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the pumps. A mathematical model describing these effects predicted the benefit as a 

function of the rate of stress introduction. Our findings demonstrate that as the rate of 

introduction is lowered, stress response mechanisms provide a disproportionate benefit to 

pump-containing strains, allowing cells to survive beyond the original inhibitory 

concentrations. 

2.3. Introduction 

In realistic conditions, the environments bacteria are exposed to are seldom as 

constant as those in the laboratory. For example, in clinical applications, antibiotic 

concentrations at the site of the infection will depend on in vivo drug absorption and 

elimination (193). In metabolic engineering, the synthesis of a product such as a biofuel 

can depend heavily on the cell cycle or stage of the production process, and thus changes 

dramatically with time (194). Studying how bacteria respond to dynamic, stressful 

environments is key to both understanding drug resistance, as well as harnessing their 

power for metabolic engineering applications. Although recent literature has begun to 

explore the effect of fluctuating environments on bacterial fitness, the focus has primarily 

remained on step changes, such as switching suddenly from a non-stressful to a stressful 

environment (195–199). Other studies have focused on the long-term effects of changing 

environments, including the impact of spatial gradients on mutations and the response of a 

general stress response pathway to environmental change (106, 200, 201). In contrast, here 

we study how varying the rate at which stress is applied over short, key periods of time 

affects fitness. 

To survive in stressful environments, cells utilize numerous stress response 
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mechanisms. Examples include efflux pumps, inactivating enzymes, and outer membrane 

protein channels (79, 202, 203). However, despite the substantial benefit these mechanisms 

can provide, they can also be costly and thus place an extraneous burden on the cell (109, 

204). As such, expression of stress response genes may introduce negative fitness effects. 

Understanding how cells balance these cost-benefit trade-offs will provide insight into how 

cells respond and cope with stressful environments.  

As a case study, we focused on a well-known multidrug resistance pump, AcrAB-

TolC from E. coli. Multidrug resistance pumps have been studied extensively for their 

ability to export a wide variety of compounds, including antibiotics, biofuel intermediates, 

signaling molecules, dyes, and detergents (140, 205). The pumps maintain low intracellular 

concentrations of stressors through active efflux via the proton motive force (206–208). 

These membrane transporters are found across prokaryotic and eukaryotic species (209). 

In eukaryotic cells, efflux pumps present a significant hurdle as they provide resistance to 

anticancer drugs (210). In prokaryotic cells, efflux pumps increase the antibiotic dose 

required for treatment of infections and also play a role in quorum sensing and biofilm 

formation (140, 211). Along with their clinical relevance, efflux pumps offer potential as 

a metabolic engineering tool. For instance, efflux pumps are able to improve fitness and 

solvent tolerance of cells with engineered biofuel production pathways (212–215). Thus, 

efflux pumps are a significant stress tolerance mechanism that operate on a diverse range 

of substrates.  

In this work, we investigated how the trade-off between the benefit of the pumps 

and the cost of pump expression depends on the rate of stress introduction. By analogy, 
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consider a bilge pump on a boat. If water leaks slowly into the boat, the pump can keep up 

and the boat will stay afloat. However, if the same volume of water appears rapidly, the 

boat may sink. We asked whether stress tolerance has a similar rate-dependent effect. To 

study this, we evaluated the benefit of the AcrAB-TolC pump under time-varying stress 

environments. We assess the performance of cells with and without pumps when the 

stressors were presented in different forms—as a step, a fast ramp, or a slow ramp. Our 

overall goal was to quantitatively determine the trade-off between stress tolerance and 

growth advantage for cells with pumps. To achieve this, we co-cultured cells with and 

without AcrAB-TolC efflux pumps. The relative fraction of cells with and without the 

pumps changed with time and depended on the rate of stress introduction. We validated 

our results using two structurally distinct pump substrates, the antibiotic chloramphenicol 

and the bio-jet fuel precursor pinene. We developed and experimentally validated a 

mathematical model that captures the system behavior. Using this model to evaluate the 

cost-benefit landscape of pump expression, we found that slower rates of stress 

introduction exaggerate the benefit of the pumps. This work demonstrates that the rate at 

which stress is applied can have a dramatic impact on bacterial fitness. 

2.4. Results 

We began by quantifying the benefit and cost of expressing efflux pumps in an 

environment with a constant, unchanging level of stress. We initially used chloramphenicol 

as a stressor because it is often considered for treatment of bacterial infections (216, 217). 

It is a bacteriostatic agent that works by inhibiting protein synthesis (218). 

Chloramphenicol is a known substrate of the AcrAB-TolC pumps; the pump conveys a 
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five-fold increase in the minimum inhibitory concentration (219). To measure the benefit 

of pumps, we initially grew cells with and without acrB in different levels of constant 

chloramphenicol. Since the AcrB protein is the active pumping unit and produces efflux 

driven by the proton motive force, deleting acrB renders the entire AcrAB-TolC efflux 

pump non-functional (206). We conducted experiments in wild type E. coli and in the same 

strain with an acrB deletion, and confirmed that the efflux pump provides protection 

against chloramphenicol (Figure 2-1A). We were able to recover chloramphenicol 

tolerance by complementing ΔacrB cells with a plasmid containing an IPTG-inducible 

version of the acrAB operon, acrAB-sfgfp. Even without induction, the basal expression 

was sufficient to restore wild type levels of chloramphenicol tolerance. Therefore, the 

AcrAB-TolC efflux pumps provide a benefit under constant chloramphenicol conditions. 

Next, we asked whether there was a cost associated with expressing these pumps.  

Although it is known that overexpression of membrane proteins can be costly to cells (220–

222), the mechanisms behind the fitness cost of efflux pumps are not entirely clear (222). 

One potential mechanism is due to a change in intracellular pH that impacts cellular 

metabolic pathways (223).  When inducing the acrAB-sfgfp strain with IPTG, we found 

that at high induction levels there was a severe growth cost, indicative of the harmful effects 

of overexpression (Figure 2-1B). As a result, we conducted subsequent experiments 

without IPTG induction to balance the chloramphenicol-tolerance benefit against the cost 

of the pumps. 
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Figure 2-1. Benefits and costs of AcrAB-TolC efflux pumps. 
(A) Cell density as a function of chloramphenicol concentration. Wild type is E. coli BW25113, the knockout strain is E. coli BW25113 
ΔacrB, and acrAB-sfgfp is E. coli BW25113 ΔacrB transformed with the plasmid pBbA5k-acrAB-sfgfp, which contains an IPTG-
inducible promoter controlling a transcriptional fusion of the acrAB efflux pump operon and super folder green fluorescent protein 
gene, sfgfp.  ΔOD700 is the difference in optical density at 700nm between the initial sample at t = 0 h and after t = 24 h. (B) Induction 
of acrAB-sfgfp reduces cell growth. Error bars in (A-B) show standard deviations of n = 3 biological replicates. (C) Growth of two 
competing strains under different chloramphenicol doses. The full dose of chloramphenicol is added at the beginning of the 
experiment, t = 0 h. The plots depict the total cell density of the co-culture, and the stacked shaded areas under the curve quantify the 
fraction of the culture containing either a rfp or sfgfp plasmid (Figure 2-2).  As a control, top row shows competition between two 
strains lacking efflux pumps, sfgfp and rfp. The bottom row shows competition between a strain with the efflux pump, acrAB-sfgfp, 
and one without the efflux pump, rfp. Dots show experimental data with error bars corresponding to standard deviations of n = 3 
biological replicates. Lines are the computational model predictions for the total population (solid line) and the rfp strain (dashed line). 
(D) Data extracted from the multispecies competition experiments shown in (C) comparing strains with and without pumps. Biomass 
of acrAB-sfgfp (green) compared with biomass of sfgfp (blue) after t = 8 h. Data points show mean and standard deviations of n = 3 
biological replicates; solid lines show mathematical model predictions. 
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To determine whether the benefit and cost of efflux pumps change in dynamic stress 

environments, we competed strains with and without pumps against each other and 

recorded the relative population sizes over time under different antibiotic treatment 

conditions. In clinical settings, bacteria that contain efflux pumps are able to outcompete 

those without and are found at a higher frequency in clinical isolates (224), motivating our 

use of a competition assay. This assay can identify subtle differences in growth among 

strains because more fit strains become overrepresented in the population (198, 213).  

We began by competing strains with and without efflux pumps in a constant 

environment where we added antibiotics at t = 0 h. First, we conducted a control experiment 

with two ΔacrB strains, one harboring a plasmid encoding super-folder green fluorescent 

protein (sfgfp) and a second with a plasmid encoding red fluorescent protein (rfp) (Figure 

2-1C). We first measured the optical density of the co-cultured competing strains (Figure 

2-2A). The fluorescent reporters allowed us to quantify the fraction of each cell present in 

the co-culture over time using flow cytometry (Figure 2-2B). Consequently, we were able 

to quantify the relative proportions of the two competing strains by using the fraction of 

sorted cells containing rfp or sfgfp to estimate the fraction of the total population harboring 

each plasmid (Figure 2-2C-D). We recorded cumulative cell density and the proportion of 

the two competing strains in the co-culture as a function of time. 

As expected, the sfgfp and rfp strains performed similarly under all levels of 

antibiotics since the only difference between the strains was the color of fluorescent 

reporter. Next, we competed a ΔacrB strain complemented with acrAB-sfgfp, against the 

same strain with rfp alone. We found that in the absence of antibiotics, the strain without   
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Figure 2-2. Schematic of methodology and data collection. 

(A) Multispecies growth curves depicting the raw optical density readings at 700nm for 
the co-cultured samples. The error bars are the standard deviations of the optical density 
for n = 3 biological replicates. (B) Flow cytometry data is collected for a subset of the 
samples. Error bars are standard deviations of n = 3 biological replicates. (C) The fraction 
of biomass attributed to each strain in the co-culture is approximated by multiplying the 
optical density by the fraction of these strain. (D) OD700 for the sfgfp-containing strains 
extracted from the co-culture data sets. (C-D) Data points and their error bars are based 
upon the standard deviations for the raw optical density and sorted flow cytometry data. 
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pumps outperformed the strain with pumps (Figure 2-1C). Because efflux pumps are costly 

and unnecessary in conditions without antibiotics, the strain with no pumps was able to 

dominate. In contrast, under conditions with low doses of chloramphenicol, the efflux 

pump containing strain dominated. Beyond a certain concentration of antibiotic neither 

strain was able to survive. These results are consistent with our earlier findings that the 

benefit of the pumps exists only for certain antibiotic doses (Figure 2-1A). 

In order to explore the effects of antibiotic addition and the benefit of pumps, we 

developed a mathematical model using a system of coupled ordinary differential equations 

to describe the competition between the species. The model is based on the Van Impe et 

al. bacterial growth model, which builds upon the Monod equation for growth kinetics 

(225–227). The state variables describe the population size for each of the species, and the 

substrate consumed by both species. The growth rate of each population depends upon the 

available substrate and also the concentration of the antibiotic in the environment. The 

model parameters were estimated by minimizing the sum of squared residuals and using 

the growth and toxicity curves for the single species experimental data (Figure A-1). The 

multispecies growth was then fit using the parameters determined from the toxicity curves 

and single species data. The model shows good agreement with the trends in our 

experimental findings, both in the overall growth of the two species as well as the 

approximate proportion of each species in the culture. 

To visualize the relative effect of efflux pumps, we plotted the data from sfgfp 

alongside acrAB-sfgfp (Figure 2-1D). These data are extracted from the co-culture 

experiments shown in Figure 2-1C where sfgfp is competed against rfp (top) and acrAB-
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sfgfp is competed against rfp (bottom). This comparison allows us to directly highlight the 

growth differences across environments and strains without and with efflux pumps. The 

model captures these trade-offs, demonstrating its predictive power in estimating where 

strains outcompete each other in competitive growth conditions. 

Next, we asked how differences in the rate of antibiotic addition affected the cost 

and benefit trade-offs for efflux pump expression. We tested dynamic environments where 

antibiotics were applied at different rates during the exponential growth phase. We kept 

the cumulative amount of antibiotic added constant, but varied the ramp rate (Figure 2-3A-

C). We first considered a step increase in antibiotics at t = 3 h (Figure 2-3A, D). Under 

these conditions the cells grew rapidly prior to addition of antibiotics, with sfgfp 

outperforming acrAB-sfgfp prior to t = 3 h, making it difficult for acrAB-sfgfp to recover 

after antibiotic was added, even in conditions where the pumps offer an advantage. 

When we decreased the rate of chloramphenicol addition, the acrAB-sfgfp strain 

was able to outperform the sfgfp strain under a broader range of chloramphenicol 

concentrations. First, we spaced the addition of chloramphenicol out over the range from t 

= 2 to 4 h (Figure 2-3B, E). As predicted by the mathematical model, at intermediate 

chloramphenicol concentrations we observed a modest benefit to the pumps. For the 

slowest antibiotic addition rate, we added chloramphenicol from t = 0.5 to 5.5 h (Figure 2-

3C, F). In this case, we found a more dramatic increase in the benefit of the pumps. In 

particular, we observed a substantial benefit in fitness for efflux pump containing strains 

that exists well above their minimum inhibitory concentration of 1 µg/mL (Figure 2-1A-

B). This finding emphasizes the importance of the rate at which stresses are introduced.  
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Building on the success of our model predictions, we next used the model to 

quantify the benefits and costs of efflux pump expression as a function of the total amount 

of antibiotic added and the rate at which it is introduced. In order to quantify the growth 

advantage provided by the efflux pumps, we calculated the ‘benefit ratio’ provided by the 

pumps, which we defined as the ratio of the biomass of acrAB-sfgfp to biomass of sfgfp 

after 8 hours (228). As a result, a benefit ratio greater than one means that strains with 

efflux pumps are able to outcompete cells without, while a value less than one means that 

pump expression hinders growth. Using our model, we calculated the benefit ratio across 

 

Figure 2-3. Rate of chloramphenicol addition affects survival. 

(A-C) Three different rates of chloramphenicol introduction: (A) step introduction, (B) fast 
ramp, and (C) gradual ramp. The thick solid line shows the values used in the mathematical 
model; thin solid line shows experimental treatment used to approximate the constant 
introduction rate. The total amounts of chloramphenicol added in (A-C) are equal. (D-F) 
Competitive growth under different rates of chloramphenicol addition. The growth of 
acrAB-sfgfp (green) compared against growth of sfgfp in the competition experiments 
(dots) and model predictions (solid lines) for different chloramphenicol introduction rates 
as shown in (A-C), respectively. As in Figure 2-1D, these data have been extracted from 
competition experiment data. Note that dead cells can still cloud the solution; therefore, 
non-zero optical densities do not necessarily imply that cells are alive. Data points show 
mean and standard deviations of n = 3 biological replicates. 
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a range of chloramphenicol introduction rates and total antibiotic amounts (Figure 2-4A). 

At very low concentrations of chloramphenicol, pumps are unnecessary and there is a cost 

to their expression so the benefit ratio is below one, regardless of the rate of introduction. 

At very high concentrations, neither strain can grow so the benefit ratio is approximately 

one for all introduction rates. Meanwhile, at intermediate chloramphenicol concentrations, 

we observed dramatic rate dependent differences between the strains. When the stress 

appears slowly, the strains with the pumps are at a significant advantage. In fact, this 

phenomenon can result in conditions where bacteria are able to survive antibiotic doses 

well beyond those they can tolerate with rapid drug introduction. This benefit is likely due 

to the ability of bacteria to maintain low intracellular levels of antibiotics using efflux 

pumps when undergoing slow antibiotic introduction. Therefore, the rate at which an 

antibiotic or stressor is added will have a critical impact on bacterial survival. 

To verify the model predictions, we calculated the benefit ratio from the 

experimentally measured data from Figure 2-3D-F by evaluating the ratio of acrAB-sfgfp 

to sfgfp biomass under the same antibiotic treatment profiles. When the rate of introduction 

is a quick step introduction, cells with efflux pumps have a negligible benefit (Figure 2-

4B); as the introduction rate is slowed, the benefit of the pumps slightly increases at 

intermediate chloramphenicol concentrations (Figure 2-4C) and slowing the rate further 

provides even greater benefit (Figure 2-4D). We note that the model was fit to raw data 

from toxicity curves and growth curves performed without antibiotics (Figure 2-2). 

Without further fitting, the model is able to predict trends in the benefit of the efflux pumps 

given different rates of stress introduction. Statistical analysis suggests that the model  
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agrees well with the data, with Pearson’s correlation coefficients close to 1 (Table A-1). 

Additionally, we performed experiments where the initial biomass was an order of 

magnitude lower than in the original conditions (Figure 2-5). The data show good 

qualitative agreement with the model predictions, where slow antibiotic introduction 

results in a greater benefit of pumps. These results indicating that our findings are not 

specific to one set of initial conditions.   

 

Figure 2-4. Model predictions and experiments measuring benefit of pumps. 

(A) Contour plot of the benefit ratio of the efflux pumps. Model predictions for biomass, 
N, of an acrB-containing strain in relation to an DacrB control strain after t = 8 h are used 
to predict the benefit ratio landscape. Plot shows results for different maximum levels of 
chloramphenicol (x-axis) and different rates of chloramphenicol addition (y-axis). (B-D) 
Experimental results (dots) showing benefit of efflux pumps compared to model 
predictions (solid line). Data is ratio of biomass of acrAB-sfgfp strain to sfgfp after t = 8 h. 
Rate of antibiotic introduction is shown in Figure 2-3A-C, respectively, and denoted on the 
contour plot in (A) with white dashed lines. Error bars show standard deviation for n = 3 
biological replicates. 
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We next asked whether our findings on the rate-dependent benefit of efflux pumps 

would generalize to other stressors. To do this, we conducted experiments with a 

structurally and functionally dissimilar efflux pump substrate. Pinene is a bio-jet fuel 

precursor that can be synthesized by E. coli; however, pinene is also toxic to the cells (229). 

The AcrAB-TolC efflux pump is known to increase tolerance to pinene and other solvents 

(213, 230). We first measured the benefit of the pumps and, as expected, observed an 

increase in pinene tolerance in strains with the efflux pump (Figure 2-6A). We next 

measured the cost of pump expression in the presence of pinene using the IPTG-inducible 

 

Figure 2-5. Benefit ratios for lower initial inoculum size. 

(A-B) Experimental results (dots) showing benefit of efflux pumps compared to model 
predictions (solid line). Data is ratio of biomass of acrAB-sfgfp to sfgfp after t = 24 h. These 
co-cultures were tested under a gradual ramp (A) and step at t = 3 h (B) over 6 hours. Error 
bars show standard deviations for n = 3 biological replicates. 
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acrAB-sfgfp strain (Figure 2-6B). As acrAB-sfgfp is induced, there is an impact on cell 

growth. However, low levels of induction do convey a slight benefit compared to basal 

levels (Figure A-2), therefore we conducted the subsequent experiments using 5 µM IPTG, 

as this induction level best mirrors wild type in the presence of pinene (Figure 2-6A). The 

cost-benefit characteristics of pinene closely mirror the trade-offs that we observed for 

 

Figure 2-6. Benefit and cost trade-offs of AcrAB-TolC efflux pumps in pinene. 

(A) Cell density as a function of pinene concentration. Wild type is E. coli BW25113, the 
knockout strain is E. coli BW25113 ΔacrB, and rescue strain is acrAB-sfgfp.  ΔOD700 is 
the difference in optical density between the initial sample at t = 0 h and after t = 8 h. (B) 
Induction of acrAB-sfgfp reduces cell growth in the presence of pinene. Error bars in (A-
B) show standard error of n = 3 biological replicates. (C) Contour plot of the benefit ratio 
of the efflux pumps. Model predictions for biomass of an acrB-containing strain in relation 
to an DacrB strain after t = 8 h. Plot shows results for different maximum levels of pinene 
(x-axis) and different rates of pinene addition (y-axis). (D-F) Experimental results (dots) 
showing benefit of efflux pumps compared to model predictions (solid line). Data is ratio 
of biomass of acrAB-sfgfp to sfgfp after t = 8 h. The rate of pinene introduction is shown 
in Figure 2-3A-C, respectively, and denoted by white dashed lines on the contour plot in 
(C). Error bars show standard deviation for n = 3 biological replicates. 
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chloramphenicol in a constant environment. 

To accurately capture the effect of pinene we modified our mathematical model to 

include a term that allows for cell lysis. Chloramphenicol is bacteriostatic so optical density 

measurements remain roughly constant after the cells have died (231). In contrast, we 

observed decreases in optical density following pinene treatment (Figure A-3). To 

accommodate the bactericidal effect of pinene, we adjusted our model to include a term 

describing this effect. We simulated the trade-off landscape for different rates of pinene 

addition (Figure 2-6C) and observed a general trend where, as with chloramphenicol, the 

benefit ratio is high at intermediate levels of pinene stress when the rate of introduction is 

low. However, the peak for pinene is taller, as the efflux pumps convey an even larger 

benefit.  

We next used the model to select pinene rates that show low, moderate, and high 

benefit ratios and conducted competition experiments under these conditions (Figure A-4). 

Extracting these data, the experimental and computational results demonstrate that there is 

a dramatic benefit conveyed for slow introduction rates (Figure 2-6D-F). We observed that 

cells with pumps can survive significantly higher levels of pinene when it is added slowly 

than they can when it is added all at once. 

2.5. Discussion 

In this study, we focused on the rate-dependent nature of the benefit of efflux 

pumps, which is significant given the role pumps play across diverse fields. Our work here 

extends to both understanding antibiotic tolerance and potential applications in 

biosynthetic processes. By studying two unique substrates of the AcrAB-TolC pump, we 
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were able to validate that under slow introduction of stress, pumps provide a 

disproportionate benefit that is not unique to the individual substrate. Understanding 

complex strategies bacteria employ to tolerate stress can provide insight into development 

of therapeutic techniques and can enable us to exploit these effects in biochemical 

engineering. By determining conditions where efflux pump containing strains lack a 

competitive edge, we can identify domains where antibiotic tolerance is reduced. For 

metabolic engineering applications, this optimization can help characterize and improve 

yields of biosynthetic compounds such as biofuels (232, 233). 

In realistic conditions, cells are rarely exposed to environments as constant as in 

laboratory experiments. Since the environment can have a large impact on how bacteria 

respond to stress, it is important to study the behavior of cells in time-varying conditions. 

These ideas have been explored previously in the context of extended exposure to stress 

and through temporal and spatial gradients. In spatially-distinct environments, studies have 

demonstrated that prolonged exposure to a stressful spatial barrier can be overcome by 

cells adapting to the stress through tolerance, then resistant mutants (106). Similarly, 

graded increases in antibiotic concentrations across several days can lead to mutations 

(201). Thus, even a subtle benefit in fitness on a short-term scale, can result in mutants in 

daughter cells in stressful environments. Additionally, on a shorter time scale, stress 

response pathways have been shown to depend on the rate of environmental change. For 

example, Bacillus subtilis turns on stress-specific or general stress response pathways 

depending on the rate at which stress is applied (234). By studying time-varying stress, we 

can better understand how stress response mechanisms operate under realistic 
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environments.  

In this work, we have demonstrated that the benefit of efflux pumps depends 

heavily on the rate of stress introduction. We found that strains exposed to slower stress 

introduction rates were able to tolerate cumulative concentrations well beyond what they 

could survive if the stress appeared suddenly. We also confirmed this through mathematical 

modeling; fits to data where the stressor was added all at once allowed us to accurately 

predict the benefit that pumps confer under different stress introduction rates. We found 

that efflux pumps provide a disproportionate benefit when the rate of stress introduction is 

slow. 

2.6. Contributions Statement 

The authors of this work were Ariel M. Langevin (A.M.L.) and Mary J. Dunlop 

(M.J.D.). A.M.L. conducted the experiments, analyzed the data, and performed the 

modeling, M.J.D. supervised the research. Both authors wrote the manuscript. 

 

2.7. Methods 

2.7.1. Strains and Plasmids 

We used E. coli strains BW25113 and BW25113 DacrB. The wild type strain 

BW25113 is the parent strain for the Keio collection (235). BW25113 DacrB was derived 

from Keio collection strain JW0451 (BW25113 DacrB::kan), where we removed the 

kanamycin resistance marker following the pCP20 protocol from (236). 

We used the plasmids pBbA5k-rfp, pBbA5k-sfgfp, and pBbA5k-acrAB-sfgfp in 

experiments. The plasmid pBbA5k-rfp is from the BglBricks library (237, 238). The 
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pBbA5k vector contains a medium-copy number (p15A) origin of replication, a PlacUV5 

promoter, and a kanamycin resistance marker. pBbA5k-sfgfp was constructed using the 

pBbA5k vector and sfgfp from pBbSFk-sfgfp (239). Plasmid pBbA5k-acrAB-sfgfp is a 

transcriptional fusion of acrAB and sfgfp. We constructed it using the pBbA5k-acrAB 

plasmid (213) and sfgfp, retaining the ribosome binding site of sfgfp from pBbSFk-sfgfp 

(239) in the cloning process. For all constructs, we used the Gibson assembly method and 

verified results by sequencing (240). Primers for all constructs are listed in Table A-2. 

Plasmids were transformed into E. coli BW25113 DacrB and isolated on Luria Broth (LB) 

plates with kanamycin (30 µg/mL). 

2.7.2. Bacterial Growth Conditions 

For all experiments, overnight cultures were inoculated from a single colony in 5 

mL LB with 30 µg/mL kanamycin, where necessary. Overnight cultures were then grown 

at 37°C with 200 rpm orbital shaking. Following this, precultures were prepared by diluting 

the overnight culture 1:50 in LB with 30 µg/mL kanamycin, where necessary. The 

precultures were grown at 37°C with 200 rpm orbital shaking for 2 hours and then diluted 

back to an optical density at 700nm (OD700) of approximately 0.2. We used OD700 to 

minimize overlapping of the RFP emission spectrum (241, 242). These 800 µL cultures 

were then aliquoted into 24-well plates and chloramphenicol, pinene, or IPTG was added, 

as described below. 

For toxicity curves of the individual species and single species growth parameters, 

800 µL of these cultures were aliquoted into 24-well plates and chloramphenicol, IPTG, or 

pinene was added, as described below.  
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For the competition experiments, co-cultures were created by mixing 400 µL each 

of the two competing strains, acrAB-sfgfp and rfp or sfgfp and rfp, after individually 

diluting the strains back to OD700 0.2 as described above. As a result, there was a total of 

800 µL per well in a 24-well plate with the final OD700 of 0.2.  

2.7.3. Toxicity Experiments 

To determine the toxicity of chloramphenicol, we added a final concentration of 0, 

0.1, 0.2, 0.5, 1, 2, 5, or 10 µg/mL to each culture. To evaluate the benefit of pump 

expression, PlacUV5 was induced with 0, 1, 10, or 100 µM of IPTG. The samples were sealed 

with evaporation-limiting membranes (Thermo Scientific AB-0580) and grown in 24-well 

plates at 37°C with 200 rpm orbital shaking. OD700 readings were taken using a BioTek 

Synergy H1m plate reader before incubation (t = 0 h) and after antibiotic exposure (t = 24 

h). All experiments were performed in triplicate using biological replicates.  

Mirroring to the chloramphenicol toxicity experiments, pinene (α-pinene, Sigma 

Aldrich P45680) was added to each culture to a final concentration of 0, 0.1, 0.2, 0.5, 1, or 

2 (v/v) %. To evaluate the benefit of pump expression, PlacUV5 was induced with 0, 1, 5, 10, 

50, or 100 µM of IPTG. OD700 readings were taken before incubation (t = 0 h) and after 

the end of exponential growth phase (t = 8 h). 

2.7.4. Competition Experiments 

Co-cultures were created by mixing 400 µL each of the two competing strains, 

acrAB-sfgfp and rfp or sfgfp and rfp, for a total of 800 µL per well in a 24-well plate. 

Cultures were treated with increasing concentrations of substrates as shown in Figure 2-
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3A-C. The OD700 was measured at intervals, every hour for chloramphenicol and every 

other hour for pinene, through exponential growth phase. In addition, after the OD700 

readings, 15 µL samples from each culture were diluted 1:10 in phosphate buffered saline 

(PBS) and measured using a Guava easyCyte HT Sampling Flow Cytometer. Excitation 

and emission values were 485 and 510 nm for sfgfp (sfGFP) and 555 and 584 nm for rfp 

(RFP) fluorescent channels (243, 244). 

Flow cytometry data was collected as FCS 3.0 files and was analyzed with custom 

Matlab scripts. To avoid crosstalk between the red and green channels, control experiments 

using single-color strains were performed to identify a threshold for classifying a cell as 

containing sfGFP or RFP during post-processing. The same thresholds were applied for all 

experiments. 

2.7.5. Mathematical Model 

To fit the growth of single strains under different environmental conditions, we 

used a single species model for predicting biomass N (Eq. 1) and substrate availability S 

(Eq. 2) based on the Van Impe et al. model of cell growth (212, 227, 245). This model 

incorporates environmental conditions, such as a substrate limiting term based on the 

physiological environment. For the version presented here, we include a term describing 

the effect of a stressor, E (225). 

2.7.5.a. Single species model 
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The maximum growth rate is µmax, the growth yield provided by the substrate is g, and the 

half-saturation constant is KS. a is a normalizing term that converts the biomass from cell 

concentration to optical density. The parameters for these models were selected using a 

least-squares regression minimizing the sum of the residuals for the best fits to the growth 

curves and the toxicity curves. The coefficients from the models were fit simultaneously. 

The values for µmax, g, and KS were selected based upon the growth curves of individual 

strains (Figure A-1A-B). Parameter values are listed in Table A-3. Additionally, we added 

a stressor term to adjust the growth based on the effect of a given stressor concentration E 

at time t, where 
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The Hill coefficient n and tuning parameter R were fit to the species’ toxicity curve (Figure 

A-1C): 
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The single species model was extended to a multispecies model based upon (226), 

which models the growth of two species N1 (Eq. 3) and N2 (Eq. 4), as well as the substrate 

availability S (Eq. 5). We used two different multispecies models, one for bacteriostatic 

stressors such as chloramphenicol, which stop cells from growing, and one for bactericidal 

stressors such as pinene, which cause cell lysis (246). 

2.7.5.b. Multispecies bacteriostatic model 
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For the multispecies bacteriostatic model, the growth yield provided by the 

substrate g, and the half-saturation constant KS, were fit using the growth curves of a co-

culture of the two strains with equal initial biomasses. The maximum growth rates for each 

individual species (µmax,1 and µmax,2) were derived from the individual growth curves and 

the coefficients for the antibiotic terms (R1, R2, n1 and n2) were fit to individual species’ 

toxicity curves. Additional information on the accuracy of model fits to the growth and 

toxicity curve data can be found in Table A-4. 

2.7.5.c. Multispecies bactericidal model 
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The parameters of the bactericidal multispecies model were fit as described above. 

We calculated the sum of squared residuals to estimate the relative precision of the model, 

along with the maximum and average error for the model sets. In addition, we evaluated 

the goodness-of-fit by calculating the Pearson’s correlation coefficient (247). 
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3. ANTIBIOTIC EXPORT BY EFFLUX PUMPS AFFECTS GROWTH OF 

NEIGHBORING BACTERIA 

3.1. Disclosure & Copyright Statement 

This chapter is a modified version of “Antibiotic Export by Efflux Pumps Affects 

Growth of Neighboring Bacteria” by Xi Wen, Ariel M. Langevin, and Mary J. Dunlop, 

2018. Scientific Reports, 8 15120. ©2018 by Springer Nature. The publisher allows 

unrestricted use or reproduction provided proper citations of the original work. 

3.2. Abstract 

Cell-cell interactions play an important role in bacterial antibiotic resistance. Here, 

we asked whether neighbor proximity is sufficient to generate single-cell variation in 

antibiotic resistance due to local differences in antibiotic concentrations. To test this, we 

focused on multidrug efflux pumps because recent studies have revealed that expression of 

pumps is heterogeneous across populations. Efflux pumps can export antibiotics, leading 

to elevated resistance relative to cells with low or no pump expression. In this study, we 

co-cultured cells with and without AcrAB-TolC pump expression and used single-cell 

time-lapse microscopy to quantify growth rate as a function of a cell’s neighbors. In 

inhibitory concentrations of chloramphenicol, we found that cells lacking functional efflux 

pumps (ΔacrB) grow more slowly when they are surrounded by cells with AcrAB-TolC 

pumps than when surrounded by ΔacrB cells. To help explain our experimental results, we 

developed an agent-based mathematical model, which demonstrates the impact of 

neighbors based on efflux efficiency. Our findings hold true for co-cultures of E. coli with 

and without pump expression and also in co-cultures of E. coli and Salmonella 
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typhumirium. These results show how drug export and local microenvironments play a key 

role in defining single-cell level antibiotic resistance. 

3.3. Introduction 

Despite intensive study, antibiotic resistance remains an essential problem, in part 

due to the myriad of mechanisms by which cells can evade drug treatment. Classical tests, 

such as measurements of the minimum inhibitory concentration (MIC), are important for 

quantifying drug resistance, but can obscure single-cell level differences in resistance (17). 

This is a significant problem because cell-to-cell differences in antibiotic resistance can 

establish concentration gradients, which can accelerate the resistance acquisition process 

(248, 249). In addition, sub-populations of antibiotic resistant or tolerant cells can decrease 

treatment efficacy (37, 201). 

Individual cells can exhibit phenotypic differences in drug resistance even in the 

absence of community-level effects. For example, persister cells use dormancy or slow 

growth to evade antibiotic treatment (17). Single-cell level resistance can also affect group 

growth. For instance, Streptococcus pneumoniae cells with chloramphenicol 

acetyltransferase can deactivate chloramphenicol, resulting in a decrease in both the 

intracellular and environmental chloramphenicol concentrations (250). Bacteria also 

transiently express resistance-conferring genes such as drug export pumps or those that 

modify membrane permeability, resulting in cell-to-cell difference in susceptibility (37, 

239). 

Antibiotic efficacy can also be dependent on community-level phenomena. For 

example, the inoculum effect describes the cell density dependence of the MIC, where 
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more dense cultures are less susceptible to antibiotics resulting in increases in the MIC 

(251, 252). Cell density plays an essential role in influencing group behaviors, such as 

quorum sensing and biofilm formation, which in turn can dramatically increase the 

antibiotic resistance of the population (253, 254). Furthermore, certain cells within a 

community may exhibit altruistic behavior, such as those that release resistance proteins 

upon death to enable other cells to survive (253, 255). These examples highlight the 

importance of cellular interactions and collective behavior in antibiotic resistance. 

Bacterial efflux pumps are an important source of multidrug resistance (219, 256). 

These pumps export antibiotics from the cell, increasing their antibiotic resistance. Their 

expression can be taxing, reducing growth and imposing a fitness cost (189, 257); 

therefore, their expression is often regulated to limit the burden. The primary multidrug 

resistance efflux pump in E. coli is AcrAB-TolC. This pump is composed of three proteins 

that span the inner and outer cell membrane: a periplasmic linker protein AcrA, the inner 

membrane efflux transporter AcrB, and the outer membrane channel TolC (206). Knocking 

out acrB, the pump protein responsible for substrate recognition and export via the proton 

motive force, leads to a significant increase in antibiotic susceptibility (156, 219). For 

instance, the MIC of E. coli ΔacrB to chloramphenicol is an eighth of that of wild type 

cells (134). Complementing ΔacrB with the acrAB operon is sufficient to restore drug 

resistance (189). Efflux pumps have been recognized to play a major role in clinical isolates 

in the emergence of resistant strains of E. coli, S. enterica, and other pathogens, and thus 

have been identified as clinical targets (258, 259). 

Recent studies have shown that AcrAB-TolC expression is heterogeneous across 
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populations (260, 261), suggesting that differential pump expression exists even within 

isogeneic populations. Since the cost and benefit of expressing pumps can both be 

significant, these cell-to-cell differences may have important implications for bacterial 

populations. Here, we asked how efflux pump export of antibiotics affects the growth of 

neighboring cells and, ultimately, the composition of the population. 

To accomplish this, we focused on differential expression of acrAB. We monitored 

single-cell growth rates using time-lapse microscopy, and analyzed growth of cells as a 

function of whether their neighbors have AcrAB-TolC efflux pumps. We found that 

individual bacteria that are surrounded by AcrAB-expressing neighbor cells will tend to 

grow more slowly than when the same cells are surrounded by ΔacrB neighbors under 

antibiotic exposure. By developing a mathematical model, we were able to characterize 

this effect and predict the cell growth in the presence of a different antibiotic. Furthermore, 

we tested co-cultures of E. coli and S. enterica serovar Typhimurium (hereafter referred to 

as S. typhimurium) and observed the same neighbor dependence, which has implications 

for the broader relevance of our findings since these results likely extend to mixed-species 

communities. This work contributes additional evidence for the critical role of single-cell 

level effects in antibiotic resistance. 

3.4. Results 

To examine the effect of drug efflux on neighboring cells, we designed an 

experiment where ΔacrB cells were surrounded either wild type cells containing functional 

AcrAB-TolC pumps or by identical ΔacrB cells (Figure 3-1A). We hypothesized that 

ΔacrB cells which had wild type neighbors would experience a higher local concentration 
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of antibiotics due to drug efflux in their immediate vicinity, leading to a reduced growth 

rate relative to cells with neighbors lacking pumps. To test this, we conducted experiments 

with E. coli growing on agarose pads and measured single cell growth rates under different 

levels of antibiotic exposure. 

To visualize the two cell types, we labeled the ΔacrB cells with red fluorescent 

protein (denoted ΔacrB-RFP) and wild type cells with green fluorescent protein (WT-

 
 

Figure 3-1. Neighbors with pumps impact cell growth. 

(A) Schematic showing when ΔacrB cells are surrounded by cells with AcrAB-TolC 
pumps they grow more slowly than when surrounded by other ΔacrB cells. (B) Growth 
rates of wild type cells expressing gfp (WT-GFP) and ΔacrB cells expressing rfp (ΔacrB-
RFP). Cells were mixed in ratios of 5:1 and 1:5 and the growth rate of ΔacrB-RFP cells 
was then quantified for the two different ratios. (C) Growth rates of wild type cells, given 
WT-GFP or ΔacrB-RFP neighbors. For (B, C) statistical significance was calculated using 
the Kolmogorov-Smirnov test, where ***p < 0.001, n.s.: not significant. Gray bars show 
mean growth rate. Distribution mean, standard deviation, and p-values are listed in 
Table S1 from reference (337). Plot axis limits were set to show >97% of cells; however 
full data set including outliers and n values (number of cells) for each are shown in Figure 
B-1. Schematics under (B, C) show the type of neighbors surrounding the cell in the middle 
whose growth rate is calculated. Background color indicates presence of antibiotics. 
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GFP). 1  Chloramphenicol is a broad-spectrum antibiotic which diffuses through the 

bacterial cell membrane and reversibly binds to the ribosome to inhibit protein synthesis. 

We quantified the growth rates of ΔacrB-RFP cells surrounded by either WT-GFP or 

ΔacrB-RFP neighbors. To do this, we mixed ΔacrB-RFP with WT-GFP cells in ratios of 

1:5 and 5:1 to bias the community structure.  

Growth rates for cells were similar for both ratios for conditions with no 

chloramphenicol. However, under chloramphenicol treatment just below the MIC (1 μg/ml, 

Figure B-2), we found that the growth rate of ΔacrB cells with WT-GFP neighbors was 

lower than those with ΔacrB-RFP neighbors (Figure 3-1B), indicating that the influence of 

drug efflux by neighboring cells is important in local growth inhibition. When we 

compared the growth of WT-GFP cells with WT-GFP or ΔacrB-RFP neighbors, we 

observed more modest differences in growth rates under chloramphenicol treatment. This 

is likely because cells with pumps are able to maintain low intracellular antibiotic 

concentrations regardless of their neighbors (Figure 3-1C). 

Building upon these results, we next conducted a series of experiments where we 

used ΔacrB as the strain background for both types of cells in the co-culture, allowing us 

to isolate the effect of efflux pumps independent of endogenous regulation. We tested 

microbial communities with ΔacrB-RFP cells and a ΔacrB strain overexpressing acrAB, 

which we labeled with green fluorescent protein (denoted AcrAB-GFP). We then 

monitored the growth of the ΔacrB-RFP cells surrounded by either AcrAB-GFP or ΔacrB-

 
1 For consistency, these appear as defined in the original manuscript; however, please note that the 
names and definitions of each strain differ from Chapter 2, 4, and 5. 
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RFP neighbors. As before, we found that ΔacrB-RFP cells grow more slowly when they 

are in the vicinity of AcrAB-GFP neighbors than when they are surrounded by ΔacrB-RFP 

neighbors (Figure 3-2A). Differences in the growth rate are apparent in measurements of 

cell length over time. As a negative control, we also measured ΔacrB-RFP cells mixed with 

ΔacrB-GFP cells and found no differences in growth rate (Figure 3-2B). 

To confirm our findings across measurements of hundreds of individual cells, we 

quantified the growth rates of single cells with ΔacrB-RFP or AcrAB-GFP neighbors. We 

found statistically significant differences in the growth rates in conditions where antibiotics 

were applied (Figure 3-2C). In addition, we observed a shift in the mean growth rate in the 

opposite direction without antibiotic treatment, indicative of the cost of efflux pump 

expression. Under sub-MIC levels of chloramphenicol (0.2 μg/ml), the neighbor effect was 

more apparent than chloramphenicol concentrations near the MIC (1 μg/ml). This is likely 

because at the higher antibiotic concentration growth of both ΔacrB-RFP and AcrAB-GFP 

cells is impacted by chloramphenicol treatment. As expected, control experiments with 

ΔacrB-RFP and ΔacrB-GFP cells showed no statistical difference in growth rates, 

regardless of the antibiotic concentration (Figure 3-2D). These results indicate that the 

AcrAB-TolC efflux pump plays a role in attenuating growth of neighboring cells in 

conditions where antibiotics are present. 

Since competition will change the composition of cells in mixed species 

communities, we next extended our analysis to ask what the implications were for co-

cultures. To do this, we compared the biomass of the ΔacrB-RFP cells at the start of the 

co-culture experiment to the end. More specifically, we quantified the relative abundance 
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Figure 3-2. DacrB cells with and without acrAB complementation show neighbor-
dependent differences in growth. 

(A) ΔacrB-RFP and AcrAB-GFP cells were mixed in ratios of 1:5 and 5:1 and grown on 
agarose pads with 0.2 µg/ml chloramphenicol. Left panel is representative series of time-
lapse images showing growth of a ΔacrB-RFP cell surrounded by AcrAB-GFP neighbors. 
Right panel shows the cell length over time for the cell indicated with an arrow in the left 
panel. (B) ΔacrB-RFP and ΔacrB-GFP cells for conditions as described in (A). Length data 
for all cells for conditions from (A, B) are shown in Figure B-3. (C) Growth rates of ΔacrB-
RFP cells with either AcrAB-GFP or ΔacrB-RFP neighbors quantified at different 
chloramphenicol concentrations. (D) Growth rates of ΔacrB-RFP cells with either ΔacrB-
GFP or ΔacrB-RFP neighbors. Statistical significance was calculated using the 
Kolmogorov-Smirnov test. ***p < 0.001; **p < 0.01; n.s.: not significant. Gray bars show 
mean growth rate. Distribution mean, standard deviation, and p-values are listed in 
Table S1 from reference (337). Full data set including outliers and n values are shown in 
Figure B-1. Schematics under (C, D) show the type of neighbors surrounding the cell in 
the middle whose growth rate is calculated. Background color indicates antibiotic 
concentration. 
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of the ΔacrB-RFP cells by comparing what fraction of the biomass they made up at the end 

divided by the fraction at the start. Thus, if there is no change in the composition of the co-

culture then the relative abundance will be one; values below one correspond to AcrAB-

GFP cells outcompeting the ΔacrB-RFP cells. When no antibiotic was applied we found 

that ΔacrB-RFP and AcrAB-GFP cells grew similarly and the relative abundances of the 

two strains were maintained near one (Figure 3-3A). However, under chloramphenicol 

treatment the relative abundance of the ΔacrB-RFP cells decreased when they were 

surrounded by AcrAB-GFP cells, but not when they were in close proximity with other 

ΔacrB-RFP cells. We note that under these conditions there are still AcrAB-GFP cells, but 

since they are mixed in a ratio of 5:1, the AcrAB-GFP cells are comparatively rare. Control 

        
 

Figure 3-3. Relative abundance of DacrB cells decreases when they have AcrAB-GFP 
neighbors. 

(A) Relative abundance was calculated using the data set in Figure 3-2C, where we define 
relative abundance as the fraction of the biomass ΔacrB-RFP cells make up at the end, 
divided by their fraction at the start. (B) Relative abundance calculated using the data set 
in Figure 3-2D. Dashed line at one indicates value if there is no change in the abundance 
of ΔacrB-RFP cells over time. Error bars show standard deviation between replicates. 
Schematics under plots show the type of neighbors surrounding the cell in the middle 
whose growth rate is calculated. Background color indicates antibiotic concentration. 
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experiments with ΔacrB-RFP and ΔacrB-GFP co-cultures had relative abundance values 

near one regardless of the chloramphenicol concentration (Figure 3-3B). Overall, these 

results indicate that proximity related inhibition from drug efflux can lead to rapid changes 

in the community composition. 

To understand the impact of antibiotic export on neighboring cells, we developed a 

mathematical model to describe cell growth. The agent-based model applies a fixed spatial 

architecture to describe cell proximity. Within each cell, we used a system of ordinary 

differential equations to model changes in the intracellular antibiotic concentration due to 

drug efflux (Figure 3-4A). Model parameters were estimated from measurements of cell 

density in the presence of antibiotics (Figure B-2). We found that cell growth and the 

intracellular antibiotic concentration are strongly influenced by the type of neighbors in the 

simulation (Figure 3-4B). We next simulated a range of chloramphenicol concentrations 

and found that the growth rate decreased significantly for cells with higher efflux compared 

to cells with ΔacrB neighbors (Figure 3-4C), in good agreement with the experimental 

results (Figure 3-1B). 

A key finding of the model is that the efflux rate is proportional to the neighbor 

effect. In other words, if the AcrAB-TolC pump exports a specific antibiotic well, then the 

neighbor effect will be more apparent than if the pump does not export it well. To test this, 

we conducted additional modeling and experiments with ciprofloxacin, which is a substrate 

of the AcrAB-TolC pump, but has a smaller fold reduction of the MIC than 

chloramphenicol for ΔacrB cells (Figure B-2B). Using parameter fits from experimental 

data, we lowered the efflux rate of wild type cells to model the lower efflux efficiency for 
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Figure 3-4. Model predicts cell growth rate differences under antibiotic conditions. 

(A) Schematic depicting the spatial relationship between the focal cell in the center, its 
neighbors, and the environment. (B) Biomass and intracellular chloramphenicol 
concentration of ΔacrB cells with wild type neighbors or ΔacrB neighbors simulated in an 
environment with 0.1 µg/mL of chloramphenicol. (C) Cell growth of ΔacrB cells with 
different chloramphenicol concentrations given wild type or ΔacrB neighbors. Growth rate 
is calculated as the average change in biomass divided by the time simulated. Model 
parameters and initial conditions are listed in Table B-1. (D) Cell growth under 
ciprofloxacin treatment for the same cell configurations as in (C). (E) ΔacrB-RFP and 
AcrAB-GFP cells were mixed in different ratios (1:5 or 5:1) and grown on agarose pads 
with ciprofloxacin. Statistical significance was calculated using the Kolmogorov-Smirnov 
test, where n.s.: not significant. Gray bars show mean growth rate. Distribution mean, 
standard deviation, and p-values are listed in Table S1 from reference (337). Full data set 
including outliers and n values for each are shown in Figure B-1. Schematics under (C–E) 
show the type of neighbors surrounding the cell in the middle whose growth rate is 
calculated. Background color indicates presences of antibiotics. 
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ciprofloxacin. The simulated results show a decrease in the impact of neighbors on the 

focal cell’s growth rate (Figure 3-4D). We confirmed this experimentally with 

ciprofloxacin, observing modest, but not statistically significant differences between the 

different neighboring cells (Figure 3-4E). In an extension to the model, we explored how 

the neighborhood affected the focal cell’s growth rate. We observed that the overall number 

of neighbors was an important determining factor of the focal cell’s growth rate and the 

exact spatial arrangement of the neighbors played only a minor role (Figure 3-5). 

In microbial communities bacterial cross-species interactions are common. 

Therefore, we tested whether the neighbor effect was limited to our single-species co-

 

Figure 3-5. Impact of neighborhood on focal cell growth rate. 

(A-D) Each row represents a different number of neighbors and each column represents 
different neighborhood layouts. When the number of neighbors is one (first row) only the 
cell labeled “1” in the schematic is included in the simulation. For two neighbors, cells “1” 
and “2” are included, and so on. The neighborhoods evaluated are (A) spread out, but close 
to the focal cell, (B) neighbors are closer to each other, (C) neighbors are clustered around 
focal cell, and (D) spread out, but further from focal cell. The model was evaluated for 
ΔacrB-RFP cells with ΔacrB-AcrAB-GFP (blue) and ΔacrB-RFP (cyan) neighbors 
exposed to different concentrations of chloramphenicol.  
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cultures with E. coli or if it extended to cross-species interactions. E. coli (e.g. ETEC or 

STEC) and S. typhimurium are both foodborne pathogens and their co-existence can lead 

to mixed biofilm formation and a higher resistance against sanitization (262). We 

investigated the growth of S. typhimurium co-cultured with E. coli WT-GFP or ΔacrB-

RFP under conditions with and without chloramphenicol. Consistent with our results from 

the single-species co-cultures, we observed that S. typhimurium grows more slowly 

with E. coli WT-GFP neighbors than E. coli ΔacrB-RFP neighbors (Figure 3-6). These 

results indicate that the neighbor effect generalizes to cross-species interactions. 

 
Figure 3-6. E. coli and S. typhimurium co-culture. 

S. typhimurium cells were mixed with either WT-GFP or ΔacrB-RFP E. coli. Statistical 
significance was calculated using the Kolmogorov-Smirnov test. ***p < 0.001. Gray bars 
show mean growth rate. Distribution mean, standard deviation, and p-values are listed in 
Table S1 from reference (337). Full data set including outliers and n values for each are 
shown in Figure B-1. Schematic under plot shows the type of neighbors surrounding the 
cell in the middle whose growth rate is calculated. Background color indicates antibiotic 
concentration. 
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3.5. Discussion 

Single cell level effects are important for bacterial growth and survival under 

antibiotic treatment. Here we focused on differences in antibiotic efflux as a mechanism 

for generating cell-to-cell differences in antibiotic survival. This work is motivated by 

recent studies showing that efflux pump expression is variable across cells within a 

bacterial population (260, 261). Using detailed quantitative measurements of single cell 

growth rates, we asked how differences in drug efflux affect the growth of neighboring 

cells. We found that ΔacrB cells have a lower growth rate when surrounded by cells with 

the AcrAB-TolC pump than when surrounded by like ΔacrB cells. This effect leads to a 

rapid shift in the community composition towards more resistant cells that occurs within a 

small number of generations. Further, the effect extends to E. coli and S. typhumirium co-

cultures, suggesting that these findings are likely to be broadly relevant for mixed-species 

communities and stress tolerance mechanisms that work by exporting antibiotics or other 

compounds into the immediate vicinity. 

Efflux pump expression can be burdensome to cells and there is a tradeoff between 

the benefit of pumps and their cost (189). Under the conditions we tested here, the cost of 

pumps was modest and conditions with no antibiotics produced only minor differences in 

growth rates between ΔacrB-RFP and AcrAB-GFP cells; however, we note that as 

experiment durations are extended this burden will become more apparent. These cost and 

benefit tradeoffs will likely depend on the environment, as cells balance the burden of 

pump expression, the impact of their neighbors, and the local antibiotic concentration to 

maximize growth. 
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In the future, it will be interesting to study the interaction between drug efflux and 

other antibiotic resistance mechanisms that function at the single-cell level. Also, efflux 

pump expression is stochastic and can change over time in individual cells (260, 261), 

suggesting the potential for experiments that quantify how these dynamics affects growth 

of neighboring bacteria. The implications for the eventual evolution of permanent genetic 

changes that lead to antibiotic resistance are also an interesting area for future research. 

Single cell level effects and how bacteria interact, including their proximity, can have a 

profound impact on whether antibiotics are effective. 

3.6. Contributions Statement 

The authors of this work were Xi Wen (X.W.), Ariel M. Langevin (A.M.L.), and 

Mary J. Dunlop (M.J.D.). X.W. conducted the experiments and analyzed the data, A.M.L. 

performed the modeling, M.J.D. supervised the research. All authors wrote the manuscript. 

3.7. Methods 

3.7.1. Strains and plasmids 

We used BW25113 as the wild type strain of E. coli. BW25113 ΔacrB was derived 

from the Keio collection strain JW0451 (BW25113 ΔacrB::kanR) (235), and we removed 

the kanamycin resistance marker using the pCP20 plasmid (236). For the Salmonella co-

culture experiments, we used the model strain S. typhimurium LT2 (263). 

Plasmids were constructed using the Gibson assembly method (240). To distinguish 

the strains, we used fluorescent reporters encoded on plasmids. For RFP, we used the 

plasmid pBbA5k-rfp (238), for GFP we used pBbA5k-sfgfp (189), and for AcrAB-GFP we 

used pBbA5k-acrAB-sfgfp (189), where acrAB and sfgfp are transcriptionally fused. All 
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plasmids described above have an IPTG-inducible PlacUV5 promoter controlling gene 

expression, a medium copy p15A origin of replication, and kanamycin resistance marker. 

The plasmids were transformed into either the E. coli wild type strain (pBbA5k-sfgfp to 

make WT-GFP), E. coli ΔacrB strain (pBbA5k-rfp for ΔacrB-RFP; pBbA5k-acrAB-sfgfp 

for AcrAB-GFP; pBbA5k-sfgfp for ΔacrB-GFP), or S. typhimurium strain (pBbA5k-rfp). 

3.7.2. Growth conditions 

E. coli and S. typhimurium were cultured in Luria Broth (LB) medium. For all 

experiments, overnight cultures were inoculated from a single colony in LB with 30 μg/ml 

kanamycin for plasmid maintenance. Overnight cultures were then grown at 37 °C with 

orbital shaking at 200 rpm. Before experiments, cultures were refreshed 1:50 in LB with 

kanamycin and grown at 37 °C with orbital shaking. After 5 h, we added 100 μM IPTG and 

then incubated an additional 2 h to induce fluorescent protein or AcrAB expression. 

For S. typhimurium, 100 μM IPTG was added after cultures were refreshed for 0.5 h and 

cells were grown for an additional 2 h induction. Co-cultures were mixed in ratios of 1:5 

and 5:1 each for ΔacrB-RFP and WT-GFP or ΔacrB-RFP and AcrAB-GFP experiments 

(and control with ΔacrB-RFP and ΔacrB-GFP). 

3.7.3. Time-lapse microscopy 

For imaging experiments, the co-cultures were placed on an agarose pad with 

100 μM IPTG and with either 0, 0.2, 1 μg/ml chloramphenicol or 0.02, 0.1, 0.3 μg/ml 

ciprofloxacin for E. coli co-cultures, or 0, 1, 3 μg/ml chloramphenicol for 

the E. coli and S. typhimurium co-culture. We imaged at least three positions per pad, 
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resulting in measurements of hundreds of single cells for each position (for n values for 

each case see Figure B-1). 1.5% low melting agarose pads were made using M9 minimal 

medium containing 0.2% glycerol, 0.01% casamino acids, 0.15 μg/ml biotin, and 1.5 μM 

thiamine. Cells were diluted and mixed at ratios as indicated above and placed on pads 

containing 100 μM IPTG and chloramphenicol or ciprofloxacin. Images were taken using 

a Nikon Ti-E microscope with 100x objective lens for 130 mins at 5 min intervals. The 

temperature of the microscope chamber was held at 32°C for the duration of the 

experiment. 

3.7.4. Data Analysis 

Images were analyzed in Matlab. We used the automated image processing package 

SuperSegger30 to measure cell growth rates and identify neighboring cells. An individual 

cell’s lineage starts just after its mother has divided, forming it and a sister cell, and it ends 

when the cell divides into two daughter cells. Growth rate is defined as the natural log of 

the ratio of the length of the cell at the end of the lineage to its length at the start of the 

lineage, divided by the length of the lineage in minutes. Thus, the growth rate is the 

exponential rate constant (264). Custom Matlab scripts were used to analyze growth data 

and neighbor effects. Statistical analysis of growth rates was performed in Matlab. 

3.7.5. Toxicity experiments 

To determine the antibiotic toxicity of the strains, we added a final concentration 

of 0, 0.1, 0.2, 0.5, 1, 2, 5, or 10 µg/ml of chloramphenicol or 0, 0.05, 0.1, 0.2, 0.5, 1, 2, or 

5 µg/ml of ciprofloxacin to each culture. The samples were sealed with evaporation-
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limiting membranes (Thermo Scientific AB-0580) and grown in 96-well plates at 37 °C 

with orbital shaking at 200 rpm. OD600 readings were taken with a BioTek Synergy H1m 

plate reader every 10 m for 18 h. The toxicity curves represent change in growth for the 

first 2 h for consistency with the length of the microscopy experiments. All experiments 

were performed in triplicates with biological replicates. 

3.7.6. Mathematical model 

To simulate cell growth with different neighbors in the presence of antibiotics, we 

used an agent-based model with Moore neighborhood architecture to describe the spatial 

interactions between cells and the environment (265–267). We represent each cell with two 

ordinary differential equations describing intracellular antibiotic concentration (Eq. 13) 

and cell biomass (Eq. 14). The model assumes exponential growth, which is valid for the 

short durations (~2 h) over which modeling and experiments are conducted. The biomass 

equation has a term for the toxicity of the environment, which is derived from Van Impe et 

al. (189, 227, 268). 
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The total antibiotic concentration at each time point is assumed to be equal to the antibiotic 

concentration in the environment and inside cells. We assume instantaneous diffusion 

within environments separated by a membrane. 

 
G'.'"- = G.4' +I G0%,0

"--	7(--&

0<1
		 Eq. 15 

Our model focuses on the focal cell and its neighbors. Cin is the intracellular antibiotic 

concentration, and Cout is the extracellular concentration. N is biomass of the cell, and μ is 

the maximum growth rate. Kin and Kout are antibiotic entry and exit based on the presence 

of efflux pumps. We assume that if two cells are close together, the efflux from the 

neighbor will create a small area with a higher relative antibiotic concentration. We model 

this as the influx into the focal cell where an edge with a neighbor has an influx rate of 

½	).4',%(09:;., +½	)0%. The first term represents the effect of the gradient produced by 

efflux from the neighboring cell with some loss to the environment and the second term 

represents passive influx that may occur. The second term sets a lower bound so 

that ½	).4',%(09:;., +½	)0% 	≥ )0%. 

For the effect of antibiotics on change in biomass, we fit experimental data to a Hill 

function. Parameters for the toxicity term, hc and Kc, were fit to ΔacrB toxicity curves for 

chloramphenicol and ciprofloxacin (Figure B-2). For modeling cell growth under 

ciprofloxacin, we decreased Kout by using fits to experimental data. All model fits were 

conducted by minimizing least-squares error. All model parameters are listed in Table B-

1.  
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4. MAPPING THE ROLE OF AcrAB-TolC EFFLUX PUMPS IN THE 

EVOLUTION OF ANTIBIOTIC RESISTANCE REVEALS NEAR-MIC 

TREATMENTS FACILITATE RESISTANCE ACQUISITION 

4.1. Abstract 

Antibiotic resistance has become a major public health concern as bacteria evolve 

to evade drugs, leading to recurring infections and a decrease in antibiotic efficacy. 

Systematic efforts have revealed mechanisms involved in resistance; yet, in many cases, 

how these specific mechanisms accelerate or slow the evolution of resistance remains 

unclear. Here, we conducted a systematic study of the impact of the AcrAB-TolC efflux 

pump on the evolution of antibiotic resistance. We mapped how population growth rate 

and resistance change over time as a function of both the antibiotic concentration and the 

parent strain’s genetic background. We compared the wild type strain to a strain 

overexpressing AcrAB-TolC pumps and a strain lacking functional pumps. In all cases, 

resistance emerged when cultures were treated with chloramphenicol concentrations near 

the MIC of their respective parent strain. The genetic background of the parent strain also 

influenced resistance acquisition. The wild type strain evolved resistance within 24 h 

through mutations in the acrAB operon and its associated regulators. Meanwhile, the strain 

overexpressing AcrAB-TolC evolved resistance more slowly than the wild type strain; this 

strain achieved resistance in part through point mutations in acrB and the acrAB promoter. 

Surprisingly, the strain without functional AcrAB-TolC efflux pumps still gained 

resistance, which it achieved through upregulation of redundant efflux pumps. Overall, our 

results suggest that treatment conditions just above the MIC pose the largest risk for the 
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evolution of resistance and that AcrAB-TolC efflux pumps impact the pathway by which 

chloramphenicol resistance is achieved. 

4.2. Introduction 

Despite the new wave of antibiotic discovery (269–273), bacteria continue to 

acquire resistance shortly after the introduction of new drugs for medicinal and industrial 

applications (5, 274). This is due in large part to the overuse of antibiotics, which results 

in pressures that drive resistance (275). With limited novel antibiotics and numerous futile 

antibiotics, doctors and scientists alike are presented with the challenge of how to best treat 

infections while keeping the evolution of resistance in check. 

Adaptive evolution studies have begun exploring how certain antibiotic pressures 

influence the evolution of resistance. For instance, studies using a ‘morbidostat’—a 

continuous culture device that dynamically adjusts antibiotic concentrations to inhibitory 

levels—have found numerous targets that can be readily mutated to promote resistance 

(102, 103, 105) and have also identified how drug switching can limit the evolution of 

resistance (276). While these studies have provided pivotal insights for this field, the 

morbidostat design causes antibiotic concentrations to rise to levels that exceed clinically 

relevant concentrations due to toxicity for patients (107). In recognition of the drug 

concentration-dependent nature of evolution, researchers have begun to explore bacterial 

evolution under treatment conditions with lower antibiotic concentrations as well. 

Wistrand-Yuen et al. found that bacteria grown in sub-inhibitory drug concentrations were 

still able to achieve high levels of resistance (87, 277, 278). Notably, the study identified 

that the same antibiotic produced unique evolutionary pathways when cells were treated 
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with sub-inhibitory concentrations as opposed to inhibitory concentrations (87). 

One limitation of current studies within the field is that they can be difficult to 

compare due to variations in experimental parameters, such as species, antibiotics, or other 

experimental conditions (118). Given the unique evolutionary pathways at different 

antibiotic concentrations, systematic mapping of these evolutionary landscapes could 

provide an improved understanding of which conditions pose the highest risk by allowing 

direct comparisons between different antibiotic concentrations. For instance, Jahn et al. 

demonstrated that variations in treatment dynamics can significantly alter evolved 

resistance for some antibiotics, such as tetracycline, but not others, such as amikacin and 

piperacillin (279). Other evolution experiments that were systematically conducted using 

a range of concentrations for beta-lactams (88) and erythromycin (280) have highlighted 

the concentration-dependent adaptability of E. coli.  

There are many mechanisms by which antibiotic resistance can be achieved, 

including enzymatic inactivation, alteration of antibiotic binding sites, and increased efflux 

or reduced influx of antibiotics (281, 282). Efflux pumps are omnipresent in prokaryotic 

and eukaryotic cells alike, and are an important contributor to multidrug resistance (222). 

AcrAB-TolC in E. coli is a canonical example of a multidrug efflux pump, providing 

broad-spectrum resistance and raising the MIC of at least nine different classes of 

antibiotics (283). The pump is composed of three types of proteins: the outer membrane 

channel protein, TolC; the periplasmic linker protein, AcrA; and the inner membrane 

protein responsible for substrate recognition and export, AcrB (222). Using the proton 

motive force, AcrB actively exports antibiotics from the cell (222, 230). The presence of 
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AcrAB-TolC efflux pumps can increase the MIC by ~2-fold to ~10-fold, depending on the 

antibiotic (145, 189, 219). Furthermore, genes associated with these multidrug resistant 

efflux pumps, including their local and global regulators, are common targets for mutation 

as strains evolve high levels of drug resistance (106, 277, 284–286). 

Recent studies have indicated that in addition to providing modest increases in the 

MIC due to drug export, pumps can also impact mutation rate and evolvability of strains, 

which may ultimately be more important for the acquisition of high levels of drug 

resistance. Firstly, mutants overexpressing acrAB emerge first and then are able to further 

evolve facilitate high levels of quinolone resistance (287). Secondly, heterogeneity in 

efflux pump expression can also predispose subsets of bacterial populations to mutation 

even prior to antibiotic treatment (191). Deleting genes associated with efflux pumps, such 

as tolC, can also reduce evolvability under antibiotic exposure (288). Further, a recent 

study in S. aureus found that higher NorA pump levels increased evolvability, and that 

adding a pump inhibitor could prevent resistance evolution (192). These studies provoke 

the question of how AcrAB-TolC efflux pumps can serve to promote or attenuate the 

evolution of drug resistance. 

Our overall goal in this study was to identify temporal, phenotypic, and genetic 

patterns in how strains with different AcrAB-TolC genotypes evolve antibiotic resistance 

under a range of chloramphenicol concentrations. Chloramphenicol is both a well-

validated substrate of AcrAB-TolC and can serve as a last resort antibiotic in multi-drug 

resistant infections, as most clinical isolates are still susceptible to this drug (289, 290). To 

identify how AcrAB-TolC impacts the evolution of resistance, we used a turbidostat as an 
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evolutionary platform (291) and measured changes in fitness and resistance. We evolved 

three strains with different levels of AcrAB-TolC: a wild type strain with the native 

regulatory network controlling AcrAB-TolC expression (WT); a strain which lacks the 

local regulator AcrR (AcrAB+), which results in a 1.5 to 6-fold increase in expression of 

the pumps (157, 159, 175); and a strain lacking functional AcrAB-TolC efflux pumps 

(DacrB).2  We allowed the cultures to grow and evolve for 72 h in continuous culture while 

continuously recording growth rates. We periodically sampled the cultures and assessed 

the population’s resistance. We then charted the evolutionary landscapes for each strain 

under different chloramphenicol concentrations to identify which circumstances gave rise 

to resistance. 

4.3. Results 

In order to systematically evaluate the evolutionary landscape of efflux pump-

mediated antibiotic resistance, we used the eVOLVER, a modular turbidostat capable of 

growing independent cultures in parallel (291). This platform allowed us to track a 

culture’s fitness by measuring growth rate continuously over multi-day experiments. In 

addition to this, we collected samples at selected intervals and, with these samples, 

performed antibiotic disc diffusion assays to assess the population’s resistance and spot 

assays to quantify the presences of high-resistance isolates within the population (Figure 

4-1). 

 
2 For consistency, these appear as defined in the original pre-print; however, please note that the 
names and definitions of each strain differ from Chapter 2, 3, and 5. 
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We mapped growth rates over time for cultures subjected to a range of 

chloramphenicol treatment concentrations (Figure 4-2A & Figure C-1). To compare across 

strains, we defined MIC0parent as the MIC of the parent strain (MIC0WT = 2 µg/mL, 

MIC0AcrAB+ = 2 µg/mL, MIC0
DacrB = 0.5 µg/mL). We found similar values for MIC0WT and 

MIC0AcrAB+ (Figure C-2), which may be due to induction of efflux pump expression in the 

WT strain in the presence of chloramphenicol. Prior studies have shown that the presence 

of stress can increase pump expression by 4-fold (157, 292), which is comparable to the 

impact of deleting acrR (157, 159, 175). We found that treatment with high concentrations 

of chloramphenicol repressed bacterial growth for multiple days. We observed this growth 

inhibition at ~10 µg/mL for WT and AcrAB+, and at ~2 µg/mL for DacrB. These inhibitory 

concentrations represent treatments of ~5x MIC0parent for all three strains. We found that 

cultures grown in lower chloramphenicol concentrations were able to recover growth. For 

example, when we treated cultures with ~1-2x MIC0parent, we observed a significant 

 

Figure 4-1. Evolution experiment schematic. 

We used the eVOLVER, a modular turbidostat, as an evolutionary platform to measure and 
record absorbance data at 600 nm (OD600). We calculated growth rate after each dilution 
event and collected samples at defined timepoints (t = 0, 1, 3, 6, 12, 24, 48, 72 h). We 
performed antibiotic disc assays and spot assays for all samples. 
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Figure 4-2. Temporal landscapes based on treatment concentration of 
chloramphenicol. 

(A) Average growth rate. Growth rates are normalized to growth of strains at t = 0 h; for 
raw data see Figure C-1. Lighter areas represent growth rates closer to pre-treatment 
values; darker areas represent reduced growth rates. MIC0 concentration is denoted with a 
bold dashed line for each strain (Figure C-2). (B) Average resistance. Diameter of 
inhibition zones were plotted for each time and treatment. Smaller inhibition zones are 
shown in red and correspond to resistant cells (£12 mm) and larger inhibition zones are 
shown in blue and represent susceptible cells (³19 mm); intermediate inhibition is shown 
with color scale from orange to green. MIC0parent is denoted with a bold dashed line. (C) 
Final resistance at 72 h based on treatment concentration normalized to MIC0parent. The 
calculated, absolute final MIC is based on data from Figure C-5. Data points show the 
mean of three biological replicates. Shaded error bars show standard deviation. 
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decrease in the growth rate between 0 and 12 h (Table C-1). However, after 12 to 24 h, 

growth in these populations was partially restored. At lower treatment concentrations (<1x 

MIC0parent), all cultures were able to grow, though usually at a deficit compared to the 0 

µg/mL chloramphenicol condition. For all three strains, there were qualitatively similar 

growth recovery patterns, with an initial growth repression phase followed by a partially 

restored growth phase (Figure C-1). 

The growth rate results suggested the evolution of drug resistance within the 

population (102, 279). To quantify this, we used an antibiotic disc assay to map the 

corresponding resistance levels (Figure 4-2B & Figure C-3). We found distinct increases 

in resistance levels that corresponded to populations which recovered growth. While there 

were qualitative similarities for the three strains, the timing and level of resistance achieved 

was dependent on the strain background. We classified populations as resistant when their 

inhibition zone diameters were smaller than 12 mm, following established standards for 

antimicrobial susceptibility testing (293).  The WT strain gained resistance under a broad 

range of chloramphenicol treatment concentrations; this resistance emerged within 24 h 

when cells were treated with ~1-2x MIC0WT.  The AcrAB+ strain, where efflux pumps are 

overexpressed, was able to evolve resistance as well, albeit at a slower rate and at lower 

levels than WT. AcrAB+ achieved resistance within 48 h when treated with 2.5x 

MIC0AcrAB+, but the range of chloramphenicol concentrations that resulted in resistance was 

narrower than for the WT strain. The DacrB cells achieved resistance more slowly, but for 

the range of ~1-2x MIC0
DacrB chloramphenicol cultures were still able to reach resistant 

levels (Figure 4-2B & Figure C-3). 
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To compare the ultimate evolved resistance levels, we calculated the final, absolute 

MIC of the populations at 72 h. When we normalized the treatment concentration by 

MIC0parent, we found that treatments concentrations ~1-2x MIC0parent evolved the most 

resistant populations (Figure 4-2C). Selective pressures of subinhibitory antibiotic 

concentrations have often been considered high-risk for the evolution of resistance (87, 

294). Yet, our results indicated that concentrations near or just above MIC0parent lead to the 

highest resistance levels in these conditions. In short, all three strains were able to evolve 

resistance when treated with ~1-2x MIC0parent chloramphenicol, with WT achieving the 

highest final, absolute MIC of the three strains. WT evolved more rapidly than AcrAB+ or 

DacrB. Moreover, the relative range of chloramphenicol concentrations that supported the 

evolution of resistance in the AcrAB+ strain was narrower than for WT or DacrB strains. 

We next asked how resistance and growth changed through time. We found that in 

the absence of antibiotics, the trajectories trended largely towards faster growth, with 

minimal changes to resistance levels (Figure 4-3). With subinhibitory chloramphenicol 

treatments, we observed that the populations first experienced a slight growth decrease, 

followed by increased resistance, and then restored growth within 48 h. While these 

populations did gain resistance, they did not tend to reach very high final MIC values in 

absolute terms, with inhibition zone diameters just at the border of being defined as 

resistant. In contrast, with inhibitory chloramphenicol treatment, there was a more dramatic 

reduction in growth within the first 12 h. Though growth was impacted, the populations 

tended to walk towards high resistance during this period. As depicted in the schematics, 

the zig-zag patterns trending towards high resistance may be indicative of the cultures 
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acquiring resistant mutations and compensating for the associated fitness costs of these 

mutations. Finally, at high chloramphenicol concentrations, bacteria first became more 

susceptible and then stopped growing entirely within 12 h; growth was never restored for 

these populations. We found that all strains followed similar evolutionary trajectories while 

 

Figure 4-3. Resistance and Fitness Evolution Trajectories. 

(A) Average diameter of inhibition zone and average growth rate plotted against each other. 
Lighter purple markers represent trajectories occurring earlier; darker purple are later 
timepoints. The longer the distance between markers, the greater the change between time 
points. Colors of boxes indicate the absolute treatment concentration for the depicted 
trajectories. (B) Schematics summarize patterns for each treatment concentration 
(xMIC0parent). Schematic plots show growth rate in terms of initial growth rate (GR0) and 
maximum physiological growth rate (GRmax). Resistance is shown in terms of relative 
diameter of inhibition, where D0 is the diameter of inhibition at t = 0 h and Dmin is the 
diameter of the antibiotic disc. 
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balancing the trade-off between growth and resistance. These findings highlight the 

importance of using antibiotic concentrations that are sufficiently inhibitory. 

 While these results tell us about the growth rate and resistance of the overall 

population, it is difficult to determine if sub-populations of cells within the culture have 

acquired high levels of resistance from disc assays alone. First, because the disc assays do 

not quantify resistance associated with individual cells in the culture, they cannot reveal 

the presence of sub-populations of resistant and susceptible cells. Second, beyond a certain 

resistance level, cells will grow up to the boundary of the disc; thus, it is not possible to 

quantify resistance increases beyond this. Determining which conditions can give rise to 

high levels of resistance is important for revealing particularly dangerous treatment 

regimes. In addition, sub-populations with increased resistance to one antibiotic can 

promote cross-resistance to other drugs (294).  

To quantify the fraction of resistant cells that emerged during our evolution 

experiment, we conducted a spot assay, in which we measured the fraction of the 

population capable of surviving on specific chloramphenicol concentrations. For all three 

strains, we observed sub-populations that were capable of growing on 10 µg/mL 

chloramphenicol (Figure 4-4A & Figure C-4). Interestingly, these cells primarily emerged 

from treatment conditions with lower levels of chloramphenicol, and not from conditions 

where cells were subjected to 10 µg/mL chloramphenicol. For example, at least 0.1% of 

the population from each of the three WT replicates that were treated at 2 µg/mL 

chloramphenicol could survive on 10 µg/mL at the end of the experiment. We did find 

cases where WT cells treated with 10 µg/mL evolved resistance to 10 µg/mL, however this 
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was less frequent compared to lower treatment concentrations. Thus, cultures were able to 

evolve resistance to higher levels of chloramphenicol than they were exposed to, a feature 

that was most pronounced when treatments were just above or at MIC0WT. These results 

closely match trends in the population’s overall resistance (Figure 4-2B). We also found 

isolates capable of growing on 20 µg/mL chloramphenicol, albeit with a reduced frequency 

relative to 10 µg/mL (Figure 4-4B & Figure C-4). 

In contrast, the AcrAB+ strain was capable of evolving resistance to 10 µg/mL 

 

Figure 4-4. Number of Biological Replicates with Highly Resistant Sub-populations 
through Time. 

Number of biological replicates that had a sub-population greater than 0.1% of their total 
population, which could grow on LB plates containing (A) 10 µg/mL or (B) 20 µg/mL 
chloramphenicol. Raw data is shown in Figure C-4. Initial populations contained ~107 
CFUs. MIC0parent compared to treatment concentration is denoted with a bold dashed line 
(Figure C-2). 
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when treated with 5 µg/mL chloramphenicol; yet, surprisingly, AcrAB+ never produced a 

sub-population that was able to grow on 20 µg/mL as the WT did. Meanwhile, despite the 

higher initial susceptibility of DacrB (MIC0
DacrB < MIC0WT and MIC0AcrAB+), the DacrB 

strain consistently produced sub-populations that were able to grow at 20 µg/mL 

chloramphenicol by 72 h. This sub-population appeared for chloramphenicol 

concentrations around 2 µg/mL, similar to the WT strain.  

A key question remained: which mutations were responsible for the increases in 

resistance we observed? To address this, we used whole genome sequencing to analyze 

three biological replicates from the 72 h timepoint for the WT, AcrAB+, and DacrB strains 

(Table 4-1). For the WT strain, each of the sequenced isolates contained a single point 

mutation in the DNA binding region of marR, which can upregulate AcrAB-TolC efflux 

pumps and expression of other stress response genes (295). Two of these point mutations 

were missense mutations in marR and have been observed in other studies (35, 296–299). 

Additionally, one isolate had a missense mutation in the periplasmic encoding region of 

acrB. The other two isolates had an IS1 or IS5 insertional sequence interrupting acrR, 

which is known to upregulate acrAB (300). One question these results raise is why the 

AcrAB+ strain, where acrR is removed, is outperformed by WT strains with mutations in 

acrR. A potential explanation for this is that the ‘marbox’ through which acrAB is 

upregulated sits within acrR (163). The AcrAB+ strain lacks this marbox (235), while in 

the sequenced isolates the insertion sequence is located further upstream in acrR and the 

marbox remains intact, providing global stress response regulation while eliminating the 

impact of the local repressor. Thus, the exact position of the insertion sequence matters. 
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These sequencing results indicate that strains containing AcrAB-TolC efflux pumps use 

mutations related to the pumps and their regulation to optimize survival and increase 

resistance in the presence of chloramphenicol. 

When we evolved the AcrAB+ strain and performed whole genome sequencing of 

the most resistant isolates, all isolates had mutations in the noncoding, promoter region of 

acrAB (Table 4-1). These mutations indicate that the AcrAB+ strain might require further 

Parent Strain WT AcrAB+ DacrB 
Treatment Concentration 2 µg/mL Cm 5 µg/mL Cm 1 µg/mL Cm 

Region Mutation Position 1 2 3 1 2 3 1 2 3 

acrR IS1 + 4bp 481,420   X       
IS5 + 8bp 481,481 X         

PacrRAB 
IS2 + 4bp 481,163      X    
D 1bp 481,174    X      
TàC 481,187     X     

acrB Q569L 478,154  X    X    
V139F 479,445     X     

marR 
+ 1bp 1,613,590  X        
T72P 1,613,590 X         
V84E 1,613,267   X       

acrS IS5 + 4bp 3,407,126       X X  
IS2 + 4bp 3,407,133         X 

rpoB K126Q 4,174,956    X      
fimD T393N 4,536,090     X     
yhjB IS4 + 12bp 3,664,650      X    
clpX IS186 + 2bp 454,251      X    
selA D441G 3,753,288       X   
rrsG +58 bp 2,723,638       X   

Isolation [Cm] (µg/mL) 20 20 20 10 10 10 10 5 5 

Table 4-1. Summary of whole genome sequencing results. 

Non-clonal mutations for each resistant isolate from eVOLVER experiments. Each isolate 
from each parent strain is derived from a different biological replicate. In addition to the 
mutations, the table also lists the treatment concentrations that each isolate evolved at, as 
well as the concentration of chloramphenicol that the isolate was selected on at t = 72 h. 
Genetic regions that do not exist in the parent strain are grayed out. 
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tuning of acrAB expression for improved resistance. Further, two of these isolates also had 

missense mutations in the coding region of acrB as well. Of these, the V139F missense 

mutation is known to produce high levels of multidrug resistance by accelerating export 

for a number of AcrAB-TolC substrates (105, 279, 301, 302). We observed acrB Q569L 

evolve from two different parent strains, WT and AcrAB+, suggesting it plays a role in 

chloramphenicol export. Additionally, the evolved AcrAB+ isolates all had other mutations 

less directly related to the AcrAB-TolC efflux pump and its regulators, such as genes 

related to transcription (rpoB, yhjB), fimbriae assembly (fimD), or degradation (clpX) 

(Table 4-1).  

In contrast, when we evolved the DacrB strain, we found that all three isolates had 

an insertion sequence located in acrS (Table 4-1). AcrS is the local regulator of the AcrEF-

TolC efflux pump, a homolog to AcrAB-TolC (180). This result agrees with findings from 

Cudkowicz & Schuldiner, who showed that the DacrB strain gained high resistance by 

upregulating redundant efflux pumps in E. coli, such as AcrEF-TolC or MdtEF-TolC (105). 

One of the three isolates also contained a missense mutation in the tRNA for selenocysteine 

(selA) and a short insertion sequence in the 16S rRNA of the 30S subunit (rrsG), though 

whether or how these play a role in chloramphenicol resistance is unclear.  

4.4. Discussion 

In this work, we identified that treating strains with antibiotic concentrations close 

to MIC0parent promotes the evolution of resistance; however, the evolvability and ultimate 

resistance level achieved differed between WT, AcrAB+, and DacrB strains. WT 

populations evolved mutations that conferred high levels of resistance within 24 h after 
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antibiotic exposure. Maximal resistance was evolved at ~1x MIC0WT, however 0.25-2.5x 

MIC0WT chloramphenicol treatment concentrations all gave rise to resistance. We observed 

similar trends WT treated with another antibiotic, ciprofloxacin, as well (Figure C-6). In 

contrast, AcrAB+ evolved resistance, but this was only possible at precise chloramphenicol 

concentrations at 2.5x MIC0AcrAB+. The evolved AcrAB+ populations were less resistant 

than their WT counterparts, and spot assays determining resistance confirmed this trend. 

In contrast, the DacrB strain was able to evolve resistance under 1-4x MIC0
DacrB 

chloramphenicol treatments, and ultimately achieved absolute resistance levels comparable 

to those observed in the WT strain.  

Our results identify that antibiotic treatments near MIC0parent are especially prone to 

evolving resistance. Reding et al. observed this hotspot for adaptability of E. coli in the 

presence of another antibiotic, erythromycin, just below the MIC of their parent strains 

(280). While doctors measure resistance of bacterial infections, they sometimes prescribe 

antibiotic treatment prior to obtaining the results of this assay (303) or use a treatment 

concentration too low to effectively penetrate the infection site (304). This blind treatment 

could lead to increased levels of resistance (305, 306). These results highlight the presence 

of regimes that are especially problematic and which should be avoided to limit the 

evolution of antibiotic resistance.  

While we observed that all strains were capable of evolving resistance, sequencing 

revealed the different pathways that each strain took to achieve this. WT achieved 

resistance through mutations and insertion sequences in the regulators AcrR and MarR, 

suggesting that WT cells can fine-tune expression of the AcrAB-TolC pumps to gain 
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resistance to chloramphenicol. Interestingly, these mutations may produce cross-resistance 

to other antibiotics as well since these regulators control many genes involved in multi-

drug resistance (164, 165). AcrAB+ cells utilized mutations in acrB and the promoter 

region controlling its expression to achieve resistance. DacrB populations achieved 

resistance by targeting homologous efflux pump systems, such as AcrEF-TolC. Although 

resistance was slow to emerge in this strain compared to WT or AcrAB+, this alternative 

pathway for achieving resistance ultimately resulted in levels comparable to those achieved 

by the WT strain. By charting evolutionary landscapes across different antibiotic 

concentrations, we have gained insight into treatments that impact the emergence of 

antibiotic resistance and the effect of efflux pumps on this process.  

4.5. Contributions Statement 

The authors of this work were Ariel M. Langevin (A.M.L.), Imane El Meouche 

(I.E.M.), and Mary J. Dunlop (M.J.D.). A.M.L. and I.E.M. designed experiments, A.M.L. 

conducted the experiments and analyzed the data, M.J.D. supervised the research. All 

authors wrote the manuscript. 

4.6. Methods 

4.6.1. Strains and Plasmids 

We used E. coli strains BW25113 (WT), BW25113 DacrB (DacrB), and BW25113 

DacrR (AcrAB+). The wild type strain BW25113 is the parent strain for the Keio collection 

(235). BW25113 DacrB was derived from Keio collection strain JW0451 (BW25113 

DacrB::kanR) (189). For BW25113 DacrR, we designed primers with homology regions on 

acrR and amplified the kanamycin resistance marker and FRT sites of pKD13 (235). 
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Primers are listed in Table C-2. The linear DNA was then treated using a DpnI digest and 

PCR purification. We electroporated the purified linear DNA into competent BW25113 

cells containing the plasmid pSIM6 (307). We removed kanamycin resistance markers 

from JW0451 and BW25113 DacrR::kanR following the pCP20 protocol from Reference 

(308). 

4.6.2. Determination of MIC 

For all experiments, overnight cultures were inoculated from a single colony in 10 

mL LB and grown in a 50 mL Erlenmeyer flask at 37°C with 200 rpm orbital shaking. 

After overnight growth, the optical density at 600 nm (OD600) was measured, and the initial 

volume was diluted back to OD600 = 0.1. To determine the MIC of the parent strains (Figure 

C-2), we added a final concentration of 0, 0.2, 0.5, 1, 2, 4, 8, or 12 µg/mL of 

chloramphenicol to each culture; to determine the MIC of the evolved strains (Figure C-

5), we added 0, 0.5, 1, 2, 5, 10, 20, or 50 µg/mL to each culture.  Chloramphenicol stocks 

were prepared with 100% ethanol. The samples were sealed with evaporation-limiting 

membranes (Thermo Scientific AB-0580) and grown in 24-well plates at 37°C with 200 

rpm orbital shaking. OD600 readings were taken using a BioTek Synergy H1m plate reader 

before incubation (t = 0 h) and after antibiotic exposure (t = 24 h). As Tween20 is a 

detergent and a potential substrate of the AcrAB-TolC efflux pumps, we also conducted 

the toxicity curve experiments with Tween20 at our working concentration 0.2% (v/v). We 

found there was no significant change in resistance for any of the strains under the presence 

of Tween20 (Figure C-7). All experiments were performed in triplicate using biological 

replicates.  
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4.6.3. Experimental Conditions in the eVOLVER 

In the eVOLVER, cultures were inoculated from a single colony in LB at 37°C. A 

stir bar mixed the cultures on a medium setting, or approximately 1000 rpm (291). The LB 

was supplemented with the detergent Tween20 (Sigma Aldrich Cat. # P1379) at 0.2% (v/v) 

to reduce spurious OD600 measurements caused by biofilm growth on the flask. As 

Tween20 is a detergent and a potential substrate of the AcrAB-TolC efflux pumps, we also 

conducted the toxicity curve experiments with Tween20 at our working concentration 0.2% 

(v/v). We found there was no significant change in resistance for any of the strains in the 

presence of Tween20 (Figure C-7 & Table C-4). 

Cells were inoculated in the eVOLVER overnight (t » -16 – -14 h) prior to the 

beginning of the experiment (t = 0 h) to establish steady-state exponential growth. We set 

the eVOLVER using an upper OD600 bound of 0.2 and a lower bound of 0.1; thus, cultures 

were grown to a turbidity of 0.2 and then diluted back to 0.1 to maintain the turbidostat at 

approximately constant cell density. Samples were collected during the experiment at set 

time points (t = 0, 1, 3, 6, 12, 24, 48, and 72 h) and used for downstream analysis. All 

experiments were performed in triplicate using biological replicates. 

At t = 0 h, we introduced chloramphenicol at a predetermined final treatment 

concentration ([Cm] = 0, 0.2, 0.5, 1, 2, 5, 10, or 20 µg/mL). This introduction was 

implemented by switching the media source from one containing 0 µg/mL 

chloramphenicol to another containing the final treatment concentration; in addition, we 

spiked the samples directly with the treatment concentration of chloramphenicol at the 

same time to avoid a delay due to the time required for media cycling in the turbidostat.  
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4.6.4. Downstream Assays and Data Collection from eVOLVER Samples 

4.6.4.a. Growth Rate Measurements 

Growth rate measurements were calculated after each dilution event using: 

 

Growth Rate =
ln '

TU@AA,:09:
TU@AA,-./

+

#BC%&&,(!)( − #BC%&&,*+,
 Eq. 16 

The growth rate between each dilution was then averaged across sampling time points to 

compare against disc diffusion assays and spot assays. For example, the growth rate given 

at t = 0 h is the growth rate from t = -6 h to t = 0 h. To evaluate statistically significant 

differences in growth rate between two time points, we used the paired-t test; to evaluate 

statistically significant differences in growth rate between two strains, we used the t test 

(Table C-1). 

4.6.4.b. Antibiotic Disc Diffusion Assay 

We aliquoted samples from the eVOLVER, where the OD600 from each sample was 

between 0.1 and 0.2. We used cotton swabs to cover LB agar plates with a layer of the 

sample (309). An antibiotic disc containing chloramphenicol (30 g) (Thermo Fisher 

Scientific Cat. # CT0013B) was then placed on the plate. The plate was incubated for 24 h 

at 37°C. The diameter of the zone of inhibition around each disc was then measured. 

Diameter of inhibition zones were classified as susceptible, intermediate, or resistant based 

on Reference (293). Additionally, we calculated the MIC using a linear mapping between 

MIC and diameter of inhibition zones for our samples (Figure C-5) (310). To evaluate 

statistically significant differences in diameter of inhibition zones or resistance between 

two time points, we used the paired-t test; to evaluate statistically significant differences in 
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resistance between two genotypes, we used the t test (Table C-4). 

4.6.4.c. Spot Assay 

The samples from the eVOLVER experiment were diluted in PBS to the following 

dilution series: 1, 10-1, 10-2, 10-3, 10-4, and 10-5. We then plated 2.5 µL of each dilution on 

LB agar plates containing 0, 0.5, 1, 2, 5, 10, and 20 µg/mL chloramphenicol. The plates 

were then incubated for 24 h at 37°C. To count colonies, we identified the dilution factor 

with the most countable colonies, and recorded the number of colony forming units (CFU) 

and dilution factor (d). The CFU/mL for each sample was then calculated by: 

 
CFU/mL =

GVW ∗ !
B

 Eq. 17 

where V is the volume plated. We also calculated the proportion of the population able to 

grow on different concentrations of chloramphenicol by calculating the CFU/mL from LB 

agar plates containing 0, 0.5, 1, 2, 5, 10, and 20 µg/mL chloramphenicol. 

4.6.5. Whole Genome Sequencing 

DNA was extracted from single isolates and parent strains using the QIAGEN 

DNeasy PowerBiofilm kit.  For each strain, we selected three isolates to sequence; each of 

these isolates originated from a different biological replicate that was evolved under the 

same experimental conditions (i.e. each isolate comes from a different eVOLVER culture). 

Samples were sequenced at the Microbial Genome Sequencing Center (MiGS) in Pittsburg, 

PA, USA, who conducted library preparation and multiplexing using the Illumina Nextera 

kit series and then sequenced using a NextSeq 550 platform with 150 bp paired-ends and 

an average coverage of 50 reads. We analyzed reads using breseq (311) version 0.35.1. 



 

 

83 

Reads were aligned to the BW25113 Keio reference genome (Accession: CP009273) in 

consensus mode. The treatment concentrations and isolation concentrations used to select 

each isolate are listed in Table 4-1. Whole genome sequencing data for the parent strains 

and the isolates are available on GenBank (BioProject: PRJNA666010; Accession no.: 

CP062239 to CP062250).  	
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5. ANTIBIOTIC INTRODUCTION RATE AND MIXED POPULATIONS 

INFLUENCE THE EMERGENCE OF ANTIBIOTIC RESISTANCE 

5.1. Abstract 

Antibiotic resistance remains a public health concern as bacteria readily utilize 

resistance mechanisms, including efflux pumps, to evade antibiotic treatments. Previously, 

we found that the rate of antibiotic administration could compromise the effectiveness of 

such multidrug efflux pumps (Chapter 2). For instance, the AcrAB-TolC efflux pump 

exports antibiotics out of the cell, increasing resistance levels. These pumps are more 

effective when antibiotics are introduced slowly. In this study, we assessed how short-term 

and long-term differences in antibiotic introduction rates affect the longer-term evolution 

of drug resistance. We monitored this in different genetic backgrounds: E. coli harboring 

AcrAB-TolC efflux pumps with their native regulatory networks intact, constitutive 

expression of the efflux pumps, and a strain lacking functional pumps. We compared 

cultures exposed to a rapid step increase in chloramphenicol to those exposed to a slow 

short-term ramp increase. We found that efflux pump expression increases tolerance to 

antibiotics and promotes the emergence of resistance through mutations. In genotypes 

lacking the native regulation networks, slow rates of antibiotic introduction increase the 

number of resistant isolates and decrease the number of susceptible cells compared to rapid 

antibiotic introduction. We also identified how slow and long-term antibiotic introduction 

rates promote increased fitness over resistant phenotypes relative to step antibiotic 

introduction rates. Lastly, we found that in co-cultured populations containing strains with 

and without the pumps, the results were not simply the additive response of the single-
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strain evolution experiments. Co-cultured populations exposed to a step increase in 

chloramphenicol produced few resistant isolates, whereas in populations exposed to a 

short-term ramp over half of the isolates were resistant. These results highlight the 

importance of studying the interplay between the rate of antibiotic introduction, population 

composition, as well as the regulatory networks controlling expression of resistance genes. 

5.2. Introduction 

Although the antibiotic revolution represents a significant advance in modern 

medicine, bacteria have historically acquired resistance shortly after the introduction of 

new antibiotics (5, 274). Moreover, the discovery of novel antibiotics has dwindled, 

presenting doctors and scientists alike with the challenge of how to best treat infections 

while keeping the evolution of resistance in check. Overuse of antibiotics results in 

pressures further driving resistance (275). A potential solution is to focus not solely on 

finding new drugs, but also on leveraging dosing strategies that minimize the frequency of 

resistant and tolerant bacteria. Here, we define resistance as a genetically-encoded 

mechanism that allows bacteria to survive antibiotic treatment and tolerance as a 

phenotypic response that enables survival. 

There are many mechanisms by which antibiotic resistance can be achieved, 

including enzymatic inactivation, alteration of antibiotic binding sites, and increased efflux 

or reduced influx of antibiotics (230). Due to their active role in exporting antibiotics, we 

focused on efflux pumps, specifically the multidrug AcrAB-TolC pump in E. coli. The 

proteins that compose the pump are the outer membrane channel TolC, the periplasmic 

linker protein AcrA, and the functional unit of the efflux pump AcrB. AcrB uses the proton 
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motive force to actively export substrates out of the cell (222, 230). Deletion of acrB 

eliminates pump functionality, resulting in a five-fold reduction of minimum inhibitory 

concentration (MIC) for chloramphenicol (189). Chloramphenicol is often used as a last 

resort antibiotic in multidrug resistant infections since most clinical isolates are susceptible 

to this drug (289, 290). Despite the pump-mediated increase in resistance, upregulation of 

the efflux pumps incurs a growth cost and can increase mutation frequencies (189, 191). 

Current antibiotic resistance research primarily explores binary conditions – where 

a stress is or is not present; however, realistic environments are seldom as well-defined as 

those in the laboratory (193). Our prior results have demonstrated a relationship between 

the rate of antibiotic addition and the benefit of efflux pumps on population fitness, where 

the efflux pumps’ ability to convey a population-level fitness benefit is amplified when 

antibiotics are added slowly (189). We found that cells with constitutive expression of 

efflux pumps were more represented than those without pumps when a slow dose of 

antibiotics was applied over the course of several hours (189). Further, recent theoretical 

results suggest that the emergence of mutations giving rise to antibiotic resistance may also 

depend on the dynamics of stress (111). These results prompt the question of whether the 

rate of antibiotic addition can influence levels of resistance and tolerance (312). 

Our overall goal in this work was to identify how antibiotic resistance and tolerance 

emerge based on antibiotic dose dynamics. To achieve this, we used a turbidostat as an 

evolutionary platform (291). We introduced chloramphenicol at two different rates: a short-

term ramp over 6 hours and a step over 1 minute. We allowed the cultures to grow and 

evolve for 72 hours in continuous culture and then assessed whether resulting colonies 
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derived from the culture were either nongrowing, susceptible, tolerant, or resistant to 

antibiotics. We conducted these tests in strains with the native regulatory network 

controlling AcrAB-TolC expression intact, in strains with constitutive expression of the 

pumps, and in strains lacking the pumps. We then identified cases where different antibiotic 

introduction rates and the genetic background of the strain play a role in survival. 

5.3. Results 

5.3.1. Short-term fluctuations can promote fitness from antibiotic exposure 

We tested two antibiotic introduction profiles and measured how they impacted 

population shifts over the course of 72 hours. We compared a short-term ramp and step 

introduction of an antibiotic (Figure 5-1A). For these experiments, we used a final 

concentration of 1 µg/mL chloramphenicol, which is the half maximal inhibitory 

concentration (IC50) for wild type cells (189). Cultures subjected to both treatment profiles 

receive the same amount of antibiotic, but the rate at which it was introduced differs 

between the two. 

In order to assess the appearance of tolerance and resistance under these treatments, 

we grew cells in a modular turbidostat called the eVOLVER (291). The eVOLVER 

maintains cultures in exponential phase by using serial dilutions to introduce media when 

the optical density reaches an upper threshold so that the optical density, or turbidity, of 

the culture stays within a narrow range of values (Figure 5-1B). To investigate whether 

differences in antibiotic introduction rates of chloramphenicol would impact the growth, 

we first tested wild type cells that have the AcrAB-TolC pump controlled by its native 

upstream stress response regulators. Since it is quite rare for advantageous mutations to 
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appear at a high frequency within hours (313, 314), we allowed the bacteria to grow 

continuously for 72 hours. Previous evolution experiments identified trimethoprim-

resistant isolates in under 50 hours (106). This timing allowed us to assess changes in 

resistance that emerge from changes in the antibiotic introduction rate. We found that wild 

type cells exposed to a chloramphenicol step had a period of growth inhibition followed by 

a modest increase in growth rate approximately 24 hours after treatment (Figure 5-1C-D). 

The cells exposed to a short-term ramp were similar, though the increase in growth was 

 

Figure 5-1. Experimental conditions and growth of wild type E. coli in the eVOLVER. 

(A) Schematic of two antibiotic introduction rates: a short-term ramp increase to the final 
antibiotic concentration (green) and a step increase (blue). (B) OD600 of an individual 
culture exposed to a short-term ramp increase in chloramphenicol. Cells are grown to an 
upper bound of OD600=0.2 and then diluted back to OD600=0.15. Note that the growth rate 
decreases after antibiotic introduction begins. (Inset) Schematic showing how the growth 
rate is calculated from raw OD600 measurements. (C) Actual concentration of 
chloramphenicol over time in wild type cultures for a short-term ramp (green) and step 
(blue). (D) Growth rates for wild type cultures. n = 3 biological replicates for each 
treatment. 
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more variable across replicates. On average, after 72 hours the final growth rates were near 

0.7 h-1 for cultures from both the short-term ramp and step treatments. For comparison, we 

also ran tests with no chloramphenicol addition and observed growth rates of >1.0 h-1 

(Figure D-1A). Therefore, although wild type cells partially recover, their population 

distributions are still impacted at 72 hours relative to untreated cultures. 

To determine resistance and tolerance levels of cells within the cultures, we plated 

samples from the 72-hour time point (Figure 5-2A). To first confirm viability, we used LB 

plates; for the antibiotic tests, we plated cells on LB plates with a high concentration of 

chloramphenicol (Cm) (25 µg/mL). We were also interested in investigating whether cross-

resistance to other antibiotics could emerge without prior exposure. To test this, we also 

plated cells on LB plates containing high doses of tetracycline (Tet) (6 µg/mL) and LB 

plates ciprofloxacin (Cp) (0.1 µg/mL) (191, 315, 316).  

From each of these plates we isolated three colonies and cultured them individually 

in fresh LB medium. Interestingly, cultures derived from a subset of these colonies did not 

grow when re-cultured in fresh LB. We categorized these as nongrowing in our subsequent 

analysis (Figure 5-2A). For the colonies that we were able to culture, we used an antibiotic 

disc assay to further categorize results. In this assay, media containing a single isolate was 

plated to confluence and a disc containing antibiotics was placed on the plate. Antibiotic 

from the disc diffuses into the surrounding media. At areas close to the disc, known as the 

inhibition zone, antibiotic concentrations are high and bacterial growth is inhibited (317). 

This test could determine changes in resistance of isolates compared to the original parent 

strain, which  is the  strain that  was  not  subjected  to  treatment  in  the  eVOLVER.  For 



 

 

90 

 

Figure 5-2. Experimental and data analysis workflows quantifying the emergence of 
resistance and tolerance for wild type E. coli. 
(A) After 72 hours, cultures were plated on a control LB plate and on three high dose 
antibiotic plates (25 µg/mL chloramphenicol (Cm), 6 µg/mL tetracycline (Tet), 0.1 µg/mL 
ciprofloxacin (Cp)). From each of these plates, three colonies were grown to exponential 
phase, then plated and used to perform an antibiotic susceptibility disc assay to determine 
changes in resistance relative to the parent strain. (B) Information on each isolate was then 
used to classifying strains as nongrowing, susceptible, tolerant, or resistant. (C) Fates of 
all isolated colonies from all plates. Results are classified as: nongrowing (navy), 
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susceptible (light pink), tolerant (light green), and resistant (burgundy). Ab, antibiotics. N 
represents the number of isolates from each experiment that were picked. If no colonies 
were found on a high antibiotic plate then no isolate could be picked. Counts are shown at 
the end of each bar, listed as a number on the figure. (D) Normalized inhibition zone 
diameters for the four antibiotic disc assays: 30 µg chloramphenicol, 10 µg ampicillin 
(Amp), 30 µg tetracycline, and 5 µg ciprofloxacin. The inhibition zone diameters were 
normalized to the parent strain’s mean inhibition zone, where no change is denoted by the 
dashed, black line. The threshold we used to classify colonies as resistant is shown in red.  
The symbol shape indicates which plate the colony was originally isolated from: LB only 
(circle), LB+Cm (square), LB+Tet (triangle), LB+Cp (diamond). Each individual replicate 
for data presented here is shown in Figure D-6. 

example, if the inhibition zone diameter is smaller for the isolate than the parent, then the 

isolate is more resistant than the parent. 

We exposed each isolate to four antibiotic susceptibility discs: chloramphenicol, 

ampicillin, tetracycline, and ciprofloxacin (Figure 5-2A). We selected these antibiotics 

because of their diverse mechanisms of action, allowing us to test whether the changes in 

resistance target a specific antibiotic mechanism or are more general. In addition, the 

AcrAB-TolC efflux pump has a range of efficacies for these antibiotics (Figure D-2). 

Chloramphenicol is a protein synthesis inhibitor that is actively exported by the AcrAB-

TolC efflux pump (218, 219). Ampicillin is a b-lactam that inhibits cell wall synthesis and 

known to be exported by AcrAB-TolC (222, 318). Tetracycline inhibits protein synthesis 

and ciprofloxacin inhibits DNA replication (319). We measured the inhibition zone for 

each isolate and compared it to the inhibition zone for the parent strain (Table D-1).  

We classified results into four different categories (Figure 5-2B). (1) Nongrowing 

cells were no longer culturable after the initial plating, as described above, and the isolates 

did not grow in LB media or on LB plates. (2) Susceptible cells grew on LB, but did not 

grow on any of the high antibiotic plates and had no reduction in inhibition diameter in the 
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disc assay relative to the parent strain. (3) Tolerant cells were able to grow in high 

concentrations of antibiotics on the plates, but exhibited no reduction in inhibition zone 

diameter relative to the parent strain. (4) Resistant cells had a reduction in inhibition zone 

diameter compared to the parent strain.  

For the wild type strain, we isolated both tolerant and resistant strains, but saw no 

significant differences between short-term ramp and step antibiotic treatment, indicating 

that regardless of the introduction rate, wild type cells have a similar response (Figure 5-

2C). These results are in contrast to control experiments without antibiotic addition, where 

instances of resistance were rare and susceptible isolates were prevalent (Figure D-1B). In 

the antibiotic disc assay we tested for resistance and cross-resistance by normalizing 

relative to the parent strain’s inhibition zone diameter (Figure 5-2D). Thus, isolates with 

data points falling below 100% are more resistant than the parent strain. Here, we again 

observed clear differences between the antibiotic treatments and the no antibiotic control, 

with chloramphenicol-treated samples acquiring resistance, while those without 

chloramphenicol exposure did not (Figure 5-2D, Figure D-1C). Step and short-term ramp 

exposures were similar in their effect on the zone of inhibition.  

Despite using only chloramphenicol in the eVOLVER continuous culture, we 

found many examples of cross-resistance, where cells were resistant to ampicillin, 

tetracycline, or ciprofloxacin as well (Figure 5-2D and Figure D-3, Column 4). These 

results indicate that the mechanisms involved in resistance extend beyond the impact of a 

single stressor. From our whole genome sequencing results from Chapter 4, we speculate 

that this observation of cross-resistance may be the consequence of wild type cells readily 
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evolving through insertion sequences placed in far-reaching stress response regulators, 

such as marR (164–166). 

Although results for the wild type strain were similar for both step and short-term 

ramp treatments, we asked what impact efflux pump expression had on these findings. 

Mutations in the stress response regulators, acrR and marR, are observed in both clinical 

and laboratory settings; notably, these regulators primarily improve resistance by 

upregulating expression of the AcrAB-TolC efflux pump (106, 285, 320). We expected 

that the rate of antibiotic introduction would impact survival in an efflux pump-dependent 

fashion (189) and asked how this would translate to differences in the distributions of 

nongrowing, susceptible, tolerant, and resistant strains. In these experiments, we compared 

strains with two genetic backgrounds: an acrB deletion mutant with the efflux pump genes 

expressed on a plasmid (acrAB+) and a strain without efflux pumps (DacrB).3 An important 

distinction between acrAB+ and wild type is that the native regulation of the acrAB operon 

has been removed in acrAB+ and the pump genes are constitutively expressed. For our 

experimental conditions, where acrAB+ is exposed to chloramphenicol during exponential 

phase, acrAB+ and wild type demonstrate the same dose response to increasing 

concentrations of chloramphenicol (Figure 5-3B); for growth on agar plates the 

complementation is partial (Table D-1). 

To compare fitness after antibiotic treatment for acrAB+ and DacrB, we grew cells 

in continuous culture in the eVOLVER and exposed them to a step and a short-term ramp 

 
3 For consistency, these appear as defined in the original and, in this case, unpublished manuscript; 
however, please note that the names and definitions of each strain differ from Chapter 2, 3, and 4. 
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of chloramphenicol introduction. For both types of treatment, we observed a sharp decrease 

in growth rate for cells without efflux pumps (DacrB), whereas cells with efflux pumps 

(acrAB+) had a more gradual shift to their minimum growth rates (Figure 5-3A). Cells 

 

Figure 5-3. Impact of antibiotic introduction rate and strain background on the 
emergence of resistance and tolerance for acrAB+ and DacrB cultures. 

(A) Growth rates in acrAB+ and DacrB cultures where the two chloramphenicol 
introduction rates are a short-term ramp (green) and a step (blue) as shown in Figure 5-1C. 
n = 3 biological replicates for each treatment. (B) Fates of all isolated colonies from all 
plates. Results were classified as: nongrowing (navy), susceptible (light pink), tolerant 
(light green), and resistant (burgundy). Ab, antibiotics. N represents the number of isolates, 
counts shown at end of bar. (C) Normalized inhibition zone diameters for the four 
antibiotic disc assays. The inhibition zone diameters were normalized to the parent strain’s 
mean inhibition zone (black, --); resistance threshold (red). The symbol shape indicates 
which plate the colony was originally isolated from: LB only (circle), LB+Cm (square), 
LB+Tet (triangle), LB+Cp (diamond). Each individual replicate for data presented here is 
shown in Figure D-7 and Figure D-8. 
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exposed to a step also had a sharper decrease in growth rate than cells exposed to a short-

term ramp. We found that slower introduction of antibiotics led to significantly higher 

growth rates in the first 24 hours for acrAB+ cells, but that at 72 hours the cultures with 

the step treatment had recovered (Table D-2). Growth of DacrB cells was severely 

impacted at 24 hours for both treatments, however the samples experiencing short-term 

ramps were more likely to recover by 72 hours (Figure 5-3A). Thus, the presence of efflux 

pumps improves growth immediately after antibiotic treatment. In addition, the antibiotic 

introduction rate also influences growth of the culture many hours after it is applied. 

At the 72-hour timepoint, we plated cells on LB and plates containing high 

antibiotic concentrations and, following the procedures outlined in Figure 5-2A-B, we 

classified outcomes of the isolates from the different strain backgrounds and 

chloramphenicol treatment profiles. We found that functional efflux pumps were key to 

promoting tolerance in contrast this phenotype rarely appeared for DacrB cells (Figure 5-

3B). We also found that cells exposed to short-term ramp treatments were more likely to 

exhibit resistance than cells exposed to a step (Figure 5-3B). For DacrB cultures exposed 

to a step, 70% of the isolates were nongrowing or susceptible. In contrast, acrAB+ cells 

exposed to a short-term ramp had ~35% nongrowing and susceptible cells. DacrB exposed 

to a short-term ramp and acrAB+ exposed to a step were intermediate. These results 

indicate that both the rate of antibiotic introduction, along with the genetic background of 

the cells influences propensity for survival through tolerance and resistance. For the 

acrAB+ cells, there were isolates surviving to 72 hours based only on tolerance, without 

acquisition of resistance, regardless of the antibiotic introduction rate. For both acrAB+ 
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and DacrB, populations exposed to a short-term ramp had higher incidences of resistant 

isolates compared to those exposed to a step; this can also be observed by a higher 

frequency of mutations on 25 µg/mL chloramphenicol plates (Figure D-4, Row 1, Columns 

2-3). 

We also used the disc diffusion assay to test for changes in resistance relative to the 

parent strain. acrAB+ cells exhibited a range of resistance to chloramphenicol, with 

examples spanning no change to greatly increased resistance (Figure 5-3C). Comparing the 

two introduction rates for acrAB+ cells, results were largely similar in the distribution of 

resistance for the antibiotics (Figure 5-3C). In contrast, we observed that the DacrB cells 

were divided into two sub-populations for both of the antibiotic introduction rates. One 

population remained susceptible to chloramphenicol. We noted that these isolates were all 

obtained from the LB plate, so although they survived the continuous culture with 

chloramphenicol, they showed no difference in resistance in the disc diffusion assay in 

comparison with the parent. Meanwhile, the second population contained isolates that were 

resistant to chloramphenicol. Interestingly, for DacrB cells alone, we observed that this 

bimodal distribution exists for tetracycline and ciprofloxacin cross-resistance as well and 

is most pronounced in the case of the step treatment. 

Since the IC50 of chloramphenicol for DacrB is lower than the IC50 for wild type 

and acrAB+, we also investigated whether lower chloramphenicol concentrations would 

result in higher levels of resistance for the DacrB strain. The higher, instantaneous 

concentration of chloramphenicol introduced as a step led to low recovery of DacrB cells; 

we became interested in how lower concentrations of chloramphenicol might affect DacrB 
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differently. As expected, growth recovered much more quickly when DacrB was exposed 

to 0.5 µg/mL instead of 1 µg/mL chloramphenicol (Figure 5-4A). In the case of the step 

exposure to chloramphenicol, all replicates maintained growth after treatment. At both 

chloramphenicol concentrations, we still observed more resistant isolates and fewer 

susceptible and nongrowing cells emerging under short-term ramp treatments, as opposed 

to step treatments (Figure 5-4B). Further, while we did find more resistant isolates when 

cultures were exposed to a lower dose of chloramphenicol (Figure 5-4B), the degree of 

resistance was lower (Figure 5-4C). There were also no colonies isolated on the high dose 

chloramphenicol plates (Figure D-4, Row 1, Column 4). Finally, the bimodal distribution 

of resistance among isolates that was observed for DacrB populations at 1 µg/mL 

chloramphenicol was not observed at lower chloramphenicol concentrations (Figure 5-4C). 

While the lower concentrations of chloramphenicol did increase the proportions of resistant 

cells, the magnitude of resistance conveyed did not reach that of wild type nor acrAB+ 

cells. Interestingly, we found that DacrB cells were only able to reach the same high level 

of chloramphenicol resistance when exposed to slower changing, but inhibitory conditions 

– a short-term ramp increase to 1 µg/mL chloramphenicol. 

5.3.2. Slow introduction of stress promotes growth and resistance 

Next, we investigated how even longer variations in antibiotic treatment might 

impact the antibiotic resistance and fitness of a population. To do this, we exposed cells to 

a long-term ramp over 72 h to a final antibiotic concentration. We then compared this to 

conditions with similar antibiotic levels, but different long-term dynamics, including: (1) a 

step treatment with the same final concentration of chloramphenicol as the long-term ramp, 
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and (2) a step treatment with an equivalent area under the curve as the ramp experiment, 

which means that it was treated with the same total amount of antibiotic for the same 

 

Figure 5-4. Impact of antibiotic introduction rate on the emergence of resistance and 
tolerance for DacrB cultures exposed to different concentrations of chloramphenicol. 

(A) Growth rates in DacrB cultures where the two chloramphenicol introduction rates are 
a short-term ramp (green) and a step (blue) with a final concentration of 1 µg/mL or 0.5 
µg/mL of chloramphenicol. n = 3 biological replicates for each treatment. (B) Fates of all 
isolated colonies from all plates. Results were classified as: nongrowing (navy), susceptible 
(light pink), tolerant (light green), and resistant (burgundy). Ab, antibiotics. N represents 
the number of isolates from each experiment that were picked. If no colonies were found 
on a high antibiotic plate then no isolate could be picked. Counts are shown at the end of 
each bar. (C) Normalized inhibition zone diameters for the four antibiotic disc assays. The 
inhibition zone diameters were normalized to the parent strain’s mean inhibition zone 
(black). The threshold to classify as resistant is shown in red.  The symbol shape indicates 
which plate the colony was originally isolated from: LB only (circle), LB+Cm (square), 
LB+Tet (triangle), LB+Cp (diamond). Each individual replicate for data presented here is 
shown in Figure D-8 and Figure D-9. 
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amount of time. We first found that wild type cells treated with this long-term ramp to 5 

µg/mL chloramphenicol had a distinct fitness advantage when compared to both step 

treatments (Figure 5-5A, Column 1); however, this fitness advantage did not translate 

increased levels of resistance (Figure 5-5B, Column 2). We also treated wild type cells 

with a more inhibitory, long-term ramp reaching a final concentration of 10 µg/mL 

chloramphenicol. Under these more inhibitory treatments (Figure 5-5A-B), we found that 

populations treated with the long-term ramp had an even greater fitness benefit compared 

to populations from both step treatments (Figure 5-5A); yet, again, this did not translate to 

higher evolved levels of resistance (Figure 5-5B). 

In contrast, DacrB had both significantly higher fitness and resistance levels when 

treated with a long-term ramp to 5 µg/mL compared to treatments with a step introduction 

of antibiotics (Figure 5-5A-B). Interestingly, all long-ramp conditions experienced small 

fitness costs until they reached a very resistant phenotype at 48 h (Figure 5-5C). Yet, by 

72 h, all these populations experienced resistance loss along with increased fitness (Figure 

5-5C). This reversion is in stark contrast to the step conditions, whose trajectories first 

experience significant fitness costs, but are able to start projecting towards resistant 

phenotypes by 24 h (Figure 5-5C). For the long-term ramp conditions, this could indicate 

that the evolved resistance was either only transiently present or that the mechanisms were 

too costly to retain.  
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5.3.3. Co-cultures impact how populations survive environmental fluctuations 

Competition assays can identify subtle differences in growth; when strains are 

forced to compete for survival, more fit strains become overrepresented in the population 

(198, 213). We next asked how a 1:1 co-culture of acrAB+ and DacrB cells performed 

given either a step or short-term ramp of antibiotic introduction (Figure 5-6). We found 

 

Figure 5-5. Impact of slow, long-term antibiotic introduction rate on populational 
fitness and resistance. 

Cultures were evolved under a 72 h ramp introduction of chloramphenicol, compared to a 
step introduction of chloramphenicol equivalent to the final [Cm] achieved by the ramp or 
by the AOC equivalent concentration. Impact of the different dynamics on (A) growth rates 
and (B) resistance, measured by inhibition zone diameters for the population. Data is shown 
for n = 3 biologically replicated evolution experiments. (C) Fitness-resistance trajectories 
mapped through time. 
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that while bacteria exposed to a short-term ramp of chloramphenicol acquired resistance, 

the three replicates with the step introduction had many fewer resistant isolates (Figure 5-

6B). In addition, co-cultures exposed to the short-term ramp were more likely to be 

resistant not just to chloramphenicol, but also to exhibit cross-resistance to ampicillin and 

ciprofloxacin (Figure 5-6B). These cells also had an increase in resistance as measured by 

the disc diffusion assay. In contrast, co-cultures exposed to a step had similar inhibition 

zone diameters to the parent strain for all tested antibiotics (Figure 5-6C). To assess 

 

Figure 5-6. Impact of antibiotic introduction rate on a co-cultured population. 

(A) The growth rates in co-cultures of 1:1 acrAB+ and DacrB. Chloramphenicol 
introduction rates were a short-term ramp (green) and a step (blue). n = 3 biological 
replicates for each treatment. (B) Fates of all isolated colonies from all plates. Results were 
classified as: nongrowing (navy), susceptible (light pink), tolerant (light green), and 
resistant (burgundy). Ab, antibiotics. N represents the number of isolates, counts are shown 
at the end of bar. (C) Normalized inhibition zone diameters for the four antibiotic disc 
assays. The inhibition zone diameters were normalized to the parent strain’s mean 
inhibition zone (black, --); resistant threshold (red). The symbol shape indicates which 
plate the colony was originally isolated from: LB only (circle), LB+Cm (square), LB+Tet 
(triangle), LB+Cp (diamond). Each individual replicate for data presented here is shown in 
Figure D-5. 
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population composition over time, we measured what fraction of the population were 

acrAB+ versus DacrB cells at intermediate time points. We accomplished this by including 

a gene for green fluorescent protein (sfgfp) in our acrAB+ strain to allow for 

straightforward identification of acrAB+ cells via flow cytometry. Despite an initial ratio 

of 1:1, we found that the majority of cells at the end of the experiments for both the short-

term ramp and the step input were acrAB+ (Figure D-5B). These results were specific to 

antibiotic treatment, as control experiments without chloramphenicol were not dominated 

by the acrAB+ strain (Figure D-5). We also assessed the parent strain of the isolates, and 

found that resistant isolates emerged from the acrAB+ strain over 60% of the time (Figure 

D-5B). 

5.3.4. Correlations between fitness and resistance for evolution studies 

In the eVOLVER continuous culture experiments, cells are maintained within a 

small window of optical densities (OD600 0.15 to 0.2) before being diluted; however, the 

growth rates of cultures within these bounds can vary significantly. Based on qualitative 

patterns between early spikes in growth rates and higher final growth rates (Figure 5-3A, 

Figure 5-6A), we asked if there was a relationship between the initial growth rate and the 

final growth rate. We found a correlation between the maximum initial growth rate and the 

maximum growth rate after treatment (Figure 5-7A, Table D-3), as well as between the 

number of dilution events until reaching the maximum post-treatment growth and the 

maximum post-treatment growth rate itself (Figure 5-7B). Thus, cultures that were growing 

faster before antibiotic addition continued to grow faster after treatment. 
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Figure 5-7. Correlations between final growth rates of cultures, initial growth rates, and number of dilution events. 
(A) Maximum initial growth rate (prior to antibiotic treatment) compared to the maximum growth rate after treatment. (B) 
Maximum growth rate after treatment versus the number of dilutions to reach this maximum growth. (C) Final growth rate versus 
the final number of dilutions at the end of the experiment. (D-F) Maximum change in resistance for a culture versus the (D) 
maximum initial growth rate (prior to antibiotic treatment), (E) the final growth rate, and (F) the total number of dilution events. 
These correlations include data for all strains, with replicates: short-term ramp (yellow), step (blue), control (gray). Correlations 
are depicted using lines when the p value<0.05 with colors representing which data set the correlation is from; correlations for 
all data are shown in black dashed lines. (G) Schematics of the parameters evaluated. There are 48 experiments represented in 
total: 15 experiments under short-term ramp conditions, 15 experiments under step conditions, and 18 control experiments. 
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In contrast, we found no statistically significant relationship between the total 

number of dilutions and the final growth rate for populations exposed to antibiotics (Figure 

5-7D), nor between the maximum initial growth rate and the maximum percentage change 

in chloramphenicol resistance (Figure 5-7C). However, we did identify a slight correlation, 

whereby the most resistant isolates were found in populations with slower final growth 

rates (Figure 5-7E), which is in agreement with results in the recent literature showing 

correlations between susceptibility and high growth rates (321). We also asked whether the 

higher levels of resistance were solely correlated with the number of dilutions, as more 

replication events could lead to a higher number of mutations (101). We did find a 

correlation between resistance and the number of dilution events; however, this 

relationship was only significant for cells that were exposed to a step or no antibiotics 

(Figure 5-7F). Under these conditions, growth and resistance were inversely correlated, 

which may suggest that the emergence of resistance is driven by spontaneous mutations 

(32). 

5.4. Discussion 

In this work, we have highlighted how the rate of antibiotic addition—in 

combination with the genetic background of the strain—can bias populations towards 

tolerance or resistance. We found that the native regulation of efflux pump expression 

makes cells robust to both ramp and step introductions of stress, whereas cells 

overexpressing the pump but lacking upstream regulators (acrAB+) were more likely to be 

nongrowing or susceptible; this effect was also seen in cells without efflux pumps (DacrB). 

The regulatory network has likely adapted to achieve fast responses to the introduction of 
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stress. This feature may be ideal for costly machinery, such as AcrAB-TolC efflux pumps, 

since bacteria can regulate their responses to stress and only turn them on when necessary.  

Experiments conducted with strains lacking the native regulation (acrAB+) or the 

efflux pumps altogether (DacrB) revealed clear differences in tolerance and resistance 

development that were influenced by the rate of antibiotic introduction. We found that 

short-term ramp introduction for acrAB+ cells led to higher levels of tolerance, resistance, 

and cross-resistance than the same cells exposed to a step. In addition, acrAB+ cells were 

also more likely to have high levels of cross-resistance under short-term ramp antibiotic 

introductions. Interestingly, we previously found that cells overexpressing AcrAB-TolC 

pumps had higher mutation rates compared to wild type cells (191). While acrAB+ cells 

did not appear to have an increase in resistance when compared to wild type after being 

treated with antibiotics, we did see a higher incidence of resistance emerging in the absence 

of antibiotics. Based on results from Chapter 4 and Reference (191), we speculate that the 

heightened mutational rate in our acrAB+ strain increases noise in evolutionary 

trajectories. This is beneficial because evolved isolates are more likely to probe a wider 

range of mutations (Chapter 4). However, this could also be costly due to the accumulation 

of deleterious mutations in the population. In this case, the acrAB+ genotype would 

provide a double-edge sword when populations are attempting to optimize fitness and 

resistance. 

Meanwhile, DacrB cells did acquire resistance, but never exhibited tolerance. 

While DacrB cells exposed to a ramp were more likely to acquire resistance than those 

exposed to a step, they were less likely to achieve as high a magnitude of resistance at more 
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inhibitory concentrations at 72 h. Interestingly, from whole genome sequencing in Chapter 

4, we identified that evolved DacrB cells repetitively converge to a resistant genotype. This  

resistant genotype always had an insertion sequence in acrS, which is the local regulator 

responsible for repressing AcrEF-TolC (180). This could also explain why certain DacrB 

populations grown with a step and at inhibitory populations exhibited a bimodal resistance 

distribution, where isolates were either resistant (with the insertion sequence in acrS) or 

not (without the insertion sequence in acrS). On the other hand, less inhibitory 

concentrations lead to a higher frequency of resistant cells in the population, but these cells 

were less able to withstand high antibiotic selection pressures. As a result, the DacrB 

populations either contained only a few very resistant isolates or a greater number of less 

resistant isolates. This along with results from Chapter 4 suggest that emergence of high 

levels of resistance evolved from wild type and acrAB+ is indeed facilitated by the AcrAB-

TolC pumps themselves. 

This study also highlights the importance of studying how different antibiotic 

treatments affect co-cultured populations. For our co-cultured acrAB+ and DacrB 

experiments, we found the most distinct differences between the two introduction rates did 

not necessarily reflect what we observed in the single-species population results. Clinical 

infections and bacterial communities are rarely, if ever, comprised of a single strain (322). 

Therefore, it will be interesting to assess more realistic treatments in the context of 

microbial communities. Overall, we found that the rate at which a bacterial population 

experiences stress can impact the acquisition of resistance and cross-resistance. In addition, 

short-term ramp perturbations in antibiotic introduction can increase both tolerance and 
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resistance and these effects are pronounced in acrAB+ cells. 

5.5. Contributions Statement 

The authors of this work were Ariel M. Langevin (A.M.L.), Imane El Meouche 

(I.E.M.), and Mary J. Dunlop (M.J.D.). A.M.L. and I.E.M. collected data. A.M.L. wrote 

custom scripts for experiments and data analysis, and preformed statistical testing. A.M.L. 

and M.J.D. wrote the manuscript. All authors contributed to this unpublished manuscript. 

5.6. Methods 

5.6.1. Strains and Plasmids 

We used E. coli strains BW25113 and BW25113 DacrB. The wild type strain 

BW25113 is the parent strain for the Keio collection (235). BW25113 DacrB was derived 

from Keio collection strain JW0451 (BW25113 DacrB::kanR) (189), where we removed 

the kanamycin resistance marker following the pCP20 protocol from (236). 

We used the plasmids pBbA5k-rfp (DacrB and wild type) and pBbA5k-acrAB-

sfgfp (acrAB+) in experiments. The plasmid pBbA5k-rfp controls expression of red 

fluorescent protein, and is included so that all strains contain the same plasmid for 

consistency.  The pBbA5k vector contains a medium-copy number (p15A) origin of 

replication, a PlacUV5 promoter, and a kanamycin resistance marker (238). Plasmid pBbA5k-

acrAB-sfgfp is a transcriptional fusion of acrAB and sfgfp (189). Plasmids were 

transformed into E. coli BW25113 and BW25113 DacrB and then isolated on Luria Broth 

(LB) plates with 30 µg/mL kanamycin for plasmid maintenance.  
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For the long-term ramp experiments, we used BW25113 and BW25113 DacrB 

without plasmids. 

5.6.2. Bacterial Growth Conditions 

For experiments from Sections 5.3.1, 5.3.3, and 5.3.4., overnight cultures were 

inoculated from a single colony in 10 mL LB with 30 µg/mL kanamycin and grown in a 

50 mL Erlenmeyer flask at 37°C with 200 rpm orbital shaking. After overnight growth, the 

optical density at 600 nm (OD600) was measured, and the initial volume for each culture 

was set so that the initial OD600 for the culture in the eVOLVER turbidostat was 0.1. If the 

experiment was composed of a co-culture, the volumes of each of the strains were 

determined based on an initial OD600 contribution of 0.05 each; the calculated volumes for 

each strain were added to total an initial OD600 of 0.1. 

5.6.3. Experimental Conditions within the eVOLVER 

In the eVOLVER turbididostat, cells were grown at 37°C in LB supplemented with 

30 µg/mL kanamycin. A stir bar mixed the cultures on a medium setting, or approximately 

1000 rpm (291).  Cells were grown in the eVOLVER for 2-3 hours prior to the beginning 

of the experiment to allow for bacteria to enter exponential growth. We set the eVOLVER 

using an upper OD600 bound of 0.2 and a lower bound of 0.15 so that cultures were grown 

to 0.2 and then diluted back to 0.15 to maintain the turbidostat at approximately constant 

cell density. Samples were collected after 72 hours and used to assess tolerance and 

resistance within the cultures. Growth rates were calculated from OD600 curves, where the 

OD600 data were smoothed using a moving average across 10 data points. 
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Cells were subjected to a ramp, step, or no introduction of chloramphenicol, where 

each experiment was conducted with three biological replicates. In the ramp, the 

concentration of chloramphenicol increased over 6 hours. The ramp was implemented by 

having two media influxes, one containing 0 µg/mL of chloramphenicol and the other 1 

µg/mL. The proportion of the chloramphenicol-containing media increased across the 6-

hour window until 100% of the media came from this source. The step was implemented 

by switching the media source from one containing 0 µg/mL chloramphenicol to 1 µg/mL. 

The samples themselves were also spiked with 1 µg/mL chloramphenicol at the same time 

to avoid a delay due to the time required for media cycling in the turbidostat. For the DacrB 

strain, we also ran the ramp and step experiment at a lower chloramphenicol concentration 

to reflect the strain’s lower IC50, in these cases the final concentration of chloramphenicol 

was 0.5 µg/mL instead of 1 µg/mL. 

For the long-term ramp experiments, the final concentrations were 5 µg/mL or 10 

µg/mL over 72 h. These eVOLVER experiments were inoculated with a single colony for 

~15 h before the experimental conditions changed. Samples were collected during the 

experiment at t= 0, 1, 3, 6, 12, 24, 48, 72 h and used to assess resistance of the population. 

Growth rates were calculated from OD600 curves, following Methods from Chapter 4. 

In control experiments, we grew cells in the eVOLVER without any antibiotic 

treatment. As this experiment selects for fast growers, we were only able to run control 

experiments past 48 hours with great difficulty (i.e. dilution events were so frequent that 1 

L media input bottles needed to be changed every 3 hours). We ran one experiment to 

completion at 72 hours and then conducted additional experiments using 24 hours as the 
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final time point. We confirmed that results for resistance and tolerance were similar 

between control samples run for 24 hours and the control that was run for 72 hours (Figure 

D-1, Columns 1-4). We also found that replacing the vials every 24 hours helped mitigate 

this seeming increase in growth rate; again at 72 hours, there were no resistant isolates 

observed (Figure D-1, Column 5). In a separate experiment, we also added the detergent 

Tween20 (Sigma Aldrich Cat. # P1379) at 0.1% (v/v) in an effort to reduce spurious OD600 

measurements caused by biofilm growth on the flask (Figure D-1, Column 6). We found 

that this eliminated the increasing growth rate over the 72-hour period, and still reflected 

the absence of resistance seen in triplicate 24 hour control experiments. 

5.6.4. Measuring Co-culture Distributions 

For co-cultures, samples were collected and diluted 1:10 in phosphate-buffered 

saline 1X (PBS) and measured with a Guava easyCyte HT sampling flow cytometer. There 

were 5000 counts from each read, using a threshold of 15 in the side scatter channel (SSC). 

The results were then sorted using a custom script to eliminate other small particles by 

thresholding the forward scatter channel (FSC) at 15 and setting thresholds for the red and 

green channels based on controls for our fluorescent proteins, RFP and sfGFP. 

We additionally classified the parent strain of each isolate. Each isolate was 

streaked on an LB + kanamycin plate and incubated overnight at 37°C. After 24 hours, we 

measured whether the fluorescence of the isolate was red or green using a blue light 

transilluminator (IO Rodeo). For a small fraction of colonies, we were not able to determine 

the parent strain based on fluorescence; these samples were marked as undetermined. 
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5.6.5. Isolating eVOLVER Mutants 

Using samples isolated from the end-point of the eVOLVER experiment, we 

diluted samples in PBS and plated them on LB agar. In cases where high antibiotic selection 

plates were used, we spun cultures down to concentrate them in advance of plating. The 

plates included a control for viable cells on a LB + kanamycin plate, as well as LB plates 

containing high doses of antibiotics: 25 µg/mL chloramphenicol, 6 µg/mL tetracycline, or 

0.1 µg/mL ciprofloxacin. For plating, samples were diluted by a 10-5 and 10-6 dilution factor 

for LB + kanamycin; all other samples were plated at 100, 10-2, 10-4, and 10-6 dilution 

factors. In addition, to concentrate cells we also spun down 1 mL of the culture at 5000 

rpm for 7 min, resuspended the pelleted cells in 100 µL of PBS, and plated all cells. The 

control plates were incubated at 37°C for 24 hours and the high dose antibiotic plates were 

incubated at 37°C for 48 hours, allowing time for unfit mutants to grow into visible 

colonies. To enable accurate colony counts, we aimed for between 10-1000 colonies per 

plate. If not enough colonies appeared on the plate (<10), we plated again with a more 

concentrated sample; if too many colonies appeared on the plate (>1,000), the samples 

were diluted and replated (Supplementary Data). 

Three colonies were isolated from each plate. These colonies were regrown in 1mL 

LB in a 24 well plate with kanamycin at 37°C and shaking at 200 rpm overnight. 

5.6.6. Measuring Antibiotic Susceptibility 

Colonies from the end-point of the eVOLVER experiment, in addition to colonies 

of the parent strains that were not subjected to growth in the eVOLVER, were inoculated 

in LB cultures with 30 µg/mL kanamycin at 37°C and 200 rpm shaking overnight. We used 
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10 µL of the cultures at a 1/100 dilution in fresh LB with kanamycin. After 4 hours at 37°C 

and 200 rpm, we removed the culture and used cotton swabs to cover the LB and 

kanamycin agar with a layer of the culture (309). 

Antibiotic-containing discs – chloramphenicol (30g), ampicillin (10g), tetracycline 

(30g), and ciprofloxacin (5g) (Thermo Fisher Scientific Cat. # CT0013B, CT0003B, 

CT0054B, and CT0425B, respectively) were then placed on the plate. The plate was 

incubated for 24 hours at 37°C. The diameter of the zone of inhibition around each disc 

was then measured. Based on literature and measurements of variability in replicates’ 

inhibition zones, we concluded that cells which were within 16% of the diameter of the 

parent’s inhibition zone were not resistant (323); 16% is two standard deviations (2s) from 

the mean for all antibiotics and all strains, and should account for 95% of the variability in 

replicate inhibition zones, reducing false positive rates for cells that are resistant (Figure 

D-2A & Table D-1). The classification of each isolate depends on which plate it came from 

and the difference in the diameter of inhibition between the parent strain and the isolate, as 

well as how well the cells regrew after the eVOLVER experiments.  

We also measured the dose response of the strains to different concentrations of 

chloramphenicol (Figure D-2B). We inoculated overnight cultures of 5 mL LB with 

kanamycin for each biological replicate, growing at 37°C and 200 rpm shaking. We then 

diluted cultures back to approximately 0.15 OD600 in 800 µL LB with kanamycin in a 24-

well plate and added a range of chloramphenicol concentrations: 0, 0.1, 0.2, 0.5, 1.0, 2.0, 

5.0, and 10 µg/mL. We then covered the plates with an evaporation-limiting membrane 

(Thermo Scientific AB-0580). Plates were incubated at 37°C and 200 rpm shaking and 



 

 

113 

optical density was measured using a plate reader (BioTek Synergy H1m) at t = 6 h to 

measure toxicity during exponential growth phase. 

For the long-term ramp experiments, samples were directly swabbed onto plates for 

a snapshot of population level resistance. These samples were only exposed to a 

chloramphenicol disc. 
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6. CONCLUSION 

 A deeper understanding of how complex dynamics promote or limit resistance and 

its evolution remains imperative. Not only will studies addressing such interactions 

improve our ability to select optimal antibiotic treatments in clinics, but they will also 

improve our ability to more accurately model both the short-term and long-term outcomes 

of antibiotic treatment. In this thesis, we investigated the effect of two previously 

understudied parameters — antibiotic introduction rates and mixed populations — on 

antibiotic resistance. In order to understand how antibiotic resistance and its evolution may 

be unknowingly promoted, we used the AcrAB-TolC efflux pump as a case study. Such 

efflux pumps are ubiquitous for providing multidrug resistance and are thought to not only 

impact antibiotic resistance, but its evolution as well.  

 First, we explored the effect of short-term dynamics on antibiotic resistance, more 

specifically how varying stress introduction rates over 6 hours impacted antibiotic 

resistance. In Chapter 2, we identified that slower stress introduction rates promoted the 

presence and fitness of resistant cells in the population. While this could be useful for 

applications in industrial biosynthesis, such patterns imply that certain antibiotic treatments 

(e.g. oral doses) could promote antibiotic resistance, even under antibiotic concentrations 

that are considered inhibitory for microbial growth. The results from this work suggest that 

temporal dynamics of antibiotic concentration are important factors in the emergence of 

antibiotic resistance. 

 In Chapter 3, we explored how mixed populations responded to antibiotic 

treatment. In contrast to previous studies, which demonstrated that certain 
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microenvironments provide a protective benefit for their neighbors (324, 325), we found 

that cells with AcrAB-TolC pumps harmed their neighboring cells under stressful 

conditions. In this case, cells with the AcrAB-TolC pumps created microenvironments with 

increased concentrations of extracellular antibiotics. When the microcolonies were 

homogenous, cells containing AcrAB-TolC pumps did not have a harmful impact on their 

neighbors; however, when the microcolonies were heterogenous, cells with AcrAB-TolC 

pumps had a deleterious effect on their neighbors who lack efflux pumps. Such results 

elucidated that certain pressures that more readily promote resistant phenotypes in mixed 

populations undergoing antibiotic treatment. Interestingly, when co-cultures were exposed 

to a short, 4-hour pulse of antibiotic treatment, we found that susceptible cells were actually 

able to recover more quickly at sub-inhibitory concentrations and non-costly resistant 

phenotypes were not overrepresented in the population even at very high pulse 

concentrations (Figure A-5). Taken together, we found that there are complex relationships 

in mixed populations that play a role in short-term survival to an antibiotic treatment.  

 Next, we explored how different factors may impact long-term outcomes antibiotic 

treatment, more specifically how a multi-day antibiotic treatment leads to evolution of 

antibiotic resistance. In Chapter 4, we conducted a systematic study of how antibiotic 

concentrations and ancestral genotypes impact the temporal evolution of antibiotic 

resistance. We identified that near-MIC concentrations most readily promoted the 

evolution of antibiotic resistance for all genotypes. Further, we found that these different 

genotypes were all able to achieve similar final levels of resistance. Through whole genome 

sequencing, we identified how each ancestral genotype evolved resistance through a suite 
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of unique genetic mutations. Wild type cells readily upregulated gene expression of 

AcrAB-TolC through insertion sequences in its local and global regulators, AcrR and 

MarR. Cells constitutively overexpressing AcrAB-TolC efflux pumps evolved resistance 

through mutations in the channels of AcrB and in the promoter region of the acrAB operon 

to tune AcrAB-TolC gene expression; these cells also acquired mutations in other genes 

that affect transcription, translation, localization, and degradation. These “off”-target 

effects could in part be due to the low expression of mutS with acrAB overexpression (191). 

Finally, cells without functional AcrAB-TolC efflux pumps upregulated expression of 

another multidrug efflux pump, AcrEF-TolC. Thus, Chapter 4 provides a deeper 

understanding into how and why bacteria can robustly and rapidly gain high levels of 

antibiotic resistance in response to long-term antibiotic treatments. 

Lastly, we explored how complex dynamics, including antibiotic introduction rates 

and mixed populations, influence the evolution of antibiotic resistance. In Chapter 5, we 

again identified that all genotypes were capable of robustly evolving antibiotic resistance 

in inhibitory conditions. The slower, short-term ramp of antibiotic introduction was most 

likely to promote the evolution of antibiotic resistance for all genotypes. The step antibiotic 

introduction rate did not prevent the evolution of antibiotic resistance entirely, but – 

depending on the initial population – did help to reduce the magnitude of resistance that 

evolved. We found variations in cross-resistance for the different starting strains, which 

agreed with the evolved genotypes that were reported in Chapter 4. We also observed that 

mixed populations undergoing short-term fluctuations were actually more stable and were 

less likely to evolve antibiotic resistance. 
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Additionally, in Chapter 5, when susceptible genotypes were exposed to more 

slowly changing environmental dynamics over 72 hours, we found that these populations 

had improved fitness and increased resistance in otherwise restrictive environments. This 

conclusion supports earlier work investigated in Chapter 2, that slowly changing stressful 

conditions may unnecessarily exacerbate antibiotic resistance and its evolution. We also 

found that mixed populations can demonstrate both selfishness, but also stability under 

different environmental conditions. In short, this work helps elucidate some otherwise 

under-explored factors of antibiotic resistance and contribute to the understanding of 

antibiotic resistance to enable predictive modeling in the future. 

6.1. Future Directions and Outlook 

In this work, we used the AcrAB-TolC efflux pumps as a case study to probe how 

complex environmental dynamics – such as antibiotic introduction rate and population 

diversity – may promote rising levels of antibiotic resistance and its evolution. Future 

studies may continue to explore these systems more thoroughly. For example, to confirm 

whether the intracellular concentration of a substrate is indeed higher due to efflux-pump 

containing neighbors, one could use a dye to measure the intracellular substrate 

concentration (Table 1-2). More complex temporal dynamics could be explored as well in 

order to determine how realistic antibiotic dosing treatments could affect resistance. For 

example, a study using antibiotic dose curves along with urine-like media in the eVOLVER 

could help provide insight to the best treatment methods for a urinary tract infection. 

Additionally, there are many antibiotic resistance mechanisms beyond efflux pumps that 

are threatening public health (5, 13, 14). Thus, future studies should investigate how other 
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antibiotic resistance mechanisms, including efflux pumps (e.g. TetA), antibiotic-

inactivating enzymes (e.g. b-lactamase), or reduced permeability (e.g. OmpF), promote the 

evolution of antibiotic resistance as well.  

Further, particular interest should be given to studying how more novel therapeutics 

— such as antimicrobial peptides (326), novel antibiotics (327), and combinatorial 

treatments with efflux pump inhibitors (328, 329) — impact the evolution of antibiotic 

resistance. Continued works should also probe the limitations of evolutionary experiments 

(97); for example, why the appearance of mutations found in this study have not been 

identified in clinical isolates. Finally, merging these lessons to parameterize models, such 

as a stochastic process (111) or population genetics framework (330), could help predict 

whether a treatment is destined to fail. Together, such studies will be crucial in helping to 

inform both how and why novel treatments might lose their efficacy before they fail in the 

real world. 

Here, we found series of mutations which increased a strain’s resistance. While we 

did not further investigate these mutations, it would be interesting to determine the 

resistance conference from each mutation, as well as to assess how the mutations could 

directly alter DNA binding, protein binding, and protein structures. More broadly, the 

increasing accessibility of DNA sequencing will enable a deeper understanding of the vast 

microbial diversity evolving and eliciting persistent antibiotic resistant infections (331). 

Similarly, the use of transcriptomics and metabolomics to evaluate transient changes, such 

as those enabling isolates to survive multi-day antibiotic treatments without resistance, will 

also expand our understanding of the unexpected loss of antibiotic efficacy (Chapter 5 & 
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Appendix E) (332, 333). Though our goal of outsmarting antibiotic resistant microbes 

appears more distant than predicted a decade ago; the sheer effort and perseverance of 

clinicians and scientists brings us closer still to a holistic understanding of antibiotic 

resistance and greater understanding of what we can practically do to fight back. 
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Appendix A: Supplementary Information for Chapter 2 

 Initial 
OD700 

Dataset Strain Mean Error 

(OD700) 

Sum of 

Squares 

(OD700)2 

Mean 

Pearson 

Coef. 

 

 

0.2 

Full dose t=0h 
(Figure 2-1D) 

sfgfp 0.159±0.042 0.114 0.915±0.051 * 

acrAB-sfgfp 0.251±0.067 0.416 0.596±0.634  * 

Step t=3h 
(Figure 2-3D) 

sfgfp 0.261±0.070 0.579 0.830±0.036  

acrAB-sfgfp 0.318±0.045 0.825 0.661±0.099  

Fast ramp 
(Figure 2-3E) 

sfgfp 0.113±0.029 0.108 0.905±0.097  

acrAB-sfgfp 0.186±0.115 0.369 0.859±0.102  

Slow ramp 
(Figure 2-3F) 

sfgfp 0.077±0.031 0.054 0.772±0.284  

acrAB-sfgfp 0.141±0.068 0.191 0.885±0.187  

Benefit Ratio Landscape 
(Figure 2-4B-D) 0.551±0.227 1.013 0.789±0.293 

 

0.01 
Benefit Ratio Landscape 
(Figure 2-5A-B) 

1.097±0.325 2.513 0.937±0.078 
 

 

0.2 

Step t=3h 
(Figure A-4D) 

sfgfp 0.321±0.074 0.646 0.461±0.131  

acrAB-sfgfp 0.219±0.119 0.359 0.919±0.046  

Fast ramp 
(Figure A-4E) 

sfgfp 0.310±0.147 0.685 0.583±0.212  

acrAB-sfgfp 0.331±0.212 0.881 0.787±0.117  

Slow ramp 
(Figure A-4F) 

sfgfp 0.310±0.147 0.685 0.583±0.212  

acrAB-sfgfp 0.331±0.204 0.866 0.964±0.044  

Benefit Ratio Landscape 
(Figure 2-6D-F) 

1.226±1.058 6.746 0.617±0.144 
 

Table A-1. Goodness-of-fit between model and experimental data. 

We define error as the absolute value of the difference between the model data and the 
mean of the experimental values. The error and sum of squares of the growth curve data 
has units of OD700 and OD7002, respectively; the error and sum of squares are dimensionless 
for the benefit ratios.  For this section, the statistics were taken across all experimental 
conditions (i.e. all concentrations of stressors): Eight different conditions for 
chloramphenicol and six conditions for pinene. For chloramphenicol at the lower initial 
inoculum level, the statistics for the benefit ratio compare four conditions. 
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Construct Template Direction Primer (5’ to 3’) 

pBbA5k-sfgfp 

pBbA5k-rfp (334) 
Forward CACGCATGGTATGGATGAACTGTACAAA

GGATCCAAACTCGAGTAAGG 

Reverse CAGCTCTTCGCCTTTACGCATATGTATA
TCTCCTTCTTAAAAGATCTTTTG 

pBbSFk-sfgfp (335) 
Forward CAAAAGATCTTTTAAGAAGGAGATATAC

ATATGCGTAAAGGCGAAGAGCTG 

Reverse CCTTACTCGAGTTTGGATCCTTTGTACA
GTTCATCCATACCATGCGTG 

pBbA5k-acrAB-
sfgfp 

pBbA5k-acrAB (336) 
Forward TGGTATGGATGAACTGTACAAATAATAG

TGAGGATCCAAACTCGAGTA 

Reverse CGGTACCTTTCTCCTCTTTAAAGTTAAAT
GATGATCGACAGTATGGC 

pBbSFk-sfgfp (335) 

Forward GCCATACTGTCGATCATCATTTAACTTT
AAAGAGGAGAAAGGTACCG 

Reverse 
TACTCGAGTTTGGATCCT 
CACTATTATTTGTACAGTTCA 
TCCATACCA 

Table A-2. Primers used for the construct of plasmids. 

Bold indicates oligonucleotides for polymerase chain reaction amplification of inserts; 
normal text indicates overhangs for Gibson assembly. 
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Parameter Symbol Units Value Strain 
Normalization term a 1/OD700

 10 All 

Half-saturation Constant Ks mg/mL 
2.367 ± 0.815 Single species 
4.050 ± 0.354 Multispecies 

Substrate Growth Yield g mL/mg 
0.0587 ± 0.0038 Single species 
0.0370 ± 0.0085 Multispecies 

Maximum Growth Rate µmax OD700/h 
0.188 rfp 
0.188 sfgfp 
0.158 acrAB-sfgfp 

Repression Coefficient 
RCm 

Dimensionless 

1.567 WT 
0.0422 DacrB 

Rpinene 
0.0100 WT 
0.0028 DacrB 

Hill coefficient 

nCm 

Dimensionless 

1.90 WT 
2.35 DacrB 

npinene 
6.97 WT 
3.27 DacrB 

Table A-3. Model parameters. 

Parameters for the model derived from growth curve data and toxicity curves. 
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Data type Strain(s) 
Error 

(OD700) 

Sum of Squares 

(OD700)2 

Pearson 

Coef. 

Single species 
Growth Curves 

rfp 0.248 0.061 0.991 
sfgfp 0.222 0.049 0.991 
acrAB-sfgfp 0.071 0.005 0.999 

Multispecies 
Growth Curves 

rfp & sfgfp 0.235 0.055 0.997 
rfp & acrAB-sfgfp 0.150 0.023 0.997 

Toxicity Curves 
Chloramphenicol 

WT 0.057 0.0032 0.999 
DacrB 0.057 0.0033 0.999 

Toxicity Curves 
Pinene 

WT 0.377 0.142 0.961 
DacrB 0.513 0.263 0.942 

Table A-4. Statistics for model parameter selection data. 

Error is defined here as the absolute value of the difference between model data and the 
mean of the experimental values. The data associated with these statistics can be found in 
Figure A-1. 
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Figure A-1. Data fitting to extract model parameters. 

(A) Single species growth curves determine parameters for specific strains. Growth of rfp, sfgfp, and acrAB-sfgfp over time are 
quantified by OD700. Error bars show standard error of n = 6 biological replicates, except for acrAB-sfgfp single species growth 
data where n = 2. Single species model is fit to growth data for each strain using least-squares regression to determine parameters 
for the model. (B) Co-culture growth curves determine parameters for multispecies model. Growth of rfp co-cultured with sfgfp 
and rfp co-cultured with acrAB-sfgfp over time are quantified by OD700. Error bars shows standard error of n = 3 biological 
replicates. Multispecies model is fit to growth curve data for co-cultured strains using least-squares regression to determine 
model parameters. (C) Parameters for toxicity terms are determined by killing curves. The data for toxicity of chloramphenicol 
(shown) and pinene (not shown) is fit with Hill functions to minimize least-squares error. Error bars show standard deviation of 
n = 3 biological replicates. 
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Figure A-2. Benefit and cost trade-offs of AcrAB-TolC efflux pumps in pinene.  

Cell density as a function of pinene concentration. Induction of acrAB-sfgfp increases cell 
growth up to IPTG concentrations of 5 µM, but higher concentrations reduce cell growth. 
Error bars in show standard error of n = 3 biological replicates. 
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Figure A-3. Competitive growth in pinene.  

(A-C) Three different rates of pinene introduction: (A) step introduction, (B) steep ramp, 
and (C) gradual ramp. The solid line shows the values used in the mathematical model; 
dashed line shows experimental treatment used to approximate the constant introduction 
rate. The total amounts of pinene added in (A-C) are equal. (D-F) Growth of two competing 
strains under different pinene treatments. As a control, top row shows competition between 
two strains lacking efflux pumps, sfgfp and rfp. The bottom row shows competition 
between a strain with the efflux pump, acrAB-sfgfp, and one without the efflux pump, rfp. 
Error bars show standard deviations for n = 3 biological replicates. 
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Figure A-4. Rate of pinene addition affects survival.  

(A-C) Three different rates of pinene introduction: (A) step introduction, (B) steep ramp, and (C) gradual ramp. The thick solid 
line shows the values used in the mathematical model; thin solid line shows experimental treatment used to approximate the 
constant introduction rate. The cumulative antibiotic levels of pinene in (A-C) are equal. (D-F) The growth of acrAB-sfgfp 
(green) compared against growth of the control, sfgfp, in the competition experiments (dots) and simulations (solid lines) for 
different pinene introduction rates as shown in (A-C), respectively. Data points show mean and standard deviations of n = 3 
biological replicates. 
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Figure A-5. Susceptible cells more readily recover from short-term pulses of antibiotics at sub-inhibitory concentrations. 

(A) The growth of acrAB-sfgfp (green) compared against growth of the control, sfgfp, in the competition experiments (dots) for 
different t = 4 h pulses of chloramphenicol treatment. (B) Final OD700 measurements t = 16 h after antibiotics were washed out. 
Data points show mean and standard deviations of n = 3 biological replicates.  
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Appendix B: Supplementary Information for Chapter 3 

Parameter Symbol Units Value 
Initial Cell Biomass N(0) rel. cell area 1 
Initial Cell Antibiotic Concentration Cin(0) µg/mL 0 

Chloramphenicol 
Cell Doubling Time Td min 60 
Maximum Growth Rate µ rel. cell area min-1 0.1106 
Influx rate via Diffusion Kin min-1 1 
Efflux rate via Diffusion Kout,DacrB min-1 1 
Efflux rate via Diffusion & Active Efflux Kout,WT min-1 4 
Repression coefficient Kc µg/mL 0.960 
Hill coefficient hc Dimensionless 1.47 

Ciprofloxacin 
Cell Doubling Time Td min 90 
Maximum Growth Rate µ rel. cell area min-1 0.0737 
Influx rate via Diffusion Kin min-1 1 
Efflux rate via Diffusion Kout,DacrB min-1 1 
Efflux rate via Diffusion & Active Efflux Kout,WT min-1 3 
Repression coefficient Kc µg/mL 0.247 
Hill coefficient hc Dimensionless 0.83 

Table B-1. Model parameters. 

Parameters for the model derived from data in Figure B-2, are calculated using from 
experimental doubling time, or are approximated based on the efflux efficiency (fold 
difference in the MIC) of different strains. 



 

 

130 

 

Figure B-1. Full data sets for figures including outliers and number of cells (n).  

Data set corresponding to (A) Figure 3-1B-C, (B) Figure 3-2C-D, (C) Figure 3-4E, and (D) 
Figure 3-6. Each blue dot indicates the growth rate of a single cell. We note that in all 
cases, the plots shown in the main text include ³97% of cells. The automated image 
analysis process occasionally calculates artificially high or low growth rates, but this is a 
rare occurrence (always <3%, but more typically <1% of cells). The full data sets can be 
found in Table S1 of reference (337). 
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Figure B-2. Toxicity curves and data fitting for model parameters. 

(A) Chloramphenicol and (B) ciprofloxacin experimental data for strains: wild type, DacrB, 
DacrB-AcrAB-GFP, and DacrB-GFP. Hill function fits for wild type and DacrB strains. 
Fits were conducted by minimizing least-squares error. Error bars show standard deviation 
of n = 3 biological replicates. Parameters for DacrB Hill function model fit are listed in 
Table B-1. 
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Figure B-3. Fold change in cell length over time for all individual cells. 

(A) ΔacrB-RFP and AcrAB-GFP cells were mixed in ratios of 1:5 and 5:1 and grown on 
agarose pads with 0.2 µg/ml chloramphenicol. Colored lines show all cell traces and black 
lines show the mean values, as indicated in the figure legend. A fold change of two at the 
final time point indicates that a cell has doubled. (B) ΔacrB-RFP and ΔacrB-GFP cells for 
conditions as described in (A). 
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Appendix C: Supplementary Information for Chapter 4 

 

 
Table C-1. p values for differences in growth rates for each strain. 

P-values from the (paired) t-test for quantifying significant differences in growth rate 
between a given time point and the initial time point. 
 
 
Direction Primer (5’ to 3’) 

Forward ATGTATGTAAATCTAACGCCTGTAAATTCACGAACATATGGTGT
AGGCTGGAGCTGCTTC 

Reverse CCTGGAGTCAGATTCAGGGTTATTCGTTAGTGGCAGGATTGATC
CGTCGACCTGCAGTT 

Table C-2. Primers for acrR knockout. 

Bold letters denote the active priming region to amplify pKD13 from Reference (235). 
Primers also contain 40-nt homology regions for acrR. 
 

 

WT
Time 1 (h) Time 2 (h) 0 0.2 0.5 1 2 5 10 20

0 1 4.35E-01 9.40E-02 7.02E-02 1.82E-02 1.33E-02 2.48E-02 2.36E-01 1.66E-01
0 3 3.89E-01 3.17E-01 1.71E-02 1.55E-02 4.90E-03 6.18E-02 6.11E-02 7.82E-02
0 6 3.86E-01 7.73E-02 3.90E-03 2.16E-02 2.70E-03 2.48E-02 2.56E-02 5.51E-02
0 12 4.51E-01 6.46E-02 1.54E-02 3.21E-02 6.99E-04 4.85E-02 2.56E-02 7.00E-02
0 24 5.07E-01 7.52E-01 1.42E-01 3.51E-02 3.59E-02 4.70E-02 2.56E-02 5.51E-02
0 48 8.66E-01 1.81E-01 2.52E-01 6.04E-02 4.02E-02 7.70E-02 6.36E-02 5.51E-02
0 72 3.77E-01 1.56E-01 1.92E-01 1.99E-01 7.55E-02 7.46E-02 7.94E-02 5.51E-02

AcrAB+
Time 1 (h) Time 2 (h) 0 0.2 0.5 1 2 5 10 20

0 1 2.63E-01 2.12E-01 3.03E-02 7.27E-02 1.61E-02 3.43E-02 2.72E-01 5.02E-01
0 3 1.18E-01 1.05E-01 3.74E-02 2.97E-02 1.89E-02 1.04E-01 1.85E-01 1.07E-01
0 6 1.45E-01 2.80E-01 4.65E-02 2.08E-02 1.88E-02 3.33E-02 9.74E-02 1.04E-02
0 12 1.77E-01 1.63E-01 3.62E-02 9.00E-03 5.54E-02 9.67E-02 9.74E-02 1.04E-02
0 24 1.80E-01 1.18E-01 4.75E-02 8.40E-03 1.20E-02 8.73E-02 9.74E-02 1.04E-02
0 48 4.00E-01 9.28E-02 7.78E-01 5.12E-02 2.91E-02 1.44E-01 9.74E-02 1.03E-02
0 72 2.93E-01 1.37E-01 8.32E-01 1.75E-01 4.14E-02 2.68E-01 9.84E-02 1.04E-02

ΔacrB
Time 1 (h) Time 2 (h) 0 0.2 0.5 1 2 5 10

0 1 2.75E-01 2.41E-01 3.62E-02 1.91E-01 1.15E-02 2.40E-03 1.83E-01
0 3 3.26E-01 1.49E-01 4.18E-02 6.45E-02 1.15E-02 4.30E-03 7.58E-02
0 6 3.54E-01 2.92E-02 3.25E-02 1.30E-03 1.68E-02 4.30E-03 7.58E-02
0 12 5.40E-01 1.63E-02 2.45E-02 1.28E-01 1.15E-02 4.30E-03 7.59E-02
0 24 8.36E-01 2.05E-02 3.42E-02 2.49E-01 1.15E-02 4.30E-03 7.58E-02
0 48 1.29E-01 3.91E-01 8.39E-02 4.06E-02 4.20E-03 4.30E-03 7.59E-02
0 72 5.96E-01 7.73E-01 2.63E-01 2.88E-01 7.16E-04 4.30E-03 7.58E-02

Chloramphenicol, µg/mL

Chloramphenicol, µg/mL

Chloramphenicol, µg/mL
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 Chloramphenicol (µg/mL) 
 0 0.01 0.02 0.05 0.10 0.15 0.20 0.25 0.30 0.50 1 2 
WT 0.389 0.355 0.919 0.919 0.900 0.567 0.494 0.832 0.474 0.714 0.275 0.107 
AcrAB+ 0.375 0.510 0.586 0.367 0.225 0.236 0.446 0.938 0.435 0.016 0.039 0.053 
DacrB 0.032 0.138 0.142 0.089 0.053 0.809 0.229 0.429 0.187 0.273 0.430 0.058 

Table C-3. p values of toxicity curves with and without Tween20. 

P-values from the paired t-test to assess statistically significant differences in growth 
between samples treated with Tween20 at 0.0% and 0.2% (v/v) as shown in Figure C-7. 
 

 

Table C-4. p values for differences in inhibition zone diameters for each strain. 

P-values from the (paired) t-test for quantifying significant differences in resistance as 
measured by the diameter of inhibition zone between a given time point and the initial time 
point. 
 

WT
Time 1 (h) Time 2 (h) 0 0.2 0.5 1 2 5 10 20

0 1 6.27E-01 4.44E-01 8.43E-02 6.82E-01 4.73E-01 1.61E-02 2.83E-01 7.80E-03
0 3 7.62E-01 8.30E-01 5.34E-01 5.21E-01 9.80E-02 6.03E-02 3.04E-01 1.13E-02
0 6 3.64E-01 1.33E-01 4.20E-01 3.12E-01 2.15E-01 3.51E-01 2.62E-01 3.47E-02
0 12 9.11E-01 7.10E-01 1.62E-01 9.82E-01 3.48E-01 4.90E-01 2.94E-01 6.80E-02
0 24 2.78E-02 6.33E-01 9.16E-01 6.00E-04 6.91E-02 3.38E-01 3.88E-01 8.41E-02
0 48 7.97E-01 4.41E-01 8.52E-01 1.84E-01 2.87E-02 4.00E-04 4.63E-01 1.04E-01
0 72 6.71E-01 2.40E-01 4.82E-02 5.43E-01 3.00E-02 1.10E-02 6.02E-01 1.44E-01

AcrAB+
Time 1 (h) Time 2 (h) 0 0.2 0.5 1 2 5 10 20

0 1 5.02E-01 3.98E-01 2.19E-01 3.82E-01 4.05E-01 2.50E-03 9.30E-03 6.68E-02
0 3 7.60E-02 7.66E-01 5.85E-01 8.59E-01 5.89E-02 4.04E-02 9.00E-03 3.12E-02
0 6 8.64E-01 3.62E-02 1.44E-01 2.31E-01 3.54E-02 5.34E-02 1.60E-03 1.83E-02
0 12 2.04E-01 9.28E-02 8.99E-01 1.40E-01 3.19E-02 4.28E-01 6.49E-02 1.82E-02
0 24 3.95E-01 6.24E-01 5.65E-01 1.14E-01 7.36E-01 6.98E-01 7.88E-02 1.14E-02
0 48 2.50E-01 3.33E-01 6.27E-01 1.55E-01 5.75E-01 1.41E-02 1.55E-02 1.20E-03
0 72 5.17E-01 2.16E-02 8.37E-01 7.90E-03 1.45E-01 8.11E-02 7.00E-03 1.08E-02

ΔacrB
Time 1 (h) Time 2 (h) 0 0.2 0.5 1 2 5 10

0 1 3.61E-01 2.64E-01 2.12E-01 5.50E-01 9.85E-02 4.70E-03 1.99E-02
0 3 7.17E-01 1.51E-01 9.70E-02 9.40E-01 8.93E-02 2.26E-02 2.29E-02
0 6 3.25E-01 7.11E-02 1.88E-01 8.83E-01 7.70E-03 2.60E-01 4.41E-02
0 12 5.60E-01 5.00E-03 1.10E-01 5.77E-01 1.29E-01 1.48E-02 4.48E-02
0 24 5.82E-01 3.19E-01 3.20E-02 6.78E-02 1.56E-01 2.78E-02 1.32E-01
0 48 5.25E-01 8.00E-03 4.33E-02 1.30E-01 9.03E-01 5.47E-02 1.10E-01
0 72 6.24E-01 6.50E-03 1.39E-01 1.51E-01 6.12E-01 1.68E-02 2.97E-01

Chloramphenicol, µg/mL

Chloramphenicol, µg/mL

Chloramphenicol, µg/mL
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Figure C-1. Growth rates for each biological replicate and chloramphenicol 
treatment concentration. 

Mean growth rates for n = 3 biological replicates. Shaded error bars show standard 
deviation. Cultures grown without chloramphenicol occasionally accumulated biofilms, 
leading to the large variations in the growth measurements for the 0 µg/ml case. 
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Figure C-2. Toxicity curves for each parent strain. 

Final OD600 was measured after 24 h. Data points show mean values from n = 3 biological 
replicates, error bars show standard deviation. 
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Figure C-3. Inhibition zone diameters for each biological replicate and 
chloramphenicol treatment concentration. 

Mean diameter of inhibition zones (Dinh) for n = 3 biological replicates. Shaded error bars 
show standard deviation. 
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Figure C-4. Colony forming units (CFU) per mL counts for each treatment 
concentration. 

Mean CFU/mL values from n = 3 biological replicates are shown, with error bars denoting 
standard deviation.  
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Figure C-5. Linear map between the natural log of the MIC and inhibition zone areas. 

Data are from inhibition zone diameters and MIC90 for each parent strains (e.g. AcrAB+) 
and the evolved isolates of each parent strain from three different eVOLVER experiments 
(e.g. eAcrAB+1, eAcrAB+2, and eAcrAB+3). MIC90 is defined as the point where OD600 
is reduced to 10% of normal growth after 24 h (Figure S2). To find the linear correlation, 
we calculated the natural log of the MIC90 and the inhibition zone areas. The parameters 
for this map are Q = 30 µg, k = 57.8, and K = -0.971, following the notation from Reference 
(310). 
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Figure C-6. Resistance and fitness of WT cells exposed to ciprofloxacin for 168 h. 

(A) Average growth rate. Growth rates are normalized to growth of strains at t = 0 h. 
Lighter areas represent growth rates closer to pre-treatment values; darker areas represent 
reduced growth rates. MIC0parent concentration is denoted with a bold dashed line (Figure 
C-2). (B) Average resistance. Diameter of inhibition zones were plotted for each time and 
treatment. Smaller inhibition zones are shown in red and correspond to resistant cells (£15 
mm) and larger inhibition zones are shown in blue and represent susceptible cells (³21 
mm); intermediate inhibition is shown with color scale from orange to green. MIC0parent is 
denoted with a bold dashed line. (C) Average final resistance after 72 h based on treatment 
concentration normalized to MIC0. Data points show the mean of three biological 
replicates. Shaded error bars show standard deviation. (D-F) Mean percentage of the 
population, which could grow on LB plates containing (D) 0.5 µg/mL, (E) 1 µg/mL or (F) 
10 µg/mL ciprofloxacin. Initial populations contained ~107 CFUs. MIC0parent compared to 
treatment concentration is denoted with a bold dashed line. 
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Figure C-7. Toxicity curves in the presence of Tween20. 

Strains grown with and without 0.2% (v/v) Tween20. Data points show mean values from 
n = 3 biological replicates, error bars show standard deviation. 
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Appendix D: Supplementary Information for Chapter 5 

 Cm Amp Tet Cp 
WT 21.2 ± 2.7 18.2 ± 1.7 21.7 ± 2.0 26.1 ± 2.2 
acrAB+ 27.1 ± 1.9 20.2 ± 1.3 26.7 ± 1.6 30.9 ± 1.9 
DacrB 33.5 ± 3.2 24.4 ± 2.0 29.0 ± 2.1 32.3 ± 1.9 

Table D-1. Inhibition zones for parent strains prior to treatment. 

For the different genotypes tested, the mean diameters of the inhibition zones from the 
antibiotic disc susceptibility test are indicated in millimeters (mm) ± standard deviation. n 
= 20 biological replicates. Note that smaller numbers indicate higher resistance. 
Distributions are shown in Figure D-2A. 

 p value at timepoint 
 t = 12 hours t = 24 hours t = 48 hours t = 72 hours 
WT 0.343 0.522 0.764 0.727 
acrAB+ 0.046* 0.0097* 0.295 0.724 
DacrB 0.436 0.376 0.367 0.775 
Co-culture 0.166 0.603 0.505 0.223 

Table D-2. p values from two-sample t-test for growth rate difference. 

Probabilities that two sets of growth rates for ramp and step are significantly different. For 
p value<0.05, there is a 95% confidence that the growth rates for ramp and step conditions, 
with n = 3 biological replicates, are not similar by chance, indicated by an asterisk. 
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 R p value R p value R p value R p value 
 All Combined Ramp Only Step Only Control Only 
Figure 5-7A 0.427* 2.47e-3 0.494 6.15e-2 0.029 9.20e-1 0.811* 4.41e-5 
Figure 5-7B 0.485* 4.77e-4 0.0228 9.36e-1 0.450 9.25e-2 0.885* 1.06e-6 
Figure 5-7C 0.205 1.62e-1 0.250 3.68e-1 0.350 2.01e-1 0.723* 6.91e-4 
Figure 5-7D -0.217 1.38e-1 -0.226 4.17e-1 0.046 8.70e-1 -0.868* 2.97e-6 
Figure 5-7E 0.464* 9.02e-4 0.107 7.04e-1 -0.474 7.43e-2 -0.552* 1.75e-2 
Figure 5-7F -0.327* 2.35e-2 0.0305 9.14e-1 -0.516* 4.89e-2 -0.530* 2.36e-2 

Table D-3. Pearson correlation coefficients and their p values. 

Correlation coefficients between: (Row 1) Maximum initial growth rate (prior to antibiotic 
treatment) compared to the maximum growth rate after treatment. (Row 2) Maximum 
growth rate after treatment versus the number of dilutions to reach this maximum growth. 
(Row 3) Final growth rate versus the final number of dilutions at the end of the experiment. 
(Row 4-6) Maximum change in resistance for a culture versus the (Row 4) maximum initial 
growth rate (prior to antibiotic treatment), (Row 5) the final growth rate, and (Row 6) the 
total number of dilution events, as depicted in Figure 5-7. Pearson coefficient values 
denoted by an asterisk are significant with a p value<0.05 and 95% confidence. Data 
represents the statistics for 48 experiments: 15 step experiments, 15 ramp experiments, and 
18 control experiments. 
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Figure D-1. Wild type control without antibiotics and the emergence of resistance and 
tolerance. 

(A) (Top) Actual concentration of chloramphenicol over time (no antibiotic treatment) for 
wild type cells at 24 h (three experiments on the left) and 72 h (three experiments on the 
right). n = 3 biological replicates for 24h control and n = 1 biological replicate for 72 h 
control under 3 experimental conditions: (1) control only, (2) control with vial replaced 
every 24h, and (3) control with Tween20 added to media at 0.1% (v/v). (Bottom) Growth 
rates. We note that for the “control only” case, after approximately 40h the dilution events 
became so frequent that it was not possible to calculate the growth rate accurately from the 
slope of the OD600 curve, though cultures continued to grow well for the full 72 h time 
course. (Inset) Actual OD600 over the whole experiment. Replacing the culture vial every 
24 h and adding Tween20 both addressed this problem, suggesting that biofilm formation 
may be an issue in the absence of antibiotics. Numbers in the plot titles refer to the 
experiment number. (B) Fates of all isolated colonies from all plates. Results were 
classified as: nongrowing (navy), susceptible (light pink), tolerant (light green), and 
resistant (burgundy). Ab, antibiotics. N represents the number of isolates from each 
experiment that were picked. If no colonies were found on a high antibiotic plate then no 
isolate could be picked. (C) Inhibition zone diameters for the four antibiotic disc assays. 
The inhibition zone diameters were normalized to the parent strain’s mean inhibition zone 
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(shown in black). The threshold to classify as resistant is shown in red. The symbol shape 
indicates which plate the colony was originally isolated from: LB only (circle), LB+Cm 
(square), LB+Tet (triangle), LB+Cp (diamond). 

 

 
Figure D-2. acrAB+ resistance relative to WT and DacrB. 

(A) Histograms of the inhibition zones for each antibiotic for each strain. n = 20 biological 
replicates for each distribution. Cross reference with Table D-1 for the mean and standard 
deviations of these distributions. (B) Dose response curves for all three strains to 
chloramphenicol after 6 h, which is the time that these strains remain in exponential phase. 
n = 3 biological replicates and error bars show standard deviation. 
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Figure D-3. Normalized inhibition zones for example isolates. 

Representative classification examples (Figure 5-2B). The symbol shape indicates which 
plate the colony was originally isolated from: LB only (circle), LB+Cm (square), LB+Tet 
(triangle), LB+Cp (diamond). Susceptible cells did not grow on high antibiotic dose plates 
and did not have a decrease in antibiotic inhibition zone. Tolerant cells were isolated on a 
high dose selective plate (chloramphenicol in this specific case) but do not show increased 
resistance to chloramphenicol in the disc diffusion assay. Resistant isolates are classified 
based on a decrease in their inhibition zone diameter. Note that this example of a resistant 
strain here is only resistant to chloramphenicol and would be sorted into the “Resistant to 
Cm only” category (refer to Figure 5-2C, Figure 5-3B, and Figure 5-6B). Many strains with 
high resistance to chloramphenicol were often cross-resistant to other antibiotics. Cross-
resistant isolates are identified as having resistance to multiple antibiotics, not 
chloramphenicol alone. 
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Figure D-4. Mutation frequencies at the end of the experiment. 

Mutation frequencies for all strains and all experiments for the three high dose antibiotic 
plates for n = 3 biological replicates. Error bars show standard deviation. Mutation 
frequencies were calculated by the fraction of colony forming units per milliliter (CFU/mL) 
growing on high dose antibiotic plates divided by CFU/mL on LB plates containing only 
kanamycin for plasmid maintenance.  
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Figure D-5. All co-cultured experiments and the emergence of resistance and 
tolerance. 

(A) (Top) Actual concentration of chloramphenicol over time along with (bottom) growth 
rates for co-cultured experiments. n = 3 biological replicates shown for each experimental 
condition: ramp, step, or control. Numbers in the plot titles refer to the experiment number. 
(B) Fates of all isolated colonies from all plates. Results were classified as: nongrowing, 
susceptible, tolerant, and resistant. The fate sorting shows the parent strain of the isolate: 
acrAB+ (green), DacrB (magenta), undetermined (white), nongrowing (black). Ab, 
antibiotics. N represents the number of isolates from each experiment that were picked. If 
no colonies were found on a high antibiotic plate then no isolate could be picked. (C) 
Inhibition zone diameters for the four antibiotic disc assays. The inhibition zone diameters 
were normalized to the parent strain’s mean inhibition zone. The threshold to classify as 
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resistant is shown in red. The symbol shape indicates which plate the colony was originally 
isolated from: LB only (circle), LB+Cm (square), LB+Tet (triangle), LB+Cp (diamond). 
(D) Bar graphs depict the fraction of acrAB+ cells in the total population at different time 
points in the co-culture for each replicate. We were not able to reach the baseline number 
of counts with flow cytometry for replicate 3. 

 
 

 

Figure D-6. All wild type experiments and the emergence of resistance and tolerance. 

(A) (Top) Actual concentration of chloramphenicol over time along with (bottom) growth 
rates for wild type cells. Three biological replicates shown for each experimental condition: 
ramp, step, or control. Numbers in the plot titles refer to the experiment number. (B) Fates 
of all isolated colonies from all plates. Results were classified as: nongrowing (navy), 
susceptible (light pink), tolerant (light green), and resistant (burgundy). Ab, antibiotics. N 
represents the number of isolates from each experiment that were picked. If no colonies 
were found on a high antibiotic plate then no isolate could be picked. (C) Inhibition zone 
diameters for the four antibiotic disc assays. The inhibition zone diameters were 
normalized to the parent strain’s mean inhibition zone. The threshold to classify as resistant 
is shown in red. The symbol shape indicates which plate the colony was originally isolated 
from: LB only (circle), LB+Cm (square), LB+Tet (triangle), LB+Cp (diamond). 
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Figure D-7. All acrAB+ experiments and the emergence of resistance and tolerance. 

(A) (Top) Actual concentration of chloramphenicol over time along with (bottom) growth 
rates for acrAB+ cells. Three biological replicates shown for each experimental condition: 
ramp, step, or control. Numbers in the plot titles refer to the experiment number. (B) Fates 
of all isolated colonies from all plates. Results were classified as: nongrowing (navy), 
susceptible (light pink), tolerant (light green), and resistant (burgundy). Ab, antibiotics. N 
represents the number of isolates from each experiment that were picked. If no colonies 
were found on a high antibiotic plate then no isolate could be picked. (C) Inhibition zone 
diameters for the four antibiotic disc assays. The inhibition zone diameters were 
normalized to the parent strain’s mean inhibition zone. The threshold to classify as resistant 
is shown in red. The symbol shape indicates which plate the colony was originally isolated 
from: LB only (circle), LB+Cm (square), LB+Tet (triangle), LB+Cp (diamond). 
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Figure D-8. All DacrB experiments and the emergence of resistance and tolerance at 
MICwt (1 µg/mL). 

(A) (Top) Actual concentration of chloramphenicol over time along with (bottom) growth 
rates for DacrB cells. Three biological replicates shown for each experimental condition: 
ramp, step, or control. Numbers in the plot titles refer to the experiment number. (B) Fates 
of all isolated colonies from all plates. Results were classified as: nongrowing (navy), 
susceptible (light pink), tolerant (light green), and resistant (burgundy). Ab, antibiotics. N 
represents the number of isolates from each experiment that were picked. If no colonies 
were found on a high antibiotic plate then no isolate could be picked. (C) Inhibition zone 
diameters for the four antibiotic disc assays. The inhibition zone diameters were 
normalized to the parent strain’s mean inhibition zone. The threshold to classify as resistant 
is shown in red. The symbol shape indicates which plate the colony was originally isolated 
from: LB only (circle), LB+Cm (square), LB+Tet (triangle), LB+Cp (diamond). 
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Figure D-9. All DacrB experiments and the emergence of resistance and tolerance at 
MICDacrB (0.5 µg/mL). 

(A) (Top) Actual concentration of chloramphenicol over time along with (bottom) growth 
rates for DacrB cells. n = 3 biological replicates shown for each experimental condition: 
ramp, step, or control. Numbers in the plot titles refer to the experiment number. (B) Fates 
of all isolated colonies from all plates. Results were classified as: nongrowing (navy), 
susceptible (light pink), tolerant (light green), and resistant (burgundy). Ab, antibiotics. N 
represents the number of isolates from each experiment that were picked. If no colonies 
were found on a high antibiotic plate then no isolate could be picked. (C) Inhibition zone 
diameters for the four antibiotic disc assays. The inhibition zone diameters were 
normalized to the parent strain’s mean inhibition zone. The threshold to classify as resistant 
is shown in red. The symbol shape indicates which plate the colony was originally isolated 
from: LB only (circle), LB+Cm (square), LB+Tet (triangle), LB+Cp (diamond). 
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Appendix E: Predicting Single Cell Fate with a c-di-GMP Biosensor 

E.1. Introduction 

When single cells are able to survive an antibiotic dose, antibiotic treatments fail 

(36). This single cell survival does not only result from genotypic changes, such as 

discussed in this thesis, but can also result solely from phenotypic changes, such as 

variations in the metabolism or gene expression of single cells (338). Earlier studies have 

identified that heterogeneity gene expression of a single cell provides a bet-hedging 

mechanism to survive antibiotic treatment; by diversifying the phenotypes in a microbial 

population, the population increase the likelihood that a sub-population will be able to 

survive (339). As a result, in recent years, there has been an increased interest in using gene 

expression to predict cell fates (340). 

Outside of gene expression, slow growth can predict persistence in S. enterica, 

whereby slower growing cells can survive antibiotic treatment (341). Likewise, other 

studies have revealed a link between cell cycle proteins and antibiotic resistance in Listeria 

monocytogenes (342). This connection is assumed to be between bacterial metabolic state 

and an antibiotic’s efficacy (338). Thus, there has been recently particular interest into 

whether manipulation of cell cycle or metabolism could improve antibiotic efficacy. 

Further, Schrader & Shapiro found that they could synthetically synchronize the cell cycles 

of Caulobacter crescentus populations (343).4  Outside of antibiotic resistance studies, 

other studies have been able to programmed the cell death of single cells at a given stage 

 
4 An interesting note: ClpX – a protease that was mutated after antibiotic treatment in Chapter 4 (Table 
4-1) – plays an important role in controlling cell cycle in C. crescentus (351). 



 

 

154 

in their cell cycle (344).	

Cyclic diguanosine monophosphate (c-di-GMP) is a small, signaling molecule that 

acts as a regulator of many bacterial behaviors, including cell cycle progression, biofilm 

formation, virulence, and motility (345, 346). Particular interest has been given to this 

molecule because of (1) the sheer number of regulators with c-di-GMP receptors, (2) the 

heterogeneity of c-di-GMP in populations, and (3) the heightened antibiotic resistance due 

to biofilm formation (345). Single cell c-di-GMP levels can be tracked with a biosensor 

(346). This biosensor uses Förster Resonance Energy Transfer (FRET) to assess how close 

an acceptor fluorescent protein and a donor fluorescent protein are in order to determine 

the conformation of the substrate binding protein, in this case PilZ, which changes 

conformation upon binding to c-di-GMP (346). 

In this work, we study whether single cell characteristics, such as stage of cell cycle, 

are tied to cell fate. On a single cell level, we hypothesize that the stage in a bacterial cell 

cycle can hinder its ability to survive antibiotic treatment, particularly if a cell is close to 

division. Dually, on a population level, we hypothesize that heterogeneity can lead to a 

high fraction of cells surviving antibiotic resistance because of the lack of synchronization. 

Previously, Christen et al. found that c-di-GMP oscillates synchronously with a single 

cell’s cell cycle (346). Here, we used an optimized FRET biosensor to track temporal 

changes in c-di-GMP. Overall, our work was an explorative direction aimed at 

understanding if c-di-GMP could predict cell fate and more specifically whether we would 

be able to manipulate the physiology of single cells to improve effectiveness of antibiotic 

treatments.  
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E.2. Results 

In order to study c-di-GMP levels in E. coli, we optimized the biosensor from 

Reference (346) (see: Methods). When c-di-GMP binds to the PilZ domain of the 

biosensor, FRET levels are low; when there is less c-di-GMP, FRET levels are higher 

(Figure E-1). Using the biosensor, we were able to measure native levels of c-di-GMP. We 

could also measure changes to intracellular c-di-GMP levels when either extracellular c-

di-GMP or zinc ions (Zn2+) were added (Figure E-1). We increased intracellular c-di-GMP 

levels by adding extracellular c-di-GMP. We reduced intracellular c-di-GMP levels by 

 
 
Figure E-1. Schematic of the regulation pathway of c-di-GMP and measuring c-di-
GMP with the biosensor. 

c-di-GMP is converted from 2 guanosine-triphosphate (GTP) molecules by a diguanylate 
cyclase (DgcZ); a byproduct of this reaction are 2 diphosphate molecules. DgcZ is 
allosterically regulated by zinc ions. c-di-GMP is measured by FRET using a biosensor, 
which contains a PilZ domain; PilZ changes conformation when bound to c-di-GMP. 
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adding Zn2+, which reversibly inhibits to the enzyme responsible for producing c-di-GMP, 

DgcZ (Figure E-1). 

Natural c-di-GMP levels were first measured (Figure E-2A-B, Column 4). As 

expected, when we added Zn2+ to the populations, we observed that the populations had 

higher FRET signals and lower levels of c-di-GMP (Figure E-2B, Column 1-3). The higher 

the concentration of Zn2+ the more the c-di-GMP levels shifted to the left – indicating lower 

intracellular c-di-GMP under the presence of higher Zn2+ concentrations. Likewise, when 

 
Figure E-2. Regulation of intracellular c-di-GMP concentrations shifts populations c-
di-GMP and cell morphology. 

(A) Histogram of corrected FRET signal (see: Methods). (B) Normalized histogram of 
relative c-di-GMP concentrations. (C) Morphology of cells (length by width). N = 44 - 
4,500 cells. Note there are often more cells per frame for high c-di-GMP conditions. 
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extracellular c-di-GMP is added, the histogram of c-di-GMP shifts to the further right 

(Figure E-2B, Column 5-6). 

In analyzing these results, we also found that cells exposed to Zn2+ had lower c-di-

GMP levels as well as shorter cells (Figure E-2C, Column 1-2 and Figure E-3). 

Additionally, despite collecting a similar number of frames for all conditions, there were 

significantly fewer cells when grown in higher Zn2+ concentrations. This could potentially 

indicate the significance of c-di-GMP for proper cell growth and function, but this more 

likely indicates the toxicity of Zn2+, which can disrupt a number of other processes (347). 

However, it remains interesting that cells with low c-di-GMP were the ones surviving 

treatment with Zn2+. 

 
 
Figure E-3. Lower c-di-GMP levels reduces cell size. 

Average relative c-di-GMP concentration and mean length for treated populations. Error 
bars are for standard deviation of N = 44 - 4,500 cells. Note there are often more cells per 
frame for high c-di-GMP conditions. 
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 Lastly, we explored how the addition of antibiotics impacts cell with different c-di-

GMP levels (Figure E-4). When we treated the populations with 1 µg/mL of 

chloramphenicol, cells with lower average c-di-GMP levels died. When populations were 

treated with 1 µg/mL of chloramphenicol and extracellular c-di-GMP, almost all cells 

lived. Interestingly, in this case, the distribution of c-di-GMP levels with and without 

antibiotics were qualitatively similar, which could also indicate that higher c-di-GMP may 

promote survival. In contrast, conditions with supplemental Zn2+ only had a few live cells; 

however, those living cells had the highest c-di-GMP levels from the distribution of the 0 

µg/mL chloramphenicol condition. Thus, higher c-di-GMP levels may improve the survive 

of an antibiotic treatment.  

 
Figure E-4. Higher c-di-GMP levels are associated with increased survival. 

Histogram of cells under different antibiotic stress levels (0 µg/mL or 1 µg/mL of 
chloramphenicol) and different c-di-GMP levels (100 nM CDGext, WT, or 100 mM Zn2+). 
We then measured using propidium iodide staining if cells were dead or alive after 
exposure to an antibiotic. 
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 We were next curious whether temporal changes in single cell c-di-GMP could 

predict cell fate. We first explored the temporal changes in a population’s native c-di-GMP 

levels when a single cell grown up to a microcolony. We observed both expected 

oscillations in single cell c-di-GMP levels, as well as large population shifts in c-di-GMP 

during late exponential phase or high-density growth (Figure E-5). While other studies 

have been able to track oscillations in c-di-GMP to predict the where a single cell is in their 

cell cycle (346), we often ran into issues with photobleaching when measuring more 

frequently than every 7 min. The original study also worked with B. subtilis, which has a 

doubling rate of 120 min (348); whereas, the cells we studied here were E. coli, which can 

have a doubling time as fast as 20 min (349). While we were working at lower temperatures 

 
 

Figure E-5. Single cell oscillation of c-di-GMP from a single mother. 

Relative c-di-GMP concentrations for a single mother cell and its daughter cells in a 
microcolony over 10 h. 
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and with minimal media (see: Methods), the single E. coli cells grew too quickly for the 

desired temporal resolution of the c-di-GMP oscillations. This taken together with strong 

population fluctuations in c-di-GMP during high density growth (between t = 360 - 600 

min) made it challenging to use cell cycle as a predictor of single cell E. coli cell fate. 

 
E.3. Discussion 

 In this work, we assessed a c-di-GMP biosensor as a predictor for cell cycle and 

cell fate. We first optimized the biosensor for higher signals by replacing the donor 

fluorescent protein, cyPet, with mTurq2 and by codon-optimization for E. coli. We found 

that we could regulate intracellular c-di-GMP levels by adding Zn2+ or extracellular c-di-

GMP. Interestingly, cells exposed to high concentrations of Zn2+ had unique morphologies 

and were often slow growing, similar to persister cells (36). As such, a future direction may 

investigate whether there is an interplay between persistence and c-di-GMP, or whether it 

is possible to use c-di-GMP levels as a measure of the single cell’s metabolic state. 

Lastly, while we found that c-di-GMP levels might be able to predict cell fate, there 

was not enough temporal resolution to track and predict cell fate of single cells. 

Additionally, the single cell dynamics of c-di-GMP were quickly dominated by the c-di-

GMP transmission cascades during biofilm formation (Figure E-5) (345). Due to these two 

effects, it may also be more informative to conduct this study with slower growing bacteria.  

E.4. Contributions Statement 

Ariel M. Langevin (A.M.L.) and Allyson Sgro (A.S.) designed experiments. Both 

authors optimized the biosensor. A.M.L. conducted experiments, analyzed the data, and 

wrote the appendix. 
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E.5. Methods 

E.5.1. Strains and Plasmids 

We used BW25113 strain of E. coli. The plasmid with SPY was ordered from 

AddGene (346). Codon-optimized versions of mTurq2 and yPet for E. coli were ordered 

from IDT as gBlocks. The pBbS8a-SPY2 plasmid was constructed using the Gibson 

assembly method (240). The backbone is from the BioBricks library and contains a low 

copy number origin of replication, pSC101, an ampicillin resistance marker, AmpR, and an 

inducible arabinose promoter, Pbad (237). Control plasmids of pBbS8a-mTurq2 and 

pBbS8a-yPet were also built using Gibson assembly method (240). Plasmids were then 

transformed into the BW25113 host cells. 

E.5.2. Growth Conditions and Time-lapse Microscopy 

 Cells were cultured overnight in Luria Broth (LB) medium with 100 µg/mL 

carbenicillin for plasmid maintenance at 200 rpm and 37°C. Cultures were refreshed by 

diluting 1:100 in fresh LB with 30 µg/mL kanamycin and with 100 µM arabinose to induce 

the biosensor. These cultures were then grown at 200 rpm and 37°C for 3 h. 

E.5.3. Time-lapse Microscopy 

 Cells were then placed on 1.5% low-melting-point agarose pads containing 100 µM 

arabinose and 100 µg/mL carbenicillin. The agarose pads were made using M9 minimal 

media supplemented with 0.2% glycerol, 0.01% casamino acids, 0.15 µg/mL biotin, and 

1.5 µM thiamine. There were experiments where: extracellular c-di-GMP was added at 0 

nM, 100 nM, or 100 µM;  Zn2+ was added at 0 nM, 100 nM, 100 µM, or 100 mM; 
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chloramphenicol was added at 0 or 1 µg/mL; and/or propidium iodide (PI) was added at 0 

or 10 µg/mL. Images were taken with a Nikon Ti-E microscope with 100x objective lens 

for up to 600 min at 7 min intervals or single snaps. The microscope chamber was 32°C. 

E.5.4. Data Analysis 

 Images were analyzed in Matlab using the SuperSegger30 image processing 

software to track and measure single cell characteristics and fluorescent protein levels. We 

used the formula from Reference (350) to measure FRET efficiency of single cells. 

 
!([c-di-GMP]) = .!!"

/ = 0#$!!,#&!"
'(") − 20#$!",#&!"

'(") − 30#$!!,#&!!
'(")

20#$!",#&!"
'(")  Eq. 18 

Snaps (not shown) were used to calculate constants: a, which represents the relative 

acceptor fluorescence signal (a=0.9607), and b, which represents the relative donor 

fluorescence signal (b=0.2089). These correction factors reduce the error due to 

bleedthrough and photobleaching of the accept and donor proteins. c-di-GMP levels were 

calculated as inversely proportional to the FRET efficiency and normalized between 0 and 

1 based on maximum and minimum FRET efficiencies from all experiments.
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