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ABSTRACT 

Investigating the immunoglobulin repertoire is a means of understanding the 

adaptive immune response to infectious disease or vaccine challenge. The data examined 

are typically generated using high-throughput sequencing on samples of immunoglobulin 

variable-region genes present in blood or tissue collected from human or animal subjects. 

The analysis of these large, diverse collections provides a means of gaining insight into 

the specific molecular mechanisms involved in generating and maintaining a protective 

immune response. It involves the characterization of distinct clonal populations, 

specifically through the inference of founding alleles for germline gene segment 

recombination, as well as the lineage of accumulated mutations acquired during the 

development of each clone.  

Germline gene segment inference is currently performed by aligning 

immunoglobulin sequencing reads against an external reference database and assigning 

each read to the entry that provides the best score according to the metric used. The 

problem with this approach is that allelic diversity is greater than can be usefully 

accommodated in a static database. The absence of the alleles used from the database 

often leads to the misclassification of single-nucleotide polymorphisms as somatic 
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mutations acquired during affinity maturation. This trend is especially evident with the 

rhesus macaque, but also affects the comparatively well-catalogued human databases, 

whose collections are biased towards samples from individuals of European descent. 

Our project presents novel statistical methods for immunoglobulin repertoire 

analysis which allow for the de novo inference of germline gene segment libraries 

directly from next-generation sequencing data, without the need for external reference 

databases. These methods follow a Bayesian paradigm, which uses an information-

theoretic modelling approach to iteratively improve upon internal candidate gene segment 

libraries. Both candidate libraries and trial analyses given those libraries are incorporated 

as components of the machine learning evaluation procedure, allowing for the 

simultaneous optimization of model accuracy and simplicity. Finally, the proposed 

methods are evaluated using synthetic data designed to mimic known mechanisms for 

repertoire generation, with pre-designated parameters. We also apply these methods to 

known biological sources with unknown repertoire generation parameters, and conclude 

with a discussion on how this method can be used to identify potential novel alleles. 
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CHAPTER ONE: INTRODUCTION 

Role of Statistical Modeling in Modern Vaccine Development1–3 

 Vaccine technology has saved countless lives by harnessing the hallmark feature 

of an adaptive immune system: ‘immunological memory’. This evolutionary marvel is 

what allows an organism to recognize repeated encounters with pathogens, and to launch 

a stronger, more coordinated immune response. Over the past two decades, vaccine 

research and development has seen significant advances in both genetic sequencing 

technology and greater access to computational resources.  

 One active area within vaccine development is immunoglobulin (IG) repertoire 

analysis, a field dedicated to analyzing the genetics of the immune cells responsible for 

producing immunoglobulin proteins in order to better understand the fundamental 

mechanisms of the adaptive immune system in response to natural infectious disease (or 

its simulation by vaccine). As the methodology of the field continues to shift towards 

more quantitative approaches, there is a critical need for novel statistical methods and 

sophisticated algorithms which can overcome the inherent challenges associated with 

analyzing immunoglobulin repertoire data robustly and accurately.  

 In this introductory chapter, we review the foundational biology of adaptive 

immune system as it pertains to the development of the immunoglobulin repertoire, and 

the challenges this poses to quantitative data analysis. In particular, we concentrate on the 

mechanisms behind the production of immunoglobulin proteins, with an emphasis on the 

different sources of their molecular diversity. We conclude with a brief discussion on 
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existing algorithms available for quantitative immunoglobulin repertoire analysis, along a 

review of their existing limitations and avenues for further development.  

Structure & Function of Antibody Immunoglobulin Protein1,4 

 The adaptive immune cells responsible for secreting immunoglobulin proteins are 

a subclass of white blood cells known as B cells. In early stages of B cell development, 

immunoglobulin proteins are found on the surface membrane of B cells, where they are 

often referred to as B cell receptors (BCRs). In fully-differentiated B cells, or 

plasmablasts, these immunoglobulin proteins are secreted en masse into the interstitial 

fluid as antibodies. The primary function of antibodies is to bind to foreign material 

called antigens, which are components of an invading pathogen or its toxic byproducts, 

and come from a variety of molecular sources (lipids, polysaccharide, glycoprotein etc.). 

Antibody binding to antigens is what allows for the direct neutralization of pathogens and 

their associated toxins. Antibody binding also facilitates the identification and destruction 

of pathogens by other circulating immune cells, like macrophages, as well as the 

activation of the complement branch of the innate immune system.  

 The structure of the immunoglobulin protein is well-suited to carry out these 

intended functions. Each secreted antibody molecule has separate domains for binding 

host immune cells and foreign antigens. Figure 1 contains an illustration of these distinct 

binding domains, in relation to the overall immunoglobulin structure. Each antibody is 

composed of two heavy chains and two light chains, each of which contain separate 

‘variable’ and ‘constant’ region binding domains. Despite its name, the ‘constant’ region 

domain does exhibit some molecular diversity. Variation in heavy chain constant region 
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allows for changes in quaternary protein conformation, called isotypes, which influences 

function by allowing for selective detection by different immune cells. For example, 

antibodies with isotype IgM exist as pentamers, and expressed primarily by early-stage B 

cells (naïve B cells), whereas IgG isotype antibodies are secreted as monomers by later-

stage B cells. 

Figure 1: Illustration of Antibody Structure 

 

 In contrast, the variable region domain is responsible for binding to the antigen, 

and exhibits an extremely high level of molecular diversity. This is due to the significant 

molecular challenge associated with providing the unique specificity required for high 

binding affinity in the face of a potentially limitless space of antigenic binding surfaces. 

The challenge is further compounded at the genetic level, where there is an additional 

constraint on the proportion of genome space that can be allocated for encoding 

immunoglobulin proteins. However, evolution has selected for several solutions that 

maintain efficient storage of genetic information while also incorporating high degrees of 
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molecular diversity. We review two of these mechanisms, V(D)J recombination and 

clonal evolution, in the following sections. 

V(D)J Recombination1,5 

 V(D)J recombination is a process of stochastic rearrangement of germline 

immunoglobulin gene segments which occurs during the early stages of B cell 

development. For humans, the genetic loci which encode for these gene segments are 

located on different chromosomes, with heavy chain gene segments being on 

chromosome 14 and kappa (κ) and lambda (λ) light chain gene segments being located on 

chromosomes 2 and 22 respectively.  Across all loci, these gene segments exhibit 

substantial diversity both in terms of their length and their overall information 

complexity. For heavy chains, the locus is divided into three categories of gene segment, 

labeled (V)ariable, (D)iversity, and (J)oining gene segments respectively, whereas both 

light chain loci contain only V and J gene segments. 

 V(D)J recombination entails the rearrangement of these diverse gene segments 

such that one segment from each of the classes joins together to form a unique gene 

combination. Heavy chain recombination occurs prior to light chain recombination, with 

the DJ join occurring first, followed by the V-DJ join. The mechanism by which this 

occurs also incorporates additional molecular diversity at the junctional sites of 

rearrangement in the form of NP nucleotide addition and deletion. Because of this 

stochastic rearrangement process, there is a high likelihood of introducing frameshift 

mutations that compromise the folding integrity of the translated immunoglobulin 

protein. As a result, light chain recombination only occurs following a productive heavy 
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chain rearrangement, and proceeds using the κ chain gene segments by default. λ light 

chain gene segments are only rearranged and incorporated into the immunoglobulin when 

κ chain rearrangements fail to produce a productive light chain from both parental 

chromosomes.  

Figure 2: Simplified Illustration of Heavy Chain V(D)J Recombination 

 

 The combinatorial possibilities from V(D)J gene segment rearrangements and 

heavy/light chain pairings account for a significant fraction of the molecular diversity 

required to challenge an effectively limitless space of potential antigenic binding 

surfaces. Beyond the broad VDJ classes, germline-level variation can further 

hierarchically subdivided into separate gene families, segments, and alleles. Germline 

gene name notation reflects this hierarchical organization; for example, the gene name 

IGHV3-23*01 indicates the first allelic variant of the twenty-third gene segment in the 

V3 family of heavy chain variable region immunoglobulin genes. Note that while any 
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given individual will only contain at most two allelic variants per germline gene segment 

(one on each parental chromosome), the population for a species as a whole will exhibit 

greater allelic variation per gene segment. Table 1 below summarizes the number of 

known functional human variable region gene segments, as catalogued by the 

international ImMunoGeneneTics (IMGT) information system in February 2019, along 

with an approximate average length for each category of gene segment. As discussed in 

the section as the conclusion of this chapter, these genes likely do not represent the full 

breadth of human allelic diversity, but can serve as a rough guideline for understanding. 

Table 1: Summary of V(D)J Alleles for Human Heavy & Light Chains 

CHAIN CLASS CODE 

APPROX. 

LENGTH 

# UNIQUE 

SEGMENTS 
# ALLELES1 

HEAVY Variable IGHV ~300 nt 55 267 

Diversity IGHD ~15 nt 22 30 

Joining IGHJ ~50 nt 6 13 

KAPPA (κ) Variable IGKV ~290 nt 41 66 

Joining IGKJ ~40 nt 5 9 

LAMBDA (λ) Variable IGLV ~300 nt 33 70 

Joining IGKJ ~40 nt 5 7 

Clonal Evolution and Immunoglobulin Affinity Maturation1,6 

In later stages of B cell development, B cells migrate to germinal centers within 

secondary lymphatic tissue (e.g. lymph nodes, spleen) where they enter a microcosm of 

1Pulled from IMGT’s database for IG variable region genes, human, functional (pseudogenes and ORFs 
excluded; gene segments with multiple functionality codes were included as long as they contained at 
least one functional allele). Date of accession: 2-26-2019  
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evolution by natural selection inside germinal centers of secondary lymphatic tissues. 

Each progenitor B cell, having selected its own unique V(D)J gene segment 

rearrangement, will display a unique immunoglobulin protein on its surface membrane as 

a B cell receptor (BCR). BCRs which are capable of binding with material provided by 

antigen-presenting cells and are activated by other immune cells within the germinal 

center are stimulated to proliferate. Thus, every descendent B cell within a shared lineage 

of its founding progenitor cell is a member of a B cell clone. During these successive 

rounds of proliferation, the rearranged genetic loci responsible for encoding for the BCRs 

will be subjected to a course of intentional somatic hypermutation. The rate of 

polymorphisms introduced at these loci is significantly higher than the natural 

background rate, which confers extra molecular diversity. Many of these acquired 

mutations will have a deleterious effect on BCR/antigen binding, resulting in the eventual 

extinction of the clone through negative selection. However, some of the polymorphisms 

will provide a net positive selective advantage on binding, allowing for the expansion of 

the clonal population and a dramatic increase in immunoglobulin binding affinity. 
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Figure 3: Simplified Illustration of Clonal Selection & Expansion 

 

Figure 3: t = time after clonal founder, UCA = unmutated common ancestor, clonal founder or 

progenitor 

Current Approaches to Immunoglobulin Repertoire Analysis2,3,7–12 

 The unique features of the adaptive immune system which enable high levels of 

diversity in the immunoglobulin repertoire are also the ones which make it an interesting 

challenge for statistical modelling. This kind of information is often sought after by 

groups pursuing ‘rational vaccine design’:  a modern approach to vaccine development 

for viruses which have proven difficult to develop effective vaccines for, like HIV and 

influenza. By collecting samples of the adaptive immune system during an active 

response to a pathogen (whether through a natural infection, or one simulated by 

vaccination), these groups can shine a light onto the specific features which confer 

immune protection. In particular, computational biologists who aim to characterize 

immunoglobulin repertoires are typically interested in identifying the specific gene 
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segment rearrangements and acquired mutations of particular antibodies, and how these 

events influenced antibody binding affinity to a particular antigen.  

 Genetic material from these immune repertoire samples can be isolated through 

several next-generation sequencing platforms, including bulk transcriptomics, single-cell 

sequencing, and immunoglobulin-specific sequencing. Sequencing pipelines can be 

customized to suit the needs of an individual study, but typically include filtering and 

normalization steps to ensure read quality, annotation of reads with V(D)J 

rearrangements, partitioning into distinct clonal lineages, and inferences on the mutations 

acquired during clonal evolution.  

 Immunoglobulin gene segment annotations are typically assigned to reads 

following their alignment against a reference database, or ‘library’, of known allelic 

variants, like the ones maintained by IMGT. Positions within sequencing reads that differ 

from those sequences found in the reference databases are usually marked as acquired 

polymorphisms, after controlling for the inherent sources of technical error with sample 

preparation and sequencing. Together, both gene segment assignment and mutational 

patterns inform the statistical methods for clonal lineage inference and classification. 
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Figure 4: VRG Gene Annotation with Reference Library 

 

 To date, only two non-alignment based methods for immunoglobulin repertoire 

analysis have been recently published: IgGraph and IgDiscover. However, both of these 

methods still retain a logical dependency on an external reference database of 

immunoglobulin allelic variants. IgGraph is an innovative de Bruijn graph-based 

algorithm, which incorporates IMGT reference segments into their antibody graphs as 

‘colored’ reads. IgDiscover is a clustering method designed to detect novel alleles, and 

also requires an initial input starting database of reference alleles, which is updated 

iteratively over the course of the algorithm’s execution. 

Limitations to Current Methods for Immunoglobulin Repertoire Analysis13–17 

 The primary issue facing all current methods and algorithms for immunoglobulin 

repertoire analysis is their dependency upon a complete and accurate reference database 

of germline gene segment alleles. However, most organisms have no available reference 
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databases, which limits their potential as vaccine development models or for comparative 

immunology studies. Furthermore, those organisms which do have available reference 

databases are systematically undersampled in regards to the overall allelic diversity 

present within the species as a whole. This is especially true for the rhesus macaque, a 

nonhuman primate frequently used as a model organism for early vaccine trials. 

However, even the comparatively well-catalogued human reference databases are 

incomplete, as evidenced by the discovery of multiple novel alleles within systematically 

underrepresented populations. Using incomplete reference databases in repertoire 

analysis poses significant problems to the overall accuracy of downstream results. The 

schematic in Figure 5 demonstrates how the validity of the interpretation of observed 

genetic variation can be called into question due to an incomplete reference database.  

Interclonal vs. Intraclonal Mutation Patterns 

Figure 5: Interclonal vs. intraclonal mutation patterns 
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 The schematic above contrasts two types of commonly observed mutation 

patterns: interclonal and intraclonal patterns. An intraclonal mutation pattern is unique to 

the members of a given clone, whereas an interclonal mutation pattern can be observed 

across members of multiple clones that share common V(D)J rearrangements. In the 

illustrated example, the clones share a common Variable gene assignment, but have 

different Diversity and Joining gene assignments. Intraclonal mutation patterns are more 

likely to indicate shared mutations which were acquired during somatic hypermutation 

and clonal evolution, while interclonal mutation patterns are more likely to be indicative 

of a reference database with missing alleles. This is due to the extremely low probability 

of observing the same mutation at the same nucleotide position across multiple clones. 

Outline of Proposed Methods for Autonomous Repertoire Analysis 

 My research project is on the development of novel statistical methods and 

algorithms for autonomous immunoglobulin repertoire analysis. In this context, 

‘autonomous’ refers to the inference of germline gene segment assignments directly from 

high-throughput immunoglobulin sequencing data, without reliance on external databases 

of reference libraries. This project can be divided into four specific aims: 

1. De novo construction of candidate germline gene segment libraries for internal 

modelling, given only the information available from processed immunoglobulin 

sequencing reads. 

2. Iterative improvement of candidate libraries using information obtained from 

standard library-based analysis methods. 
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3. Evaluation of algorithm performance through synthetically generated repertoire 

data, designed to mimic diversity of true immunoglobulin repertoires. 

4. Application of statistical methods to actual biological data collected from human 

subjects as part of an earlier immunoglobulin repertoire study. 

 The first two aims are achieved with a machine learning procedure outlined 

below, in four separate phases. The first aim is accomplished via the initialization 

procedure of Phase 1, which uses a clustering algorithm based on the Dirichlet process to 

group processed reads based on the likelihood that they share a common ancestral VRG 

allele. When cluster membership is finalized, each inferred ancestral allele is submitted as 

a tentative entry into the germline gene segment libraries. The details of this procedure 

are discussed in the following chapter.  

 Phase 2 represents a traditional repertoire analysis pipeline which relies on the use 

of reference libraries for analysis. However, instead of using a potentially incomplete 

external reference database, these methods incorporate the internal germline gene 

segment libraries constructed in Phase 1. The second major project aim is accomplished 

during Phase 3 of overall machine learning procedure, using information from both the 

constructed internal libraries, as well as the results of a standard Ig repertoire analysis 

pipeline in Phase 2. Since Phases 2 and 3 are connected in an iterative loop, Phase 4 

represents the criteria for termination of the loop, as well as the general conditions for 

evaluation of the learning process as a whole. These methods are discussed in Chapter 3. 

 The results of the third aim are discussed in Chapter 4. It details the series of 

experiments used in empirical selection of model hyperparameters, as well as a variety of 
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trials on synthetic data of the entire learning procedure. Overall algorithm performance 

and potential areas for further improvement are also discussed in this chapter. 

  The fourth aim is addressed in Chapter 5, which discusses the results of applying 

our algorithm to human immunoglobulin heavy chain repertoires. It also compares the 

results of our analysis with those of three reference database-dependent approaches: 

Cloanalyst, IgBlast, and IMGT’s High-VQUEST. We explore the possibility of potential 

discovery of a novel allele, review the strengths and limitations of our approach, and 

conclude with a discussion on remaining open questions and potential future directions. 
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CHAPTER TWO: DE NOVO INFERENCE OF GERMLINE GENE LIBRARIES 

FROM IMMUNOGLOBULIN REPERTOIRE DATA 

Introduction 

 Analyzing the immunoglobulin repertoire with data collected from high-

throughput sequencing comes with its own set of unique challenges. The principle 

challenge facing existing methods for immunoglobulin repertoire analysis is in 

identifying the biological and technical sources of observed read variation with a high 

degree of accuracy and precision. While much work has been done to address observed 

variation caused by the numerous technical challenges of read quality control, there still 

exists a need to develop statistical methods which can robustly differentiate between the 

opposed biological sources of germline allelic variation and acquired somatic mutation. 

 In this chapter, we present a machine learning model which aims to disentangle 

these two sources of variation by autonomously inferring libraries of germline alleles de 

novo, using only information available within the high-throughput sequencing data itself, 

and iteratively improving upon those libraries using insights collected from reference-

based repertoire analysis methods. Figure 6 outlines this overall model, with each of the 

four main components of the schematic discussed in their corresponding sections below.  
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Figure 6: Project Outline Schematic18 

 

Initialization of autonomous machine learning procedure 

 Alignment-based methods for immunoglobulin repertoire analysis all rely upon an 

external reference database of germline genes as an integral part of their approach. This 

becomes problematic in cases when these reference databases are either unavailable, as is 

the case for many organisms of potential research interest or are incomplete due to 

undersampling a species’ allelic variation. Our methods overcome this essential 

limitation by initially inferring a set of internal reference libraries of germline gene 

alleles directly from high throughput sequencing data. This de novo inference of allele 

libraries is done through a clustering procedure based on the Dirichlet process, and is 

discussed in detail in the following chapter. In essence, sequences are grouped according 

to a likelihood function which accounts for their overall shared similarity. The features 

which are shared across a cluster as a whole are used to infer the most likely candidate 
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for a potential germline allele, while features which only exist in a subset of cluster 

members are attributed to individual variation arising from acquired somatic mutation. 

Figure 7: Summary of Project Aim 1 

 

 There are several features of the Dirichlet process clustering approach that we 

find particularly suitable for our purposes in this project. First, the Dirichlet process 

clustering approach is ideally suited for cases when the true number of clusters is 

unknown, as it is here with an unknown number of true germline alleles. This gives it an 

advantage over less sophisticated algorithms such as K-means, where user-designated 

parameters fix the total number of clusters prior to analysis. Second, as the number of 

new observations increases, the expected number of total clusters converges to some 

finite number, but the probability of detecting a new cluster always remains nonzero. 

Third, this relative probability of detecting novel clusters is highest in early stages of the 
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Dirichlet process, when there have been relatively few observations, but decays as the 

total observations accumulate.  

 We argue that these properties are well suited to our machine learning model 

because they mimic the natural process associated with scientific discovery. Namely, 

starting from a position of relative ignorance as to the true state of total number of 

clusters, or analogously germline gene segment alleles, the relative probability of 

detecting a novel cluster or previously unobserved allele is high. Greater amounts of 

evidence and experience allow us to update and refine our existing models. The process 

always maintains a capacity to overturn the existing model, but any means to do so must 

pass a higher burden of proof with each new successive observation. Similarly, we wish 

to always have the capacity to detect novel germline gene alleles, as long as that detection 

is mitigated by the overall accumulated evidence surrounding known gene segments. We 

further argue that this approach, which mimics the natural discovery process, is more 

statistically sound than methods which use metrics for measuring and scoring 

mismatches, insertions and deletions. This is because our methods fundamentally encode 

several of the uncertainties of the system in question into the evaluation framework itself. 

For example, the likelihood of observing a particular nucleotide variation at a given 

position within a sequence is explicitly modeled as a probability mass function, which 

allows us to directly quantify our uncertainty. 
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Figure 8: Sequence Reads Modeled as Probability Mass Functions 

 

Statistical analysis of immunoglobulin sequencing reads using standard 

methods19,20 

 The purpose of the initialization phase of the project is to derive a model of 

internal libraries of candidate germline gene segment alleles with a Dirichlet process 

clustering procedure. We discuss the mathematical underpinnings of this procedure in the 

following chapter. In contrast, the purpose of the second phase of this project is to 

analyze the original immunoglobulin sequencing data with previously developed 

alignment-based methods, but replacing the external reference database of alleles with the 

internal model libraries constructed from the initialization phase.  

 In this project, the traditional statistical analysis of immunoglobulin sequencing 

reads takes on three unique forms. First, sequencing reads are annotated with unique 
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V(D)J combinations using V segment ‘alleles’ derived from our inferred libraries, and DJ 

segment alleles derived from external reference libraries. Reads are assigned with the 

allelic candidates using a maximum likelihood based scoring function, with any observed 

variation from proposed germline categorized as acquired somatic mutation, which also 

allows each read sequence to be annotated with an associated mutation frequency. These 

sets of unique V(D)J combinations allow the reads to be partitioned into distinct clones.  

 Second, a maximum likelihood tree is inferred for each clone, under nucleotide 

substitution evolutionary models. The evolutionary models we use in our tree inference 

work are those derived from Kimura80 and Jukes & Cantor ’69. An example of one these 

inferred maximum likelihood trees is given in Figure 9 below. The principal difference 

between the two models is that Kimura gives separate rate parameters for nucleotide 

transitions and transversions, whereas Jukes-Cantor allows only a single rate parameter 

for non-self nucleotide substitution. For our work, we predominantly favor the Jukes-

Cantor model over the Kimura model for alignment with an exception for the alignments 

used for identifying the conserved cysteine codon used in parsing V gene segments from 

the rest of the immunoglobulin read. 
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Figure 9: Sample Clonal Maximum Likelihood Tree and Member Sequences 

 

Figure 9: Dots indicate an identical nucleotide as reference at index position; individual 

letters refer to nucleotides which differ from the reference sequence. 
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 Third, for each clonal lineage tree, we can derive a likelihood function which is 

representative of the entire clone; this function would take the individual nucleotide 

sequences which make up members of a clone as input, and then output a single real 

number value which expresses the information cost associated with grouping these 

sequences under a shared clone. Here, our encoding of nucleotides as probability mass 

functions becomes particularly important in determining how much weight to assign 

ambiguous positions within a given member sequence. This method also allows us to 

account for the extreme variation we often see in clone size as it is not unusual for a small 

number of clones to take up a large proportion of the total sequence population. Using a 

single likelihood function representative of the clone as a whole allows for us to control 

for this ‘jackpot effect’ while also simultaneously comparing clones independently of one 

another. 

 We wish to reiterate that the methods in this second phase are part of the standard 

repertoire analysis pipeline, and that the innovation introduced from our approach stems 

primarily from (a) the direct inference of the allelic libraries used in read annotation, 

rather than an external source and (b) the integration of both our novel allelic inference 

and standard repertoire methods into a cohesive, iterative learning procedure. 

Iterative improvement of internal libraries for candidate germline alleles 

 The third phase of the project satisfies the second aim of the project, wherein we 

improve our initial internal model libraries for germline gene segments alleles. We 

achieve this using by using the information contained within the clonal likelihood 

functions derived from the second phase of the project. By interpreting the variation 
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within the clonal likelihood functions as if they were a single representative sequence, we 

can better examine the interclonal variation indicative of a shared ancestor allele. The 

distinction between phase two and three is as follows: In phase two, we use the 

intraclonal variation to inform our understanding of clonal history of somatic mutations 

acquired during immunoglobulin affinity maturation. In phase three, we use the 

interclonal variation to inform and improve our understanding of the underlying allelic 

variation amongst clones which share common gene segments.  

 This is done by performing additional rounds of the same Dirichlet process 

clustering procedure used in phase one. However, in this phase of the project, instead of 

clustering on the immunoglobulin sequencing reads themselves, the procedure clusters on 

the representative clonal likelihood functions. In just the same manner as the previous 

two phases, we produce candidate libraries of germline alleles, which are then used to 

derive new clonal lineage inferences. We repeat these two phases in an iterative fashion, 

as diagrammed in Figure 10 below. 
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Figure 10: Summary of Project Aim 2 

 

Phase 4: Loop Termination & Library Evaluation 

 Since we have modeled the clonal lineages as distinct likelihood functions, we 

have a consistent and convenient framework for measuring both the accuracy of our 

model and its overall complexity. This is because the valuation of the likelihood function 

also serves as a measure of the cost associated with storing information about competing 

clonal models. 

 In general, we have found that this global likelihood scoring function converges 

rapidly after only a few iterations of the phase two / phase three loop, with the system 

seeing the largest degree of improvement within the first three iterations and typically 

reaching a steady state around 5-7 iterations. By default, we set a fixed termination 

criteria at 7 iterations to maintain protocol consistency for our synthetic and biological 

trials discussed in chapters 4 & 5. Future upgrades to the software could make this 
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criteria setting adjustable under an ‘advanced settings’ interface, but is currently 

restricted since any additional iterations would require a significant increase to overall 

runtime for marginal model improvements. 
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CHAPTER THREE: ADAPTATION OF THE DIRICHLET PROCESS FOR 

CLUSTERING IMMUNOGLOBULIN SEQUENCES 

 The primary aim of this chapter is to explain in detail the Bayesian statistical 

methods and algorithms used for clustering our immunoglobulin sequencing reads, in 

order to arrive at a putative set of internal libraries of germline gene segment alleles. The 

Dirichlet process plays an integral role in both library construction and improvement, and 

is defined both formally in the context of infinite mixture models as a nonparametric 

Bayesian approach to clustering, and demonstrated informally through a Pólya urn 

illustration. We discuss how both Bayesian components of likelihood function and prior 

are calculated and applied to our clustering context, as well as describe how each of these 

calculations fits into the Gibbs sampler machine learning algorithm. 

Role of the Dirichlet Process in Larger Machine Learning Model21–31 

 In the first iteration of our larger machine learning algorithm, we construct 

libraries of germline gene segment alleles de novo from immunoglobulin sequencing 

reads. In later iterations, we construct these libraries using representative sequences from 

maximum likelihood trees derived during the previous iteration’s clonal lineage analysis. 

We arrive at these libraries using a Gibbs sampling clustering procedure, based on the 

Dirichlet Process infinite mixture model. It is important to note that this clustering 

procedure does not occur on intact immunoglobulin gene sequences, but rather on parsed 

subsequences which have been separated into their V and DJ components. The details of 

this parsing procedure (and other sequence pre-processing steps) are included in Chapter 

4. The methods described in this chapter were developed solely for the clustering and 
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inference on V gene segment alleles, but in principle could be also be applied to D and J 

gene segment alleles. However, since D and J gene segments contain significantly less 

information than V gene segments due to reduced overall length, practical 

implementation of appropriate clustering methods has been reserved for future algorithm 

upgrades. 

 The Dirichlet Process infinite mixture model is a type of Bayesian nonparametric 

method. Mixture model methods aim to characterize subpopulations (or clusters) within a 

larger population, when the membership of individual observations into the potential 

subpopulations is unknown. The classical example is the Gaussian mixture model, whose 

full population distribution can be described as the sum of 𝐾 Gaussian 

distributions𝑓(𝑥|𝜃𝑖), proportional to their corresponding weight parameters 𝑝𝑖.  

Eqns. 1.1 – 1.2 

𝑓(𝑥|�⃑�, �⃑�) = ∑𝑝𝑖𝑓(𝑥|𝜃𝑖)

𝐾

𝑖=1

 

𝜃𝑖 = {𝜇𝑖, 𝜎𝑖} 
 

 𝜃𝑖 represents the parameter set for the individual distributions of the mixture 

model, which are the mean (𝜇𝑖) and variance (𝜎𝑖) parameters of the corresponding 

Gaussian distributions. 𝑝𝑖is the coefficient which determines the relative weight of each 

individual distribution to the overall mixture, such that ∑ 𝑝𝑖𝑖 = 1 and 𝑝𝑖 > 0, ∀𝑖. 

Finite mixture models, like the one in Eqn. 1.1, are unsuitable for our application due to 

the need for the statistician to predesignate the total number of clusters 𝐾 prior to 

analysis. Nonparametric methods, like the Dirichlet process, allow for generalization to a 

potentially infinite number of distributions that make up the mixture model.  
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 They allow us to simultaneously estimate the posterior distributions on the 

clustering structure of our observed data under marginalized likelihood functions, while 

also estimating the prior probabilities on the parameters of those density functions. The 

nature of this simultaneous prediction is what makes it especially useful for clustering 

applications when the true number of subpopulations is unknown.  

 There are two primary components to the Dirichlet Process implementation of a 

Bayesian infinite mixture model: a ‘base distribution’ 𝐻, and a scaling or concentration 

parameter α. 𝐻 represents the family of distributions that each of the defining mixture 

subpopulation distributions inherits from, while α represents how much to weigh the 

proportions with which each of the subpopulations are mixed. In our previous example, 𝐻 

would represent the Gaussian family of distributions, where each of the individual 

mixture components 𝑓(𝑥|𝜇𝑖, 𝜎𝑖), are random sample distributions from 𝐻. Similarly, α 

would be associated with the proportional weight parameters 𝑝𝑖. In this sense, samples 

from the Dirichlet Process can be thought of as modeling a ‘distribution of distributions’. 

Eqns. 2.1 – 2.4 

𝑓(𝑥|𝜃𝑖)~𝐻 

𝜃𝑖 ~𝐺 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑖, 𝜎𝑖) 
𝐺~𝐷𝑃(𝛼,𝐻) 

𝑓(𝑥|�⃑�, �⃑�) = ∫ 𝑝𝑖𝑓(𝑥|𝜃𝑖)
∞

1

 

 

Illustration of Dirichlet Process through Pólya Urns  

 We can illustrate how to apply the Dirichlet Process to a classification problem 

using a variation of the classical Pólya urn model. (Note that this variation is not 
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equivalent to the Blackwell-McQueen urn scheme, which describes a generative model 

for the Dirichlet Process, instead of a classification model.)  

 Imagine we have a bag filled with a large number of differently colored balls, and 

we wish to sort these balls into a series of urns such that all of the balls in a given urn are 

shades of the same color family. Given the continuous nature of the color spectrum, there 

are a potentially infinite number of ‘base colors’ that could be used to label each of our 

urns. However, given that there are only a finite number of balls in our collection, any 

arrangement we select will necessarily take on the form of a discrete distribution. Ideally, 

we would like to cluster the balls into different urns, such that the final partition 

minimizes the heterogeneity of colors within an urn, while maximizing the differences in 

features across urns.  

 We begin the clustering procedure by randomly drawing a sample ball from our 

starting collection and placing it into an empty urn. For the next randomly drawn ball, we 

then must evaluate the posterior probability of sorting the new ball into the same urn as 

the initial ball, and compare it with the posterior probability of sorting it into a new 

empty urn. In predictive Bayesian inference, evaluation of posterior probabilities is 

dependent upon two component distributions: the likelihood function and the prior. In 

this scenario, our likelihood function determines how likely it is that both sampled balls 

belong to the same color family, given a set of parameters which define the specific color 

features of the other member of that urn, such as shade, saturation levels, and hue. (For 

the empty urn, there are no other members to infer information from regarding these 

color parameters, so the likelihood function automatically evaluates to 1.) In contrast, the 
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prior distribution takes into account how probable it is we were to have clustered the balls 

together independently of their shared color features. This distribution is essentially a 

function of our prior expectations on the total number of expected clusters we expect to 

find, predicated on the total size of our previously observed clusters, relative to the total 

number of our observations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

31 

Figure 11: Dirichlet Process Illustration with Pólya Urns 

. 
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Clustering Immunoglobulin Sequences with the Dirichlet Process 

 The model illustrated in Figure 11 demonstrates how the two components of 

Bayesian inference under the Dirichlet Process can be used to assign colored balls to 

different urns, dependent upon a set of commonly shared features. This model can also be 

applied to our project by using the same clustering procedure to identify putative alleles 

for the germline gene segment candidate libraries directly from immunoglobulin 

sequencing data.  

 Instead of sorting balls into urns based on shared color, we are sorting 

immunoglobulin sequences into separate clusters based on their shared sequence 

similarity. Just as we can average out variations in hue and saturation amongst individual 

balls within a given urn to estimate a set of common color features for that urn, we can 

also estimate the most likely unmutated common ancestor of the sequences belonging to 

a particular cluster by examining the nucleotide positional information of the individual 

sequences within that cluster.  

 Under this model, the inferred germline allele represents the ‘base distribution’ 

for a given cluster, and the individual immunoglobulin sequences within that cluster are 

the ‘random samples’ from that base distribution. As strings, each immunoglobulin 

sequence can itself be considered a type of multinomial distribution, where the 

nucleotides are a series of categorical random samples. Thus, we can think of our clusters 

of immunoglobulin sequences as ‘distributions of distributions’, just as we would in the 

case of the abstract infinite mixture model.  
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 In the following sections, we derive the two individual components necessary for 

Bayesian statistical inference (the likelihood function, and the prior), as they are used in 

the context of inferring germline gene segments. We begin with the special case of 

clustering two immunoglobulin sequences, and then generalize to cases of 𝑁 > 2. We 

then conclude with a discussion of how the Dirichlet Process clustering procedure is 

updated through a Gibbs sampling machine learning algorithm, which features simulated 

annealing as a metaheuristic for global optimization. 

Bayesian Inference of Candidate Germline Alleles 

Definitions of Sequence Transition Probabilities 

 Let 𝑠 represent a nucleotide in sequence �⃑⃑�𝒋,, and let 𝑎 represent the nucleotide 

from it was originally derived in ancestral sequence 𝒂𝒊⃑⃑ ⃑⃑ . We then define 𝑃𝑘(𝑠|𝑎) as the 

probability that we would observe nucleotide 𝑠 given 𝑎, at some fixed position 𝑘 within 

the full sequences �⃑⃑�𝒋, and 𝒂𝒊⃑⃑ ⃑⃑ . From here, we make the limiting assumption that each 

individual nucleotide within a sequence will have evolved independently with respect to 

its neighbors. That is to say,𝑃𝑘(𝑠|𝑎) is independent of 𝑃𝑘+1(𝑠|𝑎) and thus: 

Eqn. 3: 

𝑃(𝒔𝒋⃑⃑⃑⃑ |𝒂𝒊⃑⃑ ⃑⃑ ) = ∏𝑃𝑘(𝑠|𝑎)

𝐿

𝑘=1

=𝑃1(𝑠|𝑎) ∗ 𝑃2(𝑠|𝑎) ∗ … ∗𝑃𝐿(𝑠|𝑎) 

 For simplicity, further assume that sequences �⃑⃑�𝒋, and 𝒂𝒊⃑⃑ ⃑⃑  are of identical length 𝐿, 

and no insertions or deletions have been introduced. Thus, a pairwise sequence alignment 

between �⃑⃑�𝒋, and 𝒂𝒊⃑⃑ ⃑⃑  will contain no gaps. Appropriate treatment of insertions and deletions 

adds an extra layer of complexity, which is discussed in the following section. 
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Justification for Simplifying Assumptions 

 Strictly speaking, the positional independence assumption does not fully capture 

all of the known biological complexities of our system. For example, it is known that 

certain specific sequence motifs can generate ‘hotspots’ of somatic hypermutation, which 

originate during the cycles of affinity maturation. However, the limitations that this 

assumption places on our model are precluded by the necessary gains it provides towards 

the computational tractability of our algorithms by reducing the number of parameters 

required for modeling nucleotide substitution.  

 The most generalized nucleotide substitution model which assumes positional 

independence entails 16 unique parameters. However, without positional independence, 

our substitution models need to account for each sequence as its own functional unit, 

instead of breaking it into smaller pieces. This drastically expands the number of 

necessary transitional probabilities needing to be parameterized, specifically at a rate of 

16𝐿, where 𝐿 indicates the length of the potential sequence.  Even relatively short 

sequences of length 10 would have over a million unique permutations, and over a trillion 

possible ancestor-descendent substitution probabilities. The resources required for 

modeling without this assumption on immunoglobulin variable region genes, which are 

roughly 300 nucleotides in length, would exceed the capabilities of even high-end 

supercomputing clusters.  

 Similarly, our algorithm at this time contains a restriction that all sequences 

assigned to a given cluster must be of equivalent length, which limits its capacity to 

model insertions and deletions. The work in our lab typically resolves the issues posed by 
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gaps in sequence alignments by implementing a mapping function which indexes the 

nucleotide positions of individual sequences against a global maximum length template. 

Figure 12 provides an example for how this mapping function would be defined for a 

two-sequence pairwise alignment, but can be further generalized to multiple sequence 

alignments.  

Figure 12: Gap Example of Sequence Alignment Mapping Function 

 

Figure 12: Pairwise sequence alignment shown containing one insertion and two 

deletions with standard indexing shown above (grey) and below (purple) individual 

sequences respectively; the global maximum length template index is the top sequence 

shown in (black), and the bottom two sequences show how mapping function changes the 

corresponding sequence indexes with respect to this template. 

 However, this framework has been difficult to properly implement for our 

Dirichlet process clustering paradigm due to questions it raises regarding the proper 

evaluation of the likelihood function. A gap represents a type of missing information 

about a given nucleotide position that is fundamentally different from the case when a 

nucleotide is known to be present, but its identity is uncertain. In the latter case, we can 

encode that uncertainty through a uniform probability mass function, but the former case 

is not so straightforward. This is because is it unclear how an absence of evidence (or 

non-observations) should be weighted relative to actual nucleotide observations. We 
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recognize our methods currently sidestep this underlying issue, and we look at this as an 

opportunity for future development. For now, the restriction is itself implemented by pre-

separating sequences into subgroups of equivalent length, and then follow the Dirichlet 

process clustering procedure on each of the subgroups independently. 

Definitions of Probabilities for Cluster Membership in 2-Sequence Case 

 Our goal is to create clusters whose member sequences are all ultimately 

descended from the same unobserved common ancestor sequence, i.e. a candidate 

germline gene segment allele. For example, if two sequences 𝒔𝟏⃑⃑⃑⃑⃑, 𝒔𝟐⃑⃑⃑⃑⃑ have both been 

assigned to a given cluster 𝑐1, we are making a claim that both sequences are derived 

from the same ancestor sequence  𝒂𝟏⃑⃑ ⃑⃑⃑. Alternatively, if these two sequences are assigned 

to separate clusters, we are making a claim that these sequences are derived from two 

separate ancestors 𝒂𝟏⃑⃑ ⃑⃑⃑ and 𝒂𝟐⃑⃑ ⃑⃑⃑ respectively.  

Figure 13: Two ancestor vs. one ancestor model32,33  

 

 We can make quantitative inferences about the quality of our clustering 

assignments, by measuring the overall sequence similarity between cluster members, and 
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evaluating the probability of each given clustering arrangement in the context of our 

nucleotide substitution models.  

 For example, if 𝑃(𝒔𝟏⃑⃑⃑⃑⃑, 𝒔𝟐⃑⃑⃑⃑⃑, |𝒂𝟏⃑⃑ ⃑⃑⃑) > 𝑃(𝒔𝟏⃑⃑⃑⃑⃑|𝒂𝟏⃑⃑ ⃑⃑⃑) ∗ 𝑃(𝒔𝟐⃑⃑⃑⃑⃑|𝒂𝟐⃑⃑ ⃑⃑⃑), then it is more 

probable that sequences 𝒔𝟏⃑⃑⃑⃑⃑, 𝒔𝟐⃑⃑⃑⃑⃑ are derived from a shared common ancestral gene segment 

than they are from separate gene segments. We can use this concept to build an iterative 

clustering procedure which evaluates the likelihood that a new ‘probe’ sequence belongs 

to an existing cluster based on shared nucleotide content, over a novel empty cluster. 

Full Derivation of Likelihood Component: generalizing our model for iterative clustering  

 Suppose we have some cluster 𝑐𝑖 which already contains a collection of sequences 

𝒔𝟏⃑⃑⃑⃑⃑, 𝒔𝟐⃑⃑⃑⃑⃑, … , 𝒔|𝒄𝒊|⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  , and that each of these sequences are derived from some ancestral 

sequence 𝒂𝒊⃑⃑ ⃑⃑ .  

 We are interested in solving for 𝑃(𝒔𝒏𝒆𝒘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ |𝒔𝟏⃑⃑⃑⃑⃑, 𝒔𝟐⃑⃑⃑⃑⃑, … , 𝒔|𝒄𝒊|⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝒂𝒊⃑⃑ ⃑⃑ ). In other words, we 

wish to quantify how probable it is that a newly observed ‘probe’ sequence 𝒔𝒏𝒆𝒘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  belongs 

to cluster 𝑐𝑖, given all of the current assigned members of cluster 𝑐𝑖, and the common 

ancestral sequence 𝒂𝒊⃑⃑ ⃑⃑ . 

 From the axioms of probability, we can deduce: 

Eqns. 4.1-4.3: 

𝑃(𝒔𝒏𝒆𝒘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ |𝒔𝟏⃑⃑⃑⃑⃑, 𝒔𝟐⃑⃑⃑⃑⃑, … , 𝒔|𝒄𝒊|⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝒂𝒊⃑⃑ ⃑⃑ ) 
=

𝑃(𝒔𝒏𝒆𝒘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝒔𝟏⃑⃑⃑⃑⃑, … , 𝒔|𝒄𝒊|⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝒂𝒊⃑⃑ ⃑⃑ )

𝑃(𝒔𝟏⃑⃑⃑⃑⃑, … , 𝒔|𝒄𝒊|⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝒂𝒊⃑⃑ ⃑⃑ )
 

Defn. of 

Marginal 

Probabilities 

 
=

𝑃(𝒔𝒏𝒆𝒘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝒔𝟏⃑⃑⃑⃑⃑, … , 𝒔|𝒄𝒊|⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ |𝒂𝒊⃑⃑ ⃑⃑ ) ∗ 𝑃(𝒂𝒊⃑⃑ ⃑⃑ )

𝑃(𝒔𝟏⃑⃑⃑⃑⃑, … , 𝒔|𝒄𝒊|⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , |𝒂𝒊⃑⃑ ⃑⃑ ) ∗ 𝑃(𝒂𝒊⃑⃑ ⃑⃑ )
 

Separation of 

Joint 

Probability into 

Marginals & 

Priors 
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=

𝑃(𝒔𝒏𝒆𝒘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝒔𝟏⃑⃑⃑⃑⃑, … , 𝒔|𝒄𝒊|⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ |𝒂𝒊⃑⃑ ⃑⃑ )

𝑃(𝒔𝟏⃑⃑⃑⃑⃑, … , 𝒔|𝒄𝒊|⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , |𝒂𝒊⃑⃑ ⃑⃑ )
 

 

Cancel Like 

Terms 

 

We define 𝑃(𝒂𝒊⃑⃑ ⃑⃑ ) =  (¼)𝐿 as our uninformative prior for the starting content of our 

ancestor sequences.  

We also define: 

Eqn. 5:        (𝒔𝟏⃑⃑⃑⃑⃑, … , 𝒔|𝒄𝒊|⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , |𝒂𝒊⃑⃑ ⃑⃑ ) = ∏ ( max
𝑠 ∈{𝐴,𝑇,𝐺,𝐶}

(∏ ℒ𝑖𝑗𝑘(𝑠|𝑎)
|𝒄𝒊|
𝑗=1 ))𝐿

𝑘=1 . 

 ℒ𝑖𝑗𝑘(𝑠|𝑎) is the likelihood function of observing a nucleotide 𝑠 in the 𝑘kth 

position of sequence 𝑗 for cluster 𝑐𝑖, given some unknown nucleotide 𝑎 in the same 

position of the ancestral template sequence of cluster 𝑐𝑖. This function is evaluated 

according to Kimura’s 1980 nucleotide substitution evolutionary model.  

 𝑃(𝒔𝟏⃑⃑⃑⃑⃑, … , 𝒔|𝒄𝒊|⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , |𝒂𝒊⃑⃑ ⃑⃑ ) is thus the maximum likelihood function for observing 

sequences {𝒔𝟏⃑⃑⃑⃑⃑, … , 𝒔|𝒄𝒊|⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ }, given that they all are descendants of specified common ancestor 

sequence  𝒂𝒊⃑⃑ ⃑⃑ .  

 𝑃(𝒔𝟏⃑⃑⃑⃑⃑|𝒂𝒊⃑⃑ ⃑⃑ ) is defined with Eqn. 3 above for the first element of a cluster 𝑐𝑖. 

Since we are interested in evaluation the likelihood of a sequence  𝒔𝒏𝒆𝒘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  joining cluster 𝑐𝑖, 

relative to the pre-existing sequences already present in cluster 𝑐𝑖, we take a likelihood 

ratio test of the two components. 

 By combining Eqns. 4.3 and Eqn. 5, we arrive at the following for our final 

likelihood formula: 
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Eqn. 6: 

(𝒔𝒏𝒆𝒘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ |𝒔𝟏⃑⃑⃑⃑⃑, 𝒔𝟐⃑⃑⃑⃑⃑, … , 𝒔|𝒄𝒊|⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝒂𝒊⃑⃑ ⃑⃑ ) = (
∏ ( max

𝑠 ∈{𝐴,𝑇,𝐺,𝐶}
(∏ ℒ𝑖𝑗𝑘(𝑠|𝑎)

|𝒄𝒊|+1
𝑗=1 ))𝐿

𝑘=1

∏ ( 𝑚𝑎𝑥
𝑠 ∈{𝐴,𝑇,𝐺,𝐶}

(∏ ℒ𝑖𝑗𝑘(𝑠|𝑎)
|𝒄𝒊|
𝑗=1 ))𝐿

𝑘=1

) 

Derivation of Prior Component 

 In the previous section, we derived the principle formulas used for the evaluating 

the component for the likelihood function of our in Bayesian inference clustering 

procedure. In this section, we will discuss the determination of the formulas required for 

the prior probability components, as derived from a Dirichlet Process.  

 𝜋𝑖 designates the prior probability of a sequence being assigned to nonempty 

cluster  𝑐𝑖, while 𝜋0 designates the prior probability of a sequence being assigned to a 

new (currently empty) cluster.  

Eqns 7.1-7.2: 

𝜋𝑖 =  
|𝑐𝑖|

𝑁 +  𝛼
 

𝜋0 =  
𝛼

𝑁 +  𝛼
 

 

 |𝒄𝒊| is the number of sequences already present in cluster 𝑐𝑖 (excluding the most 

recent ‘probe’ sequence) and 𝑁 is the number of sequences previously assigned to all 

clusters 𝑐𝑖, ∀𝑖. Note that 𝑁 =∑ |𝑐𝑖|𝑖 .  

 𝛼 is a scaling parameter, determined prior to beginning the clustering procedure 

by the user. For this project, the selection of an appropriate 𝛼 was determined as the 

result of empirical testing via synthetic data, and is discussed at length in Chapter 4. 
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Gibbs Machine Learning for Cluster Reassignment & Library Inference 

 In the previous section, we discussed the role of the two major components, the 

likelihood and the prior, of the Dirichlet process clustering procedure in our Bayesian 

statistical model. Here we review how each component comes together as part of an 

iterative Gibbs machine learning engine for generating a proposal of clustering 

assignments. At the conclusion of the clustering procedure, the initial candidate set of 

internal gene segment libraries will be derived from the clustering arrangement by 

inferring the most likely candidate for the ancestral template sequences of each cluster.  

 The DP engine is initialized by randomly selecting a single sequence from within 

the input sample from high-throughput immunoglobulin-sequencing, and assigning it to 

an empty cluster. This will serve as a seed sequence from which all other cluster 

assignments are based. For the second randomly selected sequence (and every sequence 

in the input dataset thereafter), a posterior probability of cluster assignment is calculated 

using the designated formulas of the likelihood and prior components, for each potential 

cluster assignment. This ‘probe’ sequence is then randomly assigned either to an existing 

cluster, or to a new empty cluster, with its choice of placement weighted according to this 

marginalized posterior. This assignment continues until every input sequence has been 

assigned a cluster label, thus completing the first round of clustering.  

 For each subsequent round of clustering, each sequence is given an opportunity to 

be reassigned to alternative clusters.  This is because for the majority of sequences, the 

available information regarding the current clustering state will be different from the 

conditions during initial assignment, as newer sequences will have since then been 



 

 

41 

observed and placed accordingly. Any reassignment of sequences will also result in a 

change in the overall cluster state, which in turn alters the marginalized posterior 

probabilities for further sequence assignments, and represents an update in the 

understanding of a cluster’s inferred ancestral sequence. During each round of 

reassignment, each sequence is given the opportunity to be reassigned once, in 

randomized order. This clustering procedure is currently set to terminate after 50 rounds, 

an empirically derived upper limit on the time it takes for the system to consistently reach 

a steady state. Our preliminary trials indicated that 50 rounds was more than sufficient to 

achieve steady state, under a wide range of the parameters α (defined in earlier section on 

priors) and β (to be defined in the following section). However, given the stochastic 

nature of the Dirichlet process, we recognize that the system is not guaranteed to reach 

steady state within 50 rounds, and so we plan to provide a feature for adjusting this limit 

and recording the clustering rearrangement movements as part of the advanced settings in 

our user interface. Figure 14 provides an example of one of these preliminary trials. 
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Figure 14: Sequence Migration Plot 

 
Figure 14: The x-axis refers to the round number, while the y-axis refers to a unique 

cluster index. The lines indicate the path of sequence migrations between clusters over 

time. There is substantial sequence reassignment and migration during the early rounds, 

but later rounds have reduced movement and a ‘crystallization’ of cluster assignments. 

Simulated Annealing34,35 

 Many of the machine learning algorithms developed to tackle optimization 

problems in mathematics and computer science have a significant drawback in that they 

tend to get stuck at local optima. This is typically caused by the ‘greedy’ nature of such 

algorithms, which require that the only accepted steps are ones which improve the overall 

scoring function. Finding algorithms which can guarantee globally optimal solutions 

remains a formidable open question in computer science. One popular alternative has 

been to instead approximate the global optimum by applying a metaheuristic called 

‘simulated annealing’, which allows for the temporary exploration of ‘worse’ regions in 

overall solution space. 
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 The concept of simulated annealing is analogous to a common problem in 

materials science involving the heating and cooling of metals. At high temperatures, the 

overall free energy of the system is greater, and so molecules have the freedom to explore 

less optimal configurations. The rate at which the metal is cooled will affect the overall 

size of the final crystals, as well as the defects within the crystals. By controlling the rate 

of cooling, larger crystals can be achieved than would otherwise be possible.  

 We can implement simulated annealing into our clustering procedure by making 

one small adjustment to our likelihood components in Eqn. 6, adding an additional 

parameter 𝛽.  

Eqn. 7: 

𝑃(𝒔𝒏𝒆𝒘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ |𝒔𝟏⃑⃑⃑⃑⃑, 𝒔𝟐⃑⃑⃑⃑⃑, … , 𝒔|𝒄𝒊|⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝒂𝒊⃑⃑ ⃑⃑ ) = (
4−𝐿 ∗ ∏ ( max

𝑠 ∈{𝐴,𝑇,𝐺,𝐶}
(∏ ℒ𝑖𝑗𝑘(𝑠)

|𝒄𝒊|+1
𝑗=1 ))𝐿

𝑘=1

4−𝐿 ∗ ∏ ( 𝑚𝑎𝑥
𝑠 ∈{𝐴,𝑇,𝐺,𝐶}

(∏ ℒ𝑖𝑗𝑘(𝑠)
|𝒄𝒊|
𝑗=1 ))𝐿

𝑘=1

)

𝛽

 

 

 Here, 𝛽 represents an inverse temperature parameter. For smaller 𝛽, the overall 

temperature (and ‘free energy’) of the system is increased, while larger 𝛽 indicates cooler 

temperatures. We can simulate a controlled cooling by beginning with low values of β in 

the early rounds of the Gibbs machine learning process, and gradually increasing it as the 

number of rounds increases. A β set equal to one across all rounds of clustering would 

indicate a ‘non-annealing’ schedule. Generally speaking, at lower 𝛽 (higher temperature), 

more weight is given to the prior component of the Dirichlet Process, and sequences are 

thus more likely to migrate to alternative clusters than would normally be indicated solely 

by their shared nucleotide content. Conversely, at higher 𝛽 (lower temperatures), more 
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weight is given to the likelihood component, and sequences eventually come to settle or 

‘crystalize’ into the clusters from which they originate in a given round.  

 The selection of an appropriate annealing scheme for 𝛽 was also determined 

empirically through preliminary trials with synthetic data. We include a review of these 

trials in an appendix. The scheme we selected for our algorithm evaluations discussed in 

Chapters 4 & 5 set 𝛽 = 0.5 as an initial value, and increased it by 0.1 after every 3 

rounds of reassignment for a total of 50 rounds. 

.
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CHAPTER FOUR: EVALUATION OF DEVELOPED METHODS WITH 

SYNTHETIC DATASETS 

Introduction 

 In the previous two chapters, we discussed the details of the statistical methods 

and algorithms used to arrive at a set of candidate model germline gene libraries, and a 

variable region analysis of the immunoglobulin sequencing data given those inferred 

libraries. In the next two chapters, we will discuss the means by which these statistical 

methods and algorithms are evaluated for both accuracy and robustness across a wide 

range of parameter settings.  

 The evaluation tests described in this chapter will concentrate on the use of 

synthetically generated data, whereas the tests described in the following chapter will use 

data derived from actual biological sources. We begin with a discussion of the advantages 

and disadvantages associated with using simulated data to evaluate our methods. We 

follow with an explanation of the types of outcomes we are interested in measuring in our 

trials with synthetic data, as well as our definitions of what differentiates a successful run 

versus an unsuccessful run. We continue with an overview of the conditions used to 

generate a synthetic dataset, and conclude with a detailed breakdown of the primary 

results of the various trials run on those datasets.  

Advantages and Disadvantages of Synthetic Data Trials 

 The primary advantage of utilizing synthetic data is the certainty it provides to the 

experimenter regarding the ground truth of the different sources of variation within the 

generated datasets. For example, having knowledge about both germline level variation 
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(e.g. true number and sequence identity of the alleles used during recombination), and 

clonal level variation (e.g. statistics regarding number of clones, their founder sequences, 

and any mutations acquired during a simulated process for affinity maturation) allows the 

experimenter to isolate the two primary sources of dataset variability and assess their 

effects on any given clustering trial independently.  

 Moreover, the level of certainty that one can have using synthetic data in the 

interpretation of final results has tremendous power in identifying opportunities for 

further algorithm improvements. By identifying discrepancies between predicted results 

and actual outcomes for synthetic data, the experimenter can probe the limits of the 

developed methods under a wide variety of initial conditions and model assumptions with 

a high degree of precision. However, due to the hierarchical complexity of our machine 

learning system, it is imperative that the experimenter remains vigilant against 

‘parameter-hacking’, or an overly fine-tuning of selected parameters in order to optimize 

for a candidate set of ideal results, that do not translate well over to biological sources. In 

addition to preventing over-tuning, trials using biological data sources are necessary 

because they contain an inherent variability that may not be completely captured by our 

existing models. The reasoning behind this is analogous to research studies which utilize 

both in vitro and in vivo experiments to probe their system of choice. 

Key Measurable Outcomes for Synthetic Data Trials 

 There are three categories of results that we are concerned with evaluating. First, 

we are concerned with evaluating our predictions of the germline gene segment libraries 

used in our VDJ recombination models. Evaluation of this category will be concerned 
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with measuring both the quantity and quality of our predicted germline gene segment 

alleles. Specifically, we are testing to see whether the machine learning algorithm is able 

to accurately infer both the total number of alleles in our starting germline gene library, 

and the actual nucleotide content of those inferred alleles. A successful trial would be 

produce a candidate set of libraries whose sequences were identical to those in the 

starting library, whereas an unsuccessful trial would fail to meet at least one of those 

strict requirements. 

 The next two categories of results have to do with the algorithm’s capacity to 

perform typical immunoglobulin repertoire analysis methods (given the inferred 

candidate libraries), specifically in regards to variable region gene (VRG) segment 

assignment and clonal partitioning. For VRG assignments, we are interested in 

comparing how individual reads are annotated using the candidate alleles from our 

inferred libraries, and whether their assigned recombinations match those from their 

original source data. For assessing clonal partitioning, we are interested in whether the 

algorithm is able to accurately recapture the total number of clones, the accuracy of each 

clone’s inferred founder specifically in regards to their rearrangement parameters, the 

assignment of individual sequences to clones, and the determination of acquired 

mutations within the clonal lineage. 

 Taken in conjunction, each of these categories of results will be used to assess the 

algorithm’s capacity to differentiate between germline gene variation and acquired 

somatic hypermutation variation in a synthetic context. 
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Generation of Datasets for Synthetic Trials 

Synthetic Allele Libraries 

 The synthetic library we selected is a curated subset of the functional human 

immunoglobulin heavy chain V segments available from IMGT, and contains pairs from 

a total of ten unique gene segments derived from both human IGHV3 and IGHV4 

families of genes. Alleles were selected in order to provide identical SNP-distances 

between allele pairs, in order to control for germline variation while testing the influence 

of parameter choice on clustering capabilities. A SNP-distance refers to the metric which 

measures the total number of single nucleotide polymorphisms (SNPs) in the optimal 

alignment for a given sequence pair e.g. if alignment AB has a SNP-distance of 3, then 

alleles A and B contain a total of 3 string-level mismatches. Figure 15 shows a maximum 

likelihood tree of the 10 unique alleles used in the starting V gene segment library used 

for synthetic VDJ recombination. Note that each allele pair has equivalent distance of 3 

SNPs, but there is an increased distance between gene segments, and an even greater 

distance between the V3 and V4 gene families. 
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Figure 15: Allelic Variation of Synthetic V Gene Segment Library 

 

 Figures 16a-b represent the distribution of SNP-distances from all possible 

pairwise alignments between any two alleles found in the IMGT’s human V gene 

segment database. In Figure 15a, the distances are colored according to whether the 

alleles in a given pair belonged to the same gene family (blue) or not (red). (E.g. IGHV1-

23*01 & IGHV1-46*02 (blue) vs. IGHV1-23*01 & IGHV3-33*03 (red)) In Figure 15b, 

the distances are colored according to whether the alleles in a given pair belonged to the 

same gene segment (blue) or not (red). (E.g. IGHV1-23*01 & IGHV1-32*05 (blue) vs. 

IGHV1-23*01 & IGHV1-46*02 (red)) 
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Figure 16a: Histogram of Interfamily Allelic Variation 

 

Figure 16b: Histogram of Intersegment Allelic Variation 
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 As a general rule of thumb, intersegment variation will most often have fewer 

than 10 SNPs between alleles, while interfamily variation will have on the order of 

dozens of SNPs.  

 As we were primarily interested in evaluating the developed clustering methods 

on inferring V gene libraries alone, we used the standard D and J gene segment libraries 

available from IMGT for these simulated recombinations.  

Generating Synthetic Clones32,33 

 Every allele in the V starting library was recombined with D and J gene segments 

stochastically selected from their respective libraries to form a founder sequence for a 

particular clone. Each V allele was used in the founder sequence of at least 10 unique 

clones. These clones were directed to propagate for 4 generations at a pre-specified 

mutation rate. For each generation, 2 ‘child’ sequences were duplicated from every 

‘parent’ sequence in the previous generation, with mutations stochastically applied to the 

child sequences according to the pre-specified mutation rate. Since immunoglobulin 

sequences are roughly 300 bp in length, a mutation rate of 0.001 would translate to 

approximately 1 new mutation per generated sequence. The statistical model for applying 

the mutations uses a weighted uniform distribution, with weights drawn from estimates of 

pentameric nucleotide motifs empirically-derived from non-productive rearrangements 

(T. Kepler, personal communication, August 22, 2019). 

Eqn. 8: 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑎𝑙𝑙𝑒𝑙𝑒𝑠 ∗ 𝑓𝑜𝑢𝑛𝑑𝑒𝑟𝑠 ∗ 2𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 10 ∗ 10 ∗ 24 = 1600𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 
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Figure 17: Generation of Synthetic Clones for Alleles in Starting V Gene Library 

 

We generated three synthetic clonal populations; their mutation rate parameters were 

selected such that the average mutation frequency amongst final generation of sequences 

compared to their founders would be 0% (control/low), 2% (medium), and 5% (high) 

respectively. 

Filtering Synthetic Clonal Populations; Artificial Selection of Clones 

 During the course of accumulating mutations, our synthetic clones would often 

mutate away the conserved cysteine critical to immunoglobulin folding. This was 

especially prominent in our high mutation frequency population, which had a higher 

probability of introducing the mutation in an earlier generation, and would then propagate 

the mutation to subsequent generations. This phenomenon marks a departure of our 

model for synthetic clone generation from actual biological systems, which would 

eliminate the mutation through natural selection, as any immunoglobulin receptors which 
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contained this mutation would by definition be non-productive. Since the presence of this 

conserved cysteine is a critical component to both actual productive immunoglobulins 

and our algorithm’s capacity to distinguish the V portion of our immunoglobulin 

sequences, we generated a surplus of clones for each V allele, and then filtered such that 

every clone would preserve the conserved cysteine’s codon for all of its descendent 

sequences.  

Summary of Synthetic Datasets 

 In addition to overall mutation frequency, we were interested in testing the 

influence of both the total size of the dataset (𝑁), and the choice of the hyperparameter 

𝑙𝑜𝑔(𝛼) on algorithm performance. This is because under a standard Dirichlet process 

(i.e. when priors alone determine cluster membership, in the absence of a likelihood 

function), the number of expected clusters on 𝑁 sequences is expected to converge at a 

rate proportional to 𝛼𝑙𝑜𝑔𝑁. (Our interest in 𝑙𝑜𝑔(𝛼) rather than 𝛼 stems from by 

applying log transformations to the likelihood and prior components prior to evaluating 

the corresponding posterior probabilities in order to prevent memory overflow errors 

during computation.) 

 To generate populations of varying size (𝑁), we further filtered the original three 

synthetic populations (control, medium, high mutation frequency) to create four 

subpopulations for each group (12 datasets in total). The four subpopulations within a 

group form a successive chain of subsampling, so that every sequence sampled in the 

smaller populations are present in the next largest sample of its type. For example, all of 

the sequences contained in dataset 4 are also contained within dataset 3, which in turn are 
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all contained within dataset 1, etc. Table 2 below lists these twelve datasets, along with 

their individual parameters for clone size, counts, and total allele coverage.   

Table 2: Summary of Synthetic Datasets 

SAMPLE ID 
MUTATION 
FREQUENCY # CLONES 

# SEQS / 
CLONE 

TOTAL 
SEQS / 
ALLELE 

TOTAL 
SEQS (N) 

1 0% 10 10 100 1000 
2 0% 8 8 64 640 
3 0% 5 5 25 250 
4 0% 3 3 9 90 

5 2% 10 10 100 1000 
6 2% 8 8 64 640 
7 2% 5 5 25 250 
8 2% 3 3 9 90 

9 5% 10 10 100 1000 
10 5% 8 8 64 640 
11 5% 5 5 25 250 
12 5% 3 3 9 90 

 

 Each of the twelve generated synthetic datasets was run through a total of eight 

trials, where 𝑙𝑜𝑔(𝛼)  was given a value from the set {500,300,250,200,175,150,75,40} 

for a total of 96 synthetic trials. We selected these values for 𝑙𝑜𝑔(𝛼) based on 

predictions made by calculations for an expected ‘switchpoint’ or transition between 

preferential assignments of newly observed sequences to existing clusters vs. generating 

novel clusters. This switchpoint was partly dependent on the length of the sequences 

being clustered, which for V gene sequences is ~300bp.  

 The simulated annealing cooling scheme was kept constant across all synthetic 

trials. In this cooling scheme, the initial starting value for beta was 0.5, and then 

increased by 0.1 after every third iteration of Gibbs sampler, up to a final value of 2.1. 

These parameters had also been determined empirically during the early stages of Gibbs 
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sampler implementation, and were optimized to achieve a steady state of clustering 

assignments within 50 rounds of attempted cluster rearrangement. 

Results 

Effects of Mutation Frequency, N and 𝑙𝑜𝑔(𝛼) on Final Library Size 

 Figures 18a - 18d show bar charts which display the final size of the predicted 

germline V gene libraries for each of the 96 synthetic data trial runs. The y-axis refers to 

the number of predicted alleles, while the x-axis for each chart refers to the mutation 

frequency of the population that the datasets were derived from. Each different colored 

bar represents a different choice for the parameter 𝑙𝑜𝑔(𝛼). The black line indicates the 

true number of alleles for that dataset, which is 10.  

 Figure 18e reformats the data present in Figures 18a-d. Whereas Figures 18a-d 

emphasize the contrasting effects of differing 𝑙𝑜𝑔(𝛼)  settings within a given dataset 

size, Figure 18e emphasizes the contrast between dataset sizes for a given 𝑙𝑜𝑔(𝛼)   

setting and mutation frequency. As before, the y-axis indicates the size of the final 

predicted library, the black line indicates the true number of alleles (10) and charts have 

been grouped by overall dataset size. However, in Figure 18e, the x-axis now represents 

the selection of the 𝑙𝑜𝑔(𝛼)  parameter, and the color of the bars indicate the population’s 

mutation frequency. 
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Figures 18a-18d: Predicted Alleles Chart, (90, 250, 640, 1000 Sequences) 
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Figure 18e: Predicted Alleles Chart, Alternate Emphasis 

 

 

 We find that the algorithm consistently underestimates the true number of 

germline alleles when the parameter 𝑙𝑜𝑔(𝛼) ≤ 150, regardless of dataset size or 

population mutation frequency. For values of 𝑙𝑜𝑔(𝛼) ≥ 175, the size of final predicted 

libraries varies with both dataset size and population mutation frequency.  

Figure 18a demonstrates that the datasets which contained the fewest sequences (4, 8, 12) 

were able to correctly guess the true number of alleles, regardless of population mutation 

frequency when 𝑙𝑜𝑔(𝛼) ≥ 200. 
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 Figures 18b-d demonstrate that populations with 0% mutation frequency and 

𝑙𝑜𝑔(𝛼) settings greater than 150 are able to correctly predict the total number of alleles, 

regardless of library size. We are also able to correctly predict the true number of alleles 

in the 2% mutation frequency populations, as long as the dataset is small enough.  

 However, the algorithm overestimates the true number of germline alleles for 

trials with larger datasets and higher mutation frequencies. For all but the smallest 

datasets, a population of 5% mutation frequency results in an overestimation of the true 

number of alleles.  

Effects of Mutation Frequency, N, 𝑙𝑜𝑔(𝛼) on Quality of Allele Prediction  

 The quality of our predicted allele libraries was measured through exhaustive 

pairwise comparisons of predicted allele libraries with external human IGHV libraries. 

This analysis demonstrated that the synthetic trials which had managed to correctly 

predict the true number of alleles (10) were also able to accurately infer the sequence 

content of those alleles. This perfect string-wise matching of predicted alleles with 

external alleles held constant across all trials which had correctly guessed 10 alleles, 

regardless of mutation frequency, 𝑙𝑜𝑔(𝛼) or 𝑁.  

 For every synthetic trial which had predicted a final library larger than the true 

number of alleles (>10 sequences), there was always a 10-sequence subset of alleles 

which had string-wise perfect matches to the original library. The extraneous candidate 

alleles in the overestimated libraries generally had poorer clonal support than the 

correctly predicted subset, as shown in Figure 19 below. 
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Figure 19: Box Plot of Average Clonal Support in Overestimating Synthetic Trials 

 

Figure 20: Proportion of Alleles which were perfect vs. imperfect matches relative to 

predicted library size, averaged over all synthetic trials 

 

 Trials which predicted smaller allele libraries than the original (<10 sequences) 

had variance in their overall quality prediction based on population mutation frequency. 
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None of the underestimating trials with 0% mutation frequency populations contained 

any perfect matches to the original library. In contrast, the 2% and 5% mutation 

frequency trials in this group typically had all but one or two of their predicted alleles be 

perfectly string-wise matched to a query allele in the original library. These remaining 

one or two sequences from the underestimated libraries would have much higher 

mismatch scores for all of the alleles in original library.  

 These results are unsurprising given the nature of our clustering approach. 

Essentially, if the 𝑙𝑜𝑔(𝛼) parameter is set too low, then the sequences will not separate 

into distinct clusters that reflect their true allelic origins, and instead gravitate towards 

one or two large ‘miscellaneous grab bag’ clusters. As these clusters grow larger, true 

allelic variation is averaged out and the inferred consensus sequence for that cluster 

becomes a kind of non-informative magnet for future assigned sequences. In contrast, if 

the 𝑙𝑜𝑔(𝛼) is set too high, then sequences are more prone to separate and form smaller 

clusters. In many cases these smaller clusters only contain one or two sequences on their 

own, usually from the same clone. When this occurs, these singlets and doublet clusters 

do not contain adequate interclonal information to estimate the true allelic variation, 

causing the predicted libraries to be populated with extraneous alleles which contain poor 

clonal support.  

Effects of Mutation Frequency, N, 𝑙𝑜𝑔(𝛼)  on VDJ assignments & Clonal Lineage 

Inference Final Clone Prediction 

 Figures 21a – 21d contain bar charts which show how the final number of 

predicted clones for a given synthetic trial compared with the true number of clones 
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(black horizontal lines) in its respective dataset. The specific layout of the axes and color 

legends are identical with the corresponding format in Figures 18a-18d, and are chosen to 

emphasize the compounding influence of N and mutation frequency on algorithm 

performance. Similarly to Figure 18e, Figure 21e reverses the orientation of the x-axis 

group labels and the color legend in order to emphasize the influence of varying the 

parameter 𝑙𝑜𝑔(𝛼)  on algorithm performance.  

Figures 21a-21d: Predicted Clones Chart (90, 250, 640, 1000 Sequences) 
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Figure 21e: Predicted Clones Chart, Alternate Emphasis 

 

 In general, we see concurrent results to that of predictions of allele quantity and 

quality. Smaller dataset sizes are closer in approximating the true number of clones than 

larger datasets, as are populations with smaller mutation frequencies. In general, choice 

of 𝑙𝑜𝑔(𝛼)  appears to be less significant in the determination of final clone counts, 

except in cases when both datasets are large and mutation frequency is high.  

Synthetic Trial with Mixed Clonal Populations of Varying Mutation Frequencies 

 The relative decrease in algorithm performance at higher mutation frequency 

populations is not that surprising, given the decreased certainty in available information 

for allelic inference. However, in a realistic biological scenario, there will be a mixture of 

mutation frequencies amongst the different clonal subpopulations, with some clones 

being highly differentiated with greater numbers of mutations and other less-
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differentiated clones with fewer overall mutations. We decided to test whether the 

presence of these less-differentiated clones would be enough to ‘rescue’ the inference of 

the overall population.  

 To do this, we used antibody data collected as part of an earlier study on acquired 

mutations of immunoglobulins in HIV-1 infected individuals. This data came from bulk-

DNA sequencing from 75 human subjects. We used it to estimate the shape of the 

underlying distribution of mutation frequencies across clones. Figure 22 shows a 

histogram of this data, which approximates that of a power law distribution. Low 

mutation frequency clones make up the majority of clones, followed by a long tail of 

progressively higher mutation frequency clones.  

Figure 22: Histogram of Human Heavy Chain Mutation Frequencies 

 

 To approximate this biological power law distribution using our previously 

simulated data, we created a new “mixed” dataset, which combined all of the sequences 
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from datasets 2, 6, and 12. In this mixed dataset, there were a total of 980 sequences with 

the largest subpopulation contained 640 sequences (8 clones/ allele, 8 sequences/clone) at 

0% mutation frequency; the second subpopulation had 250 sequences (5 clones/allele, 5 

sequences/clone) at 2% mutation frequency; the final subpopulation had 90 sequences (3 

clones/allele, 3 sequences/clone) at 5% mutation frequency.  

 When setting the parameter 𝑙𝑜𝑔(𝛼) = 300, we find that the algorithm is able to 

accurately predict both the true number of alleles (10) in this mixed proportions dataset, 

and every allele in this library is a perfect match with an allele from the original starting 

library. As with other trials, it also came very close to the true number of clones 

(predicted 159 vs. an actual 160). The sizes of the predicted clones were remarkably 

consistent with the true structure of the dataset, with 88% of predicted clones being the 

correct size, and the overall proportion approximating the original 8:5:3 ratio reflective of 

the underlying subpopulations. 
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CHAPTER FIVE: APPLICATIONS TO NOVEL BIOLOGICAL DATA & 

DISCUSSION 

 The purpose of this chapter is to evaluate the robustness of our developed 

machine learning algorithms in the context of real-world biological data by applying 

them to human immune heavy chain repertoires. In contrast to the synthetic data analyses 

of the previous chapter, we do not know the ground truth of the allelic content of our 

immunoglobulin sequences, and thus our evaluations of the accuracy of our algorithms 

through biological data can only ever be approximations.  

 In this chapter, the focus of our evaluations will be on cross-comparing the results 

of our inferences with three competing algorithms which rely on a pre-existing reference 

database of alleles: IgBlast, IMGT’s V-QUEST, as well as our own in-house software 

Cloanalyst. Each of these tools currently uses an identical reference database of alleles5 

(the one produced by IMGT) and are popular methods for inferring human immune 

repertoires.9,36,37 

 We conclude this chapter with a review of the major successes of the overall 

project in light of the original project aims. We also discuss some of the significant 

obstacles and limitations of the project in its current state, highlighting the areas available 

for future work and some remaining open questions.  

Sources and Pre-Processing of Biological Data 

 All of the human heavy chain immunoglobulin sequences used in these 

evaluations had been previously obtained as part of earlier work in our laboratory. While 
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we include a brief overview of the methods here for the sake of clarity and introduction, 

readers interested in a more detailed methodology are referred to the original paper.38,39  

Anthrax Vaccine Adsorbed (AVA) Trial 

 Six human subjects had been previously enrolled as part of a study regarding the 

response of the human immunoglobulin repertoire to the anthrax vaccine. During the 

trial, subjects were injected with a series of up to six vaccinations, and their blood was 

drawn at time of injection and one week post-vaccination, in order to capture the peak 

adaptive immune response. Plasmablasts were isolated from the blood via flow 

cytometry, and their immunoglobulin-specific mRNA was extracted and sequenced.  

Commercial Computational Processing of Sequenced Immunoglobulin Reads 

 The sequenced reads collected from these plasmablasts underwent some 

additional computational processing steps in order to satisfy quality control and 

formatting requirements for our novel statistical methods. These processing steps 

included the joining of the matching paired-end reads to form contiguous sequences of 

roughly 300bp in length, the removal of adapter sequences from the ends of reads 

introduced during standard library preparation, and a filtering step to eliminate reads 

which were of poor quality. These computational pre-processing steps were performed as 

part of the external commercial sequencing service Atreca.  

Subsampling of Biological Data Sources 

 To evaluate the algorithm in its present state, we required only the subset of our 

available data which encoded for immunoglobulin heavy chains. In the event our 
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algorithm is updated to process light chain rearrangements, then the cross-comparisons 

analysis detailed below can also be extended using information obtained from the same 

source.  

 The total number of immunoglobulin heavy chain sequences varied substantially 

between subjects, with the average read count of 1746 and a standard deviation of 1067. 

Table 3 below lists the total reads (N) available for each subject. From our synthetic 

trials, we had learned that N was positively correlated with the total number of predicted 

alleles in the final library of candidate germline gene segments, with larger datasets 

tending to include more spurious alleles. This trend was corroborated in our initial 

assessments of the biological data, as shown in Figure 23. Note that the x-axis is a log 

transformation of N.  

Figure 23: Correlation Plot of Log(N) and # of Predicted Alleles 
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 To control for this effect, we decided to randomly subsample our data into sets of 

750 sequences. We took these 750-sequence random subsets in triplicate for each of our 

subjects, in the hopes of recapturing some of the original biological variability. In 

addition to the total size of the dataset for each subject, Table 3 also lists both the 

proportion of sequences which were covered in one replicate of size 750 sequences, and 

in the union of triplicate sets for each biological subject. 

Table 3: Summary of Biological Triplicate Datasets 

SUBJECT ID TOTAL SEQS (N) SAMPLE SIZE (K) (%) 

UNION OF 

TRIPLICATES (%) 

S1H 2090 750 (36%) 1504 (72%) 

S2H 923 750 (81%) 919 (99%) 

S3H 859 750 (87%) 858 (~100%) 

S4H 775 750 (97%) 775 (100%) 

S5H 3383 750 (19%) 1790 (53%) 

S6H 2445 750 (31%) 1619 (66%) 

 

Comparisons with Cloanalyst, IgBlast & IMGT V-QUEST 

 We compared our autonomous allelic inference approach with three different 

reference-database reliant methods: third party softwares IgBlast and High-VQUEST, 

and in-house software suite Cloanalyst. These platforms were selected for their relative 

popularity, ease of use, and consistency in their selection of a common allelic reference 

database, namely the one provided by IMGT. We ran each of the eighteen datasets listed 

in Table 4 under each platform using their respective default parameters. For our 
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Dirichlet process approach, we set our 𝑙𝑜𝑔(𝛼) = 300and kept the same β parameter 

annealing schedule as in our synthetic trials.  

Allele Quantity Comparisons 

 Table 4 below compares our inferred library size to that of the alternate platforms 

for each of the triplicate datasets.  As discussed in a later section, a subset of reads 

resulted in a multiplicity of potential gene segment assignments, which complicates the 

counting of unique gene names. The datasets labeled “All” refers to the inclusion of these 

alternate gene names in the total unique gene name count. For High VQUEST, the 

“single match” column refers to the number of unique gene names when ambiguous gene 

names are excluded. For IgBlast, the ‘Top Allele” column refers to the count when only 

the first of three top matching gene names are included in the total unique gene name 

count. In general, we find that our inferred libraries contain fewer alleles than any of the 

alternate platforms, coming closest in performance to the ‘single match only’ VQUEST 

libraries, and being dwarfed by both HighVQUEST (all) and IgBlast (all) at ratios of 

roughly 2:1 and 3:1 respectively.  
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Table 4: Summary of Predicted Allele Comparisons 

Dirichlet  

Dirichlet 
Inferred 
Alleles  Cloanalyst  

High 
VQUEST 

(All) 

High 
VQUEST 

(Single 
match) 

IgBlast 
(All) 

IgBlast (Top 
Allele) 

S1H – A 54 72 87 55 151 64 

S1H – B 51 72 89 57 141 64 

S1H – C 49 65 86 50 144 58 

S1H Avg. 51.3 69.7 87.3 54.0 145.3 62.0 

S2H – A 49 76 101 58 143 67 

S2H – B 49 76 99 54 140 66 

S2H – C 51 76 100 56 146 67 

S2H Avg. 49.7 76.0 100.0 56.0 143.0 66.7 

S3H – A 54 84 100 55 161 68 

S3H – B 51 86 100 56 159 69 

S3H – C 52 86 100 56 161 69 

S3H Avg. 52.3 85.3 100.0 55.7 160.3 68.7 

S4H – A 54 75 101 59 156 68 

S4H – B 55 75 103 60 157 69 

S4H – C 56 75 100 59 155 67 

S4H Avg. 55.0 75.0 101.3 59.3 156.0 68.0 

S5H – A 52 84 115 62 161 74 

S5H – B 49 78 108 58 154 70 

S5H – C 55 77 97 51 151 69 

S5H Avg. 52.0 79.7 106.7 57.0 155.3 71.0 

S6H – A 55 88 119 66 160 82 

S6H – B 58 90 114 66 164 82 

S6H – C 52 94 122 64 168 84 

S6H Avg. 55.0 90.7 118.3 65.3 164.0 82.7 

Total Avg. 52.6 79.4 102.3 57.9 154.0 69.8 
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Gene Name Annotation of Inferred Allele Libraries for Cross-Platform Comparisons 

 Since our algorithm infers alleles autonomously from the input data, there is no 

pre-designated gene name annotation available. For the purposes of comparing gene 

segment assignments from our inferred allele libraries versus those assignments made 

using reference database-reliant approaches, we needed a means of labeling our inferred 

alleles in context with the other platforms. Therefore, we interpolated a gene name 

annotation of our inferred alleles by systematically cross-matching them with the IMGT 

reference allele library shared in common by Cloanalyst, IgBlast and VQUEST for each 

of our eighteen datasets. This consisted of an iterative many-to-many matching operation 

where pairwise sequence alignments between alleles from our inferred library and query 

alleles of the IMGT reference library. The IMGT gene name corresponding to the query 

allele which conferred the fewest mismatches to a given candidate (and whose pairwise 

alignment also contained zero inner gaps), was the one selected for annotation. We 

emphasize that this annotation interpolation is not included during the allelic inference 

phase unique to our platform, but is only included to provide external context for these 

third-party comparisons.  

 We then applied a crude ranking method for these interpolated gene name 

annotations based on the minimum mismatch value: perfect, close, poor, and very poor. 

Annotations were only given a ‘perfect’ ranking if the aligned sequence pair contained 0 

SNPs. Matches which contained 1-3 SNPs were labeled as ‘close’. ‘Poor’ matches were 

those in the range of 4-10 SNPs, and ‘very poor’ matches with >10 SNPs. Alignments 

which contained gaps were excluded from our consideration for allele annotation, and 
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were thus generally left unranked. Figure 24 demonstrates the proportion of our 

annotations which fell into these five categories for each of our datasets.  

Figure 24: Allele Ranking Proportions Across All Samples 

 

 Sometimes, there would be a tie for the annotated minimum mismatch gene name. 

Ties occurred for each of the four annotation rankings including ‘perfect’ matches. Ties 

in the case of ‘perfect’ matches indicate duplicate alleles found within the IMGT 

reference database; i.e. identical sequences under alternative gene names. In this case, ties 

were resolved by selecting the one of these gene names, and filtering out the duplicate 

alternatives.  

 For annotations with a non-perfect ranking that also resulted in a tie for best 

match (roughly 8.7% of sequences for all datasets), gene names were secondarily ranked 
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to minimize inner gaps, and if a tie still remained, then the alphabetically first gene name 

in the tied set was selected for annotation and were given a ranking of ‘ambiguous’. 

Complexity of Gene Annotation for Cross-Platform Comparisons 

 Ambiguous gene name assignments were also present in the results from both 

IgBlast and High VQUEST. By default, IgBlast reports the top three most significant 

gene segment candidates for each input immunoglobulin read. For High-VQUEST, only 

a minority of reads had ambiguity in regards to their gene assignment, but the size of the 

candidate gene set was highly variable. In one notable instance, VQUEST reported seven 

candidate gene segment annotations for the read being queried.  

 Given the inherent complexity of defining a consistency metric for overlapping 

gene name sets of variable size across software platforms, we opted for a more simplified 

approach. We limited our platform comparisons search space to only consider reads 

which had an unambiguous annotation for each of the software platforms. In particular, 

this excluded reads which resulted in non-perfect ties from our interpolated annotations 

or non-single annotations through HighVQuest. We also considered only one of the three 

IgBlast annotations for a given read. On average, these combined filters excluded 

approximately one third of reads in our datasets. Figure 25 below demonstrates the 

proportion of these excluded reads in orange. (‘ComplexAnnot’) 

 We then divided the remaining simply annotated reads into four populations of 

interest. The first group contained reads which were consistently annotated with the 

identical gene name across all four platforms (the ‘MatchAll’ group). The second group 

included reads where three out of four platforms agreed on a gene name, of which our 
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Dirichlet-clustering platform was included (the ‘DMatch2of3’ group). The third group of 

reads were those where agreement was shared amongst all three database-reliant 

platforms, but the interpolated annotation from the Dirichlet-clustering platform was 

inconsistent (the ‘DUnique’ group). The final group contained the small remaining 

fraction of reads where there was an inconsistent pattern of gene annotation across 

software platforms (the ‘Inconclusive’) group.  Figure 25 below demonstrates the relative 

proportion of these groups across each of the eighteen datasets.  

Figure 25: Consistency Ranking of Cross-Algorithm IG Allele Annotations

 

 



 

 

75 

Investigation into Clonal Support of Low Ranking Alleles 

 Of the alleles in our inferred libraries, roughly half of them had a poor or worse 

ranking in terms of their best possible match with known IMGT reference alleles. The 

degree to which these alleles represent potential novel allele candidates vs. statistical 

clustering artifacts is unknown. However, we can measure our confidence in these 

inferred alleles by examining the level of clonal support which was used to infer them. 

Candidate alleles which exhibit a high degree of clonal support (i.e. alleles which are 

inferred from larger clusters of clones) are more likely to represent true allelic variation. 

 Figure 26 below contains a representative box plot of the data from one of our 

biological trials, S1H-1. The X-axis groups alleles according to the ranking of their best 

annotation match to IMGT reference alleles and the Y-axis shows the total number of 

clones that were used in the final inference of that allele. In general, we see a trend where 

the more poorly ranked alleles had less overall clonal support than their highly ranked 

counterparts. Box plots for the remaining 17 datasets included in the Appendix, however 

this pattern remains consistent across all eighteen datasets, with some variance of the 

‘perfect’ and ‘close’ groups relative to each other.  
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Figure 26: Range of Clonal Support by Allele Ranking, S1H-1 

 

Potential Novel Allele Detection 

 In addition to our previous analyses, we were also interested in whether any of the 

alleles in our predicted libraries could constitute the detection of a potential novel allele, 

previously uncharacterized in the IMGT V gene databases. While this particular line of 

investigation is still in its early stages, and would require further follow-up, we have 

identified 4 potential novel allele candidates from Subject 4 which have met all of the 

following criteria: 

o The candidate allele contained at least one mismatch in the pairwise alignment 

comparison of their most similar IMGT reference allele. 

o The candidate allele must have ≥ 3 clones with different V(D)J 

recombinations supporting the inference of the allele. 
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o These clones used for inferring the candidate allele must contain at least two 

sequences each. Singlet clones can add additional support to the inference of 

an allele, but they cannot stand on their own. 

 Figures 27a-d show alignments for each of these 4 novel allele candidates, their 

closest matching reference allele, and the non-singlet clones which used that allele 

candidate.  In each diagram, the reference allele is used as a template; dots indicate 

positions where any other sequence matches the corresponding nucleotide in the 

reference template, while individual letters indicate where they differ from the template.  

Figures 27a-d: Potential Novel Allele and Clones 
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 For Figure 27a, there are four sites which differentiate our predicted allele from 

that of the reference template: positions 89 (C->T), 93 (C->T), 169(A->M), and 190(C-

>T). Of these changes, position 169 involves an ambiguous nucleotide encoding, so it can 

be discounted. Position 93 involves a silent mutation and located in a known mutation 

hotspot binding motif, and so likely does not represent true allelic variation. The other 

two sites represent candidates which should be explored further as they result in amino 

acid level changes; site 89 results in an amino acid change from leucine to isoleucine, 

while site 190 results in an amino acid change of a leucine to a phenylalanine. This latter 

site is particularly intriguing as it represents a significant change in the functional group 

of the amino acid, adding a ring structure to the end of the long hydrophobic chain.  
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 For Figure 27b-d, there is only one site which differentiates the predicted allele 

from its reference template. In Figure 27b, the position at site 104 (G-> A) constitutes an 

amino acid switch from serine to asparagine; in Figure 27c the site 102 (G-> A) 

constitutes a switch from a methionine to an isoleucine, and in Figure 27d the position is 

at site 92 (G->A).  Given the comparatively inconsistency of this SNP in the members of 

these three clones, this final sequence in Figure 27d a comparatively poor candidate for a 

novel allele. 

 There may be other candidates in one of the other five subjects available in this 

dataset. At time of writing, we could not pursue this avenue further due to project time 

constraints, but this remains an interesting opportunity for future research.  

Summary & Conclusions 

 In this project, we have developed a robust set of statistical methods for 

performing autonomous immunoglobulin repertoire analysis. These methods operate 

underneath a cohesive paradigm of Bayesian statistical modelling via a clustering 

procedure derived from the Dirichlet Process. This paradigm allows for the inference of 

immunoglobulin germline gene libraries directly from high throughput repertoire 

sequencing data, independent of an external allelic database. These methods are further 

implemented in a series of machine learning algorithms which iteratively update the 

content of these libraries using information contained within the unique V(D)J gene 

segment assignments and clonal lineage derivations. We have demonstrated the 

capabilities of these methods on both synthetically generated data and actual biological 

human immunoglobulin repertoires. 
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 Our extensive investigations with synthetic data have identified the limits of the 

clustering paradigm offered by the Dirichlet Process, in particular concentrating on the 

role of the prior parameter 𝑙𝑜𝑔(𝛼)in the optimization of the final clustering state for our 

system. We find the impact of the ‘rich get richer’ property of Dirichlet Process clustering 

to have had particularly intriguing non-trivial effects on the dynamic behavior of our 

system, and warrants further research. Similarly, we believe that this method holds 

promise for the detection of additional novel allele candidates, pending further 

investigation.  
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APPENDIX I 

Preliminary Empirical Trials for Annealing Schedule 

 This section will consist of a review of the early-stage experimental trials which 

were run to determine an appropriate simulated annealing schedule for the Gibbs sampler 

implementation of for immunoglobulin germline allele clustering.  

 The primary goal of these trials was to identify a range of acceptable values for 

the parameter β during the calculation of the log likelihood function discussed in Chapter 

3. For these trials, we relied on an alternative set of synthetically generated data than the 

datasets discussed in Chapter 4, since at these trials were performed at an earlier stage in 

the algorithm’s overall development.  

 Here, we review the characteristics of this alternative synthetic dataset, the 

parameters selected for the trials themselves, as well as the overall results.  

Generation of 200 Sequence Synthetic Dataset 

 The V gene library used to generate this dataset was a subset of the human 

immunoglobulin V gene library; specifically 10 unique allele pairs were selected from the 

IGHV3 family of germline gene segments, for a total of 20 unique alleles in the starting 

V library. Each of these 20 V gene alleles was recombined with a unique DJ gene pair to 

create a founder sequence for a single clone (total of 20 clones). Each of these clones 

underwent a single round of division to produce two progeny sequences with SNP-

distances of between 0-4 SNPs from the input founder sequence (total of 40 progeny 

sequences). By chance, 3 of the 20 clones applied 0 mutations to both of their progeny, 
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and so the child pair for these clones were identical (37 unique sequences out of total 40 

progeny sequences). 

  All 40 progeny sequences were then manually given 5 identical replicates, for a 

total of 200 final sequences. These five intentional replicates were used as a positive 

control to test for technical errors associated with clustering. Identical sequences (i.e. 

perfect replicates) will ideally always cluster with themselves. If they do not, this would 

indicate that the clustering parameters are weighted too strongly towards generating new 

clusters. Since three of the twenty clones already had generated perfect replicates by 

chance, the most ideal clustering arrangement for this dataset of 200 sequences would be 

34 ‘sets of 5’ and 3 ‘sets of 10’, with each set only containing only the replicates for a 

single gene segment. 

𝑳𝒐𝒈(𝜶)and 𝜷 Parameter Preliminary Trials 

Trials without Simulated Annealing (i.e. 𝛽 = 1) 

 The first experimental trials were run while keeping β fixed at 1. This simplifies 

the process by removing the model component for simulated annealing, and allows 

𝑙𝑜𝑔(𝛼) to be tested in isolation. Table 5 shows the clustering results of a range of values 

for 𝑙𝑜𝑔(𝛼) when β=1. For values of 𝑙𝑜𝑔(𝛼) < 300, all sequences in the dataset would 

be grouped together in a single cluster. For values of 𝑙𝑜𝑔(𝛼) ≥ 450, every sequence was 

assigned into its own unique ‘cluster’. For values of 300 ≤ 𝑙𝑜𝑔(𝛼) < 450, the 

clustering arrangement lay somewhere between these two extremes, with 𝑙𝑜𝑔(𝛼) = 400 

coming the closest to the ideal clustering arrangement. In this range of values, we find 

that the clustering procedure is at best able to distinguish between different gene 
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segments of the IGHV3 family, but not between the members of a given allele pair. (e.g. 

IGHV3-21*01 & IGHV3-21*02 replicates would be erroneously clustered together, but 

IGHV2-23*01 and IGHV3-46*01 would not). 

Table 5: Summary of Preliminary Trials, 𝛃 = 𝟏  

 

 

 

 

 

 

 None of the trials lacking simulated annealing experienced any sequence 

reassignment in successive rounds of the iterative Gibbs sampler; essentially the overall 

clustering state of the system was unchanged beyond the initial state, effectively 

‘crystalizing’ from the first sequence assortment. 

Trials with Simulated Annealing (i.e. 𝛽 ≠ 1) 

 Table 6 summarizes the β parameter trials which involved simulated annealing; in 

each trial, the parameter was given an initial starting value 𝛽0and updated in increasing 

increments after every three rounds of Gibbs sampler reassignment for a total of 50 

rounds. Table 6 defines the starting 𝛽0, the ending 𝛽50, and the rule for increasing 

increments. Most trials use a simple additive or multiplicative for incrementing 𝛽. 

However, the last two trials also included a Fibonacci-series of increments, in an attempt 

to model ‘rapid cooling behavior’ in earlier rounds, and ‘slower cooling behavior’ in later 

𝐥𝐨𝐠(𝜶) 𝜷 Cluster Sizes 

0 1 1 cluster of size 200 

150 1 1 cluster of size 200 

200 1 1 cluster of size 200 

250 1 1 cluster of size 200 

300 1 5 clusters of size 20, 1 cluster of size 40, 1 cluster of size 60 

350 1 3 clusters of size 10, 7 clusters of size 20, 1 cluster of size 30 

400 1 20 clusters of size 10 

450 1 200 clusters of size 1 
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rounds. Table 6 also includes the corresponding values of 𝑙𝑜𝑔(𝛼), and the clustering 

results themselves. 

Table 6: Summary of Preliminary Trials, 𝛃 ≠ 𝟏  

𝐥𝐨𝐠(𝜶) 𝜷𝟎 𝜷𝟓𝟎 Rule Cluster Sizes 

300 0.1 0.9 +0.1 1 cluster of size 4, 32 clusters of size 5, 
1 cluster of size 6, 2 clusters of size 10 

300 0.5 1.3 +0.1 34 clusters of size 5, 3 clusters of size 
10 

300 0.6 2.2 +0.2 34 clusters of size 5, 3 clusters of size 
10 

200 0.1 1.5 +0.1 32 clusters of size 5, 4 clusters of size 
10 

200 0.1 6.4 x2.0 1 cluster of size 1, 32 clusters of size 5, 
1 cluster of size 9, 2 clusters of size 10 

100 0.2 2.0 +0.2 32 clusters of size 5, 4 clusters of size 
10 

50 0.1 1.0 +0.1 22 clusters of size 5, 9 clusters of size 
10 

25 0.1 0.7 +0.1 1 cluster of size 29, 1 cluster of size 50, 
1 cluster of size 121 

25 0.025 0.875 +0.025 2 clusters of size 5, 19 clusters of size 
10 

15 0.025 0.425 +0.025 20 clusters of size 10 

5 0.025 0.425 +0.025 1 cluster of size 30, 1 cluster of size 170 

5 0.005 0.1 +0.005 4 clusters of size 10, 1 cluster of size 14, 
3 clusters of size 20, 1 cluster of size 21, 
1 cluster of size 25, 1 cluster of size 40 

5 0.001 2.584 * 8 clusters of size 10, 3 clusters of size 
20, 2 clusters of size 30 

10 0.001 2.584 * 20 clusters of size 10 

*Fibonacci-series of β’s: 0.001, 0.002, 0.003, 0.005, 0.008, 0.013, …, 2.584 

 

 We were able to achieve our ideal clustering arrangement in the trials when 

𝑙𝑜𝑔(𝛼) = 300, and 𝛽 was incremented by 0.1 starting from 𝛽0 = 0.5 up to 𝛽50 = 0.9. 

We were also able to achieve this arrangement with a higher increment of 0.2, but the 

starting value of 𝛽0 = 0.6  to 𝛽50 = 2.2. This latter trial did not reach the ideal clustering 
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arrangement any sooner than the former trial, so the former was selected as the standard 

𝛽 parameter cooling scheme for future algorithm development and evaluation. 
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APPENDIX II 

Additional Clonal Support Box Plots for S1H-S6H, All 3 Replicates 

 This section contains additional figures for the clonal support analyses completed 

in Chapter 5. Each box plot was obtained in an identical manner to Figure 26, but 

includes data from one of the corresponding eighteen biological triplicates. 
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