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Abstract

This study was conducted to evaluate the mucosal immune responses of rainbow trout

when supplementing an experimental formulated feed with multi-strain yeast fraction prod-

uct (Saccharomyces cerevisiae and Cyberlindnera jardinii). In total, 360 fish (initial BW 23.1

± 0.2 g) were randomly allotted into three dietary treatments in an 8-week feeding trial. The

dietary treatments included basal diet (control) and control + 1.5 g/kg multi-strain yeast frac-

tion product (MsYF) fed continuously and pulsed every two weeks between control and

MsYF diet. No negative effects on growth performance of feeding the MsYF supplemented

diet were observed. SGR and FCR averaged 2.30 ± 0.03%/day and 1.03 ± 0.03, respec-

tively, across experimental groups. Muscularis thickness in the anterior intestine after 8

weeks of feeding was significantly elevated by 44.3% in fish fed the MsYF continuously, and

by 14.4% in fish fed the MsYF pulsed (P < 0.02). Significant elevations in goblet cell density

in the anterior and posterior (>50% increase) intestine were observed after 8 weeks of feed-

ing the MsYF supplemented diet (P< 0.03). In contrast, lamina propria width was signifi-

cantly lower in fish fed the experimental diets (>10% reduction). The gene expression

analysis of the intestine revealed significant elevations in expression of tlr2, il1r1, irak4, and

tollip2 after 4 weeks of feeding the MsYF. Significant elevations in effector cytokines tnfα,

il10 and tgfβ were observed after 4 weeks of feeding the MsYF regime. After 8 weeks signifi-

cant elevations in the gene expression levels of il1β, ifnγ, and il12 were observed in fish fed

the MsYF. Likewise, the expression of the transcription factor gata3 was significantly ele-

vated (P<0.01). Supplementation of the multi-strain yeast fraction product positively modu-

lates the intestinal mucosal response of rainbow trout through interaction with toll-like

receptor two signalling pathway and potential for increased capacity of delivery of antigens

to the underlying mucosal associated lymphoid tissue.
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Introduction

With increased awareness of antibiotic resistant bacterial strains, the aquaculture industry is

increasingly integrating functional health feeds as a preventative health and welfare manage-

ment strategy. Indeed to minimize the use of veterinary drug usage significant interest in find-

ing alternative in feed solutions such as using feed supplements from yeast cell wall extracts

have been widely studied as a strategy to improve animal welfare and health [1]. Among the

range of yeast-based products, extracts from the cell wall of Saccharomyces cerevisiae have

received much research focus across aquaculture species validating their subsequent inclusion

and contribution to improving animal health and welfare [2,3]. Many studies have concluded

positive benefits of inclusion of yeast cell wall extracts such as β-glucans and mannan-oligosac-

charides at doses of inclusion�20 g/kg to fish mucosal associated lymphoid tissues (MALT)

[3–6]. Recently, in teleosts as a result of controlled trials using an in vitro approach to studying

the effects of innate immune cells exposed to β-glucans it has become apparent that innate cell

responses can be differentiated to tolerant or trained phenotypes, providing a resource to fur-

ther understand and manipulate immune-mediated responses [7]. The notion of ‘trained

immunity’ will become an important focus in future investigations into how MALT is affected

by the different yeast cell wall extracts.

The mucosal associated lymphoid tissues of teleost fish are the first line of defence that

involves the recognition and processing of invading pathogens, sensing of self and non-self

antigens and regulation of immune responses through germline encoded pathogen recogni-

tion receptors (PRRs). These PRRs can bind conserved and invariant structures called patho-

gen associated molecular patterns (PAMPs). Yeast cell walls (YCWs) contain a number of

other recognised ligands called microbial associated molecular patterns (MAMPs) including

β-glucans and α-mannans that show well-documented positive effects in teleost fish [2,7,8].

Indeed, the activation through different PRRs present on innate immune cells effectively allow

the host to determine the immune fate of localised gut associated lymphoid tissues (GALT) by

allowing for tolerance of safe non-self antigens, such as commensal microbes and food anti-

gens. Nevertheless, maintaining the ability to augment an inflammatory response toward

unsafe non-self, pathogenic material [9,10]. In mammals, the innate recognition of yeast

MAMPs is achieved by PRRs present on macrophages and dendritic cells (DC) amongst other

innate immune cells, which are specialised phagocytic and antigen presenting cells that govern

innate and adaptive immune responses mounted by mucosal tissues [11,12]. In teleosts, mac-

rophages and dendritic cells play a similar important role in recognition and augmentation of

the immune responses that are fundamental to the homeostatic functions of the gastrointesti-

nal tract [13]. In mammals and teleosts, PPRs from the Toll-like receptor (TLR) and C-type

lectins (CLR) families are important in the recognition of yeasts and YCW fractions such as

mannans and β-glucans [14–16]. Specifically, 22 recognised TLRs play an important role in

recognising yeast ligands such as zymosan, phospholipomannan, O-linked mannans, glucoro-

noxylomannan, and fungal DNA [17–19].

The use of YCW extracts from Saccharomyces cerevisiae to positively modulate the mucosal

immune responses through tolerance to commensal organisms or immune responsiveness to

extrinsic factors have been well documented in aquatic and terrestrial livestock [7,20,21].

However, yeast cell wall (YCW) fractions from non-Saccharomyces are not as well docu-

mented. YANG1 is a new generation multi-strain yeast fraction (MsYF) combining the use S.

cerevisiae and a non-saccharomyces strain Cyberlindnera jadinii. C. jadinii was recently identi-

fied as a probiotic antagonist to the human fungal pathogen Candida albicans [22]. Further-

more, C. jadinii is a close relative of Candida utilis (also referred to as Torula yeast), which has

been used in the biotechnology industry for many applications [23]. Initial investigations
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using human monocytes in vitro identified that exposure to the MsYF increased the produc-

tion of the pro-inflammatory cytokine TNF-α and respiratory burst capacity. Furthermore,

analysis of the glycoprotein structure showed a higher degree of longer unfolded glycoproteins

presented by MsYF compared to a single strain yeast fraction, which could confer more sites

for interaction with host innate immune cells [24]. Previously, our group reported that dietary

supplementation with the MsYF at a dose below 1g /kg feed modulated the intestinal expres-

sion of specific genes markers of intestinal health and immunity, increased the intestinal sur-

face area, i.e. microvilli density, and enhanced the growth (SGR) and feed (FCR) performance

in the European seabass (Dicentrarchus labrax). To date little is known about the effects of

feeding the MsYF on the intestinal mucosal responses of freshwater fish.

Materials and methods

System and fish

Experimentation was carried out at the Aquaculture and Fish Nutrition Research Aquarium,

University of Plymouth (Plymouth, UK) within an indoor freshwater recirculated aquaculture

system (RAS) equipped with mechanical and biological filtration, UV-disinfection, photo-and-

thermo control, and aeration. The RAS system consisted of 9 rectangular fibreglass tanks (135/ l,

central drain) provided with a water flow rate at 900 l/hr/tank in a circular flow motion. Rain-

bow trout fingerlings were sourced locally from Exmoor fisheries (Exmoor, UK) received a gen-

eral purpose prophylactic treatment on arrival, were quarantined and acclimatised for four

weeks then randomly distributed into the experimental system (9 tanks with 30 fish/tank, initial

mean body-weight (BW) = 23.1 ± 0.2 g) at the beginning of the trial. During the trial, fish were

kept under a constant 12:12 hr light:dark photoperiod and water quality parameters were main-

tained within a suitable range for rainbow trout [25] as follows: water temperature = 14.5 ± 0.5˚C,

pH = 6.8–7.5, dissolved oxygen = 7.5–8 mg/ l, ammonium = 0.04–0.08 mg/ l, nitrite = 0.02–0.06

mg/ l and nitrate = 54–58 mg/ l. Animals were investigated and handled in accordance with the

Animals (Scientific Procedures) Act 1986 (ASPA) revised to transpose European Directive 2010/

63/EU as currently in force since 1 March 2014 in England. The trial and procedure applied

were reviewed and approved by the University of Plymouth animal welfare and ethical review

board (AWERB).

Experimental diets

A basal diet was formulated using feed formulation software (Feedsoft1) to contain 45% crude

protein and 20% crude lipid as per the known nutritional requirements of juvenile rainbow

trout [26]. The test diet was then produced by supplementing, prior to cold extrusion, the

required amount of basal diet with the multi-strain yeast fraction product (MsYF, Lallemand

SAS, Blagnac, France) at 1.5 g/kg of feed (Table 1). The composition and structure of each

yeast strain fraction present in the MsYF product was reported previously [24]. The diets were

produced by mechanically stirring the ingredients into a homogenous mixture using a Hobart

food mixer (Hobart Food Equipment, Australia, model no: HL1400— 10STDA mixer). Warm

water was added to reach a consistency suitable for cold press extrusion to form 1 mm pellets

(PTM Extruder system, model P6, Italy). The nutritional profile of the diets (Table 1) were

determined according to AOAC protocols [27].

Experimental design and feeding

Rainbow trout were fed one of three dietary regimes in triplicate tanks (9 tanks): 1) Con-

trol (Basal diet), 2) MsYF diet continuously fed (MsYF_C) or 3) MsYF diet pulsed fed
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(MsYF_P) with 2 weeks on MsYF diet and 2 weeks on control diet until trial’s comple-

tion. Fish were hand-fed a regime of 3% ± 0.6% biomass per day distributed in three

equal daily meals (0900, 1300 and 1700 hrs). Biomass per tank was estimated daily based

on predicted growth rate and adjusted bi-weekly by bulk-weighting following a 24 h star-

vation period.

Sampling schedule

After 4 and 8 weeks of feeding (trial mid- and end-point), a total of 6 and 12 fish per experi-

mental group, respectively, were randomly netted and euthanized following Home Office

schedule 1 procedures (UK). Fish were individually measured for body-weight (BW; ± 0.1

g); fork-length (FL; ± 1 mm) and dissected. For histological analysis, anterior (AI) and pos-

terior intestinal (PI) samples were excised, washed from digesta using phosphate buffer

saline (pH 7.2, Sigma Aldrich, UK), fixed in formalin at 4˚C for 48 h then stored in 70% eth-

anol until processing. For scanning electron microscopy (SEM), PI samples were washed in

1% S-carboxymethyl-L-cysteine buffer (pH 7.2) and preserved in 2.5% glutaraldehyde with

0.1 M sodium cacodylate buffer (1:1 v/v, pH 7.2) until processing. For gene expression anal-

ysis (n = 2 per tank, n = 6 per treatment), PI samples (<100 mg) were placed into 1 mL

RNA-later solution (Applied Biosystems, UK); stored at 4˚C for 24 h then at -80˚C until

RNA extraction.

Table 1. Formulation (g/kg) and proximate composition of experimental diets.

Control MsYF

Feed commodity

Fishmeal LT941 300.0 300.0

Soybean meal dehulled2 100.0 100.0

SPC603 143.0 143.0

CGM3 40.0 40.0

Vital wheat gluten 100.0 100.0

Fish oil4 82.5 82.5

Rapeseed oil 80.0 80.0

Corn starch5 139.5 139.5

Vitamin +mineral6 10.0 10.0

CMC binder4 5.0 5.0

MsYF 1.5

Proximate analysis

Dry matter (DM; %) 95.8 95.6

Crude Protein (% DM) 47.2 47.4

Crude Lipid (% DM) 19.0 19.9

Ash (% DM) 7.0 7.4

Energy MJ/ kg 22.1 22.3

1United fish products (Aberdeen, Scotland, UK).
2HP-110, Hamlet Protein, UK (crude protein 57.5%; ash 6.8%; moisture 6.5%; lipid 2.5%).
3Skretting feed ingredients (Stavanger, Norway).
4Epanoil (Seven Seas Ltd, UK).
5Sigma-Aldrich (Poole, UK).
6Premier nutrition vitamin premix (Calcium 12.1%, magnesium 1.6%, phosphorous 0.5%, vit A 1.0μg/kg, vit D3

0.1 μg/kg, vit E (as alpha tocopherol acetate) 7,000 mg/kg, copper (as cupric sulphate) 250.0 mg/kg, ash 78.7%.

https://doi.org/10.1371/journal.pone.0245021.t001
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Growth and feed performance calculations

For growth performance assessment, 30 fish/tank were bulk-weighed on a bi-weekly basis.

Growth and feed performance were assessed based on specific growth rate (SGR), feed conver-

sion ratio (FCR) and Fulton’s condition factor (K) calculated as follow: SGR (%BW/day) = 100

((lnBWf—lnBWi)/T); FCR = FI /WG and K = BW/ FL3; where BWf = final body-weight (g),

BWi = initial body-weight (g), T = duration of the trial (day), WG = weight-gain (g), FI = feed

input (g) and FL = fork-length (cm).

Intestinal morphometry by light-microscopy and scanning electron

microscopy (SEM)

Formalin-fixed AI and PI samples were dehydrated, embedded in paraffin wax, sectioned at

5 μm thickness and dried in an oven overnight at 37˚C. For each specimen, multiple sections

were stained with Haematoxylin combined with Alcian Blue and van Gieson (AB-vG) to assess

the muscularis thickness, mucosal fold length, laminar propria width and goblet cell density in

the epithelium after Dimitroglou and colleagues [28]. Image analysis was conducted using

Image ‘J’ 1.47v software (National Institutes of Health, USA), and a high through-put algo-

rithm was developed to count goblet cells in image ‘J’, based on threshold capture of specific

goblet cells. SEM samples were processed according to methodologies outlined previously by

Rawling and colleagues [24].

Intestinal RNA extraction and cDNA synthesis

Total RNA was extracted using TRI reagent (Ambion, Life technologies, UK) according to the

manufacturer’s instructions, with some modifications. Briefly, 50–100 mg posterior intestinal

samples were removed from the RNAlater solution and excess solution was removed by press-

ing the sample between sterile tissue. Samples were then transferred into a tube containing 1

mL TRI reagent and ceramic beads and homogenised for 40 secs using FastPrep-24 5G

machine following the manufacturer’s instructions (MP Biomedicals, Europe). The resulting

supernatant was transferred into a 2 ml Eppendorf tube, 200 μl of chloroform was added, sam-

ples were then vortexed then centrifuged at 12,000 x g for 15 min. The upper aqueous phase

was transferred into a tube containing an equal volume of isopropanol. Mixtures were vor-

texed and centrifuged at 14,000 x g for 15 min. Supernatants were discarded and the precipi-

tated RNA pellets were washed using 1 ml of 75% ethanol. Total RNA was dissolved in

diethylpyrocarbonate (DEPC) and to remove any contaminating genomic DNA were purified

using RNeasy Plus Mini Kit according to the manufacturer’s instructions (Qiagen, UK). The

concentration and quality of RNA in each sample were determined by measuring 260/280 nm

and 260/230 absorbance ratios (NanoDrop Technologies, Wilmigton, USA). The integrity of

RNA was confirmed by running samples on a 1% agarose gel, samples were stored at -80˚C. A

total amount of 1 μg of RNA was used for cDNA synthesis, employing iScript cDNA synthesis

kit (Bio-Rad, UK). The reaction was placed at 25˚C for 5 min, then 42˚C for 30 min and inacti-

vated at 85˚C for 5 min. The iScript cDNA synthesis kit contains a combination of oligo dTs

and random hexamers to work with a wide variety of targets.

Real-time PCR assay

PCR reactions were performed with SYBR green method using a StepOne Plus™ Real time-

PCR and the Quant studio thermal cycler (Applied Biosystems). Duplicate PCR reactions were

carried for each sample analysed. Each PCR reaction was set on a 384 well plate by mixing 2 μl

of diluted (1/10) cDNA with 5.5 μl 2 x concentrated iQ™ SYBR Green Supermix (Bio-Rad),
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containing SYBR Green as a fluorescent intercalating agent, 0.3 μM forward primer and

0.3 μM reverse primer. The primer used and their sequences are presented in Table 2. The

thermal profile for all reactions was 10 min at 95˚C and then 40 cycles of 15s at 95˚C, 60s at

59˚C. Florescence monitoring occurred at the end of each cycle. Additional dissociation curve

analysis was performed and showed in all cases one single peak. β-actin and elf1-α were used

as reference genes in each sample in order to standardise the results by eliminating variation

in mRNA and cDNA quantity and quality [29]. The stability and suitability of β-actin and elf1-
α as reference genes were confirmed according to the algorithms used by geNorm™ software

[30]. An expression stability value ‘M’ was generated for reference genes. No amplification

product was observed in negative controls and no primer-dimer formations were observed in

the control templates. Modification of gene expression is represented with respect to the con-

trols being sampled at the same time as the treatment.

Table 2. Primer pair sequences, gene name abbreviations, annealing temperature (Aneal Tm in˚C), amplicon size (bp) and primer efficiency (Eff) for genes used

for real-time PCR.

Gene name Primer name Accession number Primer Sequence (5’-3’) Aneal Tm/Amplicon/Eff

Elongation factor 1-alpha elf1-α Fwd KC747822.1 TGCGGAGGCATTGACAAGAG 60/92/2.1

elf1-α Rev TCCAGCACCCAGGCATACTT

β-Actin β-actin Fwd AJ438158.1 AGCCCTCCTTCCTCGGTATG 60/81/2.1

β-actin Rev GGATGTCCACGTCACACTTCAT

Toll-like receptor 2 tlr2 Fwd NM_001124419.1 TCTTTGGAGAGGATGGGTATGG 60/92/2.1

tlr2 Rev GCCTTGACCCTCTCTTCACTA

Myeloid differentiation gene 88 myd88 Fwd NM_001124421.1 CCATCACCAGCGAACTCATC 60/80/2.1

myd88 Rev GGCATCACTGTCCAGGTACT

Interleukin 1 receptor, type I il-1r1 Fwd AJ295296.1 CGGAGAAGCAGACGACTCAT 60/93/2.1

il-1r1 Rev GCTCTGGTGCAGTGGTAACT

Interleukin-1 receptor-associated kinase 4 irak4 Fwd FN598575.1 CCGAGGTACTCTCAGCAACAT 60/112/2.2

irak4 Rev CTCCCACGGTGCAGTTAGAT

Toll-interleukine I receptor interacting protein II tollip2 Fwd AJ878917.1 GGAATCCCTGGGCACTGTAA 60/89/2.1

tollip2 Rev AAGGGTCCATGCGTGTCATA

Interleukin-1-beta il-1β Fwd NM_001124347.2 GGACATGCAGCAGGACTACA 60/83/2.0

il-1β Rev GCTGGATGGTGAAGGTGGTA

Tumour necrosis factor alpha tnf-α Fwd NM_001124357.1 AGCCCTACTCTTTGCATGGT 60/81/1.9

tnf-α Rev GCACCAATGAGTATCTCCAGTT

Interleukin-10 il-10 Fwd NM_001245099.1 GCTGGACGAAGGGATTCTACA 60/89/2.1

il-10 Rev GCACCGTGTCGAGATAGAACT

Transforming growth factor beta tgfβ Fwd X99303.1 CCCACTGGCTACTTTGCTAAC 60/95/2.1

tgfβ Rev TGCTTATACAGAGCCAGTACCT

Interleukin-12 il-12 Fwd HE798148.1 CAGTGAGAGTGCGTGTCTGA 60/80/2.0

il-12 Rev CGGCCTGTTTGTAAGCCTGTA

Interferon Gamma ifn-γ Fwd NM_001124620.1 GACAGTGAGCAGAGGGTGTT 60/80/2.1

ifn-γ Rev CCCGTCTGGTTCAGCATCTG

T-box transcription factor 21 t-bet Fwd FM863825.1 CGCAGACATCACCCAGCTAA 60/90/2.1

t-bet Rev GAGTCAGGTGGTGCGTACAG

Signal transducer and activator of transcription 6 stat6 Fwd HG794521.1 CGTTCCCTGGAAGCAGATGT 60/103/2.1

stat6 Rev TTGGGCCAGGAAATGTTGGT

GATA-binding protein 3 gata3 Fwd NM_001195792.1 ACCTCGGCCACTCGTACAT 60/87/2.1

gata3 Rev GGTTGCCCTGTGAGTCGATA

https://doi.org/10.1371/journal.pone.0245021.t002
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The threshold cycle (Ct), defined as the point at which the fluorescence rises appreciably

above the background fluorescence, was determined manually for each run. PCR efficiencies

for each set of primers were determined using 10-fold serial dilutions of cDNA (n = 3) and

resulting plots of Ct versus the logarithmic cDNA input were used to calculate the efficiencies

using the equation E (PCR efficiency) = 10(-1/slope) after Rasmussen [30] (Table 2). The

expression of target genes (FC (Log2) were calculated on the basis of Ct deviation (ΔCt) of the

unknown sample versus a control sample, and expressed in comparison to the reference genes

β-actin and elf1-α according to calculations outlined by geNorm™ manual (http://medgen.

ugent.be/~jvdesomp/genorm/) and Vandesompele and colleagues [31].

Statistical analysis

All statistical analyses were carried out using R version 3.4.1 [32]. Rt-qPCR data were analysed

using the permutation after Ohmel [33]. All other data were assessed by one-way ANOVA tests

with Tukey HSD post-hoc test was used to show where differences in experimental groups. Sig-

nificance was accepted at P< 0.05. Data are presented as mean ± standard deviation (SD).

Results

Growth performance

There was no significant difference in body-size parameters between treatments at the begin-

ning, mid and end-point of the trial. Over the trial duration, SGR and FCR averaged

2.30 ± 0.03%/day and 1.03 ± 0.03, respectively, across experimental groups (Table 3).

Gut morphometry

The authors measured two regions of the intestine to access the effects of the MsYF on both

the anterior intestine (AI), where the function of the enterocytes can be considered as absorp-

tive cells, and posterior intestine (PI) where enterocytes are characterised by antigen sensing

and uptake [34,35]. Rainbow trout intestine showed no signs of necrosis or enteritis like

pathologies (Fig 1). With regard to mucus integrity of the intestinal lumen, goblet cell density

compared to the control was significantly elevated in the MsYF continuously fed group by

4.7% in the anterior intestine and 53.9% in the posterior intestine. Likewise, in the MsYF

pulsed fed group there was a significant elevation by 15.4% in the anterior and 58.0% in the

posterior intestine (Table 4). Further, in the anterior intestine a significant elevation in muscu-

laris thickness and a significant reduction in laminar propria width were observed compared

to the control in both continuously (+44.3% and -11.4%, respectively) and pulsed (+14.4% and

-21.7%, respectively) fed MsYF groups. There were no other differences in intestinal mor-

phometry between experimental groups (Table 4).

Table 3. Growth performance of rainbow trout over the 8-week trial’s duration (n = 3 tanks/ treatment).

Control MsYF_C MsYF_P P-value

Initial body-weight (g) 23.1 ± 0.3 23.1 ± 0.3 23.1 ± 0.2 0.973

Final body-weight gain (g) 83.3 ± 2.9 80.0 ± 2.1 82.2 ± 1.5 0.218

Fulton’s condition factor 1.46 ± 0.1 1.43 ± 0.1 1.41 ± 0.1 0.092

Feed conversion ratio (FCR) 1.00 ± 0.01 1.05 ± 0.1 1.03 ± 0.02 0.175

Specific growth rate (SGR,%/day) 2.34 ± 0.04 2.28 ± 0.1 2.29 ± 0.06 0.156

Data presented as mean ± SD (n = 3 tanks / treatment).

https://doi.org/10.1371/journal.pone.0245021.t003
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Intestinal gene expression

The focus of the gene expression analysis was on the posterior intestine as enterocytes in this

region show important features for antigen sensing and uptake such as an irregular microvilli

zone and high pinocytotic activity at the apical part [34]. The aim of the investigation was to

access the effects of a novel MsYF on the intestinal mucosal responses of rainbow trout, and

Fig 1. Photomicrographs and scanning electron micrographs of posterior intestine of rainbow trout indicating no

signs of damage to tissues when fed with experimental and control diets. Images A-C represent control fed fish, A)

cross section of intestine with AB-vG staining (x40 objective, scale bar is 100 μm), arrows indicate different structures

including: goblet cell (GC), muscularis (Ms) and mucosal fold length (MFL); B) scanning electron micrograph

showing section of posterior intestine (scale bar is 10 μm); C) scanning electron micrograph of microvilli of intestine

(scale bar is 1 μm). Images D-F represent fish fed MsYF continuously; Images H-J represent fish fed MsYF pulsed with

control every 2 weeks.

https://doi.org/10.1371/journal.pone.0245021.g001

Table 4. Morphometric data from anterior and posterior intestine of rainbow trout fed experimental diets for 8 weeks.

Control MsYF_C MsYF_P P-value

Anterior intestine

Muscularis thickness (μm) 37.3 ± 7.1a 53.9 ± 15.8b 42.7 ± 10.2c <0.02

Laminar propria width (μm) 23.2 ± 3.1a 20.6 ± 2.6b 18.2 ± 2.8c <0.002

Mucosal fold length (μm) 434.9 ± 97.9 457.6 ± 91.7 465.1 ± 62.6 0.934

Goblet cell density (n/1000 μm) 150.7 ± 40.0a 158.1 ± 32.2b 178.1 ± 33.9b <0.02

Posterior intestine

Muscularis thickness (μm) 37.3 ± 10.8 40.7 ± 6.5 41.6 ± 10.8 0.934

Laminar propria width (μm) 19.3 ± 3.2 19.3 ± 2.7 17.9 ± 3.2 0.999

Mucosal fold length (μm) 530.8 ± 127.6 511.6 ± 91.7 502.7 ± 102.5 0.967

Goblet cell density (n/1000 μm) 33.9 ± 13.4a 73.6 ± 18.7b 80.7 ± 33.5b <0.001

Data is presented as means ± SD (n = 12/ treatment). Super scripts a-c show significant differences between fish fed control and experimental diets.

https://doi.org/10.1371/journal.pone.0245021.t004
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here the authors focus on gene expression targets for the intestinal cellular TLR signalling

pathways. Overall, the investigation revealed upregulation in the gene expression targets for

toll-like receptor 2 signalling, effector cytokines and transcription factors in fish fed the MsYF

compared to control. After 4 weeks, fish fed the MsYF continuously regime revealed a signifi-

cant>2 fold increase in expression of all TLR signalling targets (Fig 2A), where elevations

were observed in tlr2 by 57% (P = 0.019), il1r1 by 70% (P = 0.002), irak4 by 92% (P = 0.004)

and tollip2 by 88% (P = 0.002). Similarly, fish fed the pulsed regime revealed significant >2

fold elevations in the expression of il1r1 by 71% (P = 0.02), irak4 by 97% (P = 0.002) and tollip2
by 94% (P = 0.002), compared to control. Pro-inflammatory cytokine tnfα was significantly

elevated in both continuously and pulsed fed MsYF groups by 83% (P = 0.002) and 70%

(P = 0.01), respectively. No differences were observed in pro-inflammatory cytokine il1β
expression across all treatment groups. In the continuously fed MsYF group anti-inflamma-

tory cytokines il10 and tgfβ revealed significantly elevated expression by 60% (P = 0.006) and

95% (P = 0.002), respectively. In the pulsed fed MsYF group revealed a significant elevation by

95% (P = 0.002) in the expression of tgfβ (Fig 2A). In contrast, fish fed the MsYF pulsed

revealed significant >2 fold down regulation in the expression in il12 by 875% (P = 0.05) and

ifnγ by 401% (P = 0.03), compared to the control group. Likewise, the MsYF pulsed group

revealed significant down regulations by 146% (P = 0.02) and 246% (P = 0.05) in the expres-

sion of transcription factors t-bet and gata3, respectively.

After 8 weeks, there were significant elevations in the expression of TLR signalling targets

tlr2 by 70% (P = 0.05) and il1r1 by 68% (P = 0.006) in fish fed the MsYF continuously. Whereas

in the MsYF pulsed fed group revealed a significant upregulation in the expression of il1r1 by

70% (P = 0.03), compared to control group. The expression of pro-inflammatory cytokines

revealed significant elevations in il1β by 72% (P = 0.02) and tnfα by 64% (P = 0.05) in the

MsYF continuously fed group. Moreover, significant elevations were observed in the expres-

sion of ifnγ by 69% (P = 0.04) and il12 by 86% (P = 0.02) in the MsYF continuously fed regime,

compared to control group. The expression levels of transcription factor gata3 revealed a sig-

nificant elevations in fish fed the MsYF continuously by 86% (P = 0.008) and by 69%

(P = 0.03) in MsYF pulsed, compared to the control regime (Fig 2B. In contrast, a significant

down regulation was observed in the expression of stat6 by 81% (P = 0.03) in fish fed the

MsYF pulsed.

Discussion

The aim of the study was to investigate the effect of dietary supplementation with a MsYF

product combining two strains of S. cerevisiae and a single strain of C. jardinii on the intestinal

mucosal immune responses of rainbow trout fingerlings under non-challenging conditions.

Results indicate that dietary supplementation with the MsYF significantly altered the intestinal

expression profiles of genes associated with the innate and adaptive immune responses and

histo-morphometry.

Fungal cell walls contain numerous glycans, glycolipids and glycoproteins collectively

known as MAMPs, as reviewed elsewhere by Erwig and Gow [36]. Indeed the presentation of

fungal MAMPs are recognised by a plethora of PRRs present on phagocytes of the innate

immune system including Toll-like receptors (TLRs), C-type lectin receptors (CLRs) and to a

lesser extent NOD- like receptors (NLRs) [37–39]. In teleosts, many studies have identified

that TLRs and NLRs are present [40,41], however there is much debate as to whether C-type

lectin receptors exist in fish [42]. Accordingly, in the present study the authors present data for

the TLR-mediated signalling pathway to identify the recognition of MAMPs presented by the

inclusion of the MsYF. In the posterior intestine significant elevations in tlr2, interleukin 1

PLOS ONE Dietary multi-strain yeast fraction modulates intestinal mucosal responses of rainbow trout

PLOS ONE | https://doi.org/10.1371/journal.pone.0245021 January 12, 2021 9 / 16

https://doi.org/10.1371/journal.pone.0245021


receptor, type I (il1r1), interleukin-1 receptor-associated kinase 4 (irak4) and toll interacting

protein (tollip2) expression were observed after 4 weeks of feeding the MsYF supplementation,

relative to the control. In particular, the results indicate a highly significant elevation in irak4
(>2 fold increase), which is central to the TIR domain and subsequent TLR signalling cascade.

Other studies using rainbow trout irak4 report that although the structure of irak4 is very simi-

lar to the mammalian irak4 the function of teleost irak4 can impair the TLR signalling in

human HEK-293 cells in vitro [43]. Negative regulation of TLR mediated signalling is impor-

tant to confer balance of immune-responsiveness and tolerance. Indeed, Smythies and col-

leagues reported that during maturation from monocytes, human intestinal macrophages

down regulate key TLR signalling molecules such as myeloid differentiation primary response

88 (MyD88) and tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6), and up-

regulate negative regulators such as interleukin-1 receptor-associated kinase m (IRAK-M) and

A20 [44,45]. The current study shows evidence that low expression of myd88 and robust gene

expression of both a 3-fold increase in tollip2 and 4.2-fold increase in irak4 after 4 weeks of

feeding the MsYF continuously. Moreover, the significant 3.9-fold increase in expression of

Fig 2. Rainbow trout posterior intestine show regulation of innate and adaptive responses through induction of

TLR signalling. Gene expression profiles posterior intestine of rainbow trout at week 4 (A) and 8 (B) relative to the

Control (dotted line). Data presented mean ± SEM (n = 6 fish per treatment; Fold change(log2)); light grey bars

indicate fish fed MsYF continuously, dark grey bars indicate fish fed MsYF pulsed with control every 2 weeks.

Asterisks denote significant differences between treatment and control groups: � = P< 0.05; �� = P< 0.01.

https://doi.org/10.1371/journal.pone.0245021.g002
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tollip2 and 5.7-fold increase in the expression of irak4 in the MsYF pulsed fed fish, maybe an

indication of negative regulation of TLR signalling in fish fed the MsYF similar to how TOL-

LIP and IRAK-M in mammalian cells impair TLR signalling [46]. Negative regulation of TLR

signalling is important because prolonged and excessive activation of TLRs can lead to uncon-

trolled inflammation detrimental to the host [47–49].

In mammals, many in vitro studies have reported that macrophages and DCs exposed to

yeast MAMPs display cytokine profiles characteristic of a more balanced pro-inflammatory

versus anti-inflammatory response [50–52]. In the current study in comparison to the control

group, MsYF supplementation revealed significant elevations in the expression profiles of both

pro-inflammatory tumor necrosis factor alpha and interleukin 1 beta (tnfα, il1β) and anti-

inflammatory interleukin 10 and transforming growth factor beta (il10, tgfβ) cytokines demon-

strating a balance between immune responsiveness and mucosal tolerance. This result agrees

with Smith and colleagues [53], whom reported that when human DCs were co-incubated

with the food related yeast Kluyveromyces marxianus a robust anti-inflammatory (il10) cyto-

kine profile and subsequent Foxp3+Treg-cell type response was observed. In the current study

compared to the control, we postulate that after 4 weeks of feeding the MsYF continuously the

significant increases in gene expression of il10 by 1.4-fold and tgfβ by a 4-fold could be due to

innate phagocytes orchestrating a cytokine milieu to induce the expansion of regulatory T-

cells (Tregs). Interestingly, in mice that have a targeted mutation in the TGF-β gene develop

severe multi-organ inflammation indicating a crucial role of TGF-β induced Treg induction

[54–56].

The intestinal expression of interleukin 12 (il12) and interferon gamma (ifnγ) after 8 weeks

of feeding the MsYF continuously regime was significantly elevated compared to the control

by 2.7-fold and 1.5-fold, respectively. However, the lack of expression change for the transcrip-

tional factor t-box (t-bet) suggests that there was no augmentation of Th1-like cell mediated

immunity. Other studies using rainbow trout to model adaptive immune responses to bacterial

infection with Yersinia ruckerii have demonstrated significant increases in the expression levels

of both t-bet and ifnγ, suggestive of a Th1-like response [57,58]. In this context, the authors

postulate that the up-regulation of both il12 by 2.7-fold and ifnγ 1.5-fold after 8 weeks of feed-

ing the MsYF continuously may be indicative of strengthening innate phagocytic and natural

killer cell (NK) responses. In mammals, the co-operative effects of IL-12 and interleukin 18

(IL-18) in NK cell activation have been well characterised [59,60]. Moreover, in teleosts IL-18

homologues have been shown to be present and function in a similar way [61,62]. Therefore,

the induction of NK cells could be driving the observed increase in gene expression of ifnγ,

which in turn would activate inflammatory macrophage responses strengthening the innate

response.

In teleosts, the differentiation and expansion of T-cell subsets is governed by the induction

of lineage specific master transcription factors, including t-bet for Th1, gata binding protein 3

(gata3) for Th2, and RAR-related orphan receptor gamma (rorγt) for Th17 [63]. In the current

investigation, the data suggests a potential Treg expansion through the significant expression

in gata3 after 8 weeks of feeding the MsYF (Fig 2B). In mice, gata3 has been shown to control

the fate and plasticity of Treg cells particular during inflammation [64,65]. Recently, Xu and

colleagues concluded that high gata3 expression converts functional Treg cells to Th1-Treg

cells that can suppress a Th1-like cell response. Whereas, low gata3 expression converts func-

tional Treg cells to APC-like Treg cells that can modify the surveillance activities of antigen

presenting cells such as macrophages, DCs and B-cells [66]. In the current study, there was no

sign of inflammation at the morphometric level (Fig 1), despite this the high expression of 2.8

and 1.7 fold gata3 suggests that supplementation of MsYF in the diet regardless of feeding

strategy is potentially modulating T-cells responses to Th1-Treg to supress excessive
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inflammation. This warrants further investigation with possible targets for regulation and tol-

erance such as CD4+Foxp3+ regulatory T-cells would be important to help elucidate the mode

of action of feeding MsYF to T-cell responses in teleosts.

In mice the delivery of antigens via goblet cell associated antigen passages (GAPs) is a

major pathway for steady-state luminal antigen transfer to the LP-DCs in a manner capable of

inducing antigen specific T cell responses [67,68]. In teleosts, associations of antigens with

goblet cells in the second segment of the mid-intestine have demonstrated goblet cell-associ-

ated uptake [69,70]. In the current study, compared to control fish fed the MsYF supplemented

diets demonstrated a significant increase in goblet cell density in both the anterior and poste-

rior intestine. Particularly, in the posterior intestine there were highly significant elevations by

53.9% and 58% in MsYF groups. This data suggests the possibility that inclusion of MsYF

could increase the capacity of goblet cell associated antigen uptake and surveillance of the

underlying GALT tissue of rainbow trout. Data discerning histo-morphometry (Table 4), and

scanning electron micrographs of fish fed the MsYF displayed no signs of cellular or enteritis

like disruption where the epithelial surfaces appeared healthy with uniform enterocyte forma-

tions and densely packed microvilli (Fig 1).

In summary, there was no negative effect on growth performance when supplementing the

basal diet with MsYF (Table 3). Feeding the MsYF to rainbow trout strengthened both the

innate and adaptive response of the intestinal tissue with upregulation in both pro and anti-

inflammatory effector cytokines alongside the elevated induction of transcripts for important

transcription factors of adaptive responses. Furthermore, the increase in goblet cell density

suggests that MsYF supplementation may increase the capacity for potential goblet cell associ-

ated antigen uptake. Rainbow trout suffer from a wide range of diseases caused by viral, bacte-

rial and parasitic pathogens, including viral haemorrhagic septicaemia virus (VHSV) [70],

enteric redmouth (ERM) disease [71] and proliferative kidney disease (PKD) [72], and so

increased potential for antigen surveillance and uptake of GALT will be beneficial to the host.

This preliminary evidence shows a positive step towards increasing the knowledge base of the

mode of action of YCW extracts to enhance and strengthen the ability of innate immune cells

of mucosal associated lymphoid tissues of rainbow trout.
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