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DENIS HOCK
DETECTING ENERGY THEFT AND

ANOMALOUS POWER USAGE IN SMART METER DATA

Abstract. The success of renewable energy usage is fuelling the power
grids most significant transformation seen in decades, from a centrally
controlled electricity supply towards an intelligent, decentralized infras-
tructure. However, as power grid components become more connected,
they also become more vulnerable to cyber attacks, fraud, and software
failures. Many recent developments focus on cyber-physical security,
such as physical tampering detection, as well as traditional information
security solutions, such as encryption, which cannot cover the entire
challenge of cyber threats, as digital electricity meters can be vulnera-
ble to software flaws and hardware malfunctions.

With the digitalization of electricity meters, many previously solved
security problems, such as electricity theft, are reintroduced as IT re-
lated challenges which require modern detection schemes based on data
analysis, machine learning and forecasting. The rapid advancements in
statistical methods, akin to machine learning techniques, resulted in a
boosted interest towards concepts to model, forecast or extract load in-
formation, as provided by a smart meter, and detect tampering early on.
Anomaly Detection Systems discovers tampering methods by analysing
statistical deviations from a defined normal behaviour and is commonly
accepted as an appropriate technique to uncover yet unknown patterns
of misuse. This work proposes anomaly detection approaches, using the
power measurements, for the early detection of tampered with electric-
ity meters. Algorithms based on time series prediction and probabilistic
models with detection rates above 90% were implemented and evaluated
using various parameters. The contributions include the assessment of
different dimensions of available data, introduction of metrics and ag-
gregation methods to optimize the detection of specific pattern, and
examination of sophisticated threads such as mimicking behaviour. The
work contributes to the understanding of significant characteristics and
normal behaviour of electric load data as well as evidence for tampering
and especially energy theft.
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Chapter 1

Introduction

This work proposes a comprehensive framework based on intelligent

methods, for the early detection of various threats, especially energy

theft, in the power grid. An emphasis is on anomaly detection, i.e. by

detecting deviations from the expected behaviour. More specifically, on

the analysis of electrical load curves that are generated by the power

(W) data of intelligent meters in residential households.

To provide a basis for modelling the expected behaviour, the thesis

analyses consumption curves and their characteristics. Based on these

characteristics, metrics for the analysis and prediction of consumption

curves, which are particularly suitable for anomaly detection, are de-

signed and evaluated. Using these metrics, anomaly detection methods

are investigated with regards to possible data sources, e.g. historical

data or spatially close, identical devices. Last but not least, stealthy

1



1.1. AIMS AND OBJECTIVES

energy theft and the limitations of anomaly detection systems, based on

an evaluation with two different anomaly detection methods, are intro-

duced.

The scientific contributions of the work are, in addition to a com-

prehensive literature survey and data analysis, metrics for the detection

of human activity, exemplary methods for the normalization of metrics

and methods for optimizing the parameters with regard to energy theft.

This thesis also provides an anomaly detection method based on Holt

Winters prediction with detection rate over 90% and the comparison to

other anomaly detection methods based on Naive Bayes and time series

decomposition using real world measurements. Furthermore, the thesis

provides a performance comparison with advantages and disadvantages

of different data sources for anomaly detection and a performance com-

parison of energy theft methods for different anomaly detection systems

with respective methods to limit the damage caused by targeted mim-

icking attacks on anomaly detection systems.

1.1 Aims and Objectives

The high resolution electricity data at residential level, as provided by

modern smart meters, can provide a better understanding of energy us-

age for both electricity producers and consumers. Many European coun-

2



1.1. AIMS AND OBJECTIVES

tries launched a massive expansion of renewable energies and switched

to intelligent power meters. These devices enable energy suppliers to

react fast on variable energy demand and the volatile renewable energy.

The advancing decentralization, together with the requirements to con-

trol and monitor devices in low-voltage networks, resulted in a power

grid that no longer exclusively transmits energy but also data, and hence

serves as a communication channel. This, so called, smart grid differs

greatly from conventional power grids. As a next-generation electrical

network, it features a two-way communication of sensors and actuators

distributed in several logically separated networks, where large quanti-

ties of fine-granular information are collected and analysed. The high

resolution electricity data at residential level, as provided by modern

smart meters, can provide a better understanding of energy usage for

both electricity producers and consumers.

Smart grids are expected to be resistant against disturbance or out-

ages, which is challenging due to the large-scale use of decentralized

volatile and renewable energy, such as wind and photovoltaic energy.

Solving the challenge of accurate energy demand prediction and associ-

ated tasks such as the prediction of certain consumer profiles, dynamic

energy pricing for particular consumer groups or monitoring of individ-

ual appliances is essential to enable optimal demand response. Further-

3



1.1. AIMS AND OBJECTIVES

more, it is of paramount importance to protect the smart grid, as part

of the critical infrastructure, from cyber attacks, fraud and software

failures.

Over the last decades researchers addressed different aspects of en-

ergy demand in a number of research areas – to name only a few:

Non-Intrusive Appliance Load Monitoring (NIALM), energy forecast,

residential energy demand modelling and Typical Load Classification

(TLC). These approaches have in common, that they aim to structure

and organise the measured data in a way that allows to monitor aspects

such as safety, security or efficiency of the power grid or parts of the

power infrastructure. Many of the publications, of aforementioned re-

search areas date back to the early 80s and are reintroduced in current

smart grid research. Since high resolution data on individual households

was not available in the traditional power grid, the scope and objectives

of many early publications differ, but characteristic features of energy

demand are still valid and can be applied to modern approaches.

The scope, or generally the usage of smart grid data in research, can

be outlined by the wide range of available surveys. Many early studies

related to the power grid and energy usage, e.g. Bohi and Zimmerman

(1984), focus on the development of energy demand as well as corre-

sponding modelling methods for large areas in the long-term. Chang,

4



1.1. AIMS AND OBJECTIVES

Leung, Wu, and Yuan (2003) analysed the consumption and produc-

tion of traditional and renewable energy in China. Connolly, Lund,

Mathiesen, and Leahy (2010) reviewed computer aided tools for energy

management. Banos et al. (2011) showcased optimization methods ap-

plied to renewable energy. Short-term forecasting also offers a wide

range of literature, e.g. Suganthi and Samuel (2012) reviewed forecast-

ing methods, categorized by the prediction method used. Foucquier,

Robert, Suard, Stéphan, and Jay (2013) and Zhao and Magoulès (2012)

reviewed methods to predict building energy consumption. Dutta and

Mitra (2017) reviewed literature concerning energy forecast for dynamic

pricing of electricity. Many recent approaches often focus on methods to

model residential households, which is sometimes called appliance level

load profile generation. Grandjean, Adnot, and Binet (2012) pointed

out that recent load profile generation approaches can be categorized

in time of use based or probabilistic models, while Swan and Ugursal

(2009) introduced the terminology of bottom-up and top-down mod-

elling techniques.

Rather than using household characteristics and socio-economic fac-

tors as input for forecasting, the observed load curves can instead be used

to indicate those characteristics, which go far beyond the traditional

classification of industrial and residential consumer. Energy provider

5



1.1. AIMS AND OBJECTIVES

can use these information for Demand Side Management (DSM), by

introducing differentiated and personalized tariffs according to the con-

sumers habits or to monitor a particular customer base to detect devi-

ations from the expected behaviour. Some authors such as Yaseen and

Ghita (2017) even suggest to perform DSM by using customer profiles

to compute an optimal schedule for intelligent appliances. However, the

large quantity of information that can be drawn from energy demand

also raise privacy concerns since, depending on the time granularity, per-

sonal habits and sensitive information about the household might leak.

Anderson, Lin, Newing, Bahaj, and James (2017) listed a number of

approaches to correlate household information to residential energy de-

mand. Y. Wang et al. (2015) and S. L. Yang and Shen (2013) reviewed

clustering methods, which have been on used on energy demand. Zoha,

Gluhak, Imran, and Rajasegarar (2012) classified recent NIALM meth-

ods in schemes using the transition or the steady phase of appliances.

Other than that, the smart grid has a rich palette of topics related

to communication and security as several surveys analysing the topics

of smart grid security show. Anu, Agrawal, Seay, and Bhattacharya

(2015); W. Wang and Lu (2013); Yan, Qian, Sharif, and Tipper (2012)

summarized research on security requirements in the smart grid, such as

countermeasures for network vulnerabilities, secure communication pro-

6



1.1. AIMS AND OBJECTIVES

tocols and innovative smart grid architectures. Delgado-Gomes, Mar-

tins, Lima, and Borza (2015); J. Liu, Xiao, Li, Liang, and Chen (2012);

McDaniel and McLaughlin (2009) presented and overview of relevant cy-

ber security and privacy issues. Ericsson (2010) highlights the security

of access points in a substation.

After this brief outline of research topics related to energy demand

and smart meter data, a detailed investigation of the smart grid and

anomaly detection follows in the next chapter. In the further thesis the

related work of each individual topic is examined in the corresponding

chapter.

The aim of this thesis is the concept, design and evaluation of an

anomaly detection system to unveil energy theft early on, using power

measurements. The thesis proposes solutions for modelling the expected

behaviour of electric load curves, designs and evaluates metrics to de-

tect anomalous power usage in residential load data and introduces a

method to detect energy theft using anomaly detection based on time

series prediction. In order to reach the aim of this thesis the objectives

are to find evident security threats and their characteristics in energy

demand. To find significant characteristics of electric load curves that

can describe normal behaviour of residential households. Furthermore,

to structure and organise this data from the available data sources into a

7



1.1. AIMS AND OBJECTIVES

statistical model, so that anomalous data can be unveiled and to define

the performance and limitations of anomaly detection. This works area

of interest is centred around the data provided by residential smart me-

ters in low-voltage areas. The scope includes, but is not limited to, the

characteristics and normal behaviour of energy demand, statistical met-

rics to detect energy theft, an evaluation of different data sources and

the usage of multiple data sources, as well as a comparison to alternative

anomaly detection methods.

This study focuses on the analysis, modelling and processing of mea-

surement data from a statistical viewpoint, which means that many

aspects of electrical engineering, e.g. the technical requirements to phys-

ically tamper with electricity meters, as well as aspects of information

security, e.g. the feasibility to manipulate the encrypted communication

of a smart meter, are not in the scope of this work.

Some anomaly detection approaches, such as AMIDS by McLaughlin,

Holbert, Fawaz, Berthier, and Zonouz (2013), analyse sensor data of

smart meters (e.g. disconnection alerts, physical tampering alerts), but

this work exclusively examines measurements and evaluate metrics and

algorithms applied to the consumption data. Furthermore, in contrast

to some works which use voltage or reactive power to better distinguish

devices, this work solely uses real power (W) values.

8



1.1. AIMS AND OBJECTIVES

The currently popular topic, which is related to the manipulation of

smart meters, is false data injection to execute a Byzantine attack, as

described by Lamport, Shostak, and Pease (1982). However, Byzan-

tine attacks aim falsify a grid-wide state, e.g. to destabilize the mains

frequency, which is not discussed in detail.

Inherent limitations of anomaly detection systems, such as poisoning

the model during learning phase, a denial of service by flooding with

false alerts or evading the detection by reverse engineering the statisti-

cal model are not central to this study. These issues are already well

researched, e.g. by Corona, Giacinto, and Roli (2013), and apply to the

smart grid context as well as any other context.

With the digitalization of electricity meters many previously solved

security problems, such as electricity theft, are reintroduced as IT re-

lated challenges which require modern detection schemes based on data

analysis, machine learning and forecasting. The aim of this study is

to demonstrate anomaly detection approaches for the early detection of

tampered with electricity meters.

Raw load curves are difficult to compare because the aggregated and

overlaying patterns of several components can drastically change and

pollute the appearance of a load curve. To clearly distinguish legitimate

and anomalous data, it is crucial to filter any unnecessary information.

9



1.2. THESIS STRUCTURE

Throughout this work several metrics, which can characterise load

curves well enough to distinguish a residential households normal be-

haviour from energy theft and significantly increase the detection rate

of energy theft, are introduced.

In the course of this work, an emphasis is on following research ques-

tions:

RQ1 What are the most significant security threats in the smart grid?

RQ2 What are the defining characteristics of electric load curves?

RQ3 Is it possible to extract human activity from electric load curves?

RQ4 Is it possible to use different data sources as expected behaviour?

RQ5 Do multiple data sources improve the detection rate?

RQ6 Is it possible to detect stealthy manipulation attempts?

1.2 Thesis Structure

Chapter 2: Overview of the Smart Grid covers an introduction on the

smart grid, with special regard to security aspects, including a threat

taxonomy and the motivation to use next-generation anomaly detec-

tion schemes. Furthermore, background information about anomaly

detection as well as evaluation methods used throughout this work

10



1.2. THESIS STRUCTURE

are provided. RQ1 is investigated by introducing the architecture

and fundamental knowledge of smart grids as well as the relationship

to anomaly detection.

Chapter 3: Analysis of Energy Demand Characteristics aims to pro-

vide to the foundations of load curves with a comprehensive liter-

ature review on electricity data. The chapter first introduces the

concept and mechanics of appliance load shapes and an analysis of

load curve characteristics. RQ2 is investigated by presenting and

evaluating the unambiguity of a load curve using the entropy as a

metric. The chapter demonstrates that the human activity is one

of the characteristics which can be used to represent the normal

behaviour of load curves.

Chapter 4: Extracting the Human Activity presents a concept to ex-

tract the human activity to investigate RQ3. Two methods as

well as an analysis of the corresponding parameters are introduced

with an evaluation of the accuracy in comparison to other statistical

methods.

Chapter 5: Normalized Characteristics of Energy Demand provides an

overview of common metrics used in smart grid applications and

introduces normalized metrics to compare different data sources,

11



1.2. THESIS STRUCTURE

such as the smart meters of several households with each other.

The chapter evaluates the quality of three features to detect energy

theft and investigates RQ4.

Chapter 6: Anomaly Detection with Multiple Dimensions introduces

the advantage of using several data sources and especially a method

to remove the daily pattern from multiple sources while preserv-

ing outliers which represent energy theft. The chapter investigates

RQ5. The contributions are an evaluation of different data sources

as well as the comparison of the suggested method to alternative

anomaly detection methods.

Chapter 7: Analysis of Stealthy Energy Theft showcases of stealthy

energy theft methods, which are only feasible with a digital manip-

ulation. The chapter introduces different concepts to mimic the ex-

pected behaviour according to the anomaly detection model while

highlighting the maximum amount of stolen energy and then in-

vestigates RQ6 by evaluating the efficiency of different anomaly

detection methods.

Throughout the thesis, the results of the authors peer-reviewed arti-

cles, which are also mentioned at the beginning of each chapter, are used

as follows:

12



1.2. THESIS STRUCTURE

Bouché, J., Hock, D., & Kappes, M. (2016). On the perfor-

mance of anomaly detection systems uncovering traffic mim-

icking covert channels. In Proceedings of the 11th international

network conference (inc) (pp. 19-24). introduces a concept for

data falsification techniques in presence of Anomaly Detection Systems

together with an analysis of the time complexity and limitations of so-

phisticated mimicry attacks. Is used in Chapter: Analysis of Stealthy

Energy Theft.

Toulouse, M., Le, H., Phung, C. V., & Hock, D. (2016). Ro-

bust consensus-based network intrusion detection in presence

of Byzantine attacks. In Proceedings of the 7th symposium on

information and communication technology (soict) (pp. 278-

285)., which presents algorithms, inspired by swarm intelligence, to

assess the trustability of network participants and mitigate false data

injection approaches. The concept of Byzantine attacks is briefly men-

tioned in some chapters.

Hock, D., Kappes, M., & Ghita, B. (2018). Non-intrusive

appliance load monitoring using genetic algorithms. In Pro-

ceedings of the 3rd international conference on renewable en-

ergy and smart grid (icresg) (pp. 1-7)., proposes a genetic algo-

rithm to extract the load curve of individual appliances from aggregated

13



1.2. THESIS STRUCTURE

load. While the concept of non-intrusive appliance load monitoring is

only briefly mentioned, some fundamental knowledge mentioned in this

paper is used in Chapter: Analysis of Energy Demand Characteristics.

Hock, D., Kappes, M., & Ghita, B. V. (2016). A pre-

clustering method to improve anomaly detection. In Proceed-

ings of the 13th international joint conference on e-business

and telecommunications (secrypt) (pp. 391-396). which applies

machine learning techniques as advanced data preprocessing to improve

Anomaly Detection Systems - especially methods based on time series

analysis. Chapter: Anomaly Detection with Multiple Dimensions con-

tains some ideas of this publication.

Hock, D., & Kappes, M. (2018). Using the entropy for typi-

cal load curve classification. In Proceedings of the 7th interna-

tional conference on smart grid and clean energy technologies

(icsgce) (pp. 58-64). evaluates the entropy as similarity measure for

the comparison of household load curves and presents an prototypical

method to cluster load curves. Chapter: Analysis of Energy Demand

Characteristics is based on the concepts of this article.

Hock, D., & Kappes, M. (2020). A survey on the applica-

tions of energy demand. (Submitted to Elsevier RSER). sum-

marises a comprehensive literature review on state of the art techniques

14



1.2. THESIS STRUCTURE

used to analyse, model and monitor energy load curves. The literature

of this survey is used throughout this thesis.

Hock, D., Kappes, M., & Ghita, B (2020). Entropy-based

metrics for occupancy detection using energy demand. En-

tropy, 22(7), 731. presents the entropy as metric to detect human

activity on individual household load curves. Chapter: Extracting the

Human Activity is largely based on the results of this publication.

Hock, D., Kappes, M., & Ghita, B. (2020). Using multi-

ple data sources to detect manipulated electricity meter by an

entropy-inspired metric. Sustainable Energy, Grids and Net-

works, 21, 100290. shows a concept to utilize smart meter data of

multiple sources to detect energy theft. Is used in Chapter: Normalized

Characteristics of Energy Demand and Chapter: Anomaly Detection

with Multiple Dimensions.
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Chapter 2

Overview of the Smart Grid

2.1 Introduction

In broad outline, this chapter introduces the smart grid and fundamental

knowledge of smart grid security. It will highlight background informa-

tion needed to understand smart meter data and energy theft, including

a presentation of the smart grid architecture and information security

considerations, related research and an introduction of basic anomaly

detection knowledge. Furthermore, evaluation methods, such as the dif-

ferent types of alerts and metrics used throughout this work are intro-

duced. The chapter was designed to investigate RQ1: ’What are the

most significant security threats in the smart grid?’. While a complete

review of the last 35 years of research is out of the scope of this work,

the studies objective is to introduce the necessary prerequisites to un-

derstand the following chapters with consideration to earlier approaches
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and cover a wide range of generally accepted schemes and frequently

used terms. Parts of this chapter are based on the article ’Hock, D.,

& Kappes, M. (2020). A survey on the applications of energy demand.

(Submitted to Elsevier RSER).’. Note that, the related work correspond-

ing to topics of the individual chapters can be found at the beginning of

each individual chapter.

2.2 The Smart Grid

The massive expansion of distributed, renewable energy sources, such

as wind and photovoltaic energy places new demands on electric power

grids. While low-voltage networks in traditional power grids are conven-

tionally unmonitored, the decentralized nature of volatile and renewable

energy, and the fact that a large number of these power generators pro-

duce within low-voltage networks, results in a strong need to monitor

and maintain grid stability. This can only be achieved through coor-

dinated energy production and consumption. The smart grid, which

connects all components of the energy system, aims to optimize the re-

liability and efficiency of energy production and consumption utilizing

a two-way communication.
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Smart Grid Architecture

The smart grid combines energy generation, storage and consumption

to automatically optimize the operation of its interconnected elements,

and thus compensates for fluctuations in performance, e.g. due to fluc-

tuating renewable energies. The smart grid is defined by a bidirectional

flow of electricity and information. Not only energy, but also data is

transported in a smart grid, so that operators receive information on

energy production and consumption.

In a technical report of the National Institute of Standards and Tech-

nology (NIST), Von Dollen (2009) identified a number of interacting

components in the smart grid, which are responsible for the power con-

sumption schedule according to customer preferences, a two-way com-

munication between consumer and energy supplier, the monitoring and

control of the power grid infrastructure and detection of failures as well

as the optimized energy production.

These components include intelligent appliances, capable of deciding

when to consume power based on the customer preferences and smart

power meters, featuring two-way communications between consumers

and energy supplier. Furthermore, smart substations, which include

monitoring and control of data such as the configuration of power line

switches, circuit breakers and batteries, as well as smart distribution
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with automated monitoring and analysis tools capable of detecting fail-

ures based on real-time data and smart generators, tasked with the

optimization of voltage, frequency and power based on feedback from

the grid.

Figure 2.1: Example of a smart meter in a residential household.

This thesis focuses on the problems and challenges concerning the

components in the low-voltage networks and especially focuses on smart

meters. The author assumes an architecture with multiple gas, water,

and electricity meters connected to a so called Smart Meter Gateway

(SMGW), which collects the metering data and provides access to other

authorized participants of the smart grid as outlined by Gungor et al.
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2.2. THE SMART GRID

(2012).

The SMGW in Figure 2.1, which depicts an example of such an archi-

tecture, aims to enable secure data transmission between the household

and external market participants and functions as a firewall between

three separate communication interfaces connected to the system oper-

ators and energy producers via Wide Area Network (WAN), the smart

meters via Local Metrological Network (LMN) and end user or appli-

ances in a household via Home Area Network (HAN).

The SMGW is typically installed in end consumers households and

receives readings of the respective smart meters in the LMN. The LMN

is used to communicate with the power meter or other meters. The data

transmitted are typically energy consumption or production levels and

measured parameters such as voltage, frequency or phase angle. This

data is sent to external market participants using the WAN, which is an

encrypted interface where authorized users can pull data.

The HAN can contain controllable consumers (e.g. tumble dryer) and

decentralized energy generators (e.g. photovoltaic systems), also known

as controllable local systems, which may be controlled via the SMGW

by vendor specific protocols.

Using the fine-grained data obtained from the SMGW, many ap-

proaches aim to derive high level information from the fine-grained data.
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Traditionally, the objectives range from monitoring approaches to the

objective of creating reasonable dynamic pricing or optimize the en-

ergy usage through appliance monitoring. Many of those approaches

have been summarized in reviews, e.g. Anderson et al. (2017) listed a

number of approaches to correlate household information to residential

energy demand, Zoha et al. (2012) classified recent NIALM methods and

Y. Wang et al. (2015) reviewed clustering methods.

Compared with the traditional method of placing sensors on each in-

dividual end-use, the idea of NIALM, to disaggregate data acquired from

a single point of measurement, is very cost efficient and convenient be-

cause energy suppliers are still not capable of deploying appliance level

sensors in all households. Hart (1992) was the first to publish a method

to distinguish appliances in aggregated load, which is today used for

many other applications such as anomaly detection or clustering. Hart

used a simple edge detection algorithm to find change-points and cluster-

ing to extract appliance patterns and build a state machine, modelling

the different states of each appliance.

Figure 2.2 illustrates appliance on/off transitions with an artificial ex-

ample, for devices such as lamps, with power (y-axis) over time (x-axis).

The different states of the appliance load curve are labelled according to

Hart as ’steady’ for regions without a change of power and ’transition’
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Figure 2.2: Steady and transition phase example.

for regions with changes above a certain level.

Many authors extended and improved Hart’s method, e.g. Zeifman

(2012) used a maximum likelihood classifier for energy disaggregation.

Kim, Marwah, Arlitt, Lyon, and Han (2011) generated Hidden Markov

models to detect appliances. Saitoh, Osaki, Konishi, and Sugahara

(2010) improved Hart’s approach using clustering methods. Baranski

and Voss (2004) used optimization methods to reveal appliances and

Ruzzelli, Nicolas, Schoofs, and O’Hare (2010) trained artificial neuronal

networks to identify appliances.

Another popular research area, which requires extracted information

is TLC, representing coherent groups of consumers, which can be used

to improve the accuracy of load forecasting for ’typical’ load profiles of
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certain households. The objective of such profiles include differentiated

and personalized tariffs according to the consumers energy demand, but

such predefined consumers groups can also be utilized as a normal model

for anomaly detection.

Figure 2.3: Time series clustering approaches.

Figure 2.3 presents a small taxonomy of features and clustering al-

gorithms used to classify households. Since load curves are time series,

most classification methods include a data preprocessing step to extract

features.

Jota, Silva, and Jota (2011) clustered typical daily load curves with

23



2.2. THE SMART GRID

hierarchical clustering by using the mean value of time windows. Xiao,

Yang, Que, Li, and Gao (2014) used Haar wavelets to model electric-

ity consumption data and then used k-means to obtain typical load

curves. Chicco and Ilie (2009); Chicco, Ionel, and Porumb (2013);

Chicco, Napoli, and Piglione (2006) used fuzzy k-means, electrical pat-

tern ant colony clustering and support vector clustering to classify load

curves and McLoughlin, Duffy, and Conlon (2013) uses Fourier trans-

forms and Gaussian processes to characterise energy demand. Zakaria

and Lo (2009) applied Principal Component Analysis (PCA) before

fuzzy k-means clustering.

Another popular research topic in smart grids is forecast and predic-

tion. This topic is related to anomaly detection as the predicted can

be compared to the actual data in order to detect deviations. However,

released studies range from the long-term annual prediction of national

energy usage to the prediction of individual households. Forecasting en-

ergy demand offers a wide range of literature, which is summarized in

several surveys. To name only a few, Suganthi and Samuel (2012) re-

viewed forecasting methods, categorized by the prediction method used.

Swan and Ugursal (2009) distinguishes between bottom-up and top-

down modelling techniques to predict energy demand. Foucquier et

al. (2013) and Zhao and Magoulès (2012) reviewed methods to predict
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building energy consumption. Dutta and Mitra (2017) reviewed litera-

ture concerning energy forecast for dynamic pricing of electricity.

Table 2.1: List of time series analysis methods.

Author Year Method
Hirst et al. 1977 Regression
Parti et al. 1980 CDA1

Aigner et al. 1984 CDA1

Cho et al. 1995 ARIMA2

Hunt et al. 2003 Trendanalysis
Labandeira et al. 2005 Regression
Tiedermann 2007 CDA1

Arroyo et al. 2007 Exponential Smoothing
Kavaklioglu et al. 2009 SVM3

Hong et al. 2009 SVM3

The applications of forecasting range from long-term planning and

DSM to energy demand simulation and anomaly detection. Table 2.1

shows ten prediction methods sorted by their release date. The ta-

ble shows a trend from long-term, large-scale prediction to short-term

residential prediction. Due to the lack of fine-grained data and ubiqui-

tous measurements in the low-voltage networks, many early approaches

aimed to predict the demand in the long-term and large-scale or used

supplementary data to draw conclusions on residential level. Hirst, Lin,

and Cope (1977) initiated the first top-down model of annual scale for

the energy usage of the USA. The model used demographic, economic,

and technological factors in order to model residential energy usage

with regression analysis. Tiedemann (2007) used a consumer survey
1Conditional Demand Analysis (CDA)
2Autoregressive Integrated Moving Average (ARIMA)
3Support Vector Machine (SVM)
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together with billing and weather data to calculate annual energy con-

sumption estimates for 14 end-uses. Labandeira, Labeaga Azcona, and

Rodríguez Méndez (2006) used similar inputs for a regression model to

model the Spanish residential energy consumption.

Parti and Parti (1980) initiated the research on another regression

method, called CDA, which attempts a more accurate estimation by dis-

aggregating demand into the end-use loads to estimate residential energy

use. Aigner, Sorooshian, and Kerwin (1984) employed CDA with energy

demand in a resolution of 15 Minutes, obtained from 130 households, to

generate hourly appliance load profiles. These were used as the input

for regression equations, one for each hour of the day, which predicted

the daily energy demand. Hunt, Judge, and Ninomiya (2003) analysed

underlying trends and seasonality of energy loads. Arroyo, San Roque,

Maté, and Sarabia (2007) used exponential smoothing methods to pre-

dict energy demand. Cho, Hwang, and Chen (1995) applied ARIMA

to forecast energy demand. A relatively new approach is Support Vec-

tor Regression to predict future demand, as presented by Kavaklioglu,

Ceylan, Ozturk, and Canyurt (2009) and Hong (2009).

Table 2.2 shows machine learning approaches aiming to predict en-

ergy demand. As the release year shows, the topic of machine learning

established later in contrast to other forecasting approaches.
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Table 2.2: List of machine learning methods.

Author Year Method
Kalogirou et al. 2000 ANN4

Datta et al. 2000 ANN4

Tzafestas et al. 2001 GA5

Aydinalp et al. 2002 ANN4

Ozturk et al. 2004 GA5

Yang et al. 2005 ANN4

Sadeghi et al. 2011 GA5

Ghanbari et al. 2013 Ant Colony Opt
Liu et al. 2014 GA5, SVM
Ribeiro et al. 2020 ANN4, Bayesian Optimization

In several publications Ozturk, Canyurt, Hepbasli, and Utlu (2004)

tested approaches using a GA to determine energy consumption in Turkey.

Sadeghi, Zolfaghari, and Heydarizade (2011) proposed a ’Genetic Algo-

rithm Electricity Demand Model’ for forecasting. Tzafestas and Tzafes-

tas (2001) aimed for short-term electric load forecasting by training an

ANN with a GA. D. Liu, Niu, Wang, and Fan (2014) optimized a SVM

using a GA. Ghanbari, Kazemi, Mehmanpazir, and Nakhostin (2013)

used ant colony optimization to build an expert system which predicts

energy demand.

J. Yang, Rivard, and Zmeureanu (2005) showcased an adaptive ANN,

which uses a sliding window of energy demand and weather data, to

forecast building energy consumption. Kalogirou and Bojic (2000) used

an ANN to predict the energy demand of a building using properties

such as the wall thickness. Aydinalp, Ugursal, and Fung (2002) sepa-
4Artificial Neural Network (ANN)
5Genetic Algorithm (GA)
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rately modelled the energy demand of appliances, lighting and cooling

with an ANN. Datta, Tassou, and Marriott (2000) aimed to predict the

energy consumption in a supermarket with an ANN. Trierweiler Ribeiro,

Guilherme Sauer, Fraccanabbia, Cocco Mariani, and dos Santos Coelho

(2020) used Bayesian optimization on an Echo State Network for the

prediction.

Smart Grid Security Aims and Threats

As part of the critical infrastructure hedging the smart grid against fail-

ures and errors is essential. Even robust components can be subject to

malfunctions and failures, which must not jeopardize the operation of

the entire network. Due to the novelty of smart grids, efficient monitor-

ing systems, able highlight anomalies and identify critical events are yet

unexplored.

Aside from safety aspects, the smart grids also introduce new security

risks due to the lack of physical separation between interconnected con-

trollable local systems and network management, which opens vulnera-

bilities to e.g. malicious software, billing fraud or network interferences.

Smart grids are historically not designed with internet security in

mind, as mentioned by Jain and Tripathi (2013), but security flaws can

result in customer information leakage and a cascade of inadvertent or
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deliberate failures, such as a massive blackout and destruction of infras-

tructures as introduced by Metke and Ekl (2010). Large-scale industrial

control systems, which are used for smart grid communication, often

used closed networks and proprietary industrial communication proto-

cols such as Modbus, DNP3 or S7, but with time it has become more

convenient and cost-effective to connect them to the Internet. Hence,

smart grid security is a rapidly growing research area.

In their NIST special publication Ross, McEvilley, and Oren (2018)

defined the key concepts of security as confidentiality, integrity, and

availability, whereas integrity and availability extends to objectives of

non-security disciplines such as performance, reliability and safety. When

applied to the smart grid, the goals of IT security can be interpreted as

follows:

• Confidentiality: sensitive information should be protected against

unauthorized access by third parties. The data collected from the

smart meters, as well as the customers personal information should

not be accessed by any unauthorized entities. Compromising the

confidentiality could mean that a potential malicious user can forge

a false identity to gain access to the SMGW (spoofing) or gain more

rights than actually provided for his role by exploiting a vulnerabil-

ity (privilege escalation).
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• Integrity: data transmitted should be protected against changes by

unauthorized persons. Any control data to HAN devices should be

received and implemented correctly and completely. The electric-

ity price and bill should not be manipulated by unauthorized third

parties. Compromising the integrity could mean to affect other par-

ticipants with corrupt data (tampering) or to gain advantage by

denying certain activities (repudiation).

• Availability: a SMGW should be available to legitimate users when-

ever they access. Some specifications require, that connections are

only established to previously defined recipients at defined times

or after a wake-up request executed by the SMGW administrator.

Compromising the availability could mean to influence the connec-

tion of the system (denial of service) for energy theft or to prevent

the correct prediction of energy demand.

Many recent developments focus on cyber-physical security, such as

physical tampering detection to protect the integrity, as well as tra-

ditional information security solutions, such as the encryption of cer-

tain communication channels to protect the confidentiality and integrity.

However, information security cannot cover the entire challenge of cy-

ber threats, as such digital meters can be vulnerable to software flaws
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and hardware malfunctions. Illera and Vidal (2014), demonstrated that

smart meters installed in Spain used strong symmetric encryption, but

stored a static encryption key in a plain text file, which allowed adver-

saries to artificially manipulate and tamper with the data and measure-

ments of a smart meters communication channel. Recently, Westerhof

(2017) simulated the disastrous consequences of a coordinated cyber

attack on photovoltaic systems, which may lead to a national power

outage. In a study of Dabrowski, Ullrich, and Weippl (2017), IoT bot

nets use common devices, connected to the Internet, to selectively in-

crease and decrease power consumption which can lead to falling below

the standard frequency and ultimately to power outages. For this rea-

son, there is a high interest in utilizing the fine-grained data and recent

advances in machine learning to detect data manipulation and anoma-

lies.

Another recent challenge of smart grid security is the detection of

energy theft and tampering of smart meters. Tampering methods can

be split to intrusive methods inside the meter housing and non-intrusive

methods outside the meter. Common intrusive methods include at-

taching electrically conductive object to pass current away from the

measurement circuit, disconnecting the phase to interrupt the measure-

ment or exchanging the phase connection to archive a negative measure-
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ment. Non-intrusive measurements include the usage of strong magnets

to temporary disable the power supply of the meter. In addition to

the physical methods mentioned above, modern smart meters pose the

additional danger of digital manipulation of the data. In contrast to a

relatively easy to detect interruption, or even negative energy demand,

data manipulation can be forged to be more stealthy and difficult to

detect.

A particular active and challenging field related to tampering is false

data injection, which is a (tampering) method where adversaries at-

tempt to compromise the information exchange of meters. Many au-

thors proposed false data injection attacks as theoretical concept, e.g.

Y. Liu, Ning, and Reiter (2011) showed the potential to influence the

mains frequency using remote controlled devices to cause power outages

and L. Xie, Mo, and Sinopoli (2010) specified a falsification method

to manipulate the electric market price information. Researchers, such

as Esmalifalak, Nguyen, Zheng, and Han (2011); Giani et al. (2011);

Pasqualetti, Carli, and Bullo (2011) introduced new false data injec-

tion scenarios, while researchers such as Bobba et al. (2010); Kosut, Jia,

Thomas, and Tong (2010) developed methods to identify falsely injected

data.

The terms ’data falsification’ and ’false data injection’ are coined by
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mitigation techniques developed for cognitive radio networks and there-

fore, often associated with the Byzantine generals problem of Lamport

et al. (1982), which covers the consensus agreement in presence of com-

promised sensors. In this work, the term data falsification is generally

used to refer to the tampering of smart meter data, aiming for energy

theft and billing fraud, and explicitly not referring to the manipulation

of a grid-wide system state aiming to cause blackouts.

The authors Depuru, Wang, and Devabhaktuni (2011); Nagi, Yap,

Tiong, Ahmed, and Mohammad (2008); Nizar, Dong, and Wang (2008)

employed machine learning to classify consumption pattern and load

profiles in order to detect electricity theft. Cárdenas, Amin, Schwartz,

Dong, and Sastry (2012) developed a game theoretic scheme between

adversary and billing company. Bandim et al. (2003) proposed a central

observer to compare the total energy consumption with the reported

consumption of individuals. Salinas, Li, and Li (2013) suggested a dis-

tributed algorithm to compute the trustworthiness of each participant.

Spirić, Dočić, and Stanković (2015) detected energy theft by monitoring

the energy consumption with XMR charts. In addition to the physical

methods mentioned above, modern smart meters pose the additional

danger of sophisticated digital manipulation methods, which are not

covered in this work. With digital access to measurements and me-
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tering information as well as knowledge on the detection method, the

adversary could potentially aim for stealthy manipulation scenarios such

as mimicry attacks. However, such methods are general limitations of

anomaly detection systems and not specific to energy theft, as intro-

duced by Urbina et al. (2016) and Bouché, Hock, and Kappes (2016).

2.3 Anomaly Detection

Unfortunately, many general-purpose monitoring approaches cannot be

effectively adopted to monitor smart grid environments. Traditional

intrusion detection systems, such as Snort, and Suricata, depend upon

a vast amount of attack patterns and permanent maintenance which is

unsuitable for smart grid environments and detection approaches which

focus extensively on content data and measurements.

A potential method to unveil energy theft and tampering is anomaly

detection. Anomalies are defined as deviations from the expected data,

rather than by predefined malicious data. Anomaly detection systems

report any deviation of the normal behaviour, and therefore also rec-

ognize unknown tampering patterns. Therefore, anomaly detection is

particularly suitable to unveil tampered data, which is difficult to de-

scribe in the volatile and highly heterogeneous energy demand.

Since Denning (1987) published the initial paper on anomaly detec-
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tion, a wide range of techniques based on statistics, machine learning

and soft computing techniques have been released for various informa-

tion security contexts. The emergence of sensors with processing and

communication capabilities stimulated great interests in anomaly detec-

tion for the Internet of Things and devices related to the smart grid, as

shown by surveys of Zhang, Meratnia, and Havinga (2010) and M. Xie,

Han, Tian, and Parvin (2011). An often referenced approach are so

called ’context-aware’ anomaly detection methods, which take several

data sources into consideration. Frolik, Abdelrahman, and Kandasamy

(2001) used data fusion with fuzzy logic for the aggregation of quasi-

redundant sensor data. Bettencourt, Hagberg, and Larkey (2007) eval-

uated context-aware methods to identify measurement errors relative

to its neighbours. Shah, Desrosiers, and Sabourin (2015) used tensor

factorization for his contextual anomaly detection approach. Further-

more, Braun et al. (2012) used the minimum covariance determinant

to detect faults in photovoltaic arrays and Dienst, Schmidt, and Kühne

(2013) consults change-point analysis to observe the condition of pho-

tovoltaic power plants. Andrysiak, Saganowski, and Kiedrowski (2017)

presented a solution to detect energy theft with network traffic anomaly

detection in critical smart metering infrastructure. Mookiah, Dean, and

Eberle (2017) introduced a graph-based anomaly detection approach,
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where vertices represent smart appliances and edges represent their

usage, to detect anomalies in power usage. Furthermore, Raciti and

Nadjm Tehrani (2013) designed smart meters embedded with anomaly

detection to identify threats on cyber-physical systems.

Besides these general anomaly detection schemes, many approaches

aim to solely monitor the measurements provided by smart meters to

detect anomalies. E.g. McLaughlin et al. (2013) developed the anomaly

detection scheme called AMIDS, based on network data and power mea-

surements, in order to detect energy theft. AMIDS utilizes energy de-

mand together with a NIALM database to label the amplitude changes in

a time series and subsequently learns benign and illegitimate behaviour

with the Naive Bayes algorithm. Rossi, Chren, Buhnova, and Pitner

(2016) proposed to take collective and contextual anomalies into account

to detect events such as over-voltages and under-voltages. Yip, Tan,

Tan, Gan, and Wong (2018) presented an anomaly detection scheme

that adopts linear programming to detect energy theft and reduce false

positives by taking into consideration the impact of technical losses and

measurement noise. Fengming et al. (2017) detected anomalies, such as

short circuit faults, by comparing a time series of measurements recon-

structed by a recurrent neural network with the original data. Zhou,

Zou, Arghandeh, Gu, and Spanos (2018) aimed to detect outliers such
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as communication failures and voltage disturbances by comparing mul-

tiple time series of voltage with a randomized block coordinate descent

algorithm.

The next section introduces key concepts of anomaly detection and

evaluation metrics used in this work. However, this work assumes the

reader to be familiar with general statistics and only aims to give a short

recap on the foundations necessary to understand this work. One can

find a good introduction in standard references such as Statistics by

Freedman, Pisani, and Purves (2007).

Models and Decision Process

Contrary to other techniques, anomaly detection does not require the

existence of attack patterns. It detects statistical deviations from normal

behavior instead, which results in the capability to detect otherwise

undiscovered tampering approaches.

Overall, an anomaly detection system assumes benign data to fall in

a certain range, and hence defines a threshold to split the normal and

anomalous data, whereas the results depend upon the overlap of data.

To make a decision, anomaly detection methods typically attribute a

probability or anomaly score s to each observation indicating its abnor-

mality. The binary result r ∈ {0, 1}, where 0 denotes normal and 1
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anomalous, is computed using a threshold ε.

r =


1 if s is > ε

0 if s is ≤ ε

(2.1)

Figure 2.4: Visualisation of the classification problem.

Figure 2.4 illustrates the concept of classification based on thresholds

with an artificial example. Note that, the distribution does not depict

the distribution of real world power measurements or anomalous be-

haviour, instead the example aims to explain the general concept. For
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simplicity, the power (W) is be used as anomaly score s in this example.

The example includes two distinct set of data, benign and illegitimate

data (points and triangles), with a total of N = 100 observations. The

threshold cannot clearly divide both sets, due to the skewed distribution

of points and triangles. In this work illegitimate activity defines inten-

tionally or inadvertently harmful activities, such as energy theft or data

falsification which is typically a subset of anomalous activity. The upper

plot symbolises normal data (points) and illegitimate data (triangles),

The dotted line is the threshold ε. If an observation was assigned a s

above the threshold ε, but was actually legitimate behaviour (dot), it is

called a False Positive (FP). If an event was assigned a s below ε, but was

actually illegitimate behaviour (triangle), it is called a False Negative

(FN). Correctly assigned results are called True Positive (TP) in case of

anomalies and True Negative (TN) in case of legitimate behaviour. The

bottom plot shows the density curves of the same example. The area

where both sets overlap is a region where a threshold can not reliably

separate normal and illegitimate data.

The above categories can be visualized in a so called confusion matrix,

as shown in Table 2.3 and are typically used to evaluate the performance

of anomaly detection.
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Table 2.3: Statistical classification for the detection performance.

Confusion Matrix
Predicted

Legitimate Illegitimate

Actual Legitimate TN FP
Illegitimate FN TP

Evaluation Metrics

The confusion matrix helps to calculate probabilities such as sensitiv-

ity (2.2), specificity (2.3) and accuracy (2.4) used to understand the

performance of the detection.

Sensitivity =
TP

TP + FN
(2.2)

The sensitivity, also known as true positive rate, is the probability

to correctly identify all illegitimate activities. A low sensitivity implies

many false negatives.

Specificity =
TN

TN + FP
(2.3)

The specificity, also known as true negative rate, is the probability to

correctly identify legitimate activities. A low specificity implies many

false positives.

Accuracy =
TP + TN

TP + FP + TN + FN
(2.4)
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The accuracy is the total percentage of correctly identified activities.

A 100% accuracy means that the actual activities are exactly as pre-

dicted by the anomaly detection system.

The performance of an anomaly detection model is often evaluated

by contrasting sensitivity and specificity using the Receiver Operating

Characteristic (ROC). One of the earliest references to the ROC curve,

as an accuracy index for a statistical hypothesis to distinguish electric

signals from noise, was provided by Peterson, Birdsall, and Fox (1954).

Figure 2.5: Visualisation of the ROC curve.
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Figure 2.5 shows a ROC curve visualizing the example data of the

previous Figure 2.4. A ROC curve shows the sensitivity (true positive

rate) and the specificity (true negative rate) for any possible threshold

to separate benign and anomalous values. The accuracy of a method

can be defined by the Area Under the Curve (AUC). A good method

can maximize both sensitivity and specificity, which results in a big area

under the curve, while a random method results in a diagonal line and

an AUC of 0.5. This work may refer to the AUC as detection accuracy.

2.4 Discussion

Here the smart grid architecture as well as threats and security aims of

modern smart grid infrastructure were introduced. The first part of the

chapter introduced many research topics related to the smart grid to

give an overview of the applications of energy demand and smart grid

data. Many forecast and clustering methods can be remodelled to de-

tect anomalies, and hence the methods and metrics used in these state of

the art works are important references. To investigate RQ1, the author

briefly introduced the smart grid architecture and described possible

threats on confidentiality, integrity and availability for the smart grid.

The chapter motivated that measures of information security, such as en-

cryption, are not sufficient to ensure the safety and security of smart me-
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ters. Intrusive and non-intrusive tampering methods were distinguished

in a brief introduction of energy theft methods. Data falsification and

false data injection, which are related to Byzantine attacks, were delim-

ited from the scope of this work. Furthermore, anomaly detection as well

as related research in the smart grid context was introduced as solution

to unveil threats such as energy theft, which is the focus of this work.

Subsequently, the corresponding mathematical preliminaries have been

introduced, including the decision process to create a binary result from

a probability or anomaly score and typical metrics such as the AUC of

a ROC curve to measure the accuracy of anomaly detection.
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Chapter 3

Analysis of Energy Demand

Characteristics

3.1 Introduction

Anomaly detection systems point out observations that do not corre-

spond to the expected normal behaviour. For this reason, anomaly detec-

tion schemes must implement a statistical model of the normal behaviour

and archive an divergence from this model in case of malicious scenar-

ios. This chapter assesses the role of the normal behaviour as well as

the difference to anomalous instances, by critically examining the typi-

cal energy demand load curve. The first section traces the development

of publicly available datasets and explains in particular the question of

available measurements and the extent of usage as well as resolution in

related research. After an investigation of typical appliance load shapes

44



3.1. INTRODUCTION

and appliance types, the issue of modelling techniques and parameters

of bottom-up modelling methods such as appliance data and time of use

data are discussed. Although these modelling techniques are used for

simulation rather than forecast or anomaly detection, they show typi-

cal components of electric load curves, such as human activity. These

characteristic components are utilized to clearly identify or distinguish

residential energy demand which is, in the context of anomaly detection,

necessary to distinguish illegitimate curves from normal ones. The fol-

lowing experiments show that certain time windows of a load curve,

with unambiguous ’human activity’, are better suited to differentiation

than other time windows. In this chapter, RQ2: ’What are the defining

characteristics of electric load curves?’ is investigated. Note that, large

parts of this chapter are based on the publication ’Hock, D., & Kappes,

M. (2018). Using the entropy for typical load curve classification. In

Proceedings of the 7th international conference on smart grid and clean

energy technologies (icsgce) (pp. 58-64).’.

The efficient monitoring of low-voltage networks is one of the main

arguments in favour of the introduction of smart meters. The basic

function of a power meter is the measurement of the energy consump-

tion, which is utilized for the billing. The meter computes the power by

adding up the mains voltage multiplied with the current, drawn by all
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active devices. Unlike the mechanical Ferrais counter, a smart meter can

send digital readings at higher intervals to the meter operator. Typi-

cally, the measurements provided in the smart grid include the real (W),

reactive (VAR), and apparent (VA) power as well as phase volt measure-

ments (V), current (A) and mains frequency (Hz). These acronyms refer

to the measurement units: according to the international unit system,

volt is the unit for electrical voltage (U) and describes the amount of

energy that is present in the individual electrons. Ampere is the unit

for electrical current (I) and refers to the amount of electrons that flow

through a line in a certain period of time. The electrical power (P) is

the product of current times voltage and is given in watts.

Monitoring the current and voltage is critical for many applications

such as the fault monitoring and the early detection of over-voltage

or power line failures as proposed by Livani and Evrenosoglu (2013).

Apart from that, the reactive and apparent power need to be closely

monitored and counterbalanced by power grid operators to avoid un-

necessary thermal line losses. Hart (1992) used the reactive power to

identify appliances, since reactive power is caused by appliances with

inductor. The mains frequency, which measures the balance of produc-

tion and consumption, helps to prevent overproduction that potentially

destroys equipment and underproduction that can ultimately lead to
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blackouts.

From this perspective, the manipulation of each measurement can

lead to safety critical situations. However, the primary goal of this

thesis is to detect energy theft, and hence if the adversary tampered

with energy demand values. Hence, this thesis focuses on the integrity

of real power (W) measurements, which depicts the amount of work

performed by a component. Manipulating power measurements can be

seen as the foundation for many other sophisticated scenarios, such as

a forged blackout and other scenarios requiring multiple corrupted elec-

tricity meters. Since collecting real world data is often time consuming

and expensive, researchers released a number of clearly defined pub-

lic datasets, with emphasis on power, monitoring household electricity

and ambient parameters, enabling others to compare and evaluate their

approaches against common benchmarks. These datasets can be inde-

pendently validated and compared for reproducible scientific results and

to prove the validity of a method in real life settings.

Overview of Public Datasets

Public energy demand datasets have been used as a evaluation method-

ology for many previously introduced smart grid topics, including but

not limited to NIALM with the Electricity Consumption & Occupancy
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Table 3.1: List of public energy demand datasets.

Name Year Level Duration
Tracebase 2011 Appliance 12 month
REDD 2011 Whole-house, Appliance 1 month
IHEPC 2012 Circuit 47 month
Smart* 2012 Circuit, Appliance 3 month
AMPd2 2012 Circuit 24 month
ECO 2012 Whole-house, Appliance 8 month
iAWE 2013 Whole-house, Appliance 3 month
Greend 2014 Whole-house, Appliance 12 month
REFIT 2016 Whole-house, Appliance 24 month
UK Dale 2017 Whole-house, Appliance 48 month

(ECO) dataset by Makonin (2016), TLC with the Greend dataset by

Andrade, Sampaio, Viterbo, Silva, and Boscarioli (2016) and occupancy

detection with the Smart* dataset by D. Chen, Barker, Subbaswamy,

Irwin, and Shenoy (2013). For a quick overview, Table 3.1 shows ten

datasets and their corresponding properties in chronological order, whereas

missing references do not imply that a particular dataset is unimportant.

The datasets are categorized by their aggregation level and duration.

In contrast to other public datasets, such as network traffic with many

trending protocols and applications, energy demand data cannot become

outdated. The table still includes the release year as it could influence

the relevance and availability of the dataset.

The aggregation levels (see Figure 3.1), which show the physical con-

nections of the power meter are plug (individual devices), circuit (typi-

cally one room) and whole-house level. If a dataset is listed with several

aggregation levels that typically means that the more fine-granular level
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Figure 3.1: Measurement methodologies of the listed datasets.

is only partially available (e.g. for some appliances).

Among the datasets, especially Individual Household Electric Power

Consumption (IHEPC), UK Dale, REFIT and Almanac of Minutly

Power (AMPd2) datasets captured energy demand over a long time.

Hébrail and Bérard (2012) captured the IHEPC dataset with the minutely

energy demand of one household for almost four years. In the most re-

cent 2017 release, the UK Dale dataset by Kelly and Knottenbelt (2015),

captured the energy demand, including sub-meters and switch status of

appliances, of five households for over four years. In 2016, Makonin,

Ellert, Bajić, and Popowich (2016) provided, with the AMPd2 dataset,

readings for two years of monitoring from 21 power meter and addi-

tional climate data. Murray, Stankovic, and Stankovic (2017) recently

published REFIT, a two year UK dataset with whole-house level loads as
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well as nine separated end-uses measured at a resolution of eight second

for 20 residences.

The ECO, Indian Dataset for Ambient Water and Energy (iAWE)

and Greend datasets offer high resolution data with 1Hz measurements.

Beckel, Kleiminger, Cicchetti, Staake, and Santini (2014) introduced

with the ECO dataset power meter readings of six households, updated

every second. The set includes manually labelled occupancy data and

readings of selected appliances. The Greend dataset provided by Monac-

chi, Egarter, Elmenreich, D’Alessandro, and Tonello (2014) includes 1Hz

measurements of households in Austria and Italy. They monitored the

power of 9 households for one year, including nine sensors per house.

Batra, Gulati, Singh, and Srivastava (2013) monitored in his dataset

iAWE a house with 33 appliances over 73 days.

Smart* and Reference Energy Disaggregation Data (REDD) mea-

sured many individual appliances. Barker et al. (2012) observed in the

dataset Smart* 25 circuits and 29 appliance monitors over three month.

Kolter and Johnson (2011) presented the REDD dataset, which moni-

tored six houses in boston with up to 24 sensors over several weeks. The

dataset with the most appliances included is Tracebase. Reinhardt et

al. (2012) published with Tracebase, a dataset from Germany with 15

houses and 158 appliances per house in 1Hz resolution. However, Trace-
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base does not offer measurements of a coherent duration or aggregated

measurements.

This study uses the ECO dataset, provided by Beckel et al. (2014),

which is a comprehensive dataset for NIALM and occupancy detection

research, offering individual appliance and occupancy readings every

second.

The real power (W) values of smart meters are based on the SML-

protocol, which captures the mean-cycle-power. The ECO dataset pro-

vides, apart from declared exceptions, measurements in Watts with four

decimal places for a total length of one year and for six different houses.

Due to missing data, the ECO dataset has approximately 120 days (from

June 2012 to January 2013) which are simultaneously captured in all

households. The experiments throughout the thesis, if not otherwise

declared, aggregate the values to one measurement every five minutes,

since the lower resolution is more realistic in a smart grid environment.

Aside from the whole-house level data with power, current, voltage and

phase angle, the dataset contains separate measurements on plug level

as well as occupancy data. The occupancy data, which was manually

specified by the occupants as presence and absence, was not used in our

experiments. The plug level data shows power data for some selected

appliances which differ for each household.
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Appliance Load Shapes

A load curve consists of the sum of the loads of all active individual

appliances and measurement errors. Hence, if a set of appliances and

their load curves are given, the total load curve can be reconstructed by

choosing the correct state (active/inactive) for each appliance at each

time.

Figure 3.2: Plug level and whole-house level data of one day.

Figure 3.2 shows a snippet of energy demand data, over one day, for

the individual appliances and the whole-house level data (bottom) for

household 1 of the ECO dataset. Note that, the sum of all individual ap-

pliances (e.g. fridge, dryer, coffee machine) is not equal to the measure-

ments on whole-house level. Different appliance types can be identified
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by looking at the shapes of the individual appliances load curve. Hart

(1992) categorized appliances into ’Type I: On/Off Appliances’, ’Type

II: State Machines’ and ’Type III: Continuously Variable Devices’. The

coffee machine and kettle are of type I, while the other appliances are of

type II. A type III appliance, such as a personal computer has no fixed

load curve and depends on the usage. Other authors, such as Zoha et al.

(2012) further extended the types with ’Type IV: Permanent Consumer

Devices’, which classifies appliances that permanently consume energy

at a constant rate (e.g. smoke detector).

Figure 3.3: Appliance load curve of a (type II) washing machine.

Figure 3.3 shows the structure of a type II appliance extracted from

the ECO dataset, with states s1, s2 and s3, in detail. The consumption

changes when the appliances switches into another state. The overall

load curve of a real world appliance can be modelled as following:
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Figure 3.4: Classification of load shapes.

The upper part of figure 3.4 shows the classification by Hart (1992),

as previously introduced in Chapter 2, who distinguishes the transition

phase and the steady phase of an appliance load curve. The bottom part

shows the classification by Z. Wang and Zheng (2011), which enhances

the shape by a peak value before the steady phase. Additionally, the

classification distinguishes triangular shapes in case of fast switching

events and rectangular shapes with a steady phase.

Overview of Modelling Methods

Certain methods require the testing of unorthodox customer profiles or

and appliance usage data for different scenarios, which are not always

easily available in real world data. For these reasons, the simulation of

appliance load profiles with different appliances and occupancy scenarios
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Table 3.2: List of energy demand models.

Name Year Resolution Method
Walker et al. 1985 15min Time-of-use
Train et al. 1985 1h Probability
Capasso et al. 1994 15min Time-of-use
Yao et al. 2005 1min Time-of-use
Strokes 2005 1min Probability
Paatero et al. 2006 1h Probability
Widén et al. 2009 5min Time-of-use
Armstrong et al. 2009 5min Time-of-use
Richardson et al. 2010 1min Time-of-use
Arshad et al. 2013 1min Probability

is very attractive.

Table 3.2 lists ten methods to model energy demand and their cor-

responding properties in chronological order. The table shows that the

research on energy demand models is older than the smart grid, but

there is a drift to high resolution models after the very early publi-

cations. Modelling methods are typically categorized as top-down or

bottom-up methods. Top-down methods often use socio-economic data

derive the consumption of a single household from factors such as lo-

cation, number of persons and income. Bottom-up methods simulate

individual appliance load curves which contribute to the total energy

demand of a household.

Top-down methods are less interesting for this work, because the

shapes of individual appliances are typically not accurately modelled.

Such methods are primarily used for rough long-term predictions. High

resolution energy demand simulators are almost always bottom-up ap-
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proaches, whereas each appliance is typically modelled with electrical

characteristics and a start and end time.

Figure 3.5: Simple bottom-up energy demand simulation approach.

Figure 3.5 illustrates a simplified version of this concept. Input pa-

rameters range from the individual consumption of the selected end-uses

and their electrical characteristics to the properties of the dwellings,

time of the year, weekday and human behaviour. Grandjean et al.

(2012) pointed out that bottom-up simulation approaches can be further

categorized in time-of-use based or probabilistic models. Time-of-use

based models are an extension of probabilistic models, which addition-

ally model the presence or activity of human beings.

Probabilistic models are often rather simple, Paatero and Lund (2006)
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used specific appliance consumption data, such as on/off amplitudes as

well as the length of run cycles to generate appliance profiles by starting

appliances until the profile matches the expected daily energy demand.

Stokes (2005) used the mean household demand and dwelling specific

data (e.g. number of occupants, number of appliances, ...) to calculate

the probability of an appliance start event at a given time. Train, Her-

riges, and Windle (1985) statistically adjusted generated appliance load

curves according to socio-economic factors and Arshad, Ali, and Javed

(2013) computed an appliance usage probability, according to different

device categories.

While the previous simpler models make use of the appliance start

time alone and generally use random number generation to start or stop

appliances according to pre-computed probabilities, the state of the art

approaches use sophisticated time-of-use models for certain human ac-

tivities, which are correlated to a set of appliances. These occupancy

models are often derived from empirical surveys and are sometimes re-

ferred to as ’time of use’ based modelling. Walker and Pokoski (1985)

were the first to generate a time of use model to start appliances. They

calculated an ’Available At Home Probability’ and based on that the

probability to perform some activity which indirectly affects the use of

one or more electrical appliances. Capasso, Grattieri, Lamedica, and

57



3.1. INTRODUCTION

Prudenzi (1994) developed ARGOS an improved version of Walkers

time of use model. Widén et al. (2009) generated a time of use in-

formation from surveys. Yao and Steemers (2005) used constructed

time of use scenarios to start individual appliances with their so called

’Simple Method Load Profile’. Armstrong, Swinton, Ribberink, Beau-

soleil Morrison, and Millette (2009) created a time of use based model

for Canadian households. Richardson, Thomson, Infield, and Clifford

(2010) generated Markov-Chains to model the time of use for several

appliance categories. The term ’time of use’ is coined by works related

to energy modelling and simulation, but throughout this work, ’time of

use’ is referred to as ’human activity’ which fits better in our context.

In summary, public datasets are convenient to evaluate against com-

mon benchmarks, since the collection of real world data is a tedious task.

A quick glance at the energy demand shows that the total load is the

sum of each individual appliance load, and hence it is feasible to forecast

the total load by predicting the number of appliances switched on at any

given moment. The load curve of an individual appliance can be classi-

fied into a transition phase and a steady phase, whereas the difference

of power is called amplitude. Appliances such as state machines may

have different amplitudes and a load curve consisting of several switch

operations. The switch operation of each individual device is usually
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defined by time of use probability – or simply the human activity.

3.2 A Benchmark for Characteristic Periods

In order to detect anomalies, such as energy theft, it is first necessary

to mathematically define the normal consumption behaviour of a house-

hold. A solid theoretical framework to understand underlying mechanics

of daily energy demand distribution in several dimensions – across sev-

eral days as well as multiple households – is still missing. This section

provides an analytic approach to understand the distribution of power

throughout the day and a quantitative metric to measure the similarity

of energy demand curves. Energy demand contains complex and vari-

able patterns which legitimately change at regular and indeterminate

intervals. Patterns that can be used to recognize households, are not

uniformly distributed on the temporal axis of the energy demand. Since

energy demand in residential households is profoundly affected by hu-

man behaviour and occupancy, which is neither random nor uniformly

distributed, characteristic energy demand shapes are often gathered in

few periods per day and repeat daily according to the consumers habits.

Following this reasoning, one can define a characteristic period of a

households daily energy demand as period which does not significantly

change over several days, but differs from other households energy de-
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mand at this time. The experimental evaluation first analyses the pro-

portion of consistent periods of a household across several days and then,

examines the proportion of unique periods of a household to distinguish

it from other households.

Since two households with identical average consume could have sig-

nificantly different daily consumption curves, the here proposed strategy

is to capture the uncertainty of a consumers demand. The entropy, also

known as uncertainty, can be used to quantify the likelihood of a period

to be ’characteristic’ or reveal significant differences in the magnitude

and timing of energy demand among households.

Although entropy originated in thermodynamics, Shannon (1948) ar-

gued with his application of the entropy to information theoretic prob-

lems – as a quantitative and qualitative technique for understanding

uncertainty – that entropy has a deeper meaning. It is well-known in

coding theory that the entropy of a discrete random variable quantifies

the average length of the encoding of the random variable. Moreover,

Shannon’s Entropy measures the average uncertainty, also referred to as

information content. The uncertainty is maximized when the outcomes

of the random variable are equally likely, which corresponds to a uniform

distribution.

Remark 3.2.1. Formally, let L = {a1, a2, ..., an} be a dataset where
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|L| = n is the cardinality of L. Moreover, let x1, x2, ..., xn denote the

frequency of each element in L in some sequence X of elements from

the set and m = |X| =
∑n

i=1 xi implies the number of all observations.

Then, the entropy H(X) is defined by

H(X) = −
n∑
i=1

xi
m
· log2

(xi
m

)
(3.1)

Note that, 0 ≤ H(X) ≤ log2(n) where H(X) = 0 is assumed if only

one element of L occurs in X (by convention, 0 · log2(0) = 0) and

H(X) = log2(n) if all elements of L occur in X with the same frequency.

As xi
m is synonymous for the occurrence probability, the interpretation

can be extended to the statistical distribution of the underlying data: an

entropy close to log2(n) reads as ’random’, because the elements appear

almost equally often whereas an entropy close to zero reads as ’skewed’,

because few elements appear more frequent.

In the following, an energy demand curve is split into several time

windows and compared with the same window of another curve. When

comparing multiple households, the more uniform the energy demand at

a certain time distributes across these households, the larger the number

of consumer sharing this consumption, and therefore the less likely it is

to distinguish consumers from others using this time slot. Alternatively,
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the less uniform a period is, the higher the likelihood of a period to be

unique among all users.

Table 3.3: Example of energy demand with maximized entropy.

Household Morning Noon Evening Night
House 1 50-100W 10-15W 10-15W 50-100W
House 2 50-100W 50-100W 10-15W 10-15W
House 3 10-15W 50-100W 50-100W 10-15W
House 4 10-15W 10-15W 50-100W 50-100W

For simplicity, consider a small synthetic example, as outlined in Table

3.3, whose records consist of an identifier (household name) and several

attributes in form of load information (interval of energy demand dur-

ing a period). Hence, each row depicts a day of energy demand for a

different household. As the energy demand values appear equally often

in each row and column, the table depicts a worst case example: the

entropy is maximized for each column and each row and cannot be used

to unambiguously link the attributes to a certain identifier. It is not

possible to determine any time period as characteristic because none of

the time periods in the above table has an unique observation not shared

with other households during that period. Hence, neither the rows nor

the columns can be used to unambiguously identify the corresponding

household. It can be concluded, that the likelihood to unambiguously

identify a household is in direct correlation with the amount of power

measurements.
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The more uniform a households energy demand is spread over the day,

the harder to predict the consumers current consumption from historic

data. Or in other words, when comparing a period of the energy demand

with the same period in historic data, the more uniform the distribution,

the less information one can derive about characteristic consumption

times.

In summary, the entropy can analyse or model the distribution of

energy demand across the temporal axis or across several households.

These ’dimensions’ can be analysed with the objective of isolating house-

holds or atypical characteristic consumption times.

3.3 Experimental Evaluation

The simplest mathematically tractable model of energy demand is a

histogram of relative energy demand regarded as a probability distribu-

tion, on which one may compute the entropy. However, performing the

computation on these relative demand values means to apply a scaling

operation which is independent from the other time periods. The result-

ing entropy for a period with demand (0.1W, 0.09W) and second period

(100W, 90W) is therefore equally high.

As an alternative, the author proposes to define a set of intervals

on the power and compute the probability to see energy demand in a
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Table 3.4: Computing the entropy on power (W) intervals.

Time 0-100 (W) 101-500 (W) ... 1000-∞ (W) Entropy
1 [Day1, Day2] [Day3] ... [] 0.7
2 [Day1] [Day2] ... [Day 3] 1.5
3 [] [] ... [Day1, Day2, Day3] 0.7
4 [] [] ... [] 0.6

certain interval, as depicted in Table 3.4. Here, each column shows a

different interval, whereas each row shows a certain time. The entropy is

computed for each row: for each interval, the number of days is counted,

which contain measurements in this interval. A high entropy means that

the intervals are equally distributed throughout the days, and therefore,

that none of the intervals is characteristic for this row.

Remark 3.3.1. As the entropy in the previous plots seems correlated

to the Standard Deviation (sd) of all days, the following example briefly

highlights the differences of both: to compute the sd of a time period

for all days, the sd would increase with the difference between two val-

ues, whereas the entropy does not consider the distance between values.

Consider two time periods t1=(1W, 1W, 1000W, 1000W) and t2=(1W,

250W, 750W, 1000W). The sd for t1 is higher than the sd for t2 , but

(under the assumption that each different value is in a different interval)

the entropy for t1 is smaller than the entropy for t2.

Next, the proposed metric is computed for several days of the same

household, in order to measure the consistent periods.
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Figure 3.6: Energy demand of seven different days (10 intervals).

Figure 3.6 illustrates the energy demand and corresponding entropy of

seven days in a household – the upper plot shows each day visualized by

a different line type, whereas the bottom plot shows the corresponding

entropy using 10 uniformly distributed intervals. A high entropy means

that the values are distributed over several intervals, while a small en-

tropy means that most values are located in a single interval. Here,

small entropy values can be seen especially during low activity times,

which are more consistent. In contrast to the intuitive assumption that
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a household can be identified by peak demands, it is much easier to iden-

tify periods without consumption as characteristic (minimized entropy)

for a household. The usage of periods without consumption makes sense

to characterise load curves: the detection of recurring low consumption

periods can be very simply over several days and may be attributed

to regular working hours or rest periods, while the identification of a

particular appliance, which is used regularly, can be difficult as the con-

sumption may depend on the usage and other hard to predict outside

factors.

Note that, the result depends on the number of intervals. With more

intervals, there is generally a higher probability that each day has unique

intervals, and therefore the entropy is typically higher. The maximum

range of the entropy also depends upon the number of defined intervals.

The experiments here use a normalized entropy in a range of [0,1]. In-

terested readers can find another analysis of this parameter in Chapter

6.3.

Figure 3.7 shows the amount of characteristic periods with different

intervals, comparing five minute intervals of seven different days. Each

box plot in the upper figure shows the result with different amount

of intervals (see x-axis). It can be seen here that very small amounts

result in a very small average entropy with outliers at peak times. With
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Figure 3.7: Influence of the interval number on the entropy.

increasing intervals, the average entropy also increases. The bottom plot

visualizes the amount of five minute periods (%) exceeding the threshold

of an entropy of 0.1 (black line), 0.2 (dashed line) and 0.3 (dotted line).

The more intervals there are, the less likely it is that all measurements

are located in a single interval. The size of the difference does not

matter, the entropy will increase whether the intervals are wide-spaced

or neighbouring. Hence, with a sufficient number of intervals the entropy

of a floating point number may always approach the maximum.
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In many cases, two intervals (e.g. high and low) would be sufficient

to reliably detect periods without activity. However, in this case the

intervals should not be equally distributed, but much smaller for the

low activity. For simplicity, the following experiments continue to use a

small amount of equally distributed intervals which has the same effect.

The next experiments showcase the entropy for several households, in

order to measure the unique periods.

Figure 3.8: Unique and characteristic periods of six households.

Figure 3.8 visualizes the results of both – unique periods and charac-

teristic periods – in a matrix, where each column indicates a time window

and each row shows one household. The size of each point shows the

entropy between the households and the brightness of each point shows

the entropy between days of the same household. The darker the point,

the more characteristic is a period, e.g. because several previous days

had energy consumption in the same interval. The smaller the point,

68



3.4. DISCUSSION

the more similar are all households, which means that there is no outlier

where one household consumes much more energy and it is difficult to

distinguish the households.

In summary, one can compare energy demand with the demand from

previous days in order to determine whether this period is random (high

entropy) or a characteristic pattern (small entropy) and one can com-

pare the energy demand of several households to find outliers which

distinguish the household. Observations of this data suggest that time

windows with small energy demand and low activity often display the

sleeping habits and regular working hours of occupants, and hence show

characteristic patterns of a household.

These findings can help to better structure the data for anomaly de-

tection. Since anomaly detection is, colloquially speaking, the detection

of unusual behaviour, it may be argued that anomalies cannot be de-

tected if the demand is not predictable. Hence, it could make sense

to either ignore unpredictable time windows or detect whether the pre-

dictable time windows occur at the expected time.

3.4 Discussion

This chapter introduced an extensive analysis of energy demand and

possible choices of data to detect anomalies such as energy theft. Start-
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ing with a selection of popular measurements and available datasets,

the chapter introduced common energy demand models which are of-

ten based on individual appliances and human activity. Furthermore,

an approach to analyse the predictability of energy demand, by com-

paring previous energy demand or other households and pointed out

characteristic time periods, was presented. It is apparent that, espe-

cially periods without consumption are often characteristic reappearing

patterns of a household. The analysis of two characteristics revealed

an answer to RQ2. The first characteristic is the human activity, ex-

posed by time periods with low activity, that can often be identified

during the same time spans over several days and can indicate typical

consumer behaviour. The second characteristic is the load curve of indi-

vidual appliances. Each appliance can be classified into a different type

such as on/off or state machine and consists at least of a steady and a

transition phase. Many authors used these characteristics together to

simulate a households energy demand.
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Chapter 4

Extracting the Human Activity

4.1 Introduction

The previous chapters illustrated the importance of the human activ-

ity to model energy demand and to describe characteristic patterns of a

household. Modelling energy demand according to a predefined human

activity is straight forward. Next, this study tackles the challenge of ex-

tracting human activity from a given energy demand curve. This chapter

proposes and evaluates two competing metrics inspired by Shannon’s en-

tropy in order to obtain information about occupants’ in-home activities

and human activity from power (W) readings. The results with an ac-

curacy of over 90%, using the publicly available ECO dataset, indicate

that the detection rate with the provided method is significantly better as

compared to other well-known statistical methods, stressing the practical

relevance of the approach. A focus is especially on entropy-based met-
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rics, which are used throughout this thesis, and the advantages and in-

terpretation of using certain input data. This chapter investigates RQ3:

’Is it possible to extract human activity from electric load curves?’. Note

that, large parts of this chapter are based on the publication ’Hock, D.,

Kappes, M., & Ghita, B (2020). Entropy-based metrics for occupancy

detection using energy demand. Entropy, 22(7), 731.’.

The central theme here is an effective, entropy-inspired profiling mech-

anism which consolidates the temporal distribution of energy consump-

tion in order to implement an indicator for human activity. In contrast

to most conventional methods this information is revealed without a-

priori information, which allows its use without expensive and laborious

training of the system. This simplicity is an important factor for the

plan to use the human activity as input for anomaly detection, later.

Furthermore, the algorithm can also cope with low resolution measure-

ments (minutely).

As human activities that take place without appliances are not re-

flected in energy demand, this thesis defines the term ’human activity’

as human interaction with electrical appliances. Obviously, mispredic-

tions of human activities in this sense are sometimes possible as, e.g., a

cleverly randomized use of time-switches cannot be distinguished from

a human user doing the same activity. While approaches aiming at
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detecting or predicting actual human presence in homes might appear

more powerful, the author argues that the differences between these

approaches are in fact negligible from a practical point of view when

considering the use of such data for anomaly detection and energy fore-

casts.

Many authors agree that residential energy demand can contribute to

the comprehension of household characteristics and human behaviours

including the occupancy or human activity. Nguyen and Aiello (2013)

give a comprehensive list of approaches to capture human presence,

which are mostly based on sensor data. Previous studies of Molina-

Markham, Shenoy, Fu, Cecchet, and Irwin (2010) used density-based

clustering and supervised learning to identify human presence and other

consumer information. Beckel, Sadamori, and Santini (2013) extracted

the number of occupants from energy demand. Kleiminger, Beckel, and

Santini (2015a), implemented a method based on supervised machine

learning algorithms to detect human presence.

Entropy-based approaches have been extensively applied in other ar-

eas such as healthcare by Richman and Moorman (2000), biodiversity

assessment by Vranken, Baudry, Aubinet, Visser, and Bogaert (2015),

or network anomaly detection by A. Wagner and Plattner (2005). To

the best of the authors knowledge, an entropy-based metric has not been
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proposed to analyse energy demand before. This chapter illustrates and

discusses the entropy-based metric as an approach to quantify changes

and profile events of domestic daily energy demand and introduce it as a

new method to emphasize energy demand variation over time in order to

uncover human activity. It seems appropriate to compare two different

metrics, which both use raw power values as input data. These metrics

can be seen as a filter on energy demand curves resulting in high level

information which can be predicted in order to detect anomalies. For

the next steps in this thesis, it is especially relevant to forecast this high-

level information to detect deviations (anomalies) in the behaviour of a

household. For this reason, the interpretation and effects of potential

parameters are emphasised.

The remainder, discusses details of the metrics and highlight their ad-

vantages and limitations regarding their conclusiveness with respect to

residential energy demand. The following section evaluates the method

by presenting several practical experiments, obtained by applying en-

tropy to real world smart meter data of the public available ECO dataset.

The results show that the proposed metric method can indeed detect

human activity. A comparison of the results with other well-known

statistical methods, followed by a summary and potential future work

avenues, concludes this chapter.
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4.2 Entropy as Metric for the Human Activity

Due to appliances with high demand, typical statistical ratios are in-

sufficient to reflect human activity, because the amplitude of energy

intensive or energy saving appliances do not necessarily translate into

different human activities. Hence, this thesis proposes to use temporal

changes of demand, reflected through regularity or randomness, as a

benchmark for human activity.

As outlined in Chapter 3.2, one method to summarize the randomness

of a variable is Shannon’s entropy. The entropy is a convenient way to

detect outliers in the regularity of energy demand. The distribution of

energy demand can be measured horizontally or vertically. By analysing

the distribution of demand over time (x-axis), one may find out that

most of the demand appears at a specific time, which is an outlier. By

analysing the distribution of measurements (y-axis), one may find out

that there are only few measurements with high power, which is also an

outlier. The following experiments use the entropy, introduced in Re-

mark 3.2.1, not in a traditional sense but as a metric to mathematically

trace outliers in a distribution of measurements. The practical function

as a metric, which encodes distributions without losing information on

outliers, is the most important aspect for us.
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Figure 4.1: Entropies from uniform distribution to skewed distribution.

Figure 4.1 shows the entropy (top) and the corresponding distribution

(bottom). The letters on the x-axis correspond to different distributions

and the y-axis the corresponding entropy, visualized by the stacked bars
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in the bottom plot. On both figures at the left hand side (a), one can

see the influence of the outlier number on the entropy. On both figures

at the right hand side (b), one can see the influence of the outlier size

on the entropy. A distribution such as ’j’, with outliers representing the

biggest proportion of a vector, is heavily skewed, and hence minimize

the entropy.

To conclude: the chapter introduces two competing methods to create

the input data vertically or horizontally, which results in two opposite

interpretations, different from the information theoretic interpretation.

While the first method, sliding window entropy, employs the probabil-

ity to see demand during a certain time, the second method, interval

entropy, employs the probability to see demand in a certain range.

Sliding Window Entropy

To summarize the sliding window entropy, it utilizes the proportion of

energy demand in a time window as input for the entropy to obtain

a metric explaining the distribution of energy demand over one day.

In contrast to the information theoretic entropy, this metric is maxi-

mized if the demand in all time windows is equal and the consumption

is distributed uniformly throughout the day and minimized when the

consumption is concentrated in a single interval. Hence, this chapter

77



4.2. ENTROPY AS METRIC FOR THE HUMAN ACTIVITY

assumes human activity when the entropy is minimized.

Remark 4.2.1. Consider a finite time series T = x1, x2 ... xn, xi ∈

R+
0 forall 1 ≤ i ≤ n, with n elements – representing energy de-

mand. Then, a sliding window X with size m, where the sliding step

(1 ≤ ∆ ≤ m) defines the number of elements by which the window slides

each iteration t, can be defined as Xt = xt∆, xt∆+1, ..., xt∆+m−1, which

results in a total of 0 ≤ t ≤ n−m
∆ +1 windows to cover all elements. The

traditional entropy considers the occurrences xi over the data length n,

which is equivalent to the probability to see a certain element xi
n . In

energy usage context, the entropy considers the demand probability in a

sliding window P (Xt) which is equivalent to the normalised integrated

area under the demand line. The approximation of the area is simpli-

fied by dividing the demand of a window h(Xt), which is the sum of all

measurements in a window, by the total demand h(T ):

P (Xt) =
h(Xt)
h(T )

(4.1)

The entropy is maximized if the demand is distributed uniformly and

minimized if the total demand is present only in a single sliding window.

The result ranges from [0, log(n−m∆ + 1)]. Equation (4.2) illustrates how
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to calculate the entropy using the above probability.

H(X ) = −
n−m

∆ +1∑
t=0

P (Xt) · log(P (Xt)) (4.2)

It is also possible to interpret the probability as the proportion of

daily energy used during that sliding window. Note that, the sum of

all probabilities can be greater than 1, if the sliding windows overlap

(∆ < m), which results in a scaled entropy. Figure 4.2 illustrates the

energy demand (grey line) divided into three time windows X (1 : 3),

m = 8h, ∆ = m (dotted lines), with the probability for energy demand

delineated in black.

Figure 4.2: Integrated demand for three time windows.

Human activity stands out due to the imbalance and change of energy

consumption, which manifests here in form of demand peaks. High

demand concentrated in a single time window results in a minimized

sliding window entropy. Figure 4.3 visualizes the complete process to
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derive the human activity from raw energy demand in 8 hour steps. The

figure first presents the probability for high demand (middle) in three

different resolutions and then shows the entropy for a time window of

three hours using the probability as input data.

Figure 4.3: Probability to use energy in a certain time window.

The resulting plot highlights the influence of several parameters, namely

the number of time windows used as input for the entropy (middle) and

the size of the time window for each entropy value (bottom). The re-

sulting entropy is smaller the more input values there are, while the

pattern of the curve is unchanged. The entropy results in a filter opera-

tion over the energy demand and smaller time windows for the entropy

would show more detail. There is a visible drop of the entropy when-

ever the amplitude significantly changes within a time window. For the

decision, whether a time window represents activity or not, a threshold

can be utilized. What may look unusual is, that two time windows with
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(0.1W, 1W ) and (1W, 100W ) result in the same entropy.

Interval Entropy

To summarize the interval entropy, the method uses the amount of mea-

surements in each interval to compute a probability resulting in a metric

affected by the distribution between intervals. This metric is maximized

if the demand values are uniformly distributed over all intervals, which is

the direct opposite to the previously introduced sliding window entropy.

Remark 4.2.2. Consider a finite time series T (see Remark 4.2.1),

with n elements. Then, a finite number m of equal-sized discrete in-

tervals I covering a total range of r = max(T )−min(T ), is given by

Ii = [ rm · (i− 1) +min(T ), rm · i+min(T )], with 1 ≤ i ≤ m.

The entropy represents the probability that the demand is an element

from a certain interval I, where n is the number of elements in T and

m is the number of intervals. The probability of each interval P (Ii), to

contain energy demand, is given in equation (4.3).

Freq(Ii) =
n∑
j=0

xj ∈ Ii

P (Ii) =
Freq(Ii)

m

(4.3)

The entropy is maximized if the demand distributes an equal number

of elements to each interval m and minimized if the demand involves
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only one interval. The result ranges between [0, log(m)]. Equation (4.4)

shows how to utilize the probability of each interval to compute the en-

tropy.

H(I) = −
m∑
i=0

P (Ii) · log(P (Ii)) (4.4)

Figure 4.4: Energy demand in different Intervals

Figure 4.4 highlights different methods to generate intervals: the

top figures show equally distributed intervals, while the bottom figures

show intervals with dynamic size: namely logarithmically distributed

and clustered to high variance sections. The dynamic intervals enables

the method to also consider small changes of energy demand. However,

the author found that large intervals react well on changing variance

and reliably show the start and end of each activity phase, while too

many small intervals may emphasize changes which do not necessarily
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depict human activity. The clustering approach appeared to be difficult

to implement in real world scenarios, since the clusters differ for each

household and the distribution of cluster centres may show legitimate

changes each month.

4.3 Experimental Evaluation

The following experiments aim to detect human activity using real world

measurements and compare the introduced method with other well es-

tablished prediction schemes. The section first introduces a method to

create a ground truth by labelling human activity using appliance level

data. This ground truth data is later predicted without access to the

appliance level data. The author is well aware that the presence of a

reliable energy disaggregation algorithm would label the method futile.

However, at present energy disaggregation methods are quite complex

and, outside the laboratory environment, often not able to reliably detect

appliances which are not included in a hand-labelled appliance database.

The experiments use the previously introduced ECO dataset and in

order to create the ground truth data, utilizes the ECO appliance level

data of one from six household over 30 days (June – July 2012), which

includes seven appliances (Fridge, Dryer, Coffee machine, Kettle, Wash-

ing machine, PC, Freezer). Events which point to human activity are
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labelled by selecting appliances with non-periodic behaviour (4.5c) and

exclude appliances in stand-by (4.5a) mode, appliances running perma-

nently and appliances with regular energy pattern (4.5b) (e.g. freezer,

fridge, ...).

Consider each of the i appliances in the dataset as finite time series

T = x1, x2 ... xn, xi ∈ R+
0 forall 1 ≤ i ≤ n, with n elements. Each

appliance Ti that meets following conditions is selected:

C1 = max(Ti) > 10 (4.5a)

C2 = 1Q2(Ti)−min(Ti) < max(Ti)−Q2(Ti) (4.5b)

C3 = 2Q3(Ti)−Q2(Ti) < max(Ti)−Q3(Ti) (4.5c)

If an appliance meets these conditions, then all values greater than the

arithmetic mean value of the appliance are labelled as human activity.

Activity detection without historical data is not a well researched

topic with many approaches available, therefore the introduced method

is compared to approaches often used for time series analysis. With

the data outlined above, the method is compared to four well-known

algorithms, namely a) TsOutlier C. Chen and Liu (1993) , b) Moving

Average with an threshold, c) Seasonal Decomposition Kendall and Stu-
1Q2: the second quantile is the median.
2Q3: the third quartile is the middle value between the median and max.
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art (1983) with a threshold on the trend component and the d) standard

deviation with a threshold. Each algorithm aims to classify human ac-

tivity (true or false) for 15 minute time windows, whereas a) classifies

windows as ’true’ if it contains an additive outlier, b) if it has a demand

higher or lower half the standard deviation of the moving average, c) if

the trend component contains values higher than the mean, and d) if

the standard deviation is higher than the daily main. The two, in this

work, proposed algorithms are evaluated as follows, the sliding window

entropy is using five minutely measurements to compute a probability

and three values to compute the entropy for the 15 minute time window,

whereas the interval entropy is using 20 uniformly distributed intervals.

These values were found with manual parameter tuning as in the pre-

vious section. However, since the exact values may only apply to this

data set, the explanation has been narrowed down to the general effect

of each individual parameter instead of all combinations. An evaluation

of the parameters with regards to the detection rate can be found in the

next experiment at the end of the chapter.

By evaluating the 96 results with the expected ground truth, the Area

Under the Curve (AUC) of a Receiver Operating Characteristic (ROC)

curve (see table 4.1) is computed. The AUC was introduced in Chapter

2.3 as evaluation metric, where a random method results in a diagonal
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Table 4.1: Detection rate of all methods.

TsOut. Mov. Avg. Decomp. sd Int. Ent. Slid. Win. Ent.
2012-06-01 0,57 0,72 0,86 0,79 0,90 0,95
2012-06-03 0,36 0,62 0,80 0,73 0,89 0,95
2012-06-04 0,37 0,94 0,78 1,00 0,95 1,00
2012-06-05 0,60 0,75 0,74 0,83 0,82 0,95
2012-06-06 0,58 0,84 0,88 0,89 0,92 0,98
2012-06-08 0,59 0,75 0,82 0,91 0,94 1,00
2012-06-09 0,61 0,87 0,69 0,89 0,92 0,87
2012-06-10 0,42 0,77 0,79 0,72 0,71 0,91
2012-06-11 0,59 0,83 0,84 0,86 0,88 0,97
2012-06-12 0,35 0,75 0,87 0,83 0,90 0,98
2012-06-13 0,67 0,78 0,82 0,75 0,78 0,90
2012-06-14 0,58 0,81 0,85 0,87 0,89 0,99
2012-06-18 0,53 0,74 0,94 0,80 0,88 0,96
2012-06-19 0,50 0,67 0,91 0,78 0,85 0,97
2012-06-20 0,69 0,68 0,90 0,66 0,69 0,98
2012-06-23 0,51 0,85 0,81 0,89 0,89 0,94
2012-06-25 0,47 0,73 0,82 0,77 0,93 1,00
2012-06-27 0,56 0,75 0,79 0,85 0,91 1,00
2012-06-28 0,45 0,75 0,79 0,85 0,81 0,95
2012-07-07 0,47 0,81 0,87 0,91 0,94 0,99
2012-07-08 0,50 0,90 0,89 0,99 1,00 0,95
2012-07-11 0,59 0,80 0,82 0,90 0,92 1,00
2012-07-12 0,44 0,91 0,91 0,84 0,94 1,00
2012-07-13 0,63 0,72 0,80 0,82 0,83 0,97
2012-07-16 0,58 0,92 0,91 0,87 0,93 1,00
2012-07-17 0,48 0,83 0,90 0,85 0,83 1,00
2012-07-22 0,62 0,82 0,78 0,99 0,98 1,00
2012-07-23 0,63 0,72 0,88 0,78 0,71 0,90
2012-07-24 0,53 0,69 0,92 0,79 0,71 1,00

Total (Avg.) 0,53 0,78 0,84 0,84 0,87 0,97

line and an AUC of 0.5 while a perfect detection results in an AUC of

1. Table 4.1 shows the performance of each algorithm.

Next, the parameters for the interval entropy and sliding window en-

tropy are evaluated. The same data as above is used to compute the

AUC for 30 days for different time windows and in case of the interval

entropy also for different numbers and types of intervals. A time window

of 60 minutes means, that the entropy is computed 24 times per day.
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(a) Different interval sizes with window size 15. (b) Different window sizes with 20 intervals.

Figure 4.5: Effect of parameters on the interval entropy.

Figure 4.5 shows the influence of parameters on the AUC of the interval

entropy in detail. The output varies depending on the number of inter-

vals (left plot), where each line shows a different method to distribute

the intervals. Here, the uniform distribution showed the best results and

is maximized with about 20 intervals and time windows of 15 minutes.

Next, the AUC of the interval entropy (20 uniform intervals) and sliding

window entropy is compared with different window sizes. The sliding

window entropy performs better with larger time windows, while the

AUC of the interval entropy is slowly decreasing with greater window

sizes.

The parameter tuning obviously depends on the actual household.

However, one can clearly see that especially the sliding window entropy

does not depend on fine-granular data, as one measurement per time
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window is theoretically enough for this method to work.

4.4 Discussion

This chapter presented a non-intrusive approach to detect human activ-

ity without a-priori data. With this chapter, RQ3 can be answered in

the affirmative: it is possible to extract human activity from energy de-

mand. The first results compared the feasibility of an entropy-inspired

metric using different parameters. These results showed a significantly

reduced noise, outlier resilience and clearly visible usage patterns. Both

methods reflect changes in energy demand with slightly different pur-

pose: the sliding window entropy accurately shows on/off behaviour and

peaks of appliances while hiding less interesting absolute values. The

interval entropy highlights high variance sections of a time series while

masking static behaviour. Both methods appear to behave well with a

moderate number of input values. The experiments utilizing the ECO

dataset motivated the real world suitability. In some individual exper-

iments, the standard deviation and decomposition method were able

to keep up with the entropy-inspired method. However, in total the

suggested method archived results which are significantly better than

comparable methods without the usage of complex models or intrusive

data acquisition. There is some indication that the ’information content’
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is profoundly affected by many energy related events and hence, the en-

tropy should be generally suitable for an eclectic range of classification

and identification tasks when combined with appropriate parameters.

89



Chapter 5

Normalized Characteristics of

Energy Demand

5.1 Introduction

Chapter 4 proposed the human activity as a characteristic to define the

energy demand of a household and outlined the process of modelling an

energy demand curve using the activity and appliances. Furthermore, it

showcased methods to extract the human activity from energy demand.

Here, the thesis investigates alternative characteristics which can be de-

rived from energy demand and discusses the requirements of character-

istics to compare households. After an extensive literature research, the

chapter introduces three normalized characteristics, designed to indicate

the human activity, and to evaluate the influence and effect of energy

theft on them. The contribution of this chapter is an analytical approach
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to evaluate the effect of energy theft on the proposed metrics. The focus

is on the influence of parameters, such as the window size and threshold

to compute the feature. This chapter investigates RQ4: ’Is it possible

to use different data sources as expected behaviour?’. Note that, parts

of this chapter are based on the publication ’Hock, D., Kappes, M., &

Ghita, B. (2020). Using multiple data sources to detect manipulated

electricity meter by an entropy-inspired metric. Sustainable Energy,

Grids and Networks, 21, 100290.’.

The efficient operation of the power grid critically depends on mon-

itoring the participants, which is accomplished by using measurements

collected from meters deployed throughout the grid. Since measure-

ments from individual households or from low-voltage networks were not

available in traditional power grids, many early studies used information

from external sources, such as socio-economic factors and weather data

for applications such as forecast, TLC and NIALM.

With the recent wide availability of load data and rapid advance-

ments in statistical methods, akin to machine learning techniques, one

can identify a second trend to improve these methods. Here, the authors

filter relevant information from load curves by extracting high level in-

formation such as occupants, appliances or dwelling size.

Since most information – from external sources or extracted from the
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load curve – can also be used for anomaly detection approaches, this

section presents a brief overview with the most important types and the

related research areas. For a quick overview, Table 5.1 lists ten methods

together with the corresponding input data from external sources, and

Table 5.2 shows ten characteristics together with the method to extract

them from a load curve. The release years on both tables show that

the extraction of data, apart from NIALM, is a much newer topic which

only came up with the smart grid.

Table 5.1: List of energy characteristics used as input.

Name Year Method Input
Hirst et al. 1977 Regression Weather, Income
Mihalakakou et al. 2002 ANN Weather, Solar Radiation, Amplitude
Chicco et al. 2006 SVM, Ant Colony Clustering Amplitude
Ruzzelli et al. 2010 ANN Q/P3

Saitoh et al. 2010 Clustering Peak and Mean Ratios
Kim et al. 2011 HMM4 Amplitude, On/Off Duration
Zeifma et al. 2012 Bayes Change-points
Xiao et al. 2014 K-Means Wavelets
Wojcik et al. 2019 Random Forest Current, Voltage
Wang et al. 2019 ANN Hour, Week, Power

One of the early studies on energy forecast is written by Hirst et al.

(1977) used demographic, economic, and technological factors in order

to model residential energy usage with regression analysis. Mihalakakou,

Santamouris, and Tsangrassoulis (2002) implemented an energy model

of a Greek house using an ANN with air temperature and solar radiation

as input data. Parti and Parti (1980) initiated the research on a method
3Real and Reactive Power
4Hidden Markov Model (HMM)
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called CDA, which attempts to use regression on individual appliances

based on the indication of appliance ownership to estimate monthly

residential energy use. Wójcik, Łukaszewski, Kowalik, and Winiecki

(2019) evaluated different methods such as decision trees and random

forest on a number of features. Y. Wang et al. (2019) used a long short-

term memory ANN with current hour, week and consumption to predict

the nationwide consumption.

Rather than using household characteristics and socio-economic fac-

tors as input parameter for various tasks, the observed load profiles can

instead be used to indicate those characteristics. Raw load curves are

difficult to compare because the aggregated and overlaying patterns of

several components can drastically change and pollute the appearance

of a load curve. Characteristics extracted from energy demand aim to

filter any unnecessary information. As long as the steady and transition

phase of appliances are visible (see Chapter 3.1 Figure 3.4), deriving

features such as amplitudes, peaks and on/off durations is an easy task.

Recently, the wide availability of load data and rapid advancements in

machine learning techniques, resulted in many concepts and theoretical

frameworks to extract household characteristics. Individual appliances,

presence of users or the size of the household can be extracted from

the aggregated load data as provided by a smart meter. The resulting
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characteristics go far beyond the traditional classification of industrial

and residential consumer. Depending on the methodology used, they in-

clude information on dwellings, occupants, appliances, historical energy

consumption, climate and macroeconomic indicators such as population,

gross domestic product, unemployment, and energy price

Energy providers can use these information to better understand con-

sumption behaviour in order to improve the prediction on certain con-

sumer profiles, suggest optimal energy pricing for particular groups or

monitor individual appliances. Furthermore, the information obtained

by those methods can help to understand the complex consumption pat-

terns of particular consumer groups, and hence may be useful inputs for

anomaly detection.

Table 5.2: List of extracted household characteristics.

Name Year Method Information
Yohanis et al. 2008 Regression Occupants, Dwelling Size
Duckman et al. 2008 Statistical Analysis Income, Employment
Price et al. 2010 Regression Income, Employment
Molina et al. 2010 Density-based Clustering Household Activities
Kolter et al. 2011 Regression Building Properties
Beckel et al. 2013 KNN1, SVM, LDA2 Children, Bedrooms, Dwelling Size
Mcloughlin 2013 Time Series Analysis, Clustering Employment, Children
Carroll et al. 2014 Time Series Analysis Employment, Children
Kleiminger et al. 2015 PCA, SVM, KNN1, HMM Human Presence
Newing et al. 2016 Time Series Analysis Employment, Children, Income

Table 5.2 shows common characteristics which can be extracted from

load curves in contrast to the third party information shown in the pre-
1K-Nearest Neighbours (KNN)
2Linear Discriminant Analysis (LDA)
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vious table. The characteristics are often intended for TLC (e.g. to

create consumer profiles with dynamic prices) or to monitor safety and

security aspects of the smart grid. A study conducted by Yohanis, Mon-

dol, Wright, and Norton (2008) analysed the influence of the number of

occupants and the size of dwellings on load curves. Druckman and Jack-

son (2008), as well as Price (2010) were able to extract the income and

employment status of householders. Molina-Markham et al. (2010) used

density-based clustering and supervised learning to identify private in-

formation about consumers. Kolter and Ferreira Jr. (2011) analysed

the relation between energy demand and building properties such as the

number of rooms and the building value. McLoughlin (2013) correlated

load curves to the employment status and presence of children. Beckel

et al. (2013) extracted the number of occupants. Kleiminger, Beckel,

and Santini (2015b) used multivariate methods and supervised learning

to detect human presence. Carroll, Lyons, and Denny (2014) and New-

ing, Anderson, Bahaj, and James (2016) associated energy consumption

patterns with particular dwellings, income and number of children.

The extraction of such information means e.g. the mapping of the

overall activity or activity at a specific time, found in an energy demand

curve, to properties such as the employment status, number of occupants

or having children. This is typically done by machine learning algorithms
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tailored to this property. However, for anomaly detection it may be

unnecessary to distinguish a vacation, night shift or unemployment as

long as a change is detected.

5.2 Normalized Activity Metrics

Extracting information, such as individual appliances, socio-economic

data and personal behaviour, often requires complex, time intensive ap-

proaches and databases with expert knowledge. The regular activities

of a household, given by e.g. the number of residents, work hours, and

sleeping habits are easy to find and still more consistent than raw data.

Therefore, this thesis proposes to numerically characterizes the ’activity’

of a time period in a households energy demand. Activity can be seen as

an occurrence of a state change for one or many appliances, quantified

by the number of visible operations, or simply as consumption, quanti-

fied by the power level. As one neither needs to distinguish devices nor

find the cause of any activity in order to perform anomaly detection,

a consistent behaviour of the features is sufficient for the purpose of

anomaly detection. This chapter implements three features according

to the above criteria, which all estimate the amount of state changes or

consumption during a predefined time window to summarize the activ-

ity: the number of high amplitude points (f1), the number of amplitude
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changes (f2) and the number of similar amplitudes in a row (f3). All

three features are computed by applying a binary classification on each

measurement and adding up the number of measurements with positive

class. A lower activity results in a higher score, and hence an outlier

in case of a manipulated electricity meter. By counting the number of

measurements in a time window one always receives results with a fixed

range, which are easy to compare and to normalize.

Remark 5.2.1. Formally, consider a finite time series T (see Remark

4.2.1), with n elements representing energy demand. Then, each feature

is a conditional sum over T , formally a function f : T 7→ N0 with

a range [0, n], here represented as Iverson bracket with ε defined as

threshold in Watt:

f1(T ) =
n∑
i=1

[xi > ε] (5.1a)

f2(T ) =
n∑
i=1

[|xi − xi+1| > ε] (5.1b)

f3(T ) =
n∑
i=1

[l(xi, ε) > δ] (5.1c)

The function l(xi, ε) returns the amount of neighbouring measure-

ments in a row that are equal to xi, if rounded by ε, whereas δ is a
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threshold for the number of neighbours. f1 and f2 are defined as less

than to get a big number in case of energy theft. However, this is only

more intuitive and also works the opposite way.

Figure 5.1: Illustration of f1(top), f2(middle), f3(bottom).

Figure 5.1 illustrates the proposed methods to extract features. The

line shows an artificial energy demand (y-axis) over time (x-axis), whereas

the points illustrate measurements in one of two classes for ’High Am-
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plitude’ (top), ’Amplitude Change’ (middle) or ’Similar in a Row’ (bot-

tom).

5.3 Experimental Evaluation

In order to dynamically adjust and optimize the parameters, this chap-

ter introduces some relevant statistical indicators from a holistic data

analytic viewpoint, without considering the mechanics of the power grid,

which are well-known to operators. It is possible to mimic these man-

ual tuning rules for automation, but the efficient automatized tuning,

which is a topic in the realm of optimization algorithms, is not within

the scope of this work.

The following section evaluates the significance of the features over

raw data and especially considers the influence of the parameters to

generate outliers in case of electricity theft. The section aims to provide

an in-depth analysis on the effect of threshold ε, the window size, the

number of dimensions and the length of training data on the result.

The threshold ε can be used to define which deviations from the normal

model of a load curve are still within expectations and must be found

for each individual electricity meter.

Note that, the following experiments always show the ECO data of

household 1 (June 2012 to January 2013), while experiments with sev-
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eral houses utilize the data of all six households. In case of missing data

the corresponding day is removed from all households, which resulted in

approximately 120 days which are simultaneously available for all house-

holds. For the experimental setup, the real world measurements from the

ECO dataset are utilized to artificially construct cases of tampered with

data. In order to motivate a realistic scenario, the data was manipulated

according to the traditional (physical) tampering methods introduced in

Chapter 2.2. Namely, aiming to bypass energy consumption and slow

down the measurement or stop the measured energy consumption alto-

gether. Such patterns are simple, but realistic scenarios. The chapter

assumes that the adversary cannot gain unlimited digital access to the

smart meter, and hence stealthy energy theft attempts, such as mimicry

attacks, which attempt to bypass anomaly detection, are not considered.

Remark 5.3.1. The type 1 electricity theft is a time series T ′1 gener-

ated by the original data, but with an arbitrary region F , with a length of

at least the time window for a feature, replaced by 0 Watt and represents

a case where the smart meter is cut off for a certain time. Formally,

T ′1 = T [F ] · 0. Whereas type 2 is a time series T ′2 generated by the

original data divided by a constant C and represents a case where the

smart meter is continuously manipulated to lower the demand. For-

mally, T ′2 = T [F ]
C
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The type 1 falsified data may sound statistically trivial to detect, but

regions without power also occur in legitimate load curves (e.g. sleeping

hours or working hours), and hence only change the regular load patterns

to a decreased activity.

Figure 5.2: Features with threshold ε = 200W .

Figure 5.2 illustrates the features according to the previous section.

The plots present the classification of measurements according to the

condition of equation 5.1a, 5.1b, 5.1c. Each of the three plots show the

power on the y-axis, which is used as input for the proposed methods to
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extract features. The grey and black color of each dot illustrates whether

the measurement exceeds the threshold of the corresponding method. By

counting the number of grey dots, the feature can be computed. The

vertical dotted lines visualize the length n of a period which is used to

compute the sum over all grey dots.

The quality of ε is assessed in several steps: the first step is to ensure

that the features can distinguish anomalous and normal data and can

describe the relationship between two data sources. Here, this property

of the features is measured using the correlation. Furthermore, as each

feature is basically a classification of individual measurements, the ex-

periments clarify whether the measurements are evenly distributed over

both classes, because a single-sided classification does not contain any

information. On top of that, this section illustrates whether measure-

ments of different normal load curves are equally classified or random,

depending on ε. In the following, these two properties are called regu-

larity and certainty.

The first objective is to see the influence of ε on the correlation,

which shows the amount of variation that cannot be explained when

the features of two load curves are compared. For this experiment, the

energy demand of a single day is sliced to equally sized time windows

(see Figure 5.2) in order to compute the features, which results in a
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vector of features ~v representing energy demand.

Remark 5.3.2. A correlation of 1 indicates that time series ~v1 reacts at

any time exactly like time series ~v2, while a correlation close to 0 means

that the two curves are not related. A negative correlation shows that ~v1

and ~v2 is horizontally or vertically reversed. A negative correlation is

not interesting for these experiments, because that would roughly mean

that ~v1 shows energy production while ~v2 shows energy consumption or

that ~v1 shows high consume in the morning while ~v2 shows high consumes

in the evening. For this reason, the scale of the correlation (in Figure

5.3) is changed to [0, 1], whereas 0 means different and 1 similar as

follows: ˆcorr = (corr(~v)+1)
2 .

The next question to be asked is whether the features of a normal load

curve show higher correlation to the features of a normal load curve than

to a falsified load curve. This is evaluated by the correlation to falsified

demand with different load pattern (type 1: region replaced by 0 Watt)

and decreased energy (type 2: region divided by 5).

Figure 5.3 presents the normalized correlation (y-axis) with different

ε (x-axis) for each feature (avg. 30 days). The black line plots ˆcorr of

normal data, and should be maximized, whereas the dotted lines each

represent the comparison to tampered data, and should be minimized.

The plot ’Similar in a Row’ is not expected to show a minimized cor-
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Figure 5.3: Correlation of normal and anomalous load curves with ε.

relation for type 2, because the pattern, and hence measurements in a

row, is unchanged through the tampering method. In ’High Amplitude

Points’, it can be seen that ε < 50W results in a ˆcorr of 0 while both

other features work with a small ε. This is of course coined to this

specific household, which consumes (due to the standby power of many

appliances) at least 50 Watt even without human activity. Next, the
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computation of regularity and certainty is introduced.

Remark 5.3.3. Naturally, R = f1(T )
n shows the ratio between {0, 1}

classifications. Let’s define regularity as ratio approaching 0.5, which

can be normalized to range [0, 1], where 0 is one-sided and 1 regular

with Regularity = 1− |R−0.5|
0.5 . The certainty is used to ensure that the

classification is not random. The equation for the feature is used without

the sum, which results in a binary time series T ′ = b1, b2 ... bn, bi ∈

B forall 1 ≤ i ≤ n representing one day of energy demand. Let’s

define a matrix M , where each of the m columns is an instance of T ′

showing a different day, then a row is ’random’, if the {0, 1}-ratio of

the m instances is 0.5. This chapter defines certainty as the opposite of

random, Certainty = |RowRatio−0.5|
0.5 with a range [0, 1], where 0 means

random and 1 means that bi is equal for all columns.

Figure 5.4 (mean of 30 days) shows the relationship of regularity and

certainty (y-axis) for each feature. The x-axis shows different thresh-

olds ε in Watt, which are used to adjust the conditional expression. As

only normal data is used in this experiment it is expected that a good

threshold would maximize the certainty. A certainty of 1 would mean

that the patterns of all 30 days are exactly the same, which is good

for anomaly detection because a different load pattern would stand out.

The regularity is only used to identify errors, e.g. thresholds with a one-
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Figure 5.4: Regularity and certainty with regards to threshold ε.

sided classification which can not distinguish between different days at

all and for this reason also results in a high certainty. For the anomaly

detection itself a low regularity would be perfectly fine. According to

this reasoning, one can see that the certainty starts with a high value,

but as the regularity at this point is zero, it only means that the feature

is unable to distinguish different load curves. Next, a negative peak for
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the certainty (approximately for the same ε that maximizes the regu-

larity) can be seen, which should be avoided, as zero certainty means

the classification of all 30 days was random. The two intersections of

regularity and certainty are a good compromise and show where the ex-

planatory power of the feature is maximized. The result also confirms

the estimation, of the previous figure showing the correlation of normal

and anomalous load curves, which showed that ’Number of High Am-

plitudes’ needs a high ε (for this household) while both other features

work with low thresholds. New to this figure is that it can now be seen

that the feature ’Number of Amplitude Changes’ results in an overall

higher certainty, which means that the patterns of this feature are more

stable, and therefore easier to forecast than the other features.

Altogether, it can be concluded that ε can be adjusted, so that the

features react well to specific tampering methods or, if the tampering

method is unknown, to the energy demand of a certain data source.

5.4 Discussion

This chapter presented an overview of state of the art characteristics of

energy demand together with a set of applications. In order to investi-

gate RQ4, the chapter proposed some characteristics that are especially

suitable to compare multiple households and showed an experimental
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evaluation of these. The prerequisite to utilize multiple dimensions is

an outlier producing feature comparable with other data sources. The

chapter showed three such features and a systematic approach to fine-

tune and adjust them, which significantly affects the detection rate. The

chapter demonstrated that high level information, such as the ’activity’,

can be utilized to normalize data to a fixed range and fine-tune the

feature to the specific ’normal’ characteristic of a data source. For the

fine-tuning, we illustrated how to find an optimal threshold for each fea-

ture, to distinguish normal and falsified data. The approach of extensive

parameter tuning, to adapt the feature to the specifics of a data source

and a certain malicious activity, may be seen as limitation. However,

the examination of the statistical influence of parameters was prioritized

over automation, because anomaly detection can only work with a solid

understanding of the underlying data.
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Chapter 6

Anomaly Detection with Multiple

Dimensions

Anomaly Detection Systems can discover even unknown and new at-

tacks by analysing statistical deviations from a defined normal behaviour,

but what sounds simple is complicated in practice: due to the high sd and

inconsistency of load curves, attributed to the on/off behaviour of users

and the workings of underlying appliances, separating malicious outliers

from legitimate patterns is a challenging task. This chapter proposes and

evaluates the benefits of using similar data to detect anomalies. Subse-

quently, the concept of using different data sources is introduced and

an anomaly detection scheme which utilizes an entropy-inspired metric

to preserve outliers in multiple data sources to detect electricity theft is

evaluated. An advantage of the metric is the robustness against multiple
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manipulated data sources, which is a concrete improvement to alterna-

tive outlier preserving concepts to aggregate multiple data sources. The

detection rates better than 90% demonstrate the effectiveness of using

several data sources simultaneously, that, when used individually, pro-

vide little value in anomaly detection. The method can complement and

enhance existing monitoring systems which usually only analyse a sin-

gle time series. Furthermore, the proposed method shows that different

households can be used as comparable data sources, without clustering

the households according to their similarity first. This chapter aims to

investigate RQ5: ’Do multiple data sources improve the detection rate?’.

Note that, the first part of this chapter is based on ’Hock, D., Kappes,

M., & Ghita, B. (2020). Using multiple data sources to detect ma-

nipulated electricity meter by an entropy-inspired metric. Sustainable

Energy, Grids and Networks, 21, 100290.’.

6.1 Introduction

The following section introduces an anomaly detection scheme, which

inspects the power measurements of a smart meter to detect electricity

theft. In contrast to traditional anomaly detection approaches, which

observe a single source over time to detect tampering, the here intro-

duced approach consults the energy demand of several data sources.
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Different data sources are from here on referred to as dimensions,

because the regular measurements of a smart meter are mathematically

considered a finite time series T (see Remark 4.2.1), with n elements.

As such, the time synchronous results of m smart meters are a n ×m

matrixM. A dimension, in this works definition, does not necessarily

correspond to a physical dimension, but anything that can construct a

matrix of comparable data (e.g. it would be possible to add a dimen-

sion for: all single-family households, all households of a region, or all

Saturdays).

By using similar data, such as historic data or spatially close and

structurally identical components that naturally adapt due to the similar

conditions, one can mitigate concept drift and unveil otherwise hidden

outliers. While it sounds natural that more data is better in order to

detect anomalous events, the heterogeneous power data comes together

with some challenges which can be addressed by properly sorting and

grouping similar data sources.

Remark 6.1.1. As an example to motivate the structuring of data, con-

sider an anomaly detection model, as introduced in Chapter 2.3, which

can assign a certain probability p (or alternatively a numerical score) to

each event indicating its abnormality, where p is generated by a func-

tion which compares one or more measurements of the current energy
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demand to reference values from historical data or other households.

The binary result r ∈ {0, 1} (where 0 denotes normal and 1 abnormal)

depends on a threshold ε.

r =


1 if p is > ε

0 if p is ≤ ε

(6.1)

If an event was assigned a probability p above the threshold ε, but

was actually legitimate traffic, it is call the result a FP. If an event was

assigned a p below ε, but was actually unwanted traffic, it is call the

result a FN.

Figure 6.1 presents a plot with N=100 measurements. The black

dots represent normal cases, whereas the grey triangles show malicious

cases. The upper plot shows the classification with a single threshold,

the bottom plot uses several different thresholds to optimize the amount

of FP and FN as well as the TP and TN. Note that, each threshold was

optimized using accuracy (see Chapter 2.3 Equation 2.4) as a metric.

While this plot is an artificially generated example, it is possible to

find similar real world scenarios such as the different consumption pat-

terns on weekends and weekdays or clusters of different smart meters

with similar consume, which can benefit from different statistical mod-

els. Naturally, smaller classes also have a smaller sd, which is noise.
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Figure 6.1: Classification of data with multiple thresholds.

The optimal case would be statistically independent groups: when a

and b denote any two time series where a and b are independent, then

var(a+ b) = var(a) + var(b).

For the following experiments, three dimensions are addressed, in-

cluding m smart meters with n measurements of k days. As a result,

the dimensions in the matrix compare:

1. Time: n measurements for adjacent times (traditional)
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2. Households: measurement at time i for m smart meters

3. Dates: measurement at time i for k different periods of time

The following example, where a single dimension is insufficient for

detection, demonstrates the utility of different dimensions. In this con-

text, the concept of anomalous is defined as an outlier different from the

majority of compared data. Let’s assume a n×m× k matrixM, with

identical values x, with some of these values being manipulated through

division (identified in grey in the equation below):

M1 =



x111 · · · x1m1

... . . . ...

xn11 · · · xnm1


[
· · ·
] 

x11k · · · x1mk

... . . . ...

xn1k · · · xnmk


 (6.2)

By aiming to detect outliers different from the majority, one can

see that the result greatly depends upon the dimension: comparing

x111, x211, ..., xn11 (in dimension ’time’) results in no detection because

all values are equally manipulated. Comparing x111, x121, ..., x1m1 (in

dimension ’date’), half of the values are manipulated and cannot dis-

tinguish normal and manipulated values. Comparing x111, x112, ..., x11k

(in dimension ’households’) an outlier can be seen, because only x111 is
1The author simplified the matrix notation of each row and column x111, x121, · · · , x1m1 for space considerations.
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different from all other values.

Figure 6.2: Binomial probability for different dimensions.

The relation of dimensions and detection rate can be simplified by

considering each dimension of the matrix as individual anomaly detec-

tion approach. By assuming that each dimension is statistically inde-

pendent and used for classification simultaneously, the binomial formula

P =
(
n
k

)
· pk(1− p)n−k can be used to compute the total probability for
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detection. Whereas P computes the cumulative probability that the

anomalous value is k times successfully detected in a total of n dimen-

sions, if each dimension has the same individual detection rate of p.

Figure 6.2 visualizes the probability that at least one dimension de-

tects the manipulated data. Each line shows a different probability for

a correct classification of the individual dimensions, whereas the x-axis

shows the amount of trials. The y-axis shows the cumulative probability

for at least one correct classification.

6.2 Anomaly Detection using Multiple Dimensions

Due to the daily pattern of energy load curves, the detection of relevant

outliers by comparing different data sources (e.g. electricity meters) or

different datasets of one data source (e.g. previous days) can be a chal-

lenging task. This section introduces and validates requirements on the

input data of the entropy-inspired outlier preserving metric and high-

lights cases in which the metric leads to a concrete improvement com-

pared to alternative methods aggregating different data sources. Here,

the previous two scenarios to tamper with electricity meter data are

utilized for energy theft (see Remark 5.3.1), which leads to noticeable

outliers. The chapter first evaluates the accuracy of the method using

the ECO data and subsequently compares the method to other anomaly
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detection schemes used on energy demand.

For the approach, the household characteristics introduced in Chapter

5 are used. These values, which are the input data for the aggregation

method, are referred to as ’feature’ to separate them from the ’metric’,

which is the output of the entropy-inspired aggregation method. These

features build the underlying statistical model and distinguish between

regular and anomalous behaviour. In the proposed method, each feature

is compared to another data source, such as a previous day of the same

household or a household with similar energy consumption: the features

are aggregated by encoding their distribution to a normalized floating

point value with the so called entropy-inspired metric, which preserves

outliers in the distribution of input features. The resulting time series

can be combined with off-the-shelf forecast algorithms, such as Holt

Winters, to remove the daily patterns by subtracting the forecast. Now,

a simple threshold can distinguish benign and anomalous values.

Figure 6.3 shows the complete process to build the normal model and

subsequently detect anomalous time windows. The left part illustrates

the data at each step of the process: the top shows the raw input of

different sources as line chart, the middle shows the derived features,

whereas each time window results in a stacked bar of all data sources,

the bottom shows the resulting entropy-inspired metric. The right part
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Figure 6.3: Workflow of the anomaly detection theme.

shows training and anomaly detection process with corresponding pa-

rameter. While the computation of the metric is equal for both, as last

step the forecast model is subtracted from the actual metric to remove

the daily pattern. Now, a simple threshold can classify benign and ma-

nipulated time windows.

Aside from the previously introduced features the entropy, which en-

codes the distribution to a single floating point value, is essential for the

introduced method. The entropy is a convenient way to aggregate sev-

eral values without losing information on outliers. The method aims to

aggregate the distribution of each dimension to a single value, so that it

is possible to apply time series prediction, and hence remove predictable

patterns. The reasoning here is that similar data sources, such as two

spatially close and structurally identical photovoltaic cells or two days

of the same household, should result in similar volumes of features, and
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hence a uniform distribution (or at least a consistent pattern). If we

compare e.g. different households it is difficult to define a fixed degree

of skewness as anomalous. Hence, we measure the entropy regularly to

create a time-series of values and a distribution different to the predicted

time-series of entropy values is detect as anomalous.

Here, the entropy is not used in a traditional sense, but as a metric to

mathematically trace outliers in the distribution of features over time.

While the proposed entropy-inspired metric may have characteristics

similar to Shannon’s entropy, this thesis does not aim to proof that

the entropy is the only function fulfilling the requirement to preserve

outliers. The practical function as a metric, which encodes distributions

without losing information on outliers, is the most important aspect for

this work.

Remark 6.2.1. Formally, let X = x1, x2, ..., xn, denote the frequencies

of outcomes from the random variable, whereas m =
∑n

i=1 xi implies the

number of all experiments. Then, for a better comparison, the entropy

is normalized (as introduced in chapter 3.2) to [0,1] as follows:

Ĥ(X ) = −
n∑
i=1

xi
m · log

(
xi
m

)
log (n)

(6.3)
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The input for the entropy could principally be an artificial histogram,

such as the relative volume of energy demand. However, if the range

of input values changes over time, the entropy is difficult to compare

with a previously computed entropy. Therefore, the volume of each fea-

ture should have a fixed range. Furthermore, the entropy is profoundly

affected by the number of possible outcomes, which means more input

values (dimensions) result in the entropy-inspired metric being less af-

fected by outliers.

Let’s assume that the initial state is a vector with uniform distribution

v = ( 1
n ,

1
n , ...,

1
n) of length n. It is reasonable that a change (a) to v =

(0, 0, 0, 1) is more visible than a change (b) to v = ( 1
n−1 ,

1
n−1 , ...,

1
n−1 , 0),

because the sum of change in (a) is 2(n−1)
n , whereas the sum of change in

(b) is 2
n (see also Chapter 4 Figure 4.1). According to this reasoning, one

can construct the proposed method to detect one of two situations using

the entropy metric: detect few falsified value which must be much bigger

than the normal values, or detect a majority of falsified values which

must be much smaller than normal values. Here, the author prefers

the first option in order to detect anomalies early on and tolerate that

visibility decreases with increasing proportion of tampered values.

The Figure 6.4 illustrates the entropy of a distribution from real world

data. On the x-axis of the plot six time windows can be seen: (a)
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Figure 6.4: Entropy values for energy theft and benign demand.

morning, (b) afternoon and (c) evening of sample one, as well as (d)

morning, (e) afternoon and (f) evening of sample two with energy theft.

In the upper stacked bar plot, each stack (a-f) has twelve elements.

Each element represents the size of the feature (f1: number of high

amplitudes) for a different day during the corresponding time window.

The left side (a,b,c) with normal energy demand is roughly uniformly

distributed, whereas the right side (d,e,f) with energy theft includes

an outlier. The bottom line diagram shows the corresponding entropy,
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which is high for a uniform distribution and low for a skewed distribution

as in case of energy theft.

With the above characteristics of the metric, an anomaly is revealed

by very small entropy values. However, such anomalies can also be

detected by the outlier in the distribution of input values. Hence, it

is always possible to detect the same anomaly by looking at the input

values instead of the entropy. The entropy is only a convenient way to

aggregate several values without losing this information (e.g. compare

several households simultaneously over time). The main motivation to

aggregate the results is to simultaneously apply off-the-shelf time series

algorithms such as Holt Winters on several households or days, which is

difficult with a matrix representation. To apply the entropy horizontally

on the dimension ’time’ is not suitable as it would mean to encode an

outlier which is already visible with other close values and worsen the

result.

6.3 Experimental Evaluation

Before the evaluation of the overall quality of the anomaly detection, the

next section briefly analyses the parameter which influence the entropy.

The change of the entropy can be maximized using two parameters: first,

the window size of the feature, which is defined by the amount of mea-
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(a) Entropy for different window sizes. (b) Entropy for normal values only and 1 of 6 samples
falsified.

Figure 6.5: Effect of the feature window size on the entropy.

surements in a window, and affects the maximum difference of normal

data and outlier. Second, the size of the vector, which is defined by the

number of dimensions, and affects the proportion of normal and falsified

values in the distribution. Here, these two parameters are examined in

conjunction with the entropy.

The window size, which is used to compute a feature, defines the

amount of classified measurements, and hence the range of the feature.

Figure 6.5a shows the window size (x-axis) and corresponding avg.

feature volume (y-axis) of normal data (mean of 24 days). While the

avg. volume is consistent about half of the window size, it can be seen

that the sd slowly decreases with the window size (total range) of the
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feature. However, a bigger window size can be a disadvantage, because

it will only appear as anomalous if the majority of measurements within

this window are falsified. Figure 6.5b, shows the average entropy for

six normal samples (black) and one of six samples falsified (dotted) for

dimension ’household’ and ’date’. In this chapter energy theft should

always result in an outlier, and hence a small entropy. One can see

here, that the distance of the entropy with normal and anomalous data

is increasing with the window size of the feature. The avg. entropy is

not expected to be a particular good indicator, because not every time

window is expected to be uniformly distributed, and hence the avg.

entropy is influenced by regular daily pattern. However, the fact that

a small window size can result in a completely wrong model, where the

avg. entropy of tampered data is greater than the entropy of normal

data, indicate that the entropy of such time windows may be hard to

predict.

The second parameter needed to address is the ’dimension size’, which

is of paramount importance to the entropy-inspired metric, because it re-

flects the necessary distance to other (normal) values in order to appear

as outlier. It may sound intuitive that smaller dimension sizes are bet-

ter, because in a vector of smaller length, individual false values appear

proportionally bigger and result in a more skewed distribution which
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Figure 6.6: Distribution and entropy for two vector sizes.

affects the entropy. But smaller vectors are often heavily influenced by

the sd and appear anomalous even without falsified data. Figure 6.6

illustrates this effect by the distribution (bar plot) and entropy (line

chart) of the feature over different days in 4 hour windows (48 mea-

surements per window) for two different dimension sizes (top: 4 days;
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bottom: 14 days). The left figures show regular days while the middle

figures show a sample with one day falsified (type 1). Note that, the

author had to look for a specific day with irregular load curve in the

dataset to demonstrate this.

According to this reasoning, the optimal dimension size is the smallest

possible size, where the method can still consistently distinguish the

entropy of anomalous and normal values. This is evaluated using the

AUC of a Receiver Operating Characteristic (ROC) curve (see Chapter

2.3).

Figure 6.7: Detection rate for different dimension sizes.

Figure 6.7 shows the AUC for different dimension sizes (each dot

shows the AUC for 240 classifications = 40 days), which indicates no

significant improvement with dimension sizes greater six (vertical dotted

line). The AUC still improves with more dimensions if the prediction
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is included. The dimension size of six was still used due to practical

reasons.

Even in case of good conditions the difference of benign and tampered

data is often smaller than the expected sd of the entropy, which is due

to the regular patterns. Hence, in order to detect anomalies more reli-

ably, one needs to remove the usual time-depending patterns carried by

the features and the resulting entropy. In the following, a time series

prediction algorithm is used to forecast the expected entropy. By sub-

tracting the predicted from the actual value the method aims to receive

a straight line, without time-depended pattern, which is high for normal

and low for falsified data.

For the experiments, Holt Winters, which models the level, season-

ality and slope of a time series using training data was employed. A

small amount of training data is preferable as privacy concerns and per-

formance may not allow huge sets of historic data for ex post analysis.

However, small amounts of training data can lead to over-fitting: while

the Hold-Winters model perfectly fits the training data, the actual data

would show unpredicted patterns different from the learned data and

not match the model.

The length of training data does depend upon previous parameters,

such as the window size and dimension, as those parameters define the
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expected frequency of regular patterns. Here, the Root-Mean-Square

Error (RMSE) between model and actual data was chosen as a rough

estimation of the model quality. The RMSE, which is the square root of

the variance of the residuals, shows how close the model fits to the actual

data. It is in the same unit as the training data, the normalized entropy

with a range [0,1], which means an RMSE of [-1,1] can be expected.

Values close to zero indicate better fit, as zero means that there is no

variance between training data and model.

Figure 6.8: Prediction error for different lengths of training data.

Figure 6.8 shows boxplots for the RMSE, ranging from 30 entropy

values (5 days) to 420 values (70 days) as training data (avg. of 300

trials). The plot used the feature ’high amplitude’ on dimension ’date’
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with a window size of 48 power measurements (4 hours) and a dimension

size of six to compute the entropy. In this specific case, the RMSE is

minimized at 180 entropy values, which is about a month.

Table 6.1: RMSE for each feature and dimension.

H1 DM p-value
f1 < f2 7.7143 4.012e-13
f1 < f3 7.635 6.393e-13
f3 < f2 3.6171 0.0001934

Table 6.1 aims to compare which of the introduced features is in

general better to predict. For this purpose a Diebold-Mariano test,

which is using the forecast error to compare the accuracy of two forecasts

with a so called DM statistic, was set up. The DM statistic is used to

compute a hypothesis test with the null hypothesis that both forecasts

are of equal accuracy, and the alternative hypothesis that one method

has greater accuracy. A small p-value indicates strong evidence against

the null hypothesis, which means that the null hypothesis can be rejected

and the alternative hypothesis is true. A large p-value indicates weak

evidence against the null hypothesis, which means that no conclusion

can be drawn. Table 6.1 shows the resulting hypothesis test for the

number of high amplitude points (f1), the number of amplitude changes

(f2) and the number of similar amplitudes in a row (f3), with the same

parameters that were used in Figure 6.8.

The advantage of the entropy as a metric is especially the ability to
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keep information on outliers after aggregating several values, whereas

the aggregate value can be utilized to apply time series prediction. For

this reason, the next experiments first compare the introduced metric

with an alternative metric and evaluate the value of the time series

prediction. In the second part of this section, the complete anomaly

detection scheme is compared with other state of the art approaches.

The next question to be asked is whether the time series prediction

increases the detection rate in contrast to the same method without pre-

diction. Furthermore, the experiments assess the quality of the entropy

to aggregate data while preserving outlier. As an alternative to the en-

tropy, the maximum distance to the mean-value of a row is computed: in

contrast to the entropy, this value is large in case of big outliers and small

if all values are uniform distributed – this method is called Distance to

Maximum (D2M). Given is, for both methods (D2M and Entropy), a

time series consisting of individual values, which summarize several di-

mensions over a predefined time window. Each method is evaluated in

combination with Holt Winters (a) and without (b). The decision al-

gorithm for both methods differs slightly: for (a), a value is anomalous

if the metric exceeds a threshold. For (b), a value is anomalous if the

actual metric minus prediction exceeds a threshold.

The table shows the AUC of both methods with a so called bootstrap
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Table 6.2: AUC: type 1 falsified.

Dimension: Date
f1 f2 f3 f1 f2 f3

1 of 6
Ent+TS 0.953 0.951 0.938 Ent 0.76 0.684 0.661
D2M+TS 1 0.998 0.938 D2M 0.973 0.854 0.761
p-value 0.014 0.00607 0.99 p-value 4.1e-09 5.98e-10 0.000323

2 of 6
Ent+TS 0.942 0.981 0.907 Ent 0.767 0.771 0.624
D2M+TS 0.893 0.921 0.742 D2M 0.626 0.675 0.523
p-value 0.0547 0.0229 5.4e-06 p-value 2.8e-05 7.37e-08 0.333

3 of 6
Ent+TS 0.853 0.975 0.822 Ent 0.646 0.756 0.557
D2M+TS 0.621 0.853 0.518 D2M 0.657 0.587 0.672
p-value 1.31e-07 0.00308 3.6e-11 p-value 0.911 1.13e-12 0.251

Dimension: House
f1 f2 f3 f1 f2 f3

1 of 6
Ent+TS 0.456 0.87 0.591 Ent 0.68 0.83 0.507
D2M+TS 0.689 0.926 0.669 D2M 0.461 0.94 0.633
p-value 0.0173 0.00105 0.103 p-value 1.74e-08 0.000145 0.206

2 of 6
Ent+TS 0.561 0.956 0.609 Ent 0.729 0.897 0.707
D2M+TS 0.629 0.956 0.531 D2M 0.818 0.894 0.577
p-value 0.127 0.944 0.0876 p-value 0.00223 0.894 0.00163

3 of 6
Ent+TS 0.672 0.876 0.682 Ent 0.851 0.815 0.76
D2M+TS 0.758 0.829 0.589 D2M 0.927 0.731 0.644
p-value 0.0368 0.0679 0.0137 p-value 0.0029 0.00103 0.00129

test. Here, the AUC is repeatedly (N = 2000) computed with the orig-

inal inputs for the ROC curve re-sampled, which approximately follows

a normal distribution used to perform a hypothesis test. The null hy-

pothesis is that the true difference between both AUC is zero and the

alternative hypothesis is that method one performs better than method

two. A small p-value shows that the null hypothesis can be rejected.

Table 6.2, shows the result of this experiment for each feature, the num-

ber of high amplitude points (f1), the number of amplitude changes (f2)

and the number of similar amplitudes in a row (f3), with dimension size

6 and a window size of 48. Furthermore, the table shows the AUC for
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one, two or three corrupted samples (days). Note that, a majority of fal-

sified samples cannot be detected per definition. To train Holt Winters,

6 entropy values (1 day) were predicted from the last 60 entropy values

(2 month). Each experiment was repeated (over a time of 4 month) to

get 120 prediction values, which are used to construct the AUC of a

ROC Curve. In the results, it can be seen, that the time series predic-

tion significantly improves the results for both metrics, the entropy and

D2M. Although the entropy-inspired metric, in combination with time

series prediction, results in acceptable detection rates mostly over 90%,

which can compete with the other function, it only performs better with

several outliers in the distribution – which means that e.g. the current

day and day before show energy theft. A case with several outliers is

difficult to detect for the alternative function.

The lower part of the table shows the same results for dimension

’household’. Unfortunately, due to the different load pattern in the

dimension ’household’, two of three proposed features were not working

well enough for a practical usage. For features ’high amplitude’ and

’similar in a row’, it was not possible to optimize the parameter ε well

enough to get an approximately uniform or otherwise predictable pattern

for each household. However, the feature ’amplitude changes’ (f2), was

resilient to these different load patterns and performed very well (This
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is not surprising, because the previous experiments already pointed out

that the ˆcorr and RMSE perform best for feature ’amplitude changes’).

Table 6.3: AUC: type 2 falsified.

Dimension: Date
f1 f2 f3 f1 f2 f3

1 of 6
Ent+TS 0.912 0.792 0.819 Ent 0.73 0.508 0.497
D2M+TS 0.998 0.852 0.838 D2M 0.969 0.654 0.556
p-value 0.000932 0.0713 0.637 p-value 6.47e-10 2.04e-05 0.0272

2 of 6
Ent+TS 0.939 0.879 0.673 Ent 0.749 0.378 0.449
D2M+TS 0.936 0.846 0.584 D2M 0.645 0.404 0.601
p-value 0.857 0.386 0.0128 p-value 0.00204 0.139 0.14

3 of 6
Ent+TS 0.847 0.843 0.65 Ent 0.644 0.607 0.4
D2M+TS 0.686 0.797 0.545 D2M 0.629 0.501 0.677
p-value 8.4e-05 0.102 0.294 p-value 0.874 0.319 0.00517

Dimension: House
f1 f2 f3 f1 f2 f3

1 of 6
Ent+TS 0.456 0.87 0.591 Ent 0.68 0.83 0.507
D2M+TS 0.689 0.926 0.669 D2M 0.461 0.94 0.633
p-value 0.0173 0.00122 0.102 p-value 1.47e-08 7.89e-05 0.206

2 of 6
Ent+TS 0.561 0.956 0.609 Ent 0.729 0.897 0.707
D2M+TS 0.629 0.956 0.531 D2M 0.818 0.894 0.577
p-value 0.126 0.944 0.0701 p-value 0.00165 0.895 0.00127

3 of 6
Ent+TS 0.672 0.876 0.682 Ent 0.851 0.815 0.76
D2M+TS 0.758 0.829 0.589 D2M 0.927 0.731 0.644
p-value 0.0327 0.0755 0.0153 p-value 0.00274 0.000817 0.0016

The results for type 2 falsified data in Table 6.3 are similar. It was

expected that some features react better to tampering on the amplitude

and others on changed load patterns, but that was not the case. All

features react very well on changed load patterns (type 1) and worse if

the amplitude not affects load patterns (type 2). ’amplitude changes’

performed well, while both other features did not detect energy theft in

this case and can only work if the load patterns of the data sources are

very similar. The author believes that the performance may be further
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increased by clustering similar load curves (in order to reduce the com-

plexity of daily patterns) – which is not in the scope of this work. The

feature ’amplitude changes’ showed results without clustering house-

holds according to their similarity and performed well solely because

the pattern of each individual household was consistent enough. A gen-

eralization to other datasets is difficult, but the experiments showed

evidence that the concept works on the condition to find a feature with

consistent pattern on each data source.

The next section introduces a final comparison of the proposed scheme

with two other state of the art anomaly detection methods on energy

demand, namely a method inspired by AMIDS from McLaughlin, Hol-

bert, Zonouz, and Berthier (2012), which models the energy consump-

tion behaviour of a household using Naive Bayes, and a method based on

XMR charts from Spirić et al. (2015). Mclaughlin’s original article uti-

lizes NIALM profiles to associate each on/off amplitude in a households

energy load curve to a certain appliance. The three resulting vectors

with amplitudes, appliance names and on/off operations are used as

input for the supervised learning of the Naive Bayes algorithm, which

computes the probability for energy theft for each data point. In con-

trast to the previous method, AMIDS has a strict requirement for high

data resolution. If the amplitudes of individual devices are not visible,
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the detection rate is highly decreased. For the following experiment, it

was necessary to simplify Mclaughlin’s method, because the setup of a

suitable NIALM database is beyond the scope of this work. Mclaugh-

lin evaluated his method with an energy demand simulation, where the

mapping of appliances to predefined profiles is generally easier. The

experiment in this work used a simple clustering algorithm instead of

an elaborated, hand-labelled NIALM database. Hence, the method as-

sumes that the most frequent amplitudes (as arranged by the cluster

centres) correspond to the amplitudes of different devices. One of the

limitations of such a method is that appliances with similar amplitude

and appliances used together cannot be recognized as individual device.

The experiments indicate that the results are still consistent enough

for anomaly detection since they resulted in a detection rate similar to

Mclaughlin’s. However, it may be possible to further increase the de-

tection rate of this method by using a better NIALM algorithm and

higher resolution data. Spiric’s fraud detection is based on monitoring

the ’random component’ of the energy demand, which means that the

raw input data is decomposed into a seasonal component, trend compo-

nent and random component (e.g. by using a moving average time series

decomposition algorithm). In order to define the threshold for energy

theft, Spiric utilizes a so called XMR chart, which computes an upper
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and lower limit using the mean moving range. Note that, the threshold

of the XMR chart is not relevant for the results, because the AUC was

used as metric. The AUC computes the result for any possible thresh-

old, which means that the here computed results of Spiric’s method may

be slightly better than results with a fixed threshold.

Figure 6.9: Overview of anomaly detection methods.

Figure 6.9 shows an overview of these methods: the top plot shows

the raw input data with four hours of energy theft around 0:00 pm.

The next plot show the entropy-inspired method, which computes the
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entropy (black line) and the Holt Winters prediction of the expected

entropy (dashed line) as a lower threshold. Here, energy theft results in a

small entropy. The third plot shows Mclaughlin’s method, which is using

a time series of amplitudes as input data and assigns a probability for

energy theft, which is the output of Naive Bayes, to each measurement.

Here, energy theft results in a high probability. The bottom plot shows

the XMR chart with the random component of time series decomposition

as input, which detects energy theft with a lower threshold (dashed line).

Here, energy theft results in a small or negative number relative to the

mean of the random component.

In order to compare these different methods, it was necessary to ac-

cept some limitations. E.g. it may be possible that, especially the Naive

Bayes method, can be improved with higher resolution data, because the

edges of on/off operations are more visible. Furthermore, it may be pos-

sible to optimize the lengths of input data, e.g. the amount of training

data or length of the expected seasonality for the decomposition algo-

rithm. For the Naive Bayes the experiments used the previous day as

training data, because using more training data worsened the results.

For the decomposition, the default setting of one day seasonality was

used.

Since the entropy-inspired method has a low resolution output data,
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it was necessary to aggregate the output of both other methods to the

same resolution in order to compute a consistent AUC. Both methods

utilize only a single source of input data, and hence it is not possible to

check the results of multiple compromised sources, which is one of the

strong points of the entropy-inspired algorithm. Since the previous ex-

periments already contains a detailed evaluation of the entropy-inspired

method (see Table 6.2), this experiment was only conducted for the

feature ’amplitude changes’.

Figure 6.10: Detection rate depending on the amount of energy theft.

Figure 6.10 shows the results for different amounts of energy theft.
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Each algorithm aimed to detect one day of energy theft on ECO data

household 1 in August. The plot shows the mean of 15 experiments.

The output of Naive Bayes still has a lot of variance because the result

depends on the random cluster centres used to determine the appliances.

The x-axis shows the AUC and the y-axis shows the amount of power

subtracted from the original energy demand. It can be seen that Spiric’s

method is especially good at detecting smaller amounts of energy theft.
Table 6.4: AUC: XMR charts, naive Bayes and entropy.

AUC AUC AUC
EntTS 0.965 EntTS 0.965 Naive 0.962
Naive 0.962 XMR 0.972 XMR 0.972
p-value 0.859 p-value 0.712 p-value 0.475

Table 6.4 shows again the bootstrap test with the alternative hypoth-

esis that the accuracy of both methods is different. However, for the

type 1 energy theft, it is not possible to clearly reject the null hypoth-

esis that all methods perform equally good, as all methods have a high

accuracy. As the introduced method is generally intended to use addi-

tional data sources, which are not considered in the other two methods,

these three methods should be used together to complement each other.

6.4 Discussion

This chapter showcased anomaly detection in different dimensions, which

can unveil, otherwise hidden, anomalous data if the majority of data in
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a single source is compromised. The focus was an aggregation method,

which preserves outliers, to remove repeating patterns. The experimen-

tal evaluation analysed parameters of the entropy, such as the optimal

window size to minimize the sd of normal data. Furthermore, the chap-

ter evaluated the influence of the number of data sources, so that, after

the aggregation, energy theft still produces outliers which are greater

than the sd of normal data. The chapter demonstrated how to find the

optimal length of training data to maximize the predictability of the

metric and remove the repeating pattern from the aggregated data. A

limitation specific to this anomaly detection method is the low output

resolution, which was required to reduce the sd of the feature. Colloqui-

ally speaking, it means that the majority of the electricity in this time

window must be manipulated for a detection. To investigate RQ5, the

introduced approach with multiple dimensions was compared to tradi-

tional approaches. While other approaches can reach similar detection

rates, the author argues that both approaches together can find other-

wise undetected outliers, and hence multiple dimensions can improve the

detection rate. For the two scenarios of energy theft, the experiments

resulted in detection rates above 90%, whereas the number of amplitude

changes ≥ ε performed especially well. The method was able to detect

tampered data even by utilizing different households, which were not
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clustered according to their similarity, as data source. Removing daily

patterns with Holt Winters significantly improved the detection rate

from about 75% to above 90%. Apart from the entropy-inspired met-

ric, other aggregate methods may work as well, but the entropy-inspired

metric is especially robust in presence of multiple outliers. The detection

rate of the alternative aggregation method (D2M) decreased up to 10%

for each additional compromised data source, while the detection rate

of the entropy-inspired metric did not significantly drop with up to half

of all data sources compromised. Sophisticated and stealthy tampering

methods, were not analysed in this context, as the detection of data

mimicking attacks is a well-known challenge and inherent limitation of

anomaly detection and beyond the scope of this work.
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Chapter 7

Analysis of Stealthy Energy Theft

This chapter aims to point out the constraints and limitations of anomaly

detection with regard to sophisticated and stealthy energy theft methods.

The following experiments are inspired by ’Bouché, J., Hock, D., &

Kappes, M. (2016). On the performance of anomaly detection systems

uncovering traffic mimicking covert channels. In Proceedings of the 11th

international network conference (inc) (pp. 19-24).’, whereas Johannes

Bouché conducted experiments concerning the manipulation of network

traffic for SnortAD and the author of this thesis focused on the statistical

analysis and implementation of forecast models. As the original article

focused on network traffic, the following sections motivate the relevance

and application on energy theft and points out differences particular to

energy demand. This chapter investigates RQ6: ’Is it possible to detect

stealthy manipulation attempts?’.
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7.1 Introduction

The security of digital electricity meters confronts us with several new

and challenging problems. Analysing meter data across the entire cus-

tomer base, to find outstanding events and discover inadvertent or delib-

erate risks, is a sophisticated data mining challenge. With digital access

to measurements and metering information, the adversary can arbitrar-

ily change data, which offers potential for sophisticated and stealthy

manipulation scenarios.

Anomaly detection methods aim to tackle these new challenges by

modelling load curves to find deviations from the normal behaviour.

However, many inherent limitations of anomaly detection, which are

well-known in established areas such as network traffic monitoring and

network intrusion detection, are still neglected. Many methods, such as

sophisticated stealthy manipulations, introduced by Casenove (2015), or

tampering with the learning algorithm and compromising the detection

system itself, as introduced by Corona et al. (2013), have been proposed

to the same extent in these areas. Many of these constraints can be

conveyed to load curves, and therefore showcase concept and condition

for stealthy load curve manipulations. In particular, this chapter shows

that, with sufficient knowledge of underlying detection techniques, it is
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possible to compute an error margin and tamper with load curve data in

a targeted manner to bypass an anomaly detection systems by mimicking

legitimate behaviour.

In the following, it is assumed that an adversary has gained access

to a corrupt smart meter, including unrestricted access to measurement

data. The following experiments show that stealthy manipulations can

perform well enough to perform billing fraud, particularly if the metrics

used by the anomaly detection system are known. This chapter demon-

strates a proof-of-concept, with two previously introduced anomaly de-

tection algorithms, namely an algorithm based on Holt Winters forecast

and a method based on Naive Bayes.

Many recent articles, such as McLaughlin et al. (2013), Mashima

and Cárdenas (2012) and Jokar, Arianpoo, and Leung (2015) propose

anomaly detection systems to detect electricity theft. Some authors,

such as Ashrafuzzaman et al. (2018), Bhattacharjee and Das (2018) and

Y. Liu, Liu, Sun, Zhang, and Liu (2020) mentioned stealthy manipu-

lation methods in the different context of false data injection. But to

the best of the authors knowledge, a performance evaluation of stealthy

manipulation, mimicking normal energy demand, has not been inves-

tigated before. Concepts similar to the proposed scenario have been

presented by Wendzel and Keller (2014) conducting data manipulation
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for covert channels or D. Wagner and Dean (2001) mimicking legitimate

behaviour in context of network traffic. Urbina et al. (2016) generalized

the concept of stealthy attacks and showed that mimicking attacks can

be applied to industrial systems.

The remainder is organized as follows. First, the anomaly detec-

tion methods, with detection rates above 90% for traditional tamper-

ing methods, are introduced. Then, the limitation of these methods

are analysed on load curves with artificially falsified data. The experi-

ments compute manipulated load profiles below the error margins and

demonstrate that, the error margin can be minimized by using multiple

anomaly detection systems which indeed limits the amount of unde-

tected stolen energy.

7.2 Mimicking Holt Winters and Naive Bayes

In the following, the mechanics of the used anomaly detection model is

addressed to derive the concept of stealthy manipulation. For the ex-

perimental setup, the ECO dataset is utilized. The concept of a stealthy

attack can in general be applied to any anomaly detection method or

metric, here two methods based on the previously introduced anomaly

detection concepts are utilized. Both methods are simplified in order

to focus on the aspect of stealthy manipulation. However, the results
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demonstrate that the corresponding method can indeed detect the tam-

pering methods, before the stealthy method is applied, with an accuracy

of above 90%.

Holt Winters

Time series approaches, e.g. used by Hock, Kappes, and Ghita (2020) or

Spirić et al. (2015) are common to detect anomalies. Here, a well-known

anomaly detection system developed by Szmit, Szmit, Adamus, and

Bugała (2012) is adapted for network traffic monitoring. The method

is exceptionally simple and allows this work to focus on the stealthy

manipulation. The original method, called SnortAD, repeatedly counts

the number of network packets over a fixed period of time and, with a

sufficient amount of training data, aims to predict the future amount of

packets. The prediction model results in a so called confidence band,

which is a lower and upper threshold of packet numbers and defines the

error margin of the model. The confidence band defines a range in which

the algorithm is confident that packet numbers are normal. In order to

adapt this method to energy demand, the author excluded linear pre-

diction methods such as moving average and auto regression, because

energy demand has in contrast to network traffic many legitimate peri-

ods without loads, which increase the importance of a seasonal compo-
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nent in the prediction method. For simplicity, only the lower threshold,

which corresponds to energy theft, is considered.

Figure 7.1: Overview of the anomaly detection process.

Figure 7.1 visualizes all three steps of the process, using the Hold

Winters model on several weeks of energy demand captured in the ECO

data set. The first plot shows the last days of learning data for the Holt

Winters Algorithm in black and after the vertical dotted line a com-

parison of the prediction (dotted) and actual (grey) data. The second

plot shows this comparison on a larger scale. Here, it is clearly visible
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that a time window (10:00 - 12:00) of the data is manipulated. In the

last plot, the prediction is subtracted from the actual data to find data

which is unusual low. The grey triangles show the detected manipula-

tion while the black dots visualize legitimate measurements which are

wrongly selected.

Remark 7.2.1. Formally, consider a finite time series T = x1, x2 ... xn, xi ∈

R+
0 forall 1 ≤ i ≤ n, with n elements – representing energy demand

and the training data for the forecast algorithm. T is input of the Holt

Winters function hw, which computes a level, trend and seasonality,

whereas T̂ denotes the forecast with m elements. In order to prevent

the model from resulting in negative values, the logarithm is applied be-

fore the prediction, resulting in T̂ = ehw(ln(T )). The decision function

f : R+
0 7→ B labels a measurement as an anomaly, on the condition that

the distance of prediction and actual values fall below threshold ε:

f(i) =


1, if Ti − T̂i < ε

0, otherwise

In order to demonstrate the accuracy of energy theft detection using

the load curve prediction of the next day, two metrics are evaluated:

the RMSE and AUC in dependence on the length of training data and

data resolution. The RMSE, in the top plots of Figure 7.2, shows the

difference between model and actual data, whereas the variance of the
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Figure 7.2: Effect of the data resolution.

residuals is the same unit as the training data (W). Here, the actual

data was not manipulated, and hence the RMSE quantifies the predic-

tion error of the confidence band and whether values below the band

can reliably be detected as outliers. The AUC of a ROC curve, in the

bottom plot of Figure 7.2, shows the detection accuracy depending on

the data resolution. Here, eight hours of a day are falsified to simulate

the disconnection of the electricity meter.

Fine-grained measurements influence the detection accuracy nega-
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tively, which is reasonable, because a lower resolution automatically

filters high peaks in the energy demand. These peaks cannot be cap-

tured by the seasonal component of the Holt Winters prediction, and

hence increase the size of the confidence band. However, the smaller

prediction error comes with the trade-off that the method can only see

manipulation attempts which last this long.

Figure 7.3: Detection rate in contrast to diverted energy (W).

Figure 7.3 shows the AUC (y-axis) for different amounts of energy

theft (W) as shown on the x-axis. The experiments used a training

length of four weeks and a resolution of one measurement every four

hours according to the previous results. The results indicate that, the

detection rate is only sufficient with manipulations stronger then the
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RMSE (dotted line).

Figure 7.4: Holt Winters prediction with confidence band.

Figure 7.4 visualizes the Holt Winters model with confidence band

(Gray area) derived from the RMSE, whereas the lower bound of the

confidence band is the minimal energy consumption which is not anoma-

lous. By utilizing this error margin, an adversary attempting to hide

electricity theft can follow the expected load closely, while maximizing

the power reduction at each time to the point that it does not appear

anomalous. Formally, it satisfies the condition Ti − T̂i ≥ ε in the opti-

mal case. Following the above reasoning, the RMSE can be utilized to

forge a stealthy energy theft attempt, because the RMSE is the minimal

confidence band and any smaller manipulation is difficult to detect.
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Naive Bayes

As a second anomaly detection method this chapter uses a method in-

spired by AMIDS, which models the energy consumption behaviour of

a household using Naive Bayes (see Chapter 6.3).

Figure 7.5: Approximation of the device amplitudes.

As in the previous chapter, McLaughin’s method was simplified by us-

ing k-means clustering instead of using a NIALM algorithm with elab-

orated and hand-labelled database. Figure 7.5 shows the input data

for this process, which is using k-means clustering to capture the most

frequent amplitudes. The y-axis shows the difference between the two
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(a) Detection rate in contrast to diverted energy (W). (b) Range of the cluster centres.

Figure 7.6: Anomaly detection with naive Bayes method.

measurements in power over time (x-axis). The horizontal dotted lines

visualize the cluster centres which are the approximated devices. Note

that, the absolute values of the amplitudes are used, as negative power

values correspond to switching of a device off.

Figure 7.6a shows that the detection rate for traditional tampering is,

even with this simplification, over 90%. To avoid the additional variance

introduced by the random starting point of the k-means clustering, the

experiments always show the avg. AUC of ten experiments, which is

significant to the third decimal place. In comparison with the previous

Holt Winters method, it is noticeable that the detection rate does not

necessarily increase with the manipulation strength, even small changes

of 10 Watt are still detected with detection rates over 75%, as several

cluster centres are located in this region.
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Figure 7.6b explains the better detection rate for smaller manipu-

lations. The cluster centres are not uniformly distributed over the

min/max range of the power, instead there are several centres in the

lower ranges. If the energy demand is manipulated, so that the amount

of measurements in a cluster or the sequence of assigned clusters, and

hence the input for the Naive Bayes algorithm, is changed then, intu-

itively, the output of the algorithm changes. However, it can be seen

that some cluster centres with higher amplitude cover a greater range of

power. By changing each amplitude to the minimal value of the cluster,

an adversary can manipulate the energy demand without changing the

probability of a transition between devices.

7.3 Experimental Evaluation

This section compares different manipulation methods to evaluate the

possible extend of stealthy energy theft and the performance of an in-

telligent method in comparison to simple methods. The experiments

analyse the ratio of anomalous values to energy theft and try to predict

the optimal energy theft according to the previously introduced concept.

In the experiment the adversary knows method and data, but not the

exact parameters such as the length of training data or cluster centres.

Subsequently, four methods to bypass both anomaly detection, start-
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ing with the Holt Winters anomaly detection, are compared. Figure 7.7

visualizes these methods, whereas each plot shows a grey shaded area

with the actual energy demand (upper) and confidence band of detec-

tion (lower). The lower threshold of the grey area is the prediction of

the Holt Winters Algorithm of the next seven days (42 Measurements).

The black line visualizes the energy theft of each method, whereas mea-

surements below the grey area are detected by the anomaly detection

system.

Figure 7.7: Four different manipulation methods.
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• Subtract: Subtracts a constant in range [0, max(Power)] from every

measurement and set negative values to zero.

• Cut: Sets any measurement above a constant in range [0, max(Power)]

to the value of this constant.

• Multiply: Multiplies a constant in range [0,1] with every measure-

ment.

• Predict: Replaces the load curve with the prediction.

In case of ’Predict’, the Holt Winters algorithm is used with 45 instead

of 48 training values, to simulate that the adversary does not know the

exact parameters of anomaly detection system. Furthermore, a constant

in range [0, max(Power)] is subtracted from the prediction.

Figure 7.8 shows the number of anomalous measurements created by

each manipulation method (avg. 100 experiments). The y-axis shows

the amount of measurements below the threshold and the x-axis shows

the energy theft in percent. Hence, 100% on the y-axis means that every

single measurements of the load curve is anomalous. The method ’cut’,

where energy peaks above a certain power are cut off, works well because

the anomaly detection method only considered a lower threshold. Some

damage could be avoided by adding an upper threshold for a minimum

energy demand. However, in practise such a threshold may increase the
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Figure 7.8: Energy theft vs measurements lower than confidence band.

number of false positives. It is not surprising that the adversary can

gain the most benefit by predicting the energy demand and mimicking

the statistics of the anomaly detection system.

Next, these four methods are compared for the Naive Bayes anomaly

detection. However, to simplify the experiment and comparison to the

previous anomaly detection, it is assumed that a manipulated measure-

ment is anomalous if assigned to a different cluster centre. Hence, the

adversary aims to decrease the power without changing the input values

of Naive Bayes algorithm.
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Figure 7.9: Energy theft vs amount of changed clusters.

For the method ’predict’, the adversary applies the k-means algorithm

on the previous day to find the cluster centres. Each measurement can

be set to the minimum value of the cluster, or if all measurements are

already at the minimum the highest power value was set to zero. Figure

7.9 shows the output of each method, again the y-axis shows the amount

of measurements below the threshold and the x-axis shows the energy

theft in percent. Here, the values on the y-axis only reached approxi-

mately 75%, because the measurements which already belonged to the

cluster with smallest power value were not changed by the adversary.
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Figure 7.10: Energy theft vs amount of changed clusters.

The method seems much more resilient against manipulation than

the previous method, because in contrast to the Holt Winters prediction

smaller changes are detected. Note that, these results do not necessarily

mean that the anomaly detection is better in general as this sensitiv-

ity also makes it more difficult to fine-tune the system to the actual

behaviour of a household – a comparison of the anomaly detection sys-

tems can be found in the previous chapter. Here, the performance of the

’predict’ method is not clearly better than the other methods. Figure

7.10 shows that the performance depends upon the number of clusters
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(or number of appliances in case of a different NIALM method). The

figure shows manipulated measurements that can be detected (y-axis)

vs amount of energy theft (x-axis) with different amounts of clusters for

the method ’predict’ (line type). The result is reasonable, because the

more clusters there are, the smaller the difference to the next cluster,

which can be subtracted in the proposed stealthy theft method.

7.4 Discussion

To investigate RQ6, this chapter showcased stealthy energy theft, by

means of mimicking the characteristics expected by the anomaly detec-

tion system, with two different anomaly detection approaches. It can

be concluded, that stealthy energy theft is under certain conditions not

detectable, e.g. if the detection algorithm is known and the adversary

can arbitrarily manipulate the electricity. However, it is possible to

limit the amount of undetectable energy theft. Here, the threshold of

undetectable theft was called the error margin of the anomaly detection

system, which was in case of the Holt Winters method the prediction

error estimated by the RMSE and in case of the Naive Bayes method

the range of each cluster.
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Chapter 8

Conclusion

The objective of this thesis was to design and evaluate an anomaly

detection system suitable for the smart grid. This work concluded that

anomaly detection can help to detect the manipulation of energy de-

mand or the concrete scenario of energy theft early on, which is one

of the current research topics related to the security of the smart grid.

The following presents the conclusions and points out contributions and

research questions as well as some suggestions and directions for future

work.

8.1 Achievements

This work analysed available data and focused on the characteristics of

power load curves, which was used to introduce several metrics to extract

the human activity and compared methods to monitor the metrics. In
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order to fully utilize the entropy inspired metric, an anomaly detection

method based on Holt Winters prediction was introduced and evaluated

in comparison to other state of the art methods based on Naive Bayes

and XMR. One of the major contributions is the comprehensive analy-

sis of the different ’dimensions’ that can be used to model the normal

behaviour. It was found that, with feasible metrics, it is possible to

compare the consumption of similar smart meters to detect anomalies.

Last but not least, the thesis showcased stealthy energy theft as one of

the limitations of anomaly detection and pointed out how to mitigate

such scenarios.

The early chapters showcased that any action that jeopardizes the

confidentiality, integrity or availability of the smart grid are threats.

While many threat scenarios are not different from the security of other

IoT devices, this work briefly introduced the architecture with interfaces

to different networks as well as the possibility to manipulate measure-

ments, which is unique to smart meters and the smart grid. The thesis

provided a brief threat taxonomy and motivated that encryption and

physical security are not sufficient to ensure safety and security of smart

meters. Energy theft was introduced as one of the threats in the smart

grid and classified in intrusive and non-intrusive tampering methods.

The next chapter provided an extensive analysis of energy demand,
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including measurements, available datasets, simulations and appliance

load curves with a comprehensive literature review. Two characteristics

were analysed in detail, namely the human activity, which defines the

on/off time of appliances, and individual appliance load curves, which

define the power when all active appliances are summarized. Both char-

acteristics together are often used to simulate energy demand and can

also be extracted from an aggregated load curve. The usage of the hu-

man activity was confirmed by evaluating characteristic time periods of

load curves using the entropy as a metric. The reasoning here was, that

characteristic energy demand shapes are often gathered in few periods

per day and repeat daily according to the consumers habits. The results

of the experiments showed that periods without consumption can often

be identified during the same time spans over several days and hence

indicate characteristic human activity.

Next, the feasibility of an entropy inspired metric to extract human

activity was evaluated. The thesis introduced two methods which reflect

changes in energy demand, namely the sliding window entropy and the

interval entropy. The experiments utilizing the ECO dataset presented

an analysis of the corresponding parameters and highlighted the accu-

racy of this approach in comparison to other statistical methods. As a

non-intrusive approach without a-priori data, the method archived re-
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sults which are overall better than comparable methods with a moderate

number of input values, which is suitable for real world applications.

Based on the previous metrics, the thesis continued with a descrip-

tion of the challenges and prerequisites of comparing multiple house-

holds and proposed some characteristics that are especially suitable to

compare multiple households. The chapter demonstrated three exem-

plary features, derived from raw energy demand, which are normalized

to a fixed range over a time window, so that different load curves can

be compared. The experiments examined the statistical influence of pa-

rameters, presented a systematic approach to fine-tune and adjust them,

and evaluated the quality of each features to detect energy theft.

The next part showed that multiple data sources can indeed unveil

otherwise hidden outliers. For the two scenarios of energy theft, the

results showed detection rates above 90%. The chapter showcased the

advantage of using several data sources and designed a method to re-

move the daily pattern from multiple sources while preserving outliers

which represent energy theft. The experiments compared the proposed

metric with an alternative distance-based metric and showed that the

entropy-inspired metric is especially robust in presence of multiple out-

liers. Furthermore, the experiments evaluated the performance of the

entropy-inspired method against two other state of the art anomaly de-
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tection methods.

Last but not least, the thesis showcased stealthy energy theft meth-

ods, which can mimic the expected characteristics of energy demand

to avoid detection. To point out the constraints and inherent limita-

tions of anomaly detection with regard to sophisticated and stealthy

energy theft methods, the chapter described the conditions, such as the

digital access to corrupt smart meters and knowledge of the anomaly

detection method, to execute such scenarios. The thesis introduced a

concept to mimic the expected behaviour for two exemplary anomaly

detection models and compared the maximum amount of stolen energy

under different conditions.

8.2 Future Work

There are many interesting topics, related to security and anomaly de-

tection in smart grids, aside from the questions answered in this study.

Unfortunately, the access to real world data is often difficult due to pri-

vacy reasons. It would be interesting to see public data sets with the

corresponding weather data or socio-economic data and also data sets

which include energy production as today’s energy production shifts

more and more towards the low-voltage network. In general, data which

is not available from end consumer smart meters falls outside this study,
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but the author is well aware that data from power plants, transmission

stations and distribution stations can extend and improve anomaly de-

tection. While it would be interesting to examine, the usage of external

data such as weather data or socio-economic data to improve the predic-

tion quality was not discussed in detail. As future prospects, the author

supposes to evaluate the usage of additional measurements, which are

correlated to the power. Throughout the work, a focus was on the

design of metrics, derived from raw data. However, automatic param-

eter tuning to optimize the detection with a certain set of households

was neglected and could further improve the detection rate. Further-

more, clustering load curves together could further improve the results

of anomaly detection. Anomalies in the network communication be-

tween smart meters were excluded from this study. But the homogenous

network traffic in the smart grid can provide opportunities for a better

detection quality in comparison to the regular internet with innumer-

able applications and protocols. A limitation specific to the anomaly

detection method presented in this work is the low output resolution,

because the method needs to summarise several measurements within a

time window to compute the metric. Lowering this requirement would

be an interesting future work. While this work introduced the con-

cept to reduce energy theft with sophisticated and stealthy tampering
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methods, it did not focus on methods to harden the anomaly detection

system against such methods or attempts to compromise the anomaly

detection itself, which are well-known from other areas. An in-depth

analysis of possible architectures and deployment scenarios of anomaly

detection sensors would extend this work very well. Multi-sensor setups

or peer-to-peer structures could contribute to anomaly detection in the

smart grid. This work also excludes byzantine attacks and any scenar-

ios which only work by gaining control of several compromised smart

meters. However, anomaly detection systems similar to the methods

introduced in this work can also be adapted to these scenarios.
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Terms and Abbreviations

AMPd2 Almanac of Minutly Power. 59

ANN Artificial Neural Network. 37–39, 102, 103

ARIMA Autoregressive Integrated Moving Average. 36, 37

AUC Area Under the Curve. 52, 53, 95–97, 136, 140–142, 146, 147,

149, 158–160, 163

CDA Conditional Demand Analysis. 36, 37, 102, 103

D2M Distance to Maximum. 140, 142, 151

DSM Demand Side Management. 16, 17, 36

ECO Electricity Consumption & Occupancy. 57, 59–63, 81, 84, 93, 98,

109, 110, 126, 148, 155, 157

FN False Negative. 50, 122

FP False Positive. 49, 50, 122
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GA Genetic Algorithm. 37, 38

HAN Home Area Network. 31, 41

HMM Hidden Markov Model. 102, 104

iAWE Indian Dataset for Ambient Water and Energy. 59, 60

IHEPC Individual Household Electric Power Consumption. 59

KNN K-Nearest Neighbours. 104

LDA Linear Discriminant Analysis. 104

LMN Local Metrological Network. 31

NIALM Non-Intrusive Appliance Load Monitoring. 15, 17, 32, 47, 57,

60, 101, 102, 144, 145, 162

NIST National Institute of Standards and Technology. 29, 40

PCA Principal Component Analysis. 35, 104

REDD Reference Energy Disaggregation Data. 60

RMSE Root-Mean-Square Error. 137–139, 143, 158, 159, 161

ROC Receiver Operating Characteristic. 51, 53, 95, 136, 141, 142, 159

sd Standard Deviation. 74, 119, 122, 133, 134, 137, 150
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SMGW Smart Meter Gateway. 30, 31, 40, 41

SVM Support Vector Machine. 36–38, 102, 104

TLC Typical Load Classification. 15, 33, 57, 101, 105

TN True Negative. 50, 122

TP True Positive. 50, 122

WAN Wide Area Network. 31
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