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Abstract	  

	  

Cancer-‐associated	   fibroblasts	   (CAF)	   are	   stromal	   cells	   that	   have	   been	   shown	   to	  

regulate	   invasion	   and	   metastasis	   in	   various	   cancers	   including	   breast	   cancer.	  

However,	  the	  molecular	  mechanism	  in	  breast	  cancer	  is	  not	  known.	  This	  project	  aims	  

to	  analyze	   the	   role	  of	   tumor	   suppressor	  SLIT2	   in	   regulating	  CAF	  differentiation	   in	  

breast	  cancer.	   	  The	   level	  of	  SLIT2	  mRNA	  was	  analyzed	   in	  human	  normal	  epithelial	  

and	   breast	   adenocarcinoma	   cells	   by	   RT-‐PCR.	   SLIT2	   protein	  expression	   in	   normal	  

breast	  epithelial	  cells	  versus	  fibroblasts	  was	  compared	  by	  Western	  Blot	  technique.	  

Results	  showed	  that	  SLIT2	  mRNA	  is	  downregulated	  in	  breast	  adenocarcinoma	  cells	  

compared	   to	   normal	   breast	   epithelial	   cells.	   Similarly,	   SLIT2	   is	   overexpressed	   in	  

normal	   fibroblasts	  versus	  normal	   epithelial	   cells.	   In	   addition,	   fibroblast	   cells	  were	  

treated	   with	   conditioned	   media	   obtained	   from	   breast	   adenocarcinoma	   cells	   to	  

induce	   myofibroblasts	   differentiation.	   SLIT2	   and	   α-‐SMA	   (myofibroblasts	   marker)	  

mRNA	   expression	   in	   myofibroblasts	   and	   fibroblasts	   was	   analyzed	   by	   RT-‐PCR.	  

Results	  showed	  that	  the	  breast	  adenocarcinoma	  cell	  conditioned	  media	  enhanced	  α-‐

SMA	   and	   downregulated	   SLIT2	   in	   myofibroblasts.	   SLIT2	   expression	   in	   patient	  

samples	  was	  extracted	  from	  publicly	  available	  datasets	  (Oncomine	  and	  CBioportal).	  	  

SLIT2	   is	   significantly	   downregulated	   among	   invasive	   cancers.	   SLIT2	   alterations	  

were	   also	   investigated	   and	   compared	   to	   survival	   outcomes.	  Alteration(s)	   in	  SLIT2	  	  	  

gene	   and	   transcription	   correlates	   to	   lower	   survival	   compared	   to	   breast	   cancer	  

patients	  without	  SLIT2	  alterations.	  This	  study	  suggests	  use	  of	  CAF-‐secreted	  factors	  
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as	   a	   tool	   to	   develop	   novel	   strategy	   for	   targeting	   breast	   cancer	   cells.	   Complete	  

understanding	   of	   the	   cell	   signaling	   mechanism	   between	   breast	   adenocarcinoma	  

cells	   and	   cancer-‐associated	   fibroblasts	   could	   be	   utilized	   to	   develop	   therapeutic	  

agents	  against	  breast	  cancer.	  
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Introduction	  

	  

Despite being one of the most studied cancers, breast cancer remains a major 

cause of cancer related deaths and more than 232,000 new cases has been estimated to be 

reported in 2014 (2). Breast tumor is a complex structure. Tumor cells interact with 

various cells, growth factors, and extracellular matrix present in microenvironment. All 

these components together make tumor microenvironment (TME). Figure 1 shows how 

different stromal cells (endothelial cells and fibroblasts) and immune cells (T-cells, 

neutrophils, dendritic cell, tumor-associated macrophages, and myeloid-derived 

suppressor) cell release cytokines and growth factors to promote or inhibit tumor 

progression. 

Figure 1. Diagram of cytokines released by T-cells, neutrophils, dendritic cell (DC), 
cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), 
endothelial cell (EC), and myeloid-derived suppressor cell (MDSC) that regulate 
tumor progression and metastasis 
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Cancer-Associated Fibroblasts (CAFs) 

 

One of the key cell types present in TME is cancer-associated fibroblast (CAF). 

Cancer-associated fibroblast can be derived from tumor cells and different stromal cells 

(5).  Its key role in different tumours is long recognized. Figure 2 from Cirri and 

Chiarugi’s review on cancer-associated fibroblasts illustrates how various types of cells 

can be activated into cancer-associated fibroblasts through MMT (mesenchymal-

mesenchymal transition) and EMT (epithelial-mesenchymal transition. Cirri and Chiarugi 

also summarized the different factors involved in feedback signaling of CAFs and 

carcinoma cells (5, Fig.3). 

 

Figure 2. Diagram of different cell types that can differentiate into cancer-associated 
fibroblasts (CAFs) 
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More recently, CAFs have been shown to secrete CXCL12, also known as SDF-1 

or stromal cell-derived factor 1 to help induce the recruitment of progenitor endothelial 

cells to tumor cells to initiate angiogenesis (16). When bound to its receptor CXCR4, 

CXCL12 activates a cascade of events resulting to increased tumorigenesis (16). In 

addition to tumorigenesis, CAFs have also been shown to induce epithelial to 

mesenchymal transition in breast cancer cells (18).  

 

SLIT2 in Cancer 

Contrary to cancer-associated fibroblasts, many studies have demonstrated the 

inhibitory effect of normal fibroblasts to tumor cells. One of the most well studied factors 

Figure 3. Feedback signaling between fibroblasts and carcinoma cells 
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secreted by normal fibroblasts is 

SLIT2. SLIT2 was initially 

characterized as an axon guidance cue 

in Drosophila (18). SLIT2 guides 

cellular migration by interacting with 

roundabout homolog receptors. 

SLIT2 binds to the Ig domain of 

ROBO1 through the second domain 

of the four leucine-rich tandem 

repeats of SLIT2 (8, Fig.4). 

SLIT2, along with SLIT1 

seem to be critical in inhibiting axons 

inappropriately crossing over the 

midline in the forebrain (20). In 

addition to repelling axons during neural development, SLIT2 revealed to possess another 

activity when it inhibited chemotaxis of leukocytes in Xenopus (7). Dallol and collegues 

determined SLIT2 inactivation by promoter hypermethylation and its receptor ROBO1 

receptor in lung and breast cancer (7). Conversely, overexpression of SLIT2 inhibited 

colony growth of several breast cancer cell lines (7). Aside from cell lines and mouse 

models, analysis of tissue and serum samples from breast cancer patients also indicated 

significant hypermethylation of SLIT2 promoter (12).  

SLIT2 downregulation has also been implicated in other cancers such as head and 

neck squamous cell carcinoma, esophageal, prostate, and pancreatic cancers (9, 22, 11, 

Figure 4. Illustration of SLIT and ROBO 
structures 
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and 24). Nevertheless, it should be noted that SLIT2 can also positively regulate cancer 

cells by promoting tumor growth in cancers such as intestinal cancers (25). Also, aside 

from hypermethylation, SLIT2 can undergo other types of alteration like mutation, 

deletion, amplification, and combination of these alterations depending on the cancer 

(3,10). Figure 5 depicts how the SLIT2 gene is altered in various patient genomic data 

sets (3,10). SLIT2 is predominantly mutated in many cancers, which include breast 

cancer. After mapping the alterations in SLIT2, mutations were noticeably dispersed 

among the exons and introns of the gene (3,10). Only one site, 715th amino acid, 

accumulated a missense mutation in more than 3 patient data sets (3,10). Figure 6 shows 

the precise location of mutations acquired by SLIT2 in breast cancer.  
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SLIT2 Transcription and Signaling  

Besides hypermethylation of the promoter, SLIT2 has been shown to be a direct 

target of EZH2 in prostate cancer cells (24). EZH2 silences the SLIT2 expression in 

cancer cells by catalyzing the methylation of lysine 27 of histone H3 (3mH3K27), 

making it inaccessible for transcription (24). In a separate study, EZH2 was shown to be 

directly activated by the transcription factor Sox4 in TGF-β-induced EMT in normal and 

breast cancer cells (23). TGF-β is known to enhance tumor progression and is present 

abundantly in tumor microenvironment (1,6). TGF-β has also been shown to activate and 

maintain myofibroblasts in breast cancer (14).  

Another mechanism involved in myofibroblasts differentiation is mediated 

through β-catenin. Studies suggest that fibroblasts are activated into myofibroblasts, 

which has less Slit2 and higher β-catenin levels (13,14,20). Slit2 downregulates tumor 

growth by reducing the oncogenic β-catenin protein level in tumor cells by blocking the 

PI3K/Akt/ β-catenin pathway (4). It is possible that SLIT2 might also suppress β-catenin 

levels in myofibroblasts and inhibit their activation. Though the regulation of Slit2 has 

been studied in breast cancer cells, the regulation of SLIT2 in fibroblast is unknown. 

Based on these observations, perhaps TGF-β from cancer cells suppresses Slit2 via 

enhancing EZH2 expression. Also, Slit2 and β-catenin levels inversely correlate to each 

other and extracellular Slit2 may downregulate β-catenin in myofibroblasts and revert 

them to normal fibroblasts.	   

In addition to tumorigenesis, SLIT2 was also implicated in migration of colorectal 

cancer cells (15). SLIT2/ROBO1 interaction causes inactivation of SNAI1, a repressor of 

E-Cadherin through targeting β-catenin and SNAI1 for degradation (15). SLIT2/ROBO1 
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signaling also stabilizes β-catenin and E-cadherin interaction, leading to more stabilized 

cell adhesion (15). The same study also demonstrated how SLIT2/ROBO1 signaling 

blocks HGF-induced-MET-tumor cell migration by inhibiting Cdc42, which promotes 

cell motility (15). Figure 4 depicts how SLIT2/ROBO1 signaling is involved in 

promoting cell adhesion in colorectal cancer cells (15). Perhaps, fibroblasts are induced 

by cancer cells to secrete less SLIT2 in order to promote cancer invasion and metastasis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure	  7.	  Role	  of	  SLIT2/ROBO1	  signaling	  in	  inhibiting	  cell	  
motility	  and	  promoting	  cell	  adhesion	  
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Significance of the Study 

 

Breast cancer is a complex disease. Stromal cells present in tumor 

microenvironment are getting increased interest as a therapeutic target in personalized 

medicine (15). Targeting cancer associated fibroblasts to inhibit cancer growth and 

metastasis has been proposed (19, 15). Complete understanding of the events driving the 

interactions between tumor cells and their microenvironment is of crucial importance in 

improving patient outcome. This study will shed light on molecular events involved in 

transition of normal fibroblasts into myofibroblasts, precursor of cancer-associated 

fibroblasts by analyzing SLIT2 expression in normal breast epithelial cells, breast 

adenocarcinoma cells, normal fibroblasts, and myofibroblasts. This study will also show 

how SLIT2 alterations and downregulation can affect clinical outcomes. 
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Materials and Methods 

 

Cell Lines 

MCF-10A (normal human breast epithelial cells), NIH/3T3 (normal mouse fibroblasts), 

and NMuMG (normal mouse breast epithelial cells) were purchased from ATCC. 

Metastatic MVT1 cell line was derived from c-Myc/VEGF tumor explants. DCIS (Ductal 

Carcinoma In Situ, human) was a generous gift from a former collaborator. 

 

Cell Culture 

MCF-10A: Cells were cultured in ATCC-formulated Dulbecco's Modified Eagle's 

Medium (DMEM) with 10% fetal calf serum, 5 µg/ml insulin (Sigma), and 5% penicillin 

(10000U/ml)/streptomycin (10 mg/ml). 

DCIS: Cells were cultured in normal breast tissue adherent culture medium: keratinocyte 

serum-free medium (Gibco) with proper additives such as 10% fetal calf serum, 10 ng/ml 

human recombinant EGF, 5 µg/ml insulin (Sigma), and 5% penicillin (10000 

U/ml)/streptomycin (10 mg/ml).  

NIH/3T3: Cells were cultured in ATCC-formulated Dulbecco's Modified Eagle's Medium 

(DMEM) with 10% bovine calf serum and 5% penicillin (10000 U/ml)/streptomycin (10 

mg/ml). Cells were subcultured every two days to avoid the cells reaching 80% 

confluence. 

NMuMG: Cells were cultured in ATCC-formulated Dulbecco's Modified Eagle's 

Medium (DMEM) with 10% fetal calf serum, 5 µg/ml insulin (Sigma), and 5% penicillin 

(10000U/ml)/streptomycin (10 mg/ml).  
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MVT1: Cells were cultured in ATCC-formulated Dulbecco's Modified Eagle's Medium 

(DMEM) with 10% fetal calf serum, and 5% penicillin (10000 U/ml)/streptomycin (10 

mg/ml).  

All cells were grown at 37°C with 95% air and 5% carbon dioxide. 

 

Breast Cancer Conditioned Media  

MVT1 cells were cultured in appropriate medium until confluent. Cells were washed and 

starved with serum-free media (ATCC-formulated Dulbecco's Modified Eagle's Medium 

(DMEM) with 5% penicillin (10000 U/ml)/streptomycin (10 mg/ml)) for 48 hours. The 

media was collected and separated from the cells through centrifugation. The supernatant 

was utilized to create a breast cancer conditioned media (70% serum-free media and 30% 

cell free supernatant). NIH/3T3 cells were treated with the conditioned media (CM), and 

allowed to grow for 48 hours. 

 

Quantitative Reverse-Transcriptase Polymerase Chain Reaction 

Total mRNA was isolated by following the protocol of Qiagen RNeasy Mini Kit. 

Expression level of SLIT2 and ROBO1 mRNA in NMuMG and NIH/3T3 were assayed 

using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) with 18S 

gene as internal control. RT-PCR was also used to measure SLIT2 mRNA in MCF-10A, 

DCIS, and CM-treated NIH/3T3 cells. Reverse transcription was carried out using the 

Applied Biosystems Transcription System. Universal Sybr Green was then utilized for 

quantitative PCR (5 µl of Sybr Green, 0.5 µl of 10 µM stock forward primer, 0.5 µl of 10 

µM stock reverse primer, 3 µl of PCR grade water, and 1 µl of cDNA). Relative 
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quantification was performed by comparative Ct method. Data was acquired with ABI 

7900 HT sequence detection systems and StepOnePlus Real-Time PCR system. The 

mRNA level was calculated by using 2-ΔΔCt with ΔCt =Ct,SLIT2- Ct,18S. The same formula 

was used for calculating ROBO1 mRNA.  

 

Protein Isolation and Western Blot Analysis 

Culture media were aspirated and cells were washed with ice-cold PBS twice.  The cells 

were lysed with 200 µl of protein extraction buffer (RIPA buffer). The lysed samples 

were then incubated at 4°C for one hour before centrifugation. The supernatant was 

collected for Western Blot analysis (50 µg of protein loaded). Rabbit polyclonal to Slit2 

was utilized as primary antibody. Detection of GAPDH was employed as loading control. 

 

Patient Outcome 

Oncomine was utilized to analyze if SLIT2 is differentially expressed among different 

types of breast cancers. The level of expression was also analyzed between breast cancer 

samples and normal breast samples. Alterations in SLIT2 were also analyzed using 

CBioportal to determine if correlation exists between the gene alterations and survival 

outcome.  
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Results and Discussions 

 

SLIT2 Downregulation in Human Breast Cancer 

 To confirm if SLIT2 

is downregulated or 

upregulated in human breast 

cancer, SLIT2 mRNA 

expression levels were 

quantified in MCF-10A 

(normal human breast 

epithelial cells) and DCIS 

(ductal carcinoma in situ). 

There is an anomaly in 

SLIT2 expression levels 

among different types of cancer. A current study suggests that SLIT2 is upregulated in 

intestinal cancers while a significant amount of literature suggest otherwise (7,17,22, and 

25)). Figure 8 shows that SLIT2 mRNA is downregulated in DCIS compared to MCF-

10A with p=0.03. Based on this data, SLIT2 expression could be hypothesized to be 

downregulated in breast cancer.  
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Figure	   8.	   Analysis	   of	   Slit2	   expression	   in	   human	  
normal	   epithelial	   cell	   line	   MCF10A	   and	  
transformed	   derivative	   breast	   cancer	   cell	   line	  
DCIS	  

P=0.03	  
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ROBO1 and SLIT2 Expression Patterns in Fibroblast and Breast Epithelial Cells  

There is uncertainty exists about the source of Slit2 in breast cancer. Few reports 

suggest that epithelial cells secrete Slit2, while others state that fibroblasts are major 

source of Slit2 (14).  In order to determine if normal breast epithelial cells or fibroblasts  

 

secrete more SLIT2 or express the ROBO1 receptor, SLIT2 and ROBO1 mRNA 

expression levels were analyzed in NMuMG and 

NIH/3T3 cell lines. In addition to mRNA levels, 

SLIT2 protein levels were also investigated using 

Western Blot technique. Our results show that normal 

fibroblasts (NIH/3T3) primarily secrete SLIT2 while 

epithelial cells predominantly express ROBO1. 

SLIT2 mRNA is significantly expressed in 

NIH/3T3 cells, which are normal fibroblasts cells cells (p<0.01; Fig. 9A) compared to 
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Figure	  9.	  SLIT2	  and	  ROBO1	  analysis	  in	  NIH-‐3T3	  and	  NMuMG.	  (A)	  SLIT2	  and	  (B)	  ROBO1	  
mRNA	  levels	  in	  NIH/3T3	  and	  NMuMG	  cells	  by	  RT-‐qPCR	  
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NMuMG normal epithelial cells. On expressed in NMuMG cells compared to normal 

fibroblasts (p<0.01; Fig. 9B). In addition to mRNA, SLIT2 protein is also highly 

expressed in NIH/3T3 cells and not in NMuMG cells (Fig.10).  

 

SLIT2 Downregulation in Cancer-Associated Fibroblasts 

  

Normal fibroblasts (NIH/3T3) were activated to differentiate into myofibroblasts 

to mimic cancer-associated fibroblasts by treating the 3T3 cells with MVT1 CM. A 

myofibroblast marker,  α-‐SMA	  (alpha	  smooth	  muscle	  actin)	  was	  analyzed	  in	  terms	  of	  

mRNA	   level	   in	   order	   to	   determine	   if	   the	   normal	   fibroblasts	   were	   successfully	  

activated.	   	   The	   treated	   cells	   expressed	   significantly	   increase	   α-‐SMA	   (p<0.01; Fig. 

11A), which indicates that the cells were successfully transformed. SLIT2 mRNA levels 

were then compared among normal fibroblasts (control) and treated cells. SLIT2  mRNA 

in treated NIH/3T3 cells were significantly reduced compared to the ones untreated 
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Figure	  11.	  SLIT2	  and	  α-‐SMA	  analysis	  in	  NIH-‐3T3.	  (A)	  NIH-‐3T3	  cells	  were	  
treated	  with	  30%	  MVT1	  CM	  for	  48	  hrs	  and	  analyzed	  for	  (A)	  α-‐SMA	  and	  (B)	  
SLIT2	  expression	  by	  RT-‐qPCR	  
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(p<0.05; Fig. 11B). These results suggest that SLIT2  expression is downregulated in 

cancer-regulated fibroblasts. 

 

SLIT2 Expression in Patient Samples 

 Based on analysis of Curtis breast data sets from patients (n=2136 samples) using 

Oncomine, SLIT2 was found to be in the top 5% of the genes that are under-expressed in 

various types of breast cancer especially in the more invasive types of cancer (p=1.89E-

49; Fig 12A). More specifically, SLIT2 expression was shown to be significantly reduced 

in invasive breast adenocarcinoma, mucinous breast carcinoma, medullary breast 

adenocarcinoma, and invasive ductal breast carcinoma (Figs. 12B-E).  
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B	   C
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Figure	  12.	  SLIT2	  Expression	  in	  Curtis	  Breast	  Data	  Sets.	  (A)	  SLIT2	  expression	  in	  different	  breast	  
tissue	  samples	  and	  specifically	  in	  invasive breast adenocarcinoma (B)  mucinous breast carcinoma, 
(C) medullary breast adenocarcinoma (D) and invasive ductal breast carcinoma (E)	  
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SLIT2 Alterations and Survival Outcomes 

 Based on analysis of TCGA Provisional breast invasive carcinoma samples 

(n=959 samples) using CBioportal, only 5% of the total samples (n=38 samples) with  

mRNA, CNA, and sequencing data were found to be altered, with a majority comprised 

of mRNA downregulation (Fig. 13). Moreover, patients with alterations were found to 

have lower overall survival rates compared to patients without SLIT2 alteration(s) (Fig. 

14). 

Figure	  13.	  Diagram	  of	  the	  genetic	  alterations	  in	  SLIT2	  in	  breast	  invasive	  carcinoma.	  	  

Figure	  14.	  Kaplan-‐Meier	  plot	  
of	  survival	  rates	  of	  patients	  
with	  (Red)	  and	  without	  
(Blue)	  SLIT2	  alterations.	  
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Conclusion 

 Breast cells express ROBO1 receptors for SLIT2 that is secreted by fibroblasts. 

SLIT2 is downregulated in fibroblasts that were induced to differentiate into 

myofibroblasts. Because myofibroblasts were utilized to mimic CAFs (Cancer-

Associated Fibroblasts), this study shed light on the potential effect of CAF 

differentiation to SLIT2 levels. In addition, SLIT2 is clinically relevant because it was 

significantly downregulated in breast cancer samples especially in more invasive types 

(Oncomine analysis). This claim is further supported by the decrease of survival rates 

among patients with altered downregulated SLIT2 (CBioportal). 
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