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ABSTRACT 

Streptococcus oralis is an oral commensal bacterium and a leading cause of sub-acute infective 

endocarditis (IE). Little is known of the mechanisms by which this bacterium colonizes the oral 

cavity and causes sub-acute IE. A crucial step in both processes is adhesion to host surfaces, yet 

no adhesion mechanisms have been defined for S. oralis subsp. dentisani. Electron microscopy 

images of S. oralis subsp. dentisani endocarditis isolates identified dense mono-lateral fibrils. 

Other streptococcal species have been shown to bind oral and IE relevant host surfaces, 

including oral epithelial cells, saliva and platelets, via serine-rich repeat proteins (SRRPs), a 

family of bacterial adhesins which typically form fine fibrils evenly distributed over the bacterial 

surface. However, S. cristatus has dense mono-lateral fibrils associated with an SRRP. This led 

to the hypothesis that S. oralis subsp. dentisani encodes one or more SRRPs that produce mono-

lateral fibrils and act as adhesins. Analysis of a genome sequenced S. oralis subsp. dentisani 

isolate revealed three genes encoding putative SRRPs. A panel of SRRP mutants was generated 

and showed that each putative SRRP locus produces mono-lateral fibrils. The secondary 

structures of SRRPs are composed of two serine-repeat regions flanking a non-repeat region 

(NRR). Receptors for members of the SRRP family differ based on domains within the NRR. 

Structural predictions of the NRR suggest that two of these SRRPs, FapA and FapB, play a role 

in biofilm formation and intra- and interspecies interactions. Initial experiments suggest that 

FapA and FapB contribute to the auto-aggregation of this isolate. The FapC NRR contains 

predicted domains previously shown to bind sialic acid in other SRRPs. FapC mutants showed a 

significant reduction in adherence to saliva, which is heavily sialylated, suggesting FapC is 

required for efficient binding to sialic acid. FapC is the first adhesin described for S. oralis 

subsp. dentisani. 
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INTRODUCTION 

Infective endocarditis (IE) is responsible for one in every thousand hospital admissions in the 

United States (1). An infection of the heart endocardium, IE is a particularly devastating disease, 

resulting in a 10% mortality rate in-hospital and a 40% mortality rate a year post diagnosis (2). 

Although IE is clearly a large health concern in the U.S., the incidence of IE has not decreased in 

the past 30 years (2). Therefore, it is critical that we better understand the factors and pathways 

by which IE manifests, so we may better design and implement new preventative and therapeutic 

strategies.  

Infective endocarditis is split into two types, each characterized by their pathogenesis. Acute IE 

frequently occurs in intravenous drug users and is characterized by a rapid onset (1). No pre-

existing heart valve damage is necessary in the pathogenesis of acute IE. Alternatively, sub-acute 

IE requires pre-existing heart valve damage before infection can occur. Blood-borne bacteria 

may then adhere to this damage and form a nidus. Over time, a vegetation may begin to grow, 

impeding proper heart function and posing the potential of breaking off and causing a stroke (3). 

Symptoms of sub-acute IE include fever, night sweats, and weight loss (4). Because symptoms 

are largely non-specific, sub-acute IE can go undetected for long periods of time, making it 

particularly difficult to treat those afflicted as the infection has grown over time. As IE is most 

prevalent in elderly populations, rates of IE will increase as our population ages, making it 

important we find alternative methods of detection and treatment now (5).  

Subacute IE is frequently caused by Viridans group streptococci, of which Streptococcus oralis 

is a member (4). Streptococcus oralis is an oral commensal and a leading cause of subacute IE 

(6, 7). Improvements in genomics, such as multilocus sequence analysis, has led to the addition 

of Streptococcus dentisani, Streptococcus mitis biovar 2, and Streptococcus tigurinus to the S. 
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oralis taxon, which was then divided into three subspecies: S. oralis subsp. oralis, S. oralis 

subsp. tigurinis and S. oralis subsp. dentisani (8, 9). All three of these subspecies have been 

isolated from the blood of IE patients (6, 10-12). Adhesion to host surfaces and receptors is 

critical in both the oral cavity during colonization and the heart endocardium during IE. 

Although this bacterium is a primary cause of subacute IE, very little is known of the 

mechanisms by which it adheres to host surfaces during colonization or IE. It is therefore critical 

we gain an understanding of the methods and mechanisms by which these bacteria bind to host 

surfaces, so we may identify prominent drug targets and potential therapeutic treatments.  

Serine-rich repeat proteins (SRRPs) are a family of bacterial adhesins which can mediate binding 

to several host and bacterial surfaces in pathogenic and commensal Gram-positive organisms 

(13-18). SRRPs are named for their two heavily glycosylated serine-rich repeats (SRRs) which 

flank a non-repeat region (NRR). All defined SRRP-receptor interactions identified thus far have 

been shown to be facilitated through the modular NRR, located within the N-terminal region of 

the protein (14). Previously identified receptors include sialic acid, keratins, fibrinogen, DNA, 

rhamnogalacturonan I, polygalacturonic acid and chondroitin sulfate (14-16, 19-21). Most 

SRRPs are characterized to bind a single receptor, however, pneumococcal SRRP PsrP has been 

shown to bind multiple receptors (20-22). 

Bacterial SRRPs have also been implicated in inter- and intraspecies interactions. Streptococcus 

cristatus SRRP SrpA has been shown to be required for binding to Fusobacterium nucleatum 

and Corynebacterium matruchotti in vitro (23-25). It has also been reported that pneumococcal 

SRRP PsrP plays a role in intraspecies interactions which promote bacterial aggregation in the 

nasopharynx and lungs of infected mice, as well as in models of mature biofilms (26). 
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Additionally, Staphylococcus aureus SRRP SraP and Streptococcus gordonii SRRP GspB were 

shown to be involved in intraspecies bacterial adhesion by promoting bacterial aggregation (26).    

In all SRRPs described, a single genomic region encodes for the SRRP(s) and proteins required 

for glycosylation (GftA/B) and secretion (SecA2/Y2) of the SRRP (14, 27, 28). The cytosolic O-

glycosyltransferase, GftA/B, is a complex of GftA and GftB subunits. GftA/B glycosylates 

serine and threonine residues of translated SRRP precursors, which is necessary for stability of 

the SRRP (14, 29). The SecA2/Y2 system is proposed to be dedicated to the secretion of SRRPs 

(27). The SRRP is targeted to the accessory secretion system via an atypical N-terminal 90 

amino acid secretion signal. Different streptococcal species, and even in some cases different 

strains, encode unique SRRPs. Most streptococcal species encode for and produce a single 

SRRP, although there have been cases of streptococcal species encoding for multiple SRRPs, 

such as Streptococcus salivarius, which was found to encode for three SRRPs (13). Additionally, 

some strains of Lactobacillus have been reported to encode for multiple SRRPs (30). 

Although the structure and appearance of SRRPs has received limited investigation, SRRPs are 

typically associated with thin fibrils that are evenly distributed across of the bacterial surface (13, 

14, 28, 31-33). Some deviations exist, including Streptococcus cristatus, which has been 

reported to produce mono-lateral, or one-sided, tufts made up of fibrils of two lengths, long and 

short (23, 25, 34). A variant of this strain lacking the 5’ end of the gene encoding for the SRRP 

SrpA no longer displayed the longer of the two fibrils, linking this SRRP with the production of 

the long fibrils (23, 35, 36).    

Streptococcus oralis subsp. oralis IE isolates have previously been reported to encode for SRRP 

Fap1, which was found to be required for binding to both terminal sialic acid and cryptic β-1,4 

linked galactose revealed by S. oralis neuraminidase (17). However, fap1 is not present in S. 
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oralis subsp. dentisani isolate F0392, meaning adhesion of this isolate to host surfaces must be 

facilitated via a distinct SRRP or an SRRP-independent mechanism.    

The primary goal of this study was to identify and characterize the dense mono-lateral fibrils 

imaged on S. oralis subsp. dentisani isolate F0392. Because of its similarity in appearance to the 

SRRP expressing S. cristatus, the presence of multiple SRRP encoding open-reading frames in 

the F0392 genome and the fact that all identified functions of SRRPs have centered around 

bacterial adhesion, we hypothesized that S. oralis subsp. dentisani isolate F0392 encodes for 

multiple SRRPs which produce mono-lateral fibrils and act as adhesins. As S. oralis is a primary 

cause of sub-acute IE, we hope study of the adhesins of this organism may yield invaluable data 

leading to a greater insight of the mechanisms by which this bacterium colonizes the oral cavity 

and causes sub-acute IE. Knowledge of these mechanisms will likely identify new drug targets in 

IE pathogenesis and ultimately ease the burden of IE.    

METHODS 

Bacterial strains, culture, media, and chemicals 

Wild-type and genetically altered strains of S. oralis subsp. dentisani are listed in Table 1. S. 

oralis subsp. dentisani was grown overnight at 37 oC and 5% CO2 on tryptic soy agar plates 

supplemented with 5% sheep’s blood (Becton, Dickinson and Co., Sparks, MD) or tryptic soy 

(TS) agar plates spread with 5000 U catalase (Worthington Biochemical Corporation, Lakewood, 

NJ) prior to plating. Broth cultures were grown statically in Todd-Hewitt broth (Becton, 

Dickinson and Co.) supplemented with 0.2% w/v yeast extract (Becton, Dickinson and Co.) 

(THY). C + Y media with 5% yeast extract (C+Y) pH 8.0 was used for transformations (37). 

Mutant S. oralis strains were selected on TS agar plates supplemented with spectinomycin (200 
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µg/mL), erythromycin (1 µg/mL), kanamycin (500 µg/mL), streptomycin (200 µg/mL) or 

chloramphenicol (2.5 µg/mL) as appropriate.  

Escherichia coli were grown at 120 rpm in Luria-Bertani (LB) broth or LB agar plates.  E. coli 

containing cloned plasmids were selected using media supplemented with spectinomycin (50 

µg/mL), erythromycin (200 µg/mL), kanamycin (50 µg/mL), chloramphenicol (30 µg/mL) or 

ampicillin (100 µg/mL) as appropriate (Thermo Fisher Scientific).  

Unless otherwise specified, all chemicals, substrates, and enzymes were purchased from Sigma-

Aldrich (St. Louis, MO). 

Genomic DNA Prep 

S. oralis subsp. dentisani wild-type and mutant DNA was isolated by first growing strains in 

THY to OD600 = 0.6 and harvesting cells by centrifugation at 4000 rpm for 10 minutes. Bacterial 

cells were then washed and resuspended in 500 µL of resuspension buffer (50 mM NaCl, 10 mM 

Tris-HCl, pH 7.4). 15 µL of mutanolysin was added and the mixture was incubated overnight in 

a 37 oC water bath. 10 µL of EDTA (0.5 M) was added followed by incubation at 37 oC for 30 

minutes. Proteinase K was added to a final concentration of 100 µg/mL and the mixture was 

incubated at 55 oC for 10 minutes. Subsequently, 40 µL of 20% N-lauryl sarcosine was added 

followed by a 10-minute incubation period. Samples were then subjected to two rounds of 

extraction with an equal volume of phenol:chloroform:isoamyl alcohol and a final extraction 

with an equal volume of chloroform. DNA was precipitated upon addition of 0.7 volumes of cold 

isopropanol. The pellet was washed twice with 70% ethanol, air-dried, and resuspended in 50 µL 

dH2O.  

Microscopy and Staining  
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S. oralis subsp. dentisani strains were imaged using a Hitachi S-4800 scanning electron 

microscope in scanning transmission mode (STEM) with a bottom-mounted electrodetector or a 

Hitachi H-7650 transmission microscope with a CCD detector (Hitachi High Technologies 

America, Schaumburg, IL). Strains were grown to OD600 = 0.3 ± 0.005, after which bacteria 

were bound to formvar coated grids stabilized with evaporated carbon film (EMS, Hatfield, PA). 

Grids were washed three times in water and negatively stained with 1% ammonium molybdate.   

Mutant Generation 

Insertion-deletion mutants were generated via allelic exchange. SecA2 mutants were generated 

by first amplifying fragments upstream and downstream of secA2 using primers E.i with E.ii and 

E.iii with E.iv respectively. A spectinomycin cassette was amplified using primers S.F. and S.R. 

These fragments were cloned into EcoRI-digested pDrive (Qiagen) via the In-Fusion EcoDry HD 

cloning kit (Clontech, Mountain View, CA) and transformed into E. coli Stellar competent cells 

(Clontech). Transformants were selected for on LB agar plates supplemented with 

spectinomycin. Constructs were confirmed via colony PCR using M13F and T7 promoter 

primers and sequencing. S. oralis subsp. dentisani was subsequently transformed by growing 

bacteria in C+Y media to OD600 = 0.12-0.2 followed by addition of 50 µL of culture to a 

transformation mixture containing 950 µL C+Y, 10 µL CaCl2 (100 mM), 2 µL competency-

stimulating peptide (1 mg/mL) and about 100 ng of purified plasmid. This mix was incubated in 

a 37 oC water bath for two hours and transformants were selected for on TS agar plates 

supplemented with spectinomycin. Mutants were confirmed using primers flanking the construct 

(E.5 and E.6). 

Serine-rich repeat protein (SRRP) mutant constructs were generated via an inverse PCR method. 

A fragment of each SRRP encoding gene was amplified using respective primer pairs (1 and 2), 
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and subsequently cloned into pJet1.2/Blunt PCR cloning vector (Thermo Fisher Scientific) and 

transformed into E. coli Stellar via In-fusion cloning. Transformants were selected on LB agar 

plates supplemented with ampicillin and confirmed via PCR. Successfully cloned plasmids were 

isolated and an inverse PCR product was generated with primers 3 and 4. The inverse PCR 

product was then blunt end ligated to either a spectinomycin, erythromycin or kanamycin 

antibiotic resistance cassette, cloned into E. coli Stellar and plated on LB agar plates 

supplemented with appropriate antibiotics. Final plasmid constructs were confirmed via PCR. 

The plasmid was subsequently transformed into S. oralis subsp. dentisani following the 

transformation protocol outlined above. Mutants were confirmed to contain the antibiotic 

cassette and thus the mutation by PCR using primers flanking the construct (5 and 6) and 

checking that the size of this PCR product was consistent with the size of the inserted fragment.  

F0392 point mutants were generated using the two-step Janus cassette system (38). Two 

overlapping fragments were amplified using primers which introduced the appropriate codon 

change (Primers 11 and 12, 13 and 14). The two fragments were then joined together via splicing 

by overlap (SOE) PCR using primers 11 and 14. This fragment was then cloned into pGex-5X-3 

via In-Fusion cloning and transformed into E. coli Stellar, generating the point mutant plasmid 

construct pGex-5X-3 FapCR837E. Transformants were selected on LB agar plates supplemented 

with ampicillin and constructs were confirmed via PCR and sequencing. To generate the Janus 

intermediate cassette (pGex-5x-3 FapC Janus), an inverse PCR product was produced using 

primers 15 and 16 and pGex-5X-3 FapCR837E as a template. The inverse PCR product was then 

blunt-end ligated to a Janus cassette (primers J.F and J.R), followed by cloning into E. coli 

Stellar and selection on LB agar plates supplemented with kanamycin. The construct was 

confirmed via PCR. Because the Janus cassette imparts streptomycin sensitivity, a streptomycin 
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resistant strain of S. oralis subsp. dentisani (F0392 Smr) is necessary for selection. F0392 Smr 

was generated by transformation with an rpsL PCR product from an Smr S. oralis strain and 

selected for on TS agar plates supplemented with streptomycin (primers R.F and R.R). F0392 

Smr was then transformed using pGex-5X-3 FapC Janus, yielding a Janus intermediate strain. 

Transformants were selected for on TS agar plates supplemented with kanamycin. Mutants were 

confirmed by PCR using primers 11 and 14. A subsequent transformation with pGex-5X-3 

FapCR837E replaced the Janus cassette with an unmarked sequence containing the arginine to 

glutamic acid point mutation. Transformants were selected for on TS agar plates supplemented 

with streptomycin and verified via PCR (Primers 11 and 14) and sequencing.  

The genetic background of all mutants was confirmed by extragenic palindromic PCR (REP 

PCR) (39). All mutants were confirmed to be absent of generalized growth defects by analyzing 

growth on rich medium. Another member of our lab also checked mutants for polarity via RT-

PCR of downstream genes.  

Expression and purification of recombinant FapC217-938 

The NRR of fapC, encoding amino acids 217-938, was amplified using primers C.18 and C.19. 

This fragment was then cloned into GST-tagged pGex-5X-3 via In-Fusion cloning, followed by 

transformation into E. coli Stellar and selection on LB agar plates supplemented with ampicillin. 

The expression construct was confirmed by PCR and sequencing. BL21 (DE3) competent E. coli 

(New England Biolabs, Ipswich, MA) were transformed using this construct. Transformants 

were selected for on LB agar plates supplemented with ampicillin. Cultures were inoculated in 

LB broth and grown at 37 oC to OD600 = 0.6-0.8. Expression was induced by the addition of 0.5 

mM IPTG. The induced culture was incubated overnight at 120 RPM, 22 oC. Cells were 

harvested by centrifugation at 5000 RPM and 4 oC for 15 minutes and resuspended in 1/10 the 
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original volume in PBS. Cells were lysed using a French Press at 24 kPa. Cell debris was 

collected by centrifugation at 10,000 rpm and 4 oC for 15 minutes and the supernatant was 

separated from the cell debris. Resuspended cell debris and supernatant were run on an SDS-

PAGE gel to ensure that the protein was produced and soluble. Soluble protein in the supernatant 

was purified via affinity chromatography using Glutathione Sepharose 4B GST-tagged protein 

purification resin (GE Healthcare Life Sciences, Marlborough, MA), followed by elution with 50 

mM tris-HCl, 10 mM glutathione and dialysis against PBS, yielding concentrated rFapC217-938. 

Purified protein was verified via SDS-PAGE for correct size and purity. Purified protein was 

quantified by measuring absorbance at 280 nm.  

Saliva Binding Assays 

Saliva (Lee Biosciences, Maryland Heights, Mo) was clarified by centrifugation of 1.2 mL of 

whole saliva at 21,000 g at 4 oC for 20 minutes. The supernatant was separated and filter 

sterilized. Assays were conducted in 96-well plates. To coat plates, saliva was diluted 5X in PBS 

and 100 µL of diluted saliva was used per well. Plates were left at 4 oC overnight and then 

washed twice with 120 µL PBS to remove non-adherent saliva. Bacterial cultures were grown to 

OD600 = 0.300 ± 0.005 and diluted 25X in PBS. 50 µL of diluted bacterial culture was added per 

well followed by incubation at 37 oC for one hour. Non-adherent bacteria were removed by 

washing three times with 120 µL PBS. Adherent bacteria were lifted with 100 µL of 0.25% 

trypsin/1 mM EDTA at 37 oC for fifteen minutes. Bacteria were enumerated by serial dilution 

from 100 to 10-3 and plating. All binding assays were performed three times in triplicate. 

Significance was determined via a two-tailed student’s t test, with a P value ≤ 0.05 considered 

significant.  
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For experiments involving neuraminidase treated saliva, saliva was diluted 5X in PBS followed 

by addition of Clostridium perfringens neuraminidase to a concentration of 0.1 U/mL. Saliva 

was neuraminidase treated for 14-16 hours in a 37 oC water bath, followed by coating according 

to the protocol outlined above. Where appropriate, binding assays were performed in the 

presence of recombinant FapC non-repeat region (rFapC217-938) at a final concentration of 5-7 

µM or 1 mM free N-acetylneuraminic acid.   

Auto-aggregation Assays 

S. oralis subsp. dentisani strains were grown in THY to OD600 = 0.600 ± 0.005 and cells were 

harvested by centrifugation at 5000 rpm at 4 oC for 15 minutes. Cells were washed using 0.15 M 

NaCl twice and resuspended in 0.15 M NaCl to 1/10 of the original volume. 250 µL of the 

bacterial suspension was added to 1.75 mL of 0.15 M NaCl in a 250 mL Erlenmeyer flask and 

subsequently shaken at 200 rpm at 37 oC for 2 hours. OD600 was measured directly following 

incubation. Aggregation assays were performed three times. Significance was determined via a 

two-tailed student’s t test, with a P value ≤ 0.05 considered significant.  
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Table 1: Strains used in this study  

Strain or plasmid Characteristic(s)/genotypea Source or reference 

Strain 

S. oralis subsp. dentisani 
    

F0392 Originally identified as Streptococcus mitis isolated 
from the human oral cavity 

BEI resourcesb  

F0392 ΔsecA2 ΔsecA2::aad9, Spcr  This study 

F0392 ΔfapA  ΔfapA::erm, Ermr This study 

F0392 ΔfapB ΔfapB::kan, Kanr This study 

F0392 ΔfapC ΔfapC::aad9, Spcr This study 

F0392 ΔfapB ΔfapA ΔfapB::kan ΔfapA::erm, Kanr Ermr This study 

F0392 ΔfapC ΔfapA ΔfapC::aad9 ΔfapA::erm, Spcr Ermr  This study 

F0392 ΔfapC ΔfapB ΔfapC::aad9 ΔfapB::kan, Spcr Kanr This study 

F0392 ΔfapC ΔfabB ΔfapA ΔfapC::aad9 ΔfapB::kan ΔfapA::erm, Spcr Kanr 
Ermr 

This study 

F0392 Smr Lys56 → Thr mutation in RpsL [rpsL(K56T)] 

conferring Smr 

This study 

F0392 FapC R837E Janus ΔfapC::kan/rpsL+ rpsL(K56T), Kanr Sms This study 

F0392 FapC R837E Arg → Glu mutation in FapC [fapC(R837E)]; 

rpsL(K56T) Smr 

This study 

F0392 FapC R837M Arg → Met mutation in FapC [fapC(R837M)]; 
rpsL(K56T) Smr 

This study 

      

Escherichia coli     

Stellar  Cloning Host  Takara  

BL21 (DE3) Expression Host NEB 

      

Plasmids      

pDrive  Cloning vector; Ampr Kanr Qiagen 

pDriveΔsecA2 pDriveΔsecA2::aad9 Spcr Ampr Kanr This study 

pJET1.2/blunt Cloning vector; Ampr Thermo Fisher 
Scientific 

pJETΔfapA pJetΔfapA::erm, Ermr Ampr   This study 

pJETΔfapB pJetΔfapB::kan, Kanr Ampr   This study 

pJETΔfapC pJetΔfapC::aad9, Spcr Ampr  This study 

pGex-5x-3 Expression vector; Ampr GE Biosciences 

pGex-5x-3 FapC Janus pGex-5x-3 FapCR837E with Janus cassette; Ampr, 
Kanr 

This study 

pGex-5x-3 FapCR837E pGex-5x-3 containing fapC 722-938 with Arg → 

Glu mutation in FapC [fapC (R837E)]; Ampr 

This study 

pGex-5x-3 FapCR837M pGex-5x-3 containing fapC 722-938 with Arg → 
Met mutation in FapC [fapC (R837M)]; Ampr 

This study 
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pGex-5x-3 FapC217-938 pGex-5X-3 containing FapC 217-938; Ampr  This study 
a Spcr, spectinomycin resistant; Kanr, kanamycin resistant; Ermr, erythromycin resistant, Ampr, 
ampicillin resistant; Smr, streptomycin resistant. 

b Strain F0392, HM-262 was obtained through BEI Resources, NIAID, NIH as part of the 

Human Microbiome Project. 
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Table 2: Primers used in this study 

Target or 

Group 

Name Sequence 5' to 3' Location  

(accession no.) 

secA2 E.i  TCGGATCCAGAATTCTCAGATTGCAGAAATGAGAACa 944658-944678 

(CP034442)  
E.ii CACGAACGAAAATCGATCTGGATCATAGGCATTCTGb 944102-944122 

(CP034442)  
E.iii ATAAACCCTTGCATAATTCATTTGACCTCTCGTCGb 943218-943237 

(CP034442)  
E.iv CTTGTCGACGAATTCAACAGTCATCTATCGCTCTCa 942780-942800 

(CP034442)  
E.5 ACTAAACGATTCAATTTGAC 944931-944950 

(CP034442)  
E.6 TAATGTAACTCAATGCCATG 942610-942629 

(CP034442) 

fapA A.1 ATTTGATGCGGACGAATATC 933128-933147 

(CP034442)  
A.3 TAGGTTTCATTGACTGTATC 932764-932783 

(CP034442)  
A.4 TGAGGTTTGTTCAAGGAGTGG 932645-932665 

(CP034442)  
A.2 AGTAACTGTTAATCCAAGAGC 932253-932273 

(CP034442)  
A.5 GGTGTTCCTTTCTCGG 933173-933188 

(CP034442)  
A.6 AGTTAAGCTGTCCAGCTTCG 932123-932142 

(CP034442)  
A.7 ACCTGCTGTAACGTATGATG 932834-932853 

(CP034442)  
A.8 TAGCATTTCTAGCATCTTGC 932711-932730 

(CP034442)  
A.9 AAGGAGCAAGAACCAGCAAAAC 917963-917984 

(CP034442)  
A.10 TTGTGAGAATGGCGATGAGAAT 917838-917859 

(CP034442) 

fapB B.1 TGCAGGATTTGTGATGACTC 1826328-1826347 

(CP034442)  
B.3 GCAGGGTTGACCTTAAGGTTG 1826847-1826867 

(CP034442)  
B.4 AGCAACAATATCGCAGCTGG 1826944-1826963 

(CP034442)  
B.2 TCCGTACTTGCACAACATCC 1827339-1827358 

(CP034442)  
B.5 TCTAGTACCCTATCAGACAC 1826236-1826255 

(CP034442)  
B.6 ATTGACCACTCCTTGACCAC 1827464-1827483 

(CP034442)  
B.7 ACAAGCGCAGCTCTTAGCAC 1826905-1826924 

(CP034442)  
B.8 AATACACCAGCTTCAGAGTC 1827103-1827122 

(CP034442) 
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B.9 AGCTACATCAAGCGTCTCCATG 1841859-1841880 

(CP034442)  
B.10 CGAACTTTGTGAGCCAAGATTG 1841995-1842016 

(CP034442) 

fapC C.1 ACCTAGCAGCTGGTGTGATC 761428-761447 

(CP034442)  
C.3 TTGTTTAGCAGTGACTTCTG 761053-761072 

(CP034442)  
C.4 TATTGTGTACGCAGGAGACG 760059-760078 

(CP034442)  
C.2 AACGGCTGCTAATATACGTG 759619-759638 

(CP034442)  
C.5 ATCCCTTGATGTCAAGACTG 761538-761557 

(CP034442)  
C.6 TAGTAATCGTATCCGTAGTC 759513-759532 

(CP034442)  
C.7 TTTCAGCTGAAAGATTGGTC 761010-761029 

(CP034442)  
C.8 ACCTTGAAATTGACTCAGCTG 761178-761198 

(CP034442)  
C.9 GGGTGTGGAAGGCTATGTTGAG 745835-745856 

(CP034442)  
C.10 CGCTGTGGTCTCTGGGAAGAT 745748-745768 

(CP034442)  
C.11 GGTCGTGGGATCCCA GTGGATGCTGTTCCAGTTCCAAGc 760130-760152 

(CP034442)  
CG.12 GCCTTATCCGTTGCTACTGCATTCTCTTGCCAACTATTTCTACCATTTTd 759782-759830 

(CP034442) 

 CG.13 AAAATGGTAGAAATAGTTGGCAA GAGAATGCAGTAGCAACGGATAAGGCd 759782-759830 

(CP034442)  
CM.12 GCCTTATCCGTTGCTACTGCATTCATTTGCCAACTATTTCTACCATTTTd 759782-759830 

(CP034442) 

 CM.13 AAAATGGTAGAAATAGTTGGCAAATGAATGCAGTAGCAACGGATAAGGCd 759782-759830 

(CP034442) 

 C.14 ATGCGGCCGCTCGAGTTATTAGAAAGTTTTATAGTAATCGc 759502-759521 

(CP034442) 

 C.15 AGTAGCAACGGATAAGGCTG 759780-759799 

(CP034442)  
C.16 TTGCCAACTATTTCTACCAT 759808-759827 

(CP034442) 

 C.17 GGTCGTGGGATCCCA GCTCAACCTGCTCCTTCAGTc 761648-761667 

(CP034442) 

 C.18 ATGCGGCCGCTCGAGTTATTAGAAAGTTTTATAGTAATCGc 

 

759502-759521 

(CP034442) 

aad9 S.F CGATTTTCGTTCGTGAATAC 5418–5399  

(KM009065)  
S.R TATGCAAGGGTTTATTGTTTTC 4265–4286  

(KM009065) 

erm E.F CTCGAGCGGCCGCCAGTG 264–282  

(EU233623)  
E.R AACGGCCGCCAGTGTGCTG 319–336  

(EU233623) 

Janus J.F CCGTTTGATTTTTAATGGATAATG 773–796  

(AF411920.1) 

 J.R GGGCCCCTTTCCTTATGCTT 

 

2105–2086  

(AF411920.1) 
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rpsL R.F CGGTACTTTTTACTTTTGGTCTCTC 1709537-1709561 

(CP034442) 

 R.R TCTTTATCCCCTTTCCTTATGC 1710075-1710096 

(CP034442)     

    

aUnderlining indicates nucleotides introduced to allow In-fusion cloning into the pDrive vector. 

bUnderlining indicates nucleotides introduced to allow In-fusion cloning with aad9 
(spectinomycin cassette). 

cUnderlining indicates nucleotides introduced to allow In-fusion cloning with pGex-5X-3 vector. 

dBold indicates the nucleotides altered to introduce the amino acid substitution 
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Figre 1 

RESULTS 

Electron microscopy images of Streptococcus oralis subsp. dentisani reveal dense mono-

lateral fibrils 

Electron microscopy of the S. oralis subsp. dentisani strain F0392 revealed dense mono-lateral 

fibrils which appeared to be of different lengths (Fig. 1). F0392 had previously been classified as 

S. mitis biovar 2 but has been reassigned to S. oralis subsp. dentisani by multilocus sequence 

analysis (MLSA) (9). Fibrils appeared to be composed of two different lengths, the shorter of 

which being approximately 300-350nm and the longer being approximately 500 nm.  

This distribution of surface fibrils is similar to that seen on Streptococcus cristatus strains CR311 

and CC5A, which also displayed mono-lateral fibrils of multiple lengths (23, 25). The long 

fibrils of S. cristatus have been linked with the SRRP SrpA.  

 

 

Genome sequencing reveals three putative serine-rich repeat proteins  

We sought to determine whether S. oralis subsp. dentisani F0392 contains genes which may 

encode for SRRPs. The non-contiguous F0392 genome revealed three potential genes which may 

encode for SRRPs; however, these sequences contained stop codons and were distributed 

Figure 1. STEM images of Streptococcus oralis subsp. dentisani isolate 

F0392 bound to a formvar-coated grid and stained with 1% ammonium 

molybdate indicate the presence of dense mono-lateral fibrils. Scale bar, 

500 nm. 
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Figure 2 

amongst multiple contigs, making it difficult to confirm their validity. Full genome sequencing 

of S. oralis subsp. dentisani strain F0392 was generated via PacBio technology, which is more 

capable of accurately sequencing large repeat sequences than the Illumina technology used to 

sequence this genome previously. Genomic analysis confirmed the presence of the three putative 

SRRPs open reading frames originally seen in the non-contiguous sequence. Because we predict 

these genes are associated with the surface fibrils on this bacterium, we have named them fapA 

(13992 bp), fapB (13692 bp) and fapC (15144 bp) for “fibril associated protein” (Fig. 2).   

 

   

Each of these three open-reading frames is predicted to encode a protein containing the 

conserved features of previously identified SRRPs, including an atypical N-terminal signal 

sequence, a cell wall anchor domain and two serine-repeat regions which flank a non-repeat 

region (13, 17, 23, 32, 40-45). The atypical N-terminal signal sequence is responsible for 

secretion of the protein via the accessory secretion system (SecA2/Y2) and is generally 

Figure 2. Schematic of loci encoding putative SRRPs in S. oralis subsp. dentisani strain F0392. Open reading 

frames are indicated by block arrows. Genes predicted to encode proteins of known function are labeled with 

gene names, if known, or predicted function.               

     Indicates predicted terminators and      indicates predicted promoters. 



18 
 

approximately 90 amino acids long (41). The putative SRRPs encoded for within S. oralis subsp. 

dentisani F0392 contain predicated signal sequences of 93 amino acids in length, which are 

highly conserved between the three SRRPs, showing 100% amino acid identity between FapA 

and FapB and 93.5% identity with FapC. The N-terminal sequence similarity between FapA and 

FapB extends past this region, having 80% identity and 82% similarity between the first 338 

amino acids of FapA and the first 348 amino acids of FapB. FapC does not share this similarity 

with either FapA or FapB apart from the atypical signal sequence.  

It is also important to note that fapA is located at the 3’ end of an operon which also contains 

genes encoding for proteins responsible for glycosylation and secretion of the SRRP. The regions 

containing fapB and fapC do not contain any other genes related to SRRPs (Fig. 2).  

Predicted SRRP contribution to observed surface fibrils 

In order to determine whether the surface fibrils of F0392 were dependent upon one or more of 

the predicted SRRP encoding genes, we took advantage of the accessory secretion system 

specific for secretion of SRRPs. An insertion-deletion mutant was generated which lacked secA2, 

the gene which encodes for the ATPase which energizes SRRP transport across the membrane 

(27, 40). This mutant lacks all fibrils, supporting the hypothesis that these fibrils are SRRPs and 

SecA2 dependent (Fig. 3). Single, double and triple mutants were then generated in order to 

determine the contribution of each open-reading frame to the presence of surface fibrils. Imaging 

of double mutants revealed that each of the mutants retained presence of surface fibrils, 

suggesting that all three of the putative SRRPs are produced. Interestingly, each of the three 

SRRPs yielded a different density and distribution of surface fibrils across the occupied side 

(Fig. 3). The mutant expressing only FapB (F0392 ∆fapC∆fapA) displayed fibrils which were 

similar in appearance to the parental strain. The FapA expressing mutant (F0392 ∆fapC∆fapB) 
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Figure 3 

also displayed fibrils resembling the parent, however, these fibrils appeared less dense than those 

of the parental strain. The fibrils on the FapC expressing mutant (F0392 ∆fapB∆fapA) were 

mostly concentrated toward the poles of the cells and localized on the oldest cells in the chain 

(data not shown).  A triple mutant, F0392 ∆fapC∆fapB∆fapA, was devoid of surface fibrils, 

confirming that these SRRP encoding genes were necessary to produce surface fibrils (Fig. 3). 

 

 

 

Predicted SRRP functions  

In order to determine possible functions of FapA, B and C, the amino acid sequences of the NRR 

of each SRRP were compared against NRR sequences of known SRRPs with identified catalytic 

domains and functions (Fig. 4).  

Figure 3. Three SRRPs contribute to production of fibrils on the surface of S. oralis subsp. 

dentisani strain F0392. STEM images of the parental strain, F0392, and the generated mutants 

bound to a formvar-coated grid and stained with 1% ammonium molybdate. Strain names are above 

the panels in black and the SRRPs still expressed in each double mutant are given in grey (scale bar, 

500 nm).  
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Figure 4 

 

 

 

The NRR of FapA shared 90% amino acid identity and 93% similarity with the SRRP SrpA from 

S. cristatus CC5A. srpA dependent fibrils have been implicated in being necessary for the 

formation of ‘corncob’ structures with species such as Corynebacterium matruchotti and 

Fusobacterium nucleatum, although the specific receptor involved in this interaction is unknown 

(23-25). Corncob structures are prominent in dental biofilms and are thought to anchor the non-

streptococcal structures to the tooth surface (46-48). Sequence similarity between SrpA and 

FapA suggests FapA may play a role in interspecies interactions such as corncob formation. 

Additionally, we have identified an open reading frame in S. cristatus CR311 which encodes for 

a protein that shares 93% identity and 95% amino acid similarity with the FapC NRR.   

HHpred, a server which detects homologs using structural information, identified structural 

similarity between FapA and S. parasanguinis SRRP Fap1 (97.8% probability, E-value 8.5x10-8) 

(PDB ID: 2X12) (31, 49). Fap1 contains two catalytic domains which have both been shown to 

Figure 4. Schematic illustration of the putative domains within the NRR of S. oralis subsp. dentisani F0392 SRRPs. 

Domains identified by HHpred, a server for remote homolog detection, are labeled. The numbers above the 

schematics indicate the predicted boundaries of the domains. There were small differences in the boundaries 

predicted for the domains within FapC using structures of S. gordonii GspB and S. sanguinis SrpA. The boundaries 

provided here are from the prediction using SrpA. In addition, the boundaries identified resulted in an overlap of 

seven amino acids (722-729) between the first unique domain and second Siglec domain. 
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contribute to adhesion, α (aa 129-206) and β (aa 237-425) (31). These domains are conserved in 

the NRR of FapA (Fig. 4). Because FapA and FapB share N-terminal sequence similarity, there 

is also some sequence similarity between their NRRs and therefore some predicted structural 

similarity between the two regions. Thus, FapB also shares predicted structural similarity with S. 

parasanguinis Fap1, covering the Fap1 α domain (92% probability, E-value 4.5x10-3) (PDB ID: 

2KUB) (31) (Fig. 4). The 3’ region of the FapB NRR also shares some predicted structural 

similarity with the C-terminal region of the Fap1 β domain (65.2% probability, E-value 4.6) 

(PDB ID: 2X12). S. parasanguinis Fap1 has been shown to be required for efficient binding to 

saliva coated hydroxyapatite and biofilm formation, suggesting a role for FapA and FapB in 

these functions (32, 33, 50).  

FapC was predicted to share structural similarity with sialic acid binding immunoglobulin- like 

lectins (Siglecs) and unique domains from S. sanguinis and S. gordonii (PDB IDs: 3QC5 and 

5KIQ) (>99% probability, E-value > 1x10-14) (49, 51, 52). Interestingly, FapC contains two of 

each of these domains (Fig. 4). S. sanguinis SK1 has been reported to also contain two of each of 

these domains, however only one of the two Siglecs was predicted to contain the active arginine 

residue necessary to bind sialic acid in other bacterial Siglecs (51, 53, 54). This is also the case in 

FapC.  It is unknown whether the other Siglec domain in SK1 or FapC, which lacks the predicted 

active arginine residue, contributes to adhesion. However, the NRR of SK1 has been shown to 

bind sialic acid, implicating a role for FapC in sialic acid binding (53). 

FapC is necessary for effective adherence to saliva  

As sialic acid is a widely distributed host receptor and would be important in both oral 

colonization and infective endocarditis, we sought to determine the ability of this bacterium to 

bind sialic acid, specifically the contribution of FapC, which is predicted to contain Siglec 
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Figure 5 

domains. Study of adherence to immobilized saliva was chosen as saliva is heavily sialylated and 

it is unlikely that bacterial adhesion to free sialic acid plays a role in colonization or infection 

(55). F0392 ∆fapC showed a significant reduction (>90%) in adherence relative to the parental 

strain, suggesting FapC does bind sialic acid (Fig. 5A). A second independent FapC mutant was 

also reduced in binding (8.1% ± 3.4% of parental adhesion).  

 

 

 

To further study this interaction, a point mutant, F0392 FapCR837E, was generated in which the 

predicted active arginine residue was changed to glutamic acid. As this change has previously 

been shown to eliminate sialic acid binding in other SRRPs, we expected this point mutant to 

bind saliva less efficiently than the parent (52-54). Interestingly, an increase in saliva binding 

was observed for the F0392 FapCR837E mutant compared to the wild type (Fig. 5B). As FapA 

contains two predicted Siglec domains within its NRR, it possible that there is a residue within 

the other Siglec domain that is able to bind to sialic acid.  

Figure 5. The contribution S. oralis subsp. dentisani strain F0392 SRRP FapC to saliva binding. FapC is 

required for efficient binding to saliva (A). However, mutation of a conserved arginine residue shown in other 

Siglec domains to be required for sialic acid binding increases adhesion (B). Adhesion is expressed as a 

percentage relative to that of the parental strain. Values are the mean of at least three independent experiments 

each performed in triplicate ±SD. Statistical significance was tested by a two-tailed Student’s t test; *, P ≤ 0.01. 
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To determine whether the interaction between F0392 FapC and saliva was direct, the NRR of 

FapC was recombinantly expressed and used to test if addition of this region would 

competitively inhibit binding of F0392. Results show that addition of recombinant FapC217-938 

does reduce adherence of F0392 to levels similar to that of F0392 ∆fapC (Fig. 6). Furthermore, 

adherence of F0392 ∆fapC was not further reduced by the addition of recombinant FapC217-938. 

These data suggest that the FapC-saliva interaction is direct.   

 

 

 

 

In order to better understand whether FapC was binding sialic acid, saliva adherence assays were 

conducted in which saliva was pre-treated with Clostridium perfrigens neuraminidase in order to 

Figure 6 

Figure 6.  Adhesion of F0392 FapC to saliva is a direct interaction. “+” indicates trials in which 5-7 µM 

rFapC
217-938

 was added. Adhesion is expressed as a percentage relative to that of the parental strain. Values 

are the mean of at least three independent experiments each performed in triplicate ±SD. Statistical 

significance was tested by a two-tailed Student’s t test; *, P ≤ 0.01; ns, not significant.    
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cleave terminal sialic acid receptors present on saliva. Somewhat unexpectedly, binding of 

F0392 to neuraminidase treated saliva was not significantly different from binding to untreated 

saliva (Fig. 7). These data seem to suggest that the SRRPs produced by this strain are able to 

bind carbohydrate receptors underlying sialic acid.   

 

 

 

To further study whether FapC was binding sialic acid, blocking assays were conducted in which 

free sialic acid was added to saliva binding assays to test its ability to block interactions between 

saliva and FapC. Results show that there is no significant difference in saliva binding when sialic 

acid is added (Fig. 8). This may indicate that F0392 not able to bind free sialic acid. 

Figure 7 

Figure 7. Cleavage of terminal sialic acid does not decrease adhesion of F0392 to bound saliva as predicted. This 

suggests that SRRPs of F0392 may be able to bind carbohydrates underlying sialic acid. Adhesion is expressed as a 

percentage relative to that of the parental strain. Values are the mean of at least three independent experiments each 

performed in triplicate ±SD. Statistical significance was tested by a two-tailed Student’s t test; ns, not significant.   
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As FapA and FapB are predicted to play a part in intraspecies interactions, auto-aggregation 

assays were conducted in order to test their role in F0392 aggregation. Results showed that 

FapA, FapB and FapC may to contribute to the ability of F0392 to aggregate. F0392 ∆fapA, 

F0392 ∆fapC∆fapB, F0392 ∆fapB∆fapA and F0392 ∆fapC∆fapB∆fapA all show significantly 

less aggregation than the parental strain. Aggregation of F0392 ∆fapB was not significantly 

different from the parental strain, however given that aggregation of the fapB mutant was 

reduced in each of three experiments, we predict further testing will show this difference is 

significant. Each of the three double mutants showed significantly higher aggregation than the 

triple mutant, indicating that the presence of any one SRRP may be enough to cause aggregation 

to some degree. Significant differences between the double mutants expressing FapA or FapB 

and the double mutant expressing FapC show that the relative contributions of each of the 

Figure 8 

Figure 8. Addition of free sialic acid does not significantly impact adhesion of F0392 to saliva. Adhesion is 

expressed as a percentage relative to that of the parental strain. Values are the mean of at least three independent 

experiments each performed in triplicate ±SD. Statistical significance was tested by a two-tailed Student’s t test; ns, 

not significant.  
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SRRPs to aggregation may be different. 

  

 

DISCUSSION  

In this study, we have identified a Streptococcus oralis subsp. dentisani oral isolate (F0392) 

which produces three serine-rich repeat proteins, resulting in the formation of dense mono-lateral 

fibrils on the cell surface. We have demonstrated that one of these proteins, FapC, is necessary 

for efficient binding to saliva and a combination of these proteins appear to play a role in auto-

aggregation. 

Although it is unusual for streptococcal strains to express more than a single SRRP, there have 

been other cases of the expression of multiple SRRPs similar to S. oralis subsp. dentisani. 

Streptococcus salivarius has been shown to also express three SRRPs, although these SRRPs are 

distributed evenly across the bacterial surface (13). Mono-lateral fibrils of multiple lengths have 

also been observed on S. cristatus strains CR311 and CC5A. The longer one of these fibrils has 

been correlated to the SRRP SrpA (23, 25). We have also identified an additional SRRP 

encoding gene within the CR311 genome (AFUE01000008). The 90% amino acid identity and 

Figure 

9 

Figure 9.  FapA and FapB contribute to auto-aggregation of F0392. Aggregation is measured by absorbance at 600 nm post 2-

hour incubation while shaking. Values are the mean of at least three independent experiments ±SD. Statistical significance was 

tested by a two-tailed Student’s t test; *, P ≤ 0.05.  
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93% similarity between the NRRs of FapA and the S. cristatus SRRP SrpA as well as the 93% 

amino acid identity and 95% similarity between the NRR of FapC and a putative protein of S. 

cristatus CR311 suggests there may have been multiple recombination events between these two 

species (9). S. cristatus is not as closely related to S. oralis subsp. dentisani as some other 

organisms, making it likely that these species have undergone horizontal gene transfer, as they 

are the only two identified streptococci with mono-lateral fibrils.  

The same study which identified mono-lateral fibrils of S. cristatus also described mono-lateral 

fibrils for S. oralis; however, because of changes in classification of this species, it is unclear 

whether this is the same S. oralis described today (23). Additionally, some Geobacter species, 

including G. metallireducens, produce mono-lateral pili on the surface of their cells (56). The 

mechanism of fibril/pili localization for these species is unknown. The FapA encoding locus also 

contains genes encoding for proteins responsible for glycosylation and secretion of SRRPs. We 

hypothesize that genes in this locus may be controlling the distribution of the accessory secretion 

system, SecA2/Y2, thus producing this mono-lateral distribution.   

Imaging of F0392 double mutants, which only express a single SRRP, showed observable 

differences in the distribution of each fibril on the bacterial surface (Fig. 3). The mechanism for 

this difference in distribution is unknown, although we hypothesize it may be due to differences 

in timing and/or levels of fap gene expression, as well as the conditions required for secretion via 

the accessory Sec system. Although the mechanism is not yet known, we believe the presence of 

differentially distributed surface fibrils on all three double mutants indicates that each SRRP 

produces a distinct fibril, although we cannot rule out the possibility that fibrils observed on the 

parental strain consist of more than one fibrillar protein. Images of the parental strain showed 

fibrils which appeared to be of two different lengths, leading us to believe that at least one of the 
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SRRPs produce a longer fibril; however, the double mutants did not appear to show any 

differences in length between fibrils (Fig. 3). It is possible that the decrease in fibril density of 

the double mutants caused less stain to be trapped, making it more difficult to visualize fibrils 

which are further from the bacterial surface. Alternatively, fewer fibrils may relax the physical 

constrains the fibrils place on each other, thus allowing them to extend further from the bacterial 

surface.  

All identified functions of SRRPs have centered on bacterial adhesion through the proteins non-

repeat region. We hypothesize that these proteins play a major role in the ability of S. oralis 

subsp. dentisani to colonize the oral cavity, as this species is adapted to colonize this 

environment. Study of sequence similarity between the NRR of FapA and the NRR of other 

known SRRPs suggests that FapA mediates interspecies interactions. Structural predictions of 

the NRR reveal that FapA and FapB may contribute to biofilm formation, while FapC may 

contribute to sialic acid binding.  Structural prediction identified two putative Siglec and unique 

domains in the FapC NRR. These domains have been known to be required for sialic acid 

binding in other SRRPs (17, 52, 53, 57, 58). We chose to further study the role of FapC to sialic 

acid binding as sialic acid is a widely distributed host receptor and would likely play a role in 

oral colonization, as many tooth and other oral surfaces are coated in salivary glycoproteins 

which are often heavily sialylated. Only one of the two putative Siglec domains in the FapC 

NRR contains the predicted active arginine residue reported to be critical in sialic acid binding 

(51, 53, 54). Previous studies have shown that mutation of this residue to glutamic acid 

eliminates sialic acid binding (51, 53, 54). However, mutation of this residue in FapC actually 

caused an increase in adherence (Fig. 5). It is proposed that this arginine residue facilitates 

adhesion by hydrogen bonding with the glycerol group of sialic acid (59). As glutamic acid is 



29 
 

capable of hydrogen bonding, it is possible that the binding pocket can accommodate this change 

and still position the ligand correctly to allow hydrogen bonding. Substantiating this, hydrogen 

bonding between sialic acid glycerol and an acidic residue has been observed, including viral and 

bacterial neuraminidases (60, 61). Another member of the lab generated and tested adherence of 

an arginine to methionine point mutant to assess this theory, however, there was no significant 

change in adherence, leaving much of the mechanism of this interaction unclear.  

Although FapA and FapB are predicted to share structural similarity with S. parasanguinis SRRP 

Fap1, which was required for efficient binding to saliva coated hydroxyapatite and biofilm 

formation (32, 33, 50). The large decrease in adherence of the FapC mutant indicates that if 

FapA or FapB contribute to saliva binding, this contribution must be relatively small. However, 

FapA or FapB may bind carbohydrates underlying sialic acid. The non-significant difference in 

adherence to neuraminidase treated saliva suggests that F0392 is able to bind carbohydrates 

underlying sialic acid (Fig. 7). It is unclear as to whether one or multiple SRRPs produced by 

F0392 are able to bind underlying carbohydrates, but strains producing sialic acid binding 

SRRPs have been shown to also bind cryptic β-1,4 linked galactose exposed by endogenous 

neuraminidase (17, 18).  

Sialic acid blocking has previously been shown to decrease adherence of sialic acid binding 

SRRPs to platelets (17). It was thus surprising that adherence of F0392 was not significantly 

reduced by addition of free sialic acid (Fig. 8). However, this does not eliminate the possibility 

that FapC is binding sialic acid. It is possible that FapC is unable to bind free sialic acid, but 

rather requires sialic acid to be a terminal receptor on a chain of carbohydrates or only binds 

particular linkages of sialic acid.     
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Upon testing of interspecies interactions of F0392 wild-type and mutant strains, we noticed 

differences in aggregation of the F0392 wild-type and triple mutant control groups. This led to 

the hypothesis that the fibrils may be impacting the ability of this bacterium to auto-aggregate. 

As predicted domains in FapA and FapB are thought to be involved in intraspecies interactions, 

we designed an auto-aggregation assay to test the ability of each mutant to aggregate. FapA and 

FapB seem to be the primary contributors to this interaction. The significant reduction in 

aggregation from the parental strain to the FapA mutant implicates this protein in aggregation. 

Although the change in aggregation between the parental strain and the FapB mutant was not 

significant, we expect that further testing will show that removal of FapB does result in a 

significant decrease in aggregation. The involvement of FapA and FapB is further supported by 

the significantly higher aggregation of the double mutants which only express FapA or FapB 

compared to the FapC expressing double mutant. This would suggest that if FapC only plays a 

role in aggregation when it is the only SRRP present. Furthermore, significant differences 

between each of the double mutants and the triple mutant suggests that removal of either FapA, 

FapB or FapC impacts aggregation, with removal of FapC appearing to have the smallest effect. 

Finally, the non-significant difference between the parental strain and FapB expressing mutant 

suggests FapB alone may be enough to cause aggregation. The exact contribution of FapA, FapB 

and FapC to F0392 auto-aggregation is unclear, but these data suggest that FapA and FapB both 

likely play a role.  

Through this work we have established that S. oralis subsp. dentisani produces dense mono-

lateral fibrils. Our data supports our hypothesis that this organism produces three distinct fibrils 

of different distributions across the cell surface, each of which is linked to a SRRP. Although the 

exact function of each of these SRRPs is unknown, predicted domains suggest they each play a 
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unique role in bacterial adhesion. We have shown that at least one of these SRRPs is necessary 

for efficient binding to saliva, and others appear to influence auto-aggregation. As the mono-

lateral distribution of fibrils and expression of multiple SRRPs is a relatively unstudied 

phenomenon, more work will need to be done in order to better understand the functions of these 

proteins and the effect of their distribution on cell biology before we can begin to understand 

their clinical significance or potential role in infective endocarditis.            
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