

Development of Fully Autonomous and Cooperative Robotic System for
Interplanetary Explorations

Undergraduate Honor Thesis

Presented in Partial Fulfillment of the Requirements for the Graduation with Honor Research

Distinction in the Mechanical and Aerospace Engineering (MAE) Department of The Ohio State

University

By

Kai Chuen Tan

Undergraduate Program in Mechanical Engineering

The Ohio State University

2019

Thesis Committee

Dr. Ran Dai, Advisor

Dr. Carlos Castro, Committee Member

2

Copyrighted by

Kai Chuen Tan

2019

ii

Abstract

The next frontier of interplanetary exploration missions would encounter countless

unpredictable geographical challenges including uninhabitable caves, icy craters of the Moon and

Mars, unsustainable mountain cliffs, high radiation areas, and extreme temperature environments.

This research will design a fully autonomous and cooperative robotics team composed of

unmanned ground vehicles (UGVs) with hybrid operational modes to tackle the multiple traveling

salesman problem (mTSP) and to overcome environmental obstacles, to accomplish the

challenging interplanetary exploration missions. The hybrid operational modes allow every UGV

in the team to not only travel on a ground surface but also jump over obstacles, and these UGVs

were named jumping rovers. The jumping capability provides a flexible form of locomotion by

leaping and landing on top of obstacles instead of navigating around obstacles. Through the

cooperation of heterogeneous robots, the goal is to explore unknown areas subject to extreme

environmental conditions. To solve the mTSP, an optimal path between any two objective points

in an mTSP is determined by the optimized rapidly-exploring random tree method, named RRT*,

and is further improved through a refined RRT* algorithm to find a smoother path between targets.

Then, the mTSP is formulated as a mixed-integer linear programming (MILP) problem to search

for the most cost-effective combination of paths for multiple UGVs that can allocate tasks like

visiting target points. The effectiveness of the hybrid operational modes and optimized motion

with assigned tasks is verified in an indoor, physical experimental environment using customized

jumping rovers.

iii

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor, Dr. Ran Dai for the

continuous support of my Honors Undergraduate Research Program, for her patience, motivation,

and immense knowledge of robotics, automation, and optimization. Her guidance helped me in all

the time of research and writing of this thesis. I could not have imaged having a better advisor and

mentor for my Honors Undergraduate Research Program. Because of Dr. Dai, I managed to have

my first conference paper submitted to the 2020 International Conference on Robotics and

Automation (ICRA) as a first author. Without her strong support, it would not be possible to

conduct this research.

My sincere thanks also go to Dr. Carlos Castro, who provided me insightful comments and

encouragement on being an outstanding presenter as a Buckeye engineering student to prepare me

for my Oral Defense. Furthermore, Dr. Castro always willing to listen patiently and to provide

advice when I faced unpredictable challenges on my research like a closed labmate of mine quitted

the research team out of a sudden.

Besides my advisor and Dr. Castro, I would like to thank Raymond Brooks, who is my

laboratory supervisor at Department of Engineering Education, and Ali Rahimiardestani, who is

my lab partner for giving me an access to use laser-cutting machine and 3D-printers to manufacture

my research jumping rovers for free, teaching me the proper methods of operating the laser-cutting

machine and 3D-printers and teaching me efficient techniques of soldering my rovers’ electronic

components. Without my lab supervisor and lab partner guidance and support, it would take me

more time and cost me more money to build a team of jumping rovers.

iv

I thank my fellow Automation and Optimization lab mates, MyungJin Jung, Changhuang

Wan, and Isaac Shyu in for the stimulating discussion, for the sleepless night we were working

together before deadlines, and for all the fun we had in the last four semesters. Because of their

advice, suggestions, encouragement, and constructive criticism, I learned several ingenious

heuristic techniques to solve and optimize a path planning problem with MATLAB and run an

indoor simulation efficiently with robots and the VICON system used to track the position of

objects.

Last but not least, I would like to thank my family: my parents, grandparents, my only

younger brother and my relatives for supporting me spiritually throughout writing this thesis and

my life in general.

v

Vita

June 2015 ... Cambridge International General Certificate

of Education Advanced Level, Taylor’s

College Subang Jaya, Malaysia

July 2018 ... Operation and Maintenance Engineering

Intern, Edra Power Holdings Sdn. Bhd.,

Kuala Langat, Malaysia

January 2018 to present Undergraduate Teaching Assistant,

 Department of Engineering Education,

 The Ohio State University

August 2018 to present Undergraduate Research Assistant,

 Mechanical and Aerospace Engineering

 Department, The Ohio State University

Fields of Study

Major Field: Mechanical Engineering

vi

Table of Contents

Abstract ... ii

Acknowledgments ... iii

Vita ...v

Table of Contents .. vi

List of Tables ..x

List of Figures ... xi

Chapter 1 : Introduction ..1

1.1 : Background and Motivation ..1

Figure 1.1: Luna 9 ...1

Figure 1.2: Viking 1 ..2

1.2 : Research Significance..3

1.3 : Thesis Focus ..6

1.4 : Thesis Overview ..6

Chapter 2 : Problem Statement ..7

Figure 2.1: An Example Operating Area from Top View ...8

Chapter 3 : Motion Planning And Task Allocation ..9

3.1 : Energy Consumption Model ..9

vii

3.2 : Introduction to Rapidly-Exploring Random Tree (RRT) and Rapidly-Exploring Random

Star (RRT*) .. 10

3.3 : Modification of Rapidly-Exploring Random Star (RRT*) for Jumping Rovers 12

Figure 3.1: Jumping Rovers' RRT* Flow Chart ... 13

3.4 : Jumping Rovers’ Refined (RRT*) ... 14

Figure 3.2: Refined RRT* Flow Chart ... 14

Figure 3.3: Refined RRT* with an Obstacle Illustration ... 15

3.5 : Task Allocation via MILP ... 15

Chapter 4 : Experimental Environments And Customized Jumping Rovers 18

4.1 : Experimental Environments... 18

Figure 4.1: MATLAB Simulation’s mTSP Scenario .. 18

Figure 4.2: The mTSP Experimental Environment ... 19

4.2 : Algorithm Implementation .. 20

Figure 4.3: Completed RRT Paths Generation ... 20

Figure 4.4: Trees Between Target 1 and Target 2 and Between Target 1 and 3. 21

Figure 4.6: Single TSP’s Solution Using Refined RRT* and RRT* Paths 23

4.3 : Jumping Rovers’ Design and Construction .. 23

Figure 4.7: Jumping Rover 2 with Lesser Power Consumption and Lower Jumping Height

 .. 24

viii

Figure 4.8: Jumping Rover 1 with More Power Consumption and Higher Jumping Height 24

Figure 4.9: Jumping Rover 2’s Jumping Mechanism Isometric View 26

Figure 4.10: Jumping Rover 1’s Jumping Mechanism Top View 26

Figure 4.11: Information Flow Chart for Both Jumping Rovers ... 28

Figure 4.12: Jumping Rover 2’s Power and Signal Pathways ... 28

Figure 4.13: Jumping Rover 1’s Power and Signal Pathway .. 29

Chapter 5 : Simulation and Experimental Results .. 30

Figure 5.1: mTSP 3D Trajectories with Two Jumping Rovers ... 30

Table 5.1: Energy Consumed by Each Rover while Running at its Assigned Route. 32

Figure 5.3: 2D Trajectories with Jumping Options ... 34

Figure 5.4: 2D Trajectories to Avoid Jump if Possible ... 34

Table 5.2: Comparative Results for the mTSP without Jumping Option 35

Chapter 6 : Conclusion .. 37

6.1 : Contributions ... 37

6.2 : Additional Applications ... 38

6.3 : Future Work .. 39

6.4 : Summary ... 39

Bibliography ... 41

Appendix A. Codes ... 44

ix

Simulation MATLAB Codes ... 44

Experimental MATLAB Codes ... 94

Jumping Rover 1’s Python Scripts ... 123

Jumping Rover 2’s Arduino Sketches .. 128

Appendix B. Computer-Aided Design Drawings ... 138

Figure B.1: Jumping Rover 2 Design CAD Drawings .. 138

Figure B.2: Jumping Rover 2’s Jumping Mechanism Design ... 139

Figure B.3: Spooling Wheel Design CAD Drawing ... 140

Figure B.4: Spool Puller Design CAD Drawing ... 141

Figure B.5: Jumping Rover 1’s Upper Chassis CAD Drawing ... 142

Appendix C. Additional Research Images and Tables.. 143

Figure C.1: Sequential Time-lapse of the Jumping Rover Team Performing the Physical

Experiment of the mTSP Mission .. 143

Table C.1: Jumping Rover 1’s Assigned Coordinates for the Experimental Test 144

Table C.2: Jumping Rover 2’s Assigned Coordinates for the Experimental Test 144

file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893420
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893420
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893420
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893421
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893421
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893421
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893422
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893422
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893422
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893423
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893423
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893423
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893424
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893424
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893424

x

List of Tables

Table 5.1: Energy Consumed by Each Rover while Running at its Assigned Route. 32

Table 5.2: Comparative Results for the mTSP without Jumping Option..................................... 35

Table 5.3: Experimental and Simulation Results Comparison for the 2D Trajectories with

Jumping Options ... 36

Table C.1: Jumping Rover 1’s Assigned Coordinates for the Experimental Test 144

Table C.2: Jumping Rover 2’s Assigned Coordinates for the Experimental Test 144

xi

List of Figures

Figure 1.1: Luna 9 ...1

Figure 1.2: Viking 1 ..2

Figure 2.1: An Example Operating Area from Top View ...8

Figure 3.1: Jumping Rovers' RRT* Flow Chart ... 13

Figure 3.2: Refined RRT* Flow Chart ... 14

Figure 3.3: Refined RRT* with an Obstacle Illustration .. 15

Figure 4.1: MATLAB Simulation’s mTSP Scenario .. 18

Figure 4.2: The mTSP Experimental Environment .. 19

Figure 4.3: Completed RRT Paths Generation ... 20

Figure 4.4: Trees Between Target 1 and Target 2 and Between Target 1 and 3. 21

Figure 4.5: All Possible Paths or Trees Generated by RRT* .. 22

Figure 4.6: Single TSP’s Solution Using Refined RRT* and RRT* Paths 23

Figure 4.7: Jumping Rover 2 with Lesser Power Consumption and Lower Jumping Height 24

Figure 4.8: Jumping Rover 1 with More Power Consumption and Higher Jumping Height 24

Figure 4.9: Jumping Rover 2’s Jumping Mechanism Isometric View .. 26

Figure 4.10: Jumping Rover 1’s Jumping Mechanism Top View ... 26

Figure 4.11: Information Flow Chart for Both Jumping Rovers ... 28

Figure 4.12: Jumping Rover 2’s Power and Signal Pathways ... 28

Figure 4.13: Jumping Rover 1’s Power and Signal Pathway .. 29

Figure 5.1: mTSP 3D Trajectories with Two Jumping Rovers ... 30

xii

Figure 5.2: Time History of the Power Consumption of Both Jumping Rovers in the

Experimental Test. .. 31

Figure 5.3: 2D Trajectories with Jumping Options .. 34

Figure 5.4: 2D Trajectories to Avoid Jump if Possible ... 34

Figure B.1: Jumping Rover 2 Design CAD Drawings .. 138

Figure B.2: Jumping Rover 2’s Jumping Mechanism Design ... 139

Figure B.3: Spooling Wheel Design CAD Drawing ... 140

Figure B.4: Spool Puller Design CAD Drawing... 141

Figure B.5: Jumping Rover 1’s Upper Chassis CAD Drawing ... 142

Figure C.1: Sequential Time-lapse of the Jumping Rover Team Performing the Physical

Experiment of the mTSP Mission .. 143

file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893457
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893457
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893457
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893458
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893458
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893458
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893459
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893459
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893459
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893460
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893460
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893460
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893461
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893461
file://coeit.osu.edu/home/t/tan.783/Downloads/Honor_Thesis_Kai_Chuen_Tan_783_V3a.docx#_Toc24893461

1

Chapter 1 : Introduction

1.1: Background and Motivation

The remarkable launch of the world’s first artificial satellite, Sputnik 1 had started a new

era of scientific, technological, and political achievements, which is also known as the Space Age,

revolutionary technologies like computers, space launch vehicles, nanomaterials, robots, and

artificial intelligence have continued to advance rapidly after the dawn of the Space Age. On

February 3rd, 1966, Luna 9 was the first successful unmanned spacecraft that achieved a soft

landing on the Moon and transmitted a series of lunar surface photographs to the planet Earth [1].

Figure 1.1: Luna 9

https://lunarexploration.esa.int/explore/missions/239?ia=334

https://lunarexploration.esa.int/explore/missions/239?ia=334

2

The first in a series of robot lunar rovers, Lunokhod 1 was carried to the Moon by the Luna

17 on the November 17, 1970; Lunokhod 1 with an estimated lifetime of three lunar days managed

to travel 10.54 kilometers, returned more than 20,000 TV images and 206 high resolution

panoramas, and used its built-in RIFMA X-ray fluorescence spectrometer to conduct 25 soil

analysis in 11 lunar days [2]. Later in the year 1976, National Aeronautics and Space

Administration’s (NASA) Viking 1 was the first rover that landed on Mars; the lander took high-

resolution images and performed the first rover that landed on Mars; the lander took high-

resolution images and performed the first Martian soil sample successfully with its special

biological laboratory and a robotic arm to study the Martian soil sample successfully with its

special biological laboratory and a robotic arm to study the Martian uninhabitable environment

and to search life on Mars [3].

Figure 1.2: Viking 1

https://www.jpl.nasa.gov/missions/viking-1/

The development and applications of unmanned ground vehicles (UGVs) have significant

contributions to today’s science and technology advancement by performing planetary

https://www.jpl.nasa.gov/missions/viking-1/

3

experiments and providing crucial information for potential, future manned missions. Therefore,

robotics missions have become a part of the beginning and vital stage of the interplanetary space

explorations without risking human lives.

Although current generation rovers including Mars Science Laboratory (MSL) Curiosity

Rover have proven their distinctions, they are large and heavy, for example, Curiosity Rover has

a similar size of a golf cart and weight of 1,982 pounds [4]. Huge size and large weight of a rover

will increase the landing impact damage of a space capsule along with a rover; weight and size

problems will consume more power to explore in a rough and extreme environment and reduce

rovers’ operation time. For instance, the first comet lander, Philae landed on the Comet

67P/Churyumov–Gerasimenko successfully in 2014, but it lost communication with the comet orbiter,

Rosetta due to the inability of climbing the rocky surface of the comet and the low battery power [5].

Therefore, the upcoming rover design will need to be re-engineered to achieve increasingly ambitious

interplanetary missions’ goals and objectives.

1.2: Research Significance

As humanity discovers more about the universe we live in, the variety of technologies

available to explore unfamiliar terrain has dramatically increased. The recent exploding

development of robotic vehicle systems has been one of these technologies which include

unmanned aerial and ground vehicle systems has been one of these technologies which include

unmanned ground and aerial vehicles (UGVs and UAVs), respectively. UGVs and UAVs both

have their advantages and disadvantages. For instance, while UGVs are able to explore tight spaces

without the hindrance of rotating propellers, UGVs are unable to overcome major changes in

4

increased elevation. On the other hand, although UAVs can generally travel at a higher speed than

UGVs, UAVs will require more control efforts in unfavorable atmospheric conditions. As a result,

a noble solution is required to tackle the challenges that both UGVs and UAVs are facing for

interplanetary exploration purposes.

One of the possible solutions is the wheeled jumping miniature rovers. The development

of the robotic jumping mechanism has been extensively investigated. These methods include the

deformation of wheels [6] and shifting of internal masses [7]. Given that a rover can both attain

forward movement by using both rotating wheels and a jumping mechanism, there is a major

flexibility improvement when traveling in environments with obstacles. For motion planning of a

jumping rover, the path over or on top of an obstacle can be treated as one part of a planned path

given that rovers have the jumping capabilities to hop onto or over an obstacle below certain

heights. Much of the existing studies on the control of a jumping rover entail the precise operation

of motion. This includes legged motion with calculations into speed and torque [8] and motion

control of a jumping rover that uses inertial force with a tail as its jumping mechanism [9]. The

existing studies for motion planning of a jumping robot focus on finding an optimal position for a

jumping robot by prioritizing safety and minimizing the jumping cost. Although obstacles have

been considered when planning the jumping motion, each obstacle is treated as a point that cannot

be used as a suitable surface if they were landed upon.

 Another approach to improve the flexibility of a robotic system is the involvement of a

cooperative robot team, especially for missions with multiple tasks that can be jointly

accomplished by multiple robots [10], [11]. It can be predicted that the flexibility and mobility of

a robotic system can be further improved by a cooperative jumping rover team where each team

5

member has the hybrid operational modes while being able to perform assigned subtasks toward

the overall mission goal. This paper focuses on motion planning and task allocation for a jumping

rover team to visit several target locations in an optimal manner, known as the multiple traveling

salesman problem (mTSP) [12].

 Approaches to solving the traveling salesman problem (TSP) have been investigated over

the years ranging from the use of genetic algorithms in an iterative approach [13] to the

optimization of multiple simultaneous TSPs [14]. The work in [15] discusses the use of multiple

robots to cover a 3D searching area, which is formulated as a single TSP. The use of greedy and

optimal solutions in [15] directed the four robots to efficiently cover areas for a search-and-rescue

type scenario. While extending the TSP to three dimensions, the robots in [15] were restricted to

one form of locomotion, which indicates obstacles are treated as traversable only if a viable path,

such as a ramp, was available. In contrast, a jumping rover removes the critical constraint of

obstacle, which enables a traversable terrain for the entire operating environment. As a result, an

optimal path for each jumping rover can be planned in the mTSP by taking into account traditional

avoidance procedures, as well as creating other possibilities for each obstacle encountered.

Although many algorithms for motion planning with avoidance zones have been developed, e.g.,

particle swarming optimization [16] and variations of the genetic algorithm [17], none of these

works consider an obstacle in the operating environments as a possible pathway using both the

jumping and rolling mechanisms.

6

1.3: Thesis Focus

 To assign visiting tasks to a jumping rover team and simultaneously plan paths between

any two targets, a refined and optimized rapidly-exploring random tree (RRT*) method,

specifically designed for motion planning of a jumping rover, is combined with the mixed-integer

linear programming (MILP) to allocate the visiting tasks. This method finds the optimal route so

that each target is visited only once while minimizing a designated performance index. Targets or

visiting points may be located on top of an obstacle. Adjacent obstacles of varying elevations are

considered in the problem where a jumping rover may jump onto an obstacle when presented on

top of another. The purpose of this research is to create a cost-effective and mission-capable robotic

system that can roll on wheels or jump to explore an area of varying elevations.

1.4: Thesis Overview

 This undergraduate honors thesis consists of six different chapters, and it is organized as

follows. Chapter 2 presents the problem statement of the research. Chapter 3 describes the motion

planning and task allocation algorithm, which includes the RRT*, refined RRT*, and MILP

algorithms. Chapter 4 displays the algorithm implementations, indoor simulation environments,

and design and construction of jumping rovers. The simulation and experimental results are

presented in Chapter 5. Last but not least, Chapter 6, the conclusion, addresses the thesis’ main

contributions and future work of the research.

7

Chapter 2 : Problem Statement

 The objective for a cooperative team of 𝑝𝑝 UGVs with rolling and jumping capabilities is

to travel the most cost-efficient route to visit a set of targets, denoted as 𝑇𝑇 = 𝑇𝑇{1,2,3,…,𝑚𝑚}, where 𝑚𝑚

is the total number of targets within an operating area; the UGVs are indexed as 𝑧𝑧 = 1,2,3, … , 𝑝𝑝.

UGVs in the team can reach to different jumping heights, denoted by ℎ𝑧𝑧. The cost considered here

could be time, energy consumption, or distance. In addition to the specified visiting points or

targets, the obstacles that are randomly scattered in the area are considered and denoted by 𝑂𝑂 =

𝑂𝑂{1,2,3,…,𝑛𝑛}, where 𝑛𝑛 is the total number of obstacles. Partial of the targets are assigned on top of

the obstacles. Each obstacle is a rectangle prism with a known length, width, and height

dimensions. Obstacles are treated as solid and rigid objects that cannot be passed through and

cannot be moved by UGVs. Although obstacle borders can reside in an adjacent, collinear

orientation, such as 𝑂𝑂3 and 𝑂𝑂4 as shown in Figure 2.1, obstacles’ borders cannot intersect or be

inside each other. In addition, obstacles are placed so their borders do not extend outside a buffer

zone that is inside the test area as illustrated in Figure 2.1. As a result, this provides an opportunity

for jumping rovers to avoid obstacles near the edge of the operating area if necessary.

8

Figure 2.1: An Example Operating Area from Top View

The yellow stars are the target that jumping rovers need to visit, and the square boxes with bolded black
outlines are the obstacle that jumping rovers can decide whether to avoid or jump onto it.

 The overhead view of the test area as shown in Figure 2.1 is regarded as a grid with a

coordinate system based upon an X-Y plane. Within this view, the elevations for all grid points

besides those occupied by obstacles are treated as constant, and all the obstacles can be jumped

on top by jumping rovers.

9

Chapter 3 : Motion Planning And Task Allocation

3.1: Energy Consumption Model

The cost to be optimized in the mTSP of a jumping rover team can be a single performance

index, for instance, time, energy, and distance, or a combination of weighted performance indices.

As an example, energy consumption is considered as the cost to minimize in the mTSP. Consider

a single UGV that operates with two different operational modes, rolling of wheels attached to the

chassis and jumping motion through the actuation of spring. With a constant velocity during

straight forward rolling and constant angular speed during zero turning radius for UGV 𝑧𝑧, 𝑧𝑧 =

1,2,3, … , 𝑝𝑝, the power consumption rate of the jumping rover in straight forward and rotational

motions are denoted by 𝑃𝑃𝑧𝑧𝑙𝑙 and 𝑃𝑃𝑧𝑧𝑟𝑟, respectively. In addition, the passive power drawn from the

vehicle’s electronic components, such as the micro-controller, is a fixed value and denoted by 𝑃𝑃𝑧𝑧𝑎𝑎.

The height of the jumping motion for each UGV is held constant, denoted by ℎ𝑧𝑧, with a fixed

energy expenditure associated with the corresponding jumping rover 𝐸𝐸𝑧𝑧
𝑗𝑗. Then, the energy usage

for each jumping rover traveling from target 𝑖𝑖 to target 𝑗𝑗, 𝑖𝑖, 𝑗𝑗 = 1, 2, 3, … ,𝑚𝑚, 𝑖𝑖 ≠ 𝑗𝑗, is determined

by the equation as shown in the following:

𝒄𝒄𝒊𝒊𝒊𝒊,𝒛𝒛 = 𝑷𝑷𝒛𝒛𝒍𝒍 𝒕𝒕𝒊𝒊𝒊𝒊,𝒛𝒛𝒍𝒍 + 𝑷𝑷𝒛𝒛𝒓𝒓𝒕𝒕𝒊𝒊𝒊𝒊,𝒛𝒛𝒓𝒓 + 𝑷𝑷𝒛𝒛𝒂𝒂�𝒕𝒕𝒊𝒊𝒊𝒊,𝒛𝒛𝒍𝒍 + 𝒕𝒕𝒊𝒊𝒊𝒊,𝒛𝒛𝒓𝒓 � + 𝑬𝑬𝒛𝒛
𝒊𝒊𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊,𝒛𝒛 (Equation 3.1)

10

where 𝑡𝑡𝑖𝑖𝑗𝑗,𝑧𝑧
𝑙𝑙 and 𝑡𝑡𝑖𝑖𝑗𝑗,𝑧𝑧

𝑟𝑟 are the time duration of the straight forward and rotational motions between

targets 𝑖𝑖 and 𝑗𝑗, respectively, 𝑛𝑛𝑗𝑗𝑖𝑖𝑗𝑗 ,𝑧𝑧 is the overall number of jumps for UGV 𝑧𝑧, 𝑧𝑧 = 1, 2, 3, … , 𝑝𝑝,

between targets 𝑖𝑖 and 𝑗𝑗. By summarizing the energy consumption of all jumping rovers of all paths

between any two targets, the overall UGV team energy usage can be found during the mTSP

mission.

3.2: Introduction to Rapidly-Exploring Random Tree (RRT) and Rapidly-Exploring Random

Star (RRT*)

Rapidly-exploring random tree (RRT) is a path planning tool, initially developed by S. LaValle

and J. Jr. James [18], [19]. RRT is a sampling-based heuristic search algorithm that simulates an

incremental space-filling tree exploring design space. The random nature of the RRT is essential

to the algorithm’s speed as opposed to methodically searching a space. Each tree begins at an

initial point, 𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖, and attempts to make a connection between the origin and a random point,

𝑥𝑥𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟, in the area. The length of the connection is dictated by an established unit length, ∆𝑥𝑥. The

connection in the direction of the random point is made with the nearest point in the tree, 𝑥𝑥𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟, to

a new point, 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛, which can be reached. Basically, a unit vector multiplied by a scalar, ∆𝑥𝑥, in the

direction of the random point. This configuration is added to the result data and a new connection

made. The process is repeated for the number of desired iterations, 𝐾𝐾. The RRT algorithm can be

simply illustrated by the RRT function, 𝑇𝑇 pseudocode as shown in the following:

11

 𝑅𝑅𝑅𝑅𝑇𝑇 (𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 ,𝐾𝐾,∆𝑥𝑥)
𝑇𝑇. 𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡(𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖)

 𝐟𝐟𝐟𝐟𝐟𝐟 𝑘𝑘 ← 1 𝐭𝐭𝐟𝐟 𝐾𝐾 𝐝𝐝𝐟𝐟
 𝑥𝑥𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟 ← RANDOM_STATE()
 𝑥𝑥𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟 ← NEAREST_POINT(𝑥𝑥𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟,𝑇𝑇)
 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 ← NEW_CONFI (𝑥𝑥𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟,𝑇𝑇,∆𝑥𝑥)
 𝑇𝑇. add_vertex(xnew)
 𝑇𝑇. add_edge(xnear , 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛)
 𝐞𝐞𝐞𝐞𝐝𝐝 𝐟𝐟𝐟𝐟𝐟𝐟
 𝐟𝐟𝐞𝐞𝐭𝐭𝐫𝐫𝐟𝐟𝐞𝐞 𝑇𝑇

 The value of 𝑥𝑥𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟 can be replaced by a final destination point, 𝑥𝑥𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖 if the path-finding

problem provides a value of 𝑥𝑥𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖. Once the destination point is reached, the function 𝑇𝑇 will be

terminated. Hence, the RRT function with a final destination point, 𝑇𝑇𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖 can be presented by the

modified pseudocode as shown below:

 𝑅𝑅𝑅𝑅𝑇𝑇 (𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖,∆𝑥𝑥)
𝑇𝑇𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖 . 𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡(𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖)

 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐞𝐞 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 ≠ 𝑥𝑥𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖 ,𝐝𝐝𝐟𝐟
 𝑥𝑥𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟 ← RANDOM_STATE()
 𝑥𝑥𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟 ← NEAREST_POINT(𝑥𝑥𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟,𝑇𝑇)
 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 ← NEW_CONFI (𝑥𝑥𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟,𝑇𝑇,∆𝑥𝑥)
 𝑇𝑇𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖 . add_vertex(xnew)
 𝑇𝑇𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖 . add_edge(xnear, 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛)
 𝐞𝐞𝐞𝐞𝐝𝐝 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐞𝐞
 𝐟𝐟𝐞𝐞𝐭𝐭𝐫𝐫𝐟𝐟𝐞𝐞 𝑇𝑇𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖

 𝑥𝑥𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟 must be remained outside of the obstacles, and any edges added cannot intrude into

obstacles when the obstacle avoidance feature is implemented.

While effective in finding a solution with great speed, RRT can provide solutions that are

inefficient in terms of the length of the tree path from 𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 to 𝑥𝑥𝑟𝑟𝑛𝑛𝑑𝑑𝑖𝑖. This is especially obvious

when the function is constrained from avoidance zones. Thus, Rapidly-exploring Random Tree

12

Star (RRT*) is a method to find an optimal solution between the points in a tree. RRT* takes each

point in a tree, finds the points within a radius (or neighborhood) of each point and replaces existing

edges to that point with the most efficient path without violating constraints like intruding into the

obstacles.

3.3: Modification of Rapidly-Exploring Random Star (RRT*) for Jumping Rovers

Developing the path planning algorithm for the jumping rover needs to consider multiple

pathway options including avoiding and jumping onto obstacles. For each obstacle encountered

on an otherwise straight-line path via RRT* to the target, the algorithm splits a new tree off the

original tree starting from the point where the obstacle was encountered; the original tree avoids

the obstacle and the new tree jumps onto the obstacles. This process is repeated for each obstacle

encountered by the original tree. Once the original tree has reached its designated target, each new

tree created is analyzed with the possibility that it will also split upon each obstacle encountered.

The tree that has the minimum cost between two targets is chosen as a candidate for the path

segment of mTSP. This process is repeated for each combination of targets. The Jumping Rovers’

RRT* flow chart is summarized in Figure 3.1.

13

Figure 3.1: Jumping Rovers' RRT* Flow Chart

14

 After all the possible trees between any two targets were found, the best trees with the least

cost are selected and placed in a pool to be evaluated by the Energy Consumption Model via the

mixed-integer linear programming (MILP). The MILP can find the global optimum solution to the

mTSP by determining the best combination of tree paths between targets to form an overall route

for each jumping rover.

3.4: Jumping Rovers’ Refined (RRT*)

RRT* is restricted to optimization within a radius around a vertex in question or within a

“neighborhood.” Due to this limitation, RRT* may not provide a smooth solution that is

traversable between target locations. To compensate for the limitation, the refined RRT* method

was proposed with the process shown by the refined RRT* flow chart in Figure 3.2 and a direct

illustration in Figure 3.3. Detailed implementation of the refined RRT* for the jumping rover is

further explained in Chapter 4.2.

Figure 3.2: Refined RRT* Flow Chart

15

Figure 3.3: Refined RRT* with an Obstacle Illustration

3.5: Task Allocation via MILP

From the refined RRT*, the energy-efficient paths between any two visiting targets can be

found. Next, the mTSP is formulated as a MILP to find the best combination of all treelike paths

generated from the refined RRT* and simultaneously assign a jumping rover to every selected path

segment. Each target in the mission is to be visited once by only one UGV, and all of the routes

must begin and end at the same depot. This problem is classified as an mTSP which is a

generalization of the TSP. The mTSP problem will be the same as the TSP when the value of 𝑧𝑧 is

equal to 1.

The mTSP can be represented by a complete graph 𝐺𝐺 which consists of a set of targets 𝑇𝑇,

denoted as vertices of the graph, and a set of edges, 𝐸𝐸 (connections between any two target points);

associated with each edge (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 is the edge cost for UGV 𝑧𝑧 travels along that edge, denoted

16

by 𝑐𝑐𝑖𝑖𝑗𝑗,𝑧𝑧. Since a jumping rover may land on the top of an obstacle, the maximum elevation along

the edge (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸, denoted by ℎ(𝑖𝑖, 𝑗𝑗), should be less equal than the jumping height of the jumping

rover. Furthermore, a binary three-index variable, 𝑥𝑥𝑖𝑖𝑗𝑗,𝑧𝑧 for edge (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 is defined as:

𝑥𝑥𝑖𝑖𝑗𝑗,𝑧𝑧 = � 1 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤 𝑏𝑏𝑒𝑒 𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏 𝑈𝑈𝐺𝐺𝑈𝑈 𝑧𝑧
 0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤 𝑛𝑛𝑛𝑛𝑡𝑡 𝑏𝑏𝑒𝑒 𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏 𝑈𝑈𝐺𝐺𝑈𝑈 𝑧𝑧

Then, the mTSP with energy consumption model is formulated as:

𝑚𝑚𝑖𝑖𝑛𝑛 𝐺𝐺(𝑇𝑇,𝐸𝐸) (Equation 3.2)

𝑚𝑚𝑖𝑖𝑛𝑛∑ ∑ ∑ 𝑐𝑐𝑖𝑖𝑗𝑗,𝑧𝑧𝑥𝑥𝑖𝑖𝑗𝑗,𝑧𝑧
𝑝𝑝
𝑧𝑧=1

𝑚𝑚
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

𝑚𝑚
𝑖𝑖=1 (Equation 3.3)

𝑚𝑚𝑖𝑖𝑛𝑛∑ ∑ ∑ (𝑃𝑃𝑧𝑧𝑙𝑙𝑡𝑡𝑖𝑖𝑗𝑗,𝑧𝑧
𝑙𝑙 + 𝑃𝑃𝑧𝑧𝑟𝑟𝑡𝑡𝑖𝑖𝑗𝑗 ,𝑧𝑧

𝑟𝑟 + 𝑃𝑃𝑧𝑧𝑎𝑎�𝑡𝑡𝑖𝑖𝑗𝑗,𝑧𝑧
𝑙𝑙 + 𝑡𝑡𝑖𝑖𝑗𝑗,𝑧𝑧

𝑟𝑟 � + 𝐸𝐸𝑧𝑧
𝑗𝑗𝑛𝑛𝑗𝑗𝑖𝑖𝑗𝑗,𝑧𝑧)𝑥𝑥𝑖𝑖𝑗𝑗,𝑧𝑧

𝑝𝑝
𝑧𝑧=1

𝑚𝑚
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

𝑚𝑚
𝑖𝑖=1

 (Equation 3.4)

𝑣𝑣. 𝑡𝑡. ∑ ∑ 𝑥𝑥𝑖𝑖𝑗𝑗,𝑧𝑧
𝑝𝑝
𝑧𝑧=1

𝑚𝑚
𝑖𝑖=1,𝑖𝑖≠𝑗𝑗 = 𝑝𝑝, 𝑗𝑗 = 1 (Equation 3.5)

 ∑ ∑ 𝑥𝑥𝑖𝑖𝑗𝑗,𝑧𝑧
𝑝𝑝
𝑧𝑧=1

𝑚𝑚
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 = 𝑝𝑝, 𝑖𝑖 = 1 (Equation 3.6)

 ∑ ∑ 𝑥𝑥𝑖𝑖𝑗𝑗,𝑧𝑧
𝑝𝑝
𝑧𝑧=1

𝑚𝑚
𝑖𝑖=1,𝑖𝑖≠𝑗𝑗 = 1, 𝑗𝑗 = 2, 3, … ,𝑚𝑚 (Equation 3.7)

 ∑ ∑ 𝑥𝑥𝑖𝑖𝑗𝑗,𝑧𝑧
𝑝𝑝
𝑧𝑧=1

𝑚𝑚
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 = 1, 𝑖𝑖 = 2, 3, … ,𝑚𝑚 (Equation 3.8)

 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗 + 𝑞𝑞 ∑ 𝑥𝑥𝑖𝑖𝑗𝑗,𝑧𝑧
𝑝𝑝
𝑧𝑧=1 ≤ 𝑞𝑞 − 1, 2 ≤ 𝑖𝑖 ≠ 𝑗𝑗 ≤ 𝑚𝑚 (Equation 3.9)

 𝑥𝑥𝑖𝑖𝑗𝑗,𝑧𝑧 ∈ {0,1},∀𝑧𝑧, 𝑖𝑖, 𝑗𝑗 (Equation 3.10)

 𝑥𝑥𝑖𝑖𝑗𝑗,𝑧𝑧ℎ(𝑖𝑖, 𝑗𝑗) ≤ ℎ𝑧𝑧 ,∀𝑧𝑧, 𝑖𝑖, 𝑗𝑗 (Equation 3.11)

17

where 𝑢𝑢𝑖𝑖 and 𝑢𝑢𝑗𝑗 are the positions of the targets 𝑖𝑖 and 𝑗𝑗, respectively, and 𝑞𝑞 is the maximum number

of targets that can be visited by any rovers. The depot is assumed to be located at 𝑇𝑇1. Equation 3.5

and Equation 3.6 constraints ensure exactly 𝑝𝑝 UGVs return to the depot 𝑇𝑇1 and 𝑝𝑝 UGVs depart

from the depot 𝑇𝑇1, respectively. Equation 3.7 and Equation 3.8 ensure only one UGV enters each

target and only one UGV leaves each target. Equation 3.9 is the extensions of Miller-Tucker-

Zemlin-based sub-tour elimination constraints that ensure there are no sub-routes among the non-

starting targets [20]. As a result, the solution returned is a single tour instead of the union of smaller

tours for each UGV. The last constraints are the jumping height constraints such that the maximum

elevation along the edge (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 can be achieved by UGV 𝑧𝑧.

18

Chapter 4 : Experimental Environments And Customized Jumping Rovers

4.1: Experimental Environments

The scenario developed for the experimental verification of the jumping rover team uses

several obstacles in different shapes and sizes, illustrated in Figure 4.1.

Figure 4.1: MATLAB Simulation’s mTSP Scenario

 Obstacles and targets are distributed in a manner to provide different challenges for the

developed algorithm to overcome. This includes targets directly behind obstacles, targets on top

19

of obstacles, and targets with multiple obstacles obstructing a direct line-of-sight path. Targets are

represented by filled, blue circles and numbered with a black font as shown in Figure 4.1. Objects

are represented as colored rectangles and numbered with a corresponding color font. Note that all

spaces not encompassed by a colored rectangle indicate ground level, space surrounded by the

lines of a green rectangle indicates an approximate height of 11 cm and space surrounded by the

lines of the black rectangle indicates an approximate height of 22 cm as illustrated in Figure 4.1.

Experimental tests were performed indoors in the Automation and Optimization Laboratory in

Scott Laboratory (i.e., Mechanical and Aerospace Engineering Department) at the Ohio State

University. Obstacles used were cardboard structures of various dimensions while targets are

indicated by taped markers throughout the test area as shown in Figure 4.2.

Figure 4.2: The mTSP Experimental Environment

20

4.2: Algorithm Implementation

Trees are formed between targets via RRT as shown in Figure 4.3 and are optimized by RRT*

to form a cost-efficient path between a query point and an existing point in the tree within a given

radius. If an obstacle is encountered, the default algorithm reaction is to avoid the obstacle, create

a new branch from the obstacle encountered, and continue till reaching the target, as outlined in

Chapter 3.4 and shown in Figure 4.4. The series of green thin lines indicate the path-planning

formed by RRT* to reach target 3 from target 1. The tree is optimized multiple times to minimize

its cost giving it a “splintered” appearance while also creating a connected path from its initial

point to the destination point.

Figure 4.3: Completed RRT Paths Generation

21

Figure 4.4: Trees Between Target 1 and Target 2 and Between Target 1 and 3.

 As illustrated in Figure 4.4, the empty blue circle indicates the point at which an obstacle

is first encountered and requires jumping. The red star indicates the theoretical landing location of

the jump and is also the beginning of a new tree formed with target 3. In other words, the red star

is treated as a new target location but is strictly a tree to be formed with target 3 and not with any

other targets. The process continues with other trees formed between original targets. These trees

formed also produce their own additional targets due to jumping and avoiding obstacles. The

algorithm continues to form each tree between targets and new ones that were formed to account

for the need to jump until a complete graph is constructed, shown in Figure 4.5.

22

Figure 4.5: All Possible Paths or Trees Generated by RRT*

The solution from RRT* without refinement is a coarse path that is not continuous, nor

traversable. In light of this, the refined RRT* is applied to make all paths segments traversable,

Next, using an open-looped single TSP as an example, the MILP formulated in Chapter 3.5 is

applied to produce a solution with minimum energy usage. The energy usage includes the rolling

motion of the wheels, rotation of the rover to change its heading, and jumping, as shown in Figure

4.6. The single TSP results are shown in Figure 4.6.

23

Figure 4.6: Single TSP’s Solution Using Refined RRT* and RRT* Paths

4.3: Jumping Rovers’ Design and Construction

For a rover to be used in this simulation, there are multiple requirements. First and foremost,

it must be capable of both rolling motions to produce ground-based locomotion and jumping

motion to produce vertical displacement. Second, it must be able to record power consumption

from both types of motion to properly validate the proposed algorithm. The wheeled, jumping

rovers are based upon the Parrot Jumping Sumo robot chassis [21]. There are two jumping rovers

with a similar design, but both jumping rovers have a different power consumption rate and

jumping heights. One of the rovers was built for a longer range of operation time, and it is named

Jumping Rover 2 as shown in Figure 4.7; it consumed lesser energy to operate but will only be

24

able to jump onto an obstacle with a maximum height of 110 mm. On the other hand, the other

jumping rover was built for a better and more powerful jumping capability, but it has a shorter

operation duration because it requires more power to run; it can jump twice the height of the

longer-range rover, which is approximately 220 mm, and it is named as Jumping Rover 1 as shown

in Figure 4.8.

Figure 4.7: Jumping Rover 2 with Lesser Power Consumption and Lower Jumping Height

Figure 4.8: Jumping Rover 1 with More Power Consumption and Higher Jumping Height

Jumping Rover 2 and Jumping Rover 1 chassis was mainly built from acrylic, nylon,

aluminum, acrylonitrile butadiene styrene (ABS) and 3D printed parts to ensure it to be lightweight

25

in order to achieve an acceptable height. Gearboxes are used for the wheel motors to reduce the

RPMs of the output. All circuits are placed on top of the jumping rover to allow ease of access for

debugging. Markers for the motion tracking system, in the form of gray spheres, were arranged in

an elevated, asymmetrical pattern so the location and the altitude of the jumping rover could be

accurately determined. The center of mass sits on the force vector of the jumping mechanism to

ensure the jumping rover does not flip after actuation. “Whiskers” in the front enable the rover to

descend from the top of obstacles without flipping over since the spring mechanism can catch the

edge of the obstacle in some cases.

Although both jumping rovers use a closed cam wheel to engage and pull the compression

springs mechanism that enables the rover to jump as shown in Figure 4.9 and Figure 4.10, Jumping

Rover 1 has a cam profile with a shorter prime circle radius as compared to Jumping Rover 2’s

cam profile, which allows Jumping Rover 1 to compress the springs further and jump higher after

the jumping mechanism released the springs. As a result, each jumping rover has a fixed jumping

height which is determined by the closed cam’s prime circle radius and the stiffness of the two

compression springs. For each jump, the one with higher jumping height consumes two and a half

times more energy than the other one.

26

Figure 4.9: Jumping Rover 2’s Jumping Mechanism Isometric View

Figure 4.10: Jumping Rover 1’s Jumping Mechanism Top View

Besides different cam profiles, Jumping Rover 2’s jumping mechanism uses a servo motor

to rotate the cam wheel instead of a DC motor because the servo motor is able to produce enough

torque to engage the spring pullers and compress a high stiffness spring before launching as

illustrated in Figure 4.9. On the other hand, Jumping Rover 1 uses the entire Parrot Jumping

Sumo’s unique jumping mechanism with a tiny 3.3 V DC gear motor that can produce sufficient

torque to rotate the cam wheel. The rotating closed cam causes the metal linkage to compress the

27

two springs until the metal linkage’s pin fits into the cam wheel’s dip as shown in Figure 4.10’s

third sub-image. To launch the Jumping Rover 1, the cam will continue to rotate past the dip where

the closed-cam slides downward sharply and release the compression springs causing the Jumping

Rover 1 to jump.

The Parrot Jumping Sumo robot that can a off the shelf is manually operated by a user. In

addition to the design of a more robust jumping mechanism described above, a micro-controller

like Arduino or a mini-computer like Raspberry Pi Zero W and a communication system were

integrated into the jumping rovers’ design to achieve autonomous operation. Jumping Rover 2 is

controlled wirelessly through serial commands with an Arduino Pro Mini via Synapse

communication protocols with MATLAB and Arduino IDE. Since Jumping Rover 1 is built

together with Raspberry Pi Zero W, it is controlled wirelessly via Wi-Fi with MATLAB and

Python 3 IDE. A series of commands are then relayed to a motor controller that supplies power to

the wheel motors. Signals for the Jumping Rover 2’s jumping mechanism are applied directly from

the Arduino to a servo motor; nevertheless, Jumping Rover 1’s jumping mechanism is actuated by

the motor controller and Raspberry Pi Zero W. Instructions for the optimal path are output from

the MATLAB simulation and followed by the physical rover through an XY-coordinate system.

The information flow chart for both jumping rovers is demonstrated in Figure 4.11.

28

Figure 4.11: Information Flow Chart for Both Jumping Rovers

Power throughout both jumping rovers’ electrical system is supplied by two Lithium

Polymer (LiPo) batteries. Jumping Rover 2 and Jumping Rover 1’s general system hookups are

presented in Figure 4.12 and Figure 4.13, respectively.

Figure 4.12: Jumping Rover 2’s Power and Signal Pathways

29

Figure 4.13: Jumping Rover 1’s Power and Signal Pathway

As illustrated in Figure 4.12 and Figure 4.13, power data is recorded at a fixed frequency using

the voltage/current sensor (V/C sensor). Both jumping rovers are programmed to follow a set of

coordinates put forth by the results of the motion planning and task allocation algorithm presented

in Chapter 3. Using the VICON motion tracking system to determine the location and attitude,

MATLAB provides a series of commands to the Arduino via Synapse and Raspberry Pi Zero W

via Wi-Fi simultaneously to dictate the motor rotation, allowing the jumping rover to reach each

target within 65 mm tolerance.

30

Chapter 5 : Simulation and Experimental Results

Simulation and experimental results using the two constructed jumping rovers and the

scenario described in Chapter 4 are presented here. The trajectories of the simulation and

experimental results of the mTSP are shown in Figure 5.1. The blue solid lines represent the rolling

and jumping paths of Jumping Rover 1, which is known as Route 1. The red lines represent the

rolling and jumping paths of Jumping Rover 2, which is known as Route 2. The planned paths

indicate that when visiting target 3, the Jumping Rover 1 elects to jump on top of the obstacle, the

Jumping Rover 2 elects to reach target 4 by jumping on top of a neighboring obstacle first. The

time history of power consumption of two jumping rovers in the experimental test is shown in

Figure 5.2. A sequential time-lapse of the jumping rover team performing the physical experiment

of the mTSP mission images are provided in Appendix C.

Figure 5.1: mTSP 3D Trajectories with Two Jumping Rovers

31

 Compared to the simulation result in Figure 5.1, the experimental result shows slight

differences. The major discrepancies are due to variations in location, attitude, jumping accuracy,

and recovery time from jumping. As a result, this requires the rover to compensate and reach a

coordinate using a different amount of power and time than originally planned. In addition, when

a jumping rover is located next to an obstacle or is at a certain range of pitch angle while jumping

at mid-air, the VICON motion tracking system may not be able to identify all of the markers on

the rover due to the blocked view, which generates navigation errors.

Figure 5.2: Time History of the Power Consumption of Both Jumping Rovers in the

Experimental Test.

32

Table 5.1: Energy Consumed by Each Rover while Running at its Assigned Route.

Name of the
Jumping Rover Route Number

Experimental
Energy

Consumption
[Joules, J]

Completion
Time

[seconds, s]

Jumping Rover 1 1 60.80 15.0
Jumping Rover 2 2 47.28 24.0

Based on Figure 5.2 and Table 5.1, Jumping Rover 1 consumed 60.80 J of energy and

took 15 seconds to complete Route 1; moreover, the energy consumption of Jumping Rover 2 is

13.52 J higher than the Jumping Rover 1’s energy consumption, and it took 9 seconds longer to

complete Route 2. Figure 5.2 also shown that Jumping Rover 1 has a higher passive power drawn

by the Raspberry Pi Zero W and other electronic components than the Jumping Rover 2’s passive

power drawn by the Arduino Pro Mini and its electronic components at the first 2.5 s of Figure

5.2. Furthermore, the estimated jumping energy consumed by Jumping Rover 1 is determined to

be approximately 18.376 J, and the Jumping Rover 2’s estimated jumping energy consumption is

calculated to be approximately 7.280 J based on Figure 5.2. Both rovers’ jumping energy

consumption calculations are shown as following:

𝐽𝐽𝑢𝑢𝑚𝑚𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒 𝐸𝐸𝑛𝑛𝑒𝑒𝐸𝐸𝑒𝑒𝑏𝑏,𝐸𝐸𝑗𝑗 [𝐽𝐽] = 𝑃𝑃𝑛𝑛𝑤𝑤𝑒𝑒𝐸𝐸 𝐶𝐶ℎ𝑎𝑎𝑛𝑛𝑒𝑒𝑒𝑒,𝑃𝑃 [𝑊𝑊] × 𝐽𝐽𝑢𝑢𝑚𝑚𝑝𝑝𝑖𝑖𝑛𝑛𝑒𝑒 𝑃𝑃𝑒𝑒𝐸𝐸𝑖𝑖𝑛𝑛𝑒𝑒 [𝑣𝑣]

 (Equation 5.1)

Jumping Rover 1’s Jumping Energy Consumption Calculation:

𝐸𝐸𝑗𝑗,1 = (23290 𝑚𝑚𝑊𝑊 − 1414 𝑚𝑚𝑊𝑊) × (11.96 𝑣𝑣 − 11.12 𝑣𝑣) = 18.376 𝐽𝐽

33

Jumping Rover 2’s Jumping Energy Consumption Calculation:

𝐸𝐸𝑗𝑗,2 = (5671 𝑚𝑚𝑊𝑊− 471 𝑚𝑚𝑊𝑊) × (20.39 𝑣𝑣 − 18.99 𝑣𝑣) = 7.280 𝐽𝐽

Jumping Rover 1’s overall rolling energy consumption is higher than Jumping Rover 2’s

overall rolling energy consumption as well based on Figure 5.2.

For the comparison purpose, an alternative result for the mTSP where jumping is avoided

unless the jumping rover needs to reach a target assigned on top of an obstacle. The top view of

the result in Figure 5.1 and the alternative result without jumping options is presented in Figure

5.3 and Figure 5.4, respectively. From the alternative result, it indicates that when jumping on top

of an obstacle is not an option when avoiding an obstacle, Jumping Rover 2 elects to take a longer

path to reach target 3 and Jumping Rover 1 elects to take a longer path to reach target 4. Compared

to the solution in Figure 5.3 with jumping option which consumes 105.74 Joules, the solution in

Figure 5.4 consumes 120.79 Joules. The comparative results indicate the energy reduction of 14.23

% with the jumping option for obstacle avoidance. Although time consumption is not considered

in the performance index, the mission duration in both results is compared. It indicates that using

the jumping option in Figure 5.3, it takes 15 seconds and 24 seconds, respectively, for Jumping

Rover 1 and Jumping Rover 2 to finish their corresponding tasks. While for the results without

jumping option, it takes 15.76 s and 29.2 seconds, respectively, for Jumping Rover 1 and Jumping

Rover 2 to complete their corresponding tasks. The time reduction for the result with jumping

option verifies the byproduct of time efficiency.

34

Figure 5.3: 2D Trajectories with Jumping Options

Figure 5.4: 2D Trajectories to Avoid Jump if Possible

35

Table 5.2: Comparative Results for the mTSP without Jumping Option

Type of Trajectories
Simulation Total

Energy Consumption
[Joules, J]

Total Completion Time
[seconds, s]

2D Trajectories with
Jumping Options 105.743 24.0

2D Trajectories to Avoid
Jumping Options if Possible 120.790 29.2

The calculation of the total energy consumption percentage change between 2D trajectories with

jumping options and without jumping options if possible is shown as following:

 𝑇𝑇𝑛𝑛𝑡𝑡𝑎𝑎𝑤𝑤 𝐸𝐸𝑛𝑛𝑒𝑒𝐸𝐸𝑒𝑒𝑏𝑏 𝐶𝐶𝑛𝑛𝑛𝑛𝑣𝑣𝑢𝑢𝑚𝑚𝑝𝑝𝑡𝑡𝑖𝑖𝑛𝑛𝑛𝑛 𝑃𝑃𝑒𝑒𝐸𝐸𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑎𝑎𝑒𝑒𝑒𝑒 𝐶𝐶ℎ𝑎𝑎𝑛𝑛𝑒𝑒𝑒𝑒 [%] = �𝐸𝐸𝑇𝑇,𝑊𝑊𝑊𝑊−𝐸𝐸𝑇𝑇,𝑊𝑊𝑊𝑊𝑊𝑊�
𝐸𝐸𝑇𝑇,𝑊𝑊𝑊𝑊

× 100 %

 (Equation 5.2)

𝑇𝑇𝑛𝑛𝑡𝑡𝑎𝑎𝑤𝑤 𝐸𝐸𝑛𝑛𝑒𝑒𝐸𝐸𝑒𝑒𝑏𝑏 𝐶𝐶𝑛𝑛𝑛𝑛𝑣𝑣𝑢𝑢𝑚𝑚𝑝𝑝𝑡𝑡𝑖𝑖𝑛𝑛𝑛𝑛 𝑃𝑃𝑒𝑒𝐸𝐸𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑎𝑎𝑒𝑒𝑒𝑒 𝐶𝐶ℎ𝑎𝑎𝑛𝑛𝑒𝑒𝑒𝑒 [%] =
|105.743− 120.790|

105.743 × 100 %

𝑇𝑇𝑛𝑛𝑡𝑡𝑎𝑎𝑤𝑤 𝐸𝐸𝑛𝑛𝑒𝑒𝐸𝐸𝑒𝑒𝑏𝑏 𝐶𝐶𝑛𝑛𝑛𝑛𝑣𝑣𝑢𝑢𝑚𝑚𝑝𝑝𝑡𝑡𝑖𝑖𝑛𝑛𝑛𝑛 𝑃𝑃𝑒𝑒𝐸𝐸𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑎𝑎𝑒𝑒𝑒𝑒 𝐶𝐶ℎ𝑎𝑎𝑛𝑛𝑒𝑒𝑒𝑒 [%] = 14.23 %

where, 𝐸𝐸𝑇𝑇,𝑊𝑊𝑊𝑊 is the total energy consumption for the 2D trajectories with jumping options [Joules,

J], and 𝐸𝐸𝑇𝑇,𝑊𝑊𝑊𝑊𝑊𝑊 is the total energy consumption for the 2D trajectories without jumping options if

possible [Joules, J]. Based on Table 5.2, the total completion time for the 2D trajectories with

jumping options is 5.2 seconds faster than the total completion time for the 2D trajectories without

jumping options if possible.

36

Table 5.3: Experimental and Simulation Results Comparison for the 2D Trajectories with

Jumping Options

 Experimental Results Simulation Results
Total Energy Consumption

[Joules, J] 108.080 105.743

According to Table 5.3, the experimental total energy consumption and the simulation total

energy consumption for the 2D trajectories with jumping options are roughly the same, but the

experimental total energy consumption result is 2.337 J higher than the simulation total energy

consumption result due to variations in location, attitude, and jumping accuracy. The percentage

error is calculated as the following:

𝑃𝑃𝑒𝑒𝐸𝐸𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑎𝑎𝑒𝑒𝑒𝑒 𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝐸𝐸 [%] = |𝐸𝐸𝑇𝑇,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝐸𝐸𝑇𝑇,𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒|
𝐸𝐸𝑇𝑇,𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒

× 100 % (Equation 5.3)

𝑃𝑃𝑒𝑒𝐸𝐸𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑎𝑎𝑒𝑒𝑒𝑒 𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝐸𝐸 [%] =
|108.08 𝐽𝐽 − 105.743 𝐽𝐽|

105.743 𝐽𝐽 × 100 %

𝑃𝑃𝑒𝑒𝐸𝐸𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑎𝑎𝑒𝑒𝑒𝑒 𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝐸𝐸 [%] = 2.21%

Since the percentage error of the simulation result is 2.21%, which is less than 5.0 % as

shown in the calculation above, the simulation total energy consumption result is considered valid.

37

Chapter 6 : Conclusion

The purpose of this research is to develop a cost-efficient and mission-capable robotic system

with a fully autonomous cooperative team of miniature unmanned ground vehicles (UGVs) that

can jump over obstacles to navigate a multiple traveling salesman problem (mTSP) and explore

an area of varying elevations.

6.1: Contributions

Since the dawn of space-age in 1957 when the world’s first artificial satellite, Sputnik 1 was

successfully launched by the Soviet Union, new technological and scientific developments were

emerged and advanced rapidly till today’s modern society [22]; that one small step of the historical

achievement in space exploration inspired many generations of people and motivated humans to

push beyond boundaries to achieve further like making the first manned moon landing, Apollo 11

possible [23] and sending Mars Curiosity Rover to planet Mars to explore an area where it is risky

for humans to explore due to unknown environmental factors [24]. However, as the space

technology advances and humanity discover more about the universe we live in, the cost of robotics

interplanetary exploration increases as well, for example, the cost of the Mars Curiosity mission

is estimated to be USD 2.1 billion [24].

Developing a cost-efficient and smart robotic system with a team of fully autonomous and

miniature rovers that have a jumping capability not only helps to reduce the risk of a mission

failure, explore a rug environment like cliffs, canyons, and small caves but also allow humans to

38

reduce the cost of a mission by 14.23 % as shown in Chapter 5; for instance, if the cost of the

Mars Curiosity Mission is estimated to be USD 2.0 billion, the implementation of the robotic

system will help to save the expenditure of the interplanetary exploration by USD 284.6 million,

which is not a small amount of money. Besides that, if the next generation of rovers is in a

cooperative robotic system, it will help to mitigate the risk of failure of a space mission that worth

billions of dollars because when one of the rovers fails to operate, the other rovers are expected to

help on completing the remaining interplanetary exploration mission. Furthermore, miniature

rovers with a jumping capability will be able to explore the rug environment easily without

consuming a lot of energy due to lightweight. Last but not least, the cooperative robotic system

that this research developed will also increase the time-efficiency of completing assigned tasks.

6.2: Additional Applications

Creating a cost-efficient and mission capable cooperative robotic system with an algorithm

that is developed based on heuristic optimization methods integrating refined Rapidly-exploring

Random Tree Star (RRT*) and Mixed-Integer Linear Programming (MILP) not only applies for

interplanetary exploration mission, but it can also be very beneficial for search-and-rescue

missions, surveillance missions like unmanned traffic monitoring, and autonomous driving vehicle

application. The ability for the cooperative robotic system’s heuristic optimization algorithm with

a formulated main objective function and several mathematical constraints to plan and perform

path planning, motion planning, and task allocations is an intelligent behavior’s critical

component, and it can be applied for most of automated machines to optimize their performance

on a certain tasks or missions. For instance, the cooperative robotic system that is implemented on

39

this research can be used for a search-and-rescue mission for a team of UGVs to maximize the

area coverage and information gathering with a given set of mathematical constraints like energy

constraints and time constraints to optimize and navigate mTSP effectively; the results can also be

heavily investigated and compared with other heuristic optimization methods like particle swarm

optimization and genetic algorithm to verify whether both approaches will give similar or distinct

path planning results and to determine the advantages and disadvantageous of both heuristics

optimization methods.

6.3: Future Work

In addition to creating a cost-efficient and mission-capable cooperative robotic system, the

future research work will further improve and enhance the cooperative robotic system by

developing a self-sustainable system with a solar-charging station rover. The new cooperative

robotic system will still be applied to similar heuristic optimization methods, which is the RRT*

and MILP to navigate mTSP. Furthermore, the use of multiple jumping rovers will be investigated

in a more challenging outdoor environment like gaps and stairs. Besides that, future work will

redesign the jumping mechanism of the jumping rover to allow the jumping rovers to control its

jumping height, which helps to minimize jumping energy consumption of a rover.

6.4: Summary

This research develops a motion planning and task allocation method to find the energy-

efficient solution of a multiple traveling salesman problem (mTSP) with obstacles using a jumping

40

rover team. Each jumping rover has the capability to jump over obstacles under certain elevations

and then treat the jumping route as a feasible path. The optimized rapidly-exploring random tree

(RRT*) is improved by implementing a refined RRT* method to smooth paths between targets.

The established path from the refined RRT* allows the formulation of the mTSP as a mixed-integer

linear programming (MILP) problem to find the visiting sequence and simultaneously assign a

jumping rover to each selected path segment. The results from virtual simulation and physical

experiments demonstrate the improved performance using the jumping capability to solve the

mTSP with obstacles and effectiveness of the proposed motion planning and task allocation

methods.

41

Bibliography

[1] European Space Agency, "Robotic Landers," 2 November 2019. [Online]. Available:
https://lunarexploration.esa.int/explore/missions/239?ha=334.

[2] National Aeronautics and Space Administration, "Luna 17," National Aeronautics and
Space Administration, 26 January 2018. [Online]. Available:
https://solarsystem.nasa.gov/missions/luna-17/in-depth/. [Accessed 2 November 2019].

[3] NASA Jet Propulsion Lab, "Mission to Mars Viking 1," National Aeronautics and Space
Administration, [Online]. Available: https://www.jpl.nasa.gov/missions/viking-1/.
[Accessed 2 November 2019].

[4] NASA Jet Propulsion Lab, "Discovery Guide: Mars Rover Curiosity," National
Aeronautics and Space Administration, [Online]. Available:
https://www.jpl.nasa.gov/education/marsrover.cfm. [Accessed 2 November 2019].

[5] European Space Agency, "Philae Found!," European Space Agency, 5 September 2016.
[Online]. Available:
https://www.esa.int/Science_Exploration/Space_Science/Rosetta/Philae_found. [Accessed
2 November 2019].

[6] C. Ye, B. Wang, B. Wei and B. Tang, "Modeling and Analysis of a Jumping Robot with
Deforming Wheeled Mechanism," in IEEE International Conference on Mechatronics and
Automation (ICMA), 2018.

[7] Y. Mizumura, K. Ishibashi, S. Yamada, A. Takanishi and H. Ishii, "Mechanical Design of a
Jumping and Rolling Spherical Robot for Children with Developmental Disorders," in
IEEE International Conference on Robotics and Biomimetics (ROBIO), 2017.

42

[8] Y. Ding and H.-W. Park, "Design and Experimental Implementation of a Quasi-direct-
drive Leg for Optimized Jumping," in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017.

[9] N. Iwamoto and M. Yamamoto, "Jumping Motion Control Planning for 4-wheeled Robot
with a Tail," in IEEE/SICE International Symposium on System Integration (SII), 2015.

[10] A. Yamashita, T. Arai, J. Ota and H. Asama, "Motion Planning of Multiple Mobile Robots
for Cooperative Manipulation and Transportation," in IEEE Transactions on Robotics and
Automation, 2003.

[11] M. J. B. Krieger, J.-B. Billeter and L. Keller, "Ant-like Task Allocation and Recruitment in
Cooperative Robots," Nature, vol. 406, no. 6799, pp. 992-995, 2000.

[12] T. Bektas, "The Multiple Traveling Salesman Problem: an Overview of Formulations and
Solution Procedures," Omega, vol. 34, no. 3, pp. 209-219, 2006.

[13] O. Matei and P. Pop, "An Efficient Genetic Algorithm for Solving the Generalized
Traveling Salesman Problem," in Proceedings of the 2010 IEEE 6th International
Conference on Intelligent Computer Communication and Processing, 2010.

[14] P. Kitjacharoenchai, M. Ventresca, M. Moshref-Javadi, S. Lee, J. M. A. Tranchoco and P.
A. Brunese, "Multiple Traveling Salesman Problem with Drones: Mathematical Model and
Heuristic Approach," ScienceDirect, vol. 129, pp. 14-30, 2019.

[15] C. Dornhege, A. Kleiner, A. Hertle and A. Kolling, "Multirobot Coverage Search in Three
Dimensions," Journal of Field Robotics, vol. 33, no. 4, pp. 537-558, 2016.

[16] M. Nazarahari, E. Khanmirza and S. Doostie, "Multi-objective Multi-robot Path Planning
in Continuous Environment Using an Enhanced Genetic Algorithm," ScienceDirect, vol.
115, pp. 106-120, 2019.

43

[17] M. Saska, M. Macas, L. Preucil and L. Lhotska, "Robot Path Planning using Particle
Swarm Optimization of Ferguson Splines," in IEEE Conference on Emerging Technologies
and Factory Automation, 2006.

[18] S. M. Lavalle, "Rapidly-Exploring Random Trees: A New Tool for Path Planning," 1998.

[19] S. M. LaValle and J. J. Kuffner Jr., "Randomized Kinodynamic Planning," The
International Journal of Robotics Research, vol. 20, no. 5, pp. 378-400, 2001.

[20] C. E. Miller, A. W. Tucker and R. A. Zemlin, "Integer programming formulation of
traveling salesman problems," Journal of the ACM, vol. 7, no. 4, pp. 326-329, 1960.

[21] Parrot, "Parrot jumping sumo-races, slaloms, acrobatics, you can do it all," Parrot,
[Online]. Available: https://www.parrot.com/us/minidrones/parrot-jumping-sumo.
[Accessed 6 November 2019].

[22] S. Garber, "Sputnik and The Dawn of the Space Age," NASA History Web Curator, 10
October 2007. [Online]. Available: https://history.nasa.gov/sputnik/. [Accessed 7
November 2019].

[23] B. Dunbar, "July 20, 1969: One Giant Leap For Mankind," National Aeronautics and Space
Administration, 15 July 2019. [Online]. Available:
https://www.nasa.gov/mission_pages/apollo/apollo11.html. [Accessed 7 November 2019].

[24] National Aeronautics and Space Administration, "Mars Science Laboratory Landing," July
2012. [Online]. Available: https://mars.nasa.gov/internal_resources/823/. [Accessed 7
November 2019].

[25] K. C. Tan, I. Shyu, M. Jung, C. Wan and R. Dai, "Motion Planning and Task Allocation for
a Jumping Rover Team," in International Conference on Robotics and Automation, 2020.

44

Appendix A. Codes

Simulation MATLAB Codes

Jumping Rovers’ Main Heuristic Optimization Methods including RRT, RRT*, Refined RRT* and

MILP Code

% Jumping Rovers Code
% Develop by Isaac Shyu, Kai Chuen Tan and MyungJin Jung
% Avoid or jump onto objects to reach targets
% Rapidly-exploring Random Tree (RRT) w/ RRT* Option
% Main Loop

clear, clc, close

%% Toggle program options

% Toggle RRT*
RRT_Star = 1;
% Toggle object avoidance
objAvoid = 1;
% Animation pause time
tPause = 0.0;

%% Parameters

% Maximum iterations
maxIt = 100000;
% Display area
xMin = -2;
xMax = 82;
yMin = -2;
yMax = 82;

% Cost weightage
% 1 unit length (equivalent to 50 mm) rolling = 2.5J
% Cost for jumping [Energy/jump = 11 J/jump]
jumpWeight = 4.4;
% Cost of rotation (Energy/degree = 0.0593 J/degree)
rotWeight = 0.0237;

% Max incremental distance between each point in the tree when not optimizing
distInc = 1;
% Max incremental distance between each point in the tree when optimizing
neighborhood = 5;

45

% Margin for the display of objects in plot and apply actual vehicles' width
% vehicles' width is about 200mm, consider markers visible distance (50mm
% expected) then, we can set the margin to 10mm(200/2)
objMarg = 2;

% Mixed-Integer Linear Programming (MILP)
%Number of Salesmen
numSalesmen = 2;
%Depot point
depotPt = 1;

%% Example Scenarios
example = 12; % mTSP Scenarios is number 12.
% Output targets, number of targets, properties of the obstacles/objects.
[targets, numTarget, objMatrix] = Senario(example);

%% Initialization

% Object variable initialization
numObj = size(objMatrix,1);
widthHalves = objMatrix(:,3)/2;
lengthHalves = objMatrix(:,4)/2;
xObjMin = objMatrix(:,1) - widthHalves;
xObjMax = objMatrix(:,1) + widthHalves;
yObjMin = objMatrix(:,2) - lengthHalves;
yObjMax = objMatrix(:,2) + lengthHalves;

% Exception for avoiding objects if the targets are on top of objects
avoidException = zeros(1,numObj);
for i = 1:numTarget

 for j = 1:numObj

 if (targets(i,1) > xObjMin(j)) && (targets(i,1) < xObjMax(j)) &&
(targets(i,2) > yObjMin(j)) && (targets(i,2) < yObjMax(j))
 avoidException(1,j) = 1;
 end

 end

end

% Initialize matrix called targetPage to keep track of target numbers,
locations, cost and completion status
% Rows are tree numbers, columns are: start (target) #, end (target) #,
xStart, yStart, xEnd, yEnd,
% jump status, completion status, linked tree
targetOrder = zeros((numTarget-1)^2, 2);
a = 0;
% Brute force method for getting all combinations of target index to target
index with repeating indices

46

% (ex. 1 to 2 & 2 to 1, 1 to 3 % 3 to 1)
for j = 1:numTarget

 for k = 1:numTarget

 if k == j
 continue
 else
 a = a + 1;
 % targetOrder() function holds all combinations of target indices
 targetOrder(a,1) = j;
 targetOrder(a,2) = k;
 end

 end

end

numTree = size(targetOrder,1); % Number of initial trees to reach targets
(assuming no objects in the way)

% If there are less than two targets, it will return error
if numTree < 2
 error('Need more than 1 target')
end

% Creating emptyTree properties
emptyTree.Vertices = []; % Holds [x1 y1; x2 y2;...] vertex coordinates
emptyTree.VertexConn = {}; % Holds [vertex #; vertex # vertex #;...] vertices
that it is connected to in the tree
emptyTree.Cost = 0; % Cost placeholder
emptyTree.JumpCost = []; % Holds cost of jumping
emptyTree.JumpedObj = []; % Holds object number that was jumped
emptyTree.RotCost = []; % Holds cost of rotation
emptyTree.AvoidObject = []; % Flag for each index to indicate if the point
was moved to avoid objects
emptyTree.InObject = zeros(1,numObj); % Array to indicate which object the
present vertex is on top of

% Assigning emptyTree properties to all trees
tree = repmat(emptyTree, numTree, 1);

% Assign starting point (target) to each tree
% If destination objective is active, assign each tree to a specific start
point
targetPage = zeros(numTree,9); % Matrix to keep track of all tree
combinations

% Determine all possible start-and-end targets and find out which targets
% are on top of an object/obstacle.
k = 0;

47

for i = 1:numTree

 k = k + 1;
 targetPage(i,1:2) = targetOrder(i,1:2); % Start and end target index
numbers
 targetPage(i,3:4) = targets(targetOrder(i,1),:); % Start xy coordinates
 targetPage(i,5:6) = targets(targetOrder(i,2),:); % End xy coordinates
 tree(i).Vertices = targets(targetOrder(i,1),:); % Assigning first xy
coordinate to trees

 for j = 1:numObj % If the tree starts on top of an object, set that
object number as a jumped target

 if (objMatrix(j,1) == targetPage(i,3)) && (objMatrix(j,2) ==
targetPage(i,4))
 tree(i).JumpedObj = [tree(i).JumpedObj j];
 break
 end

 end

end

% If the option to avoid objects is active, create variable to indicate that
path has already run
% into an object to prevent making multiple new trees
if objAvoid == 1
 avoidanceActivated = zeros(1, numObj);
end

% Plotting targets
hold on;
grid minor;
plot(targets(:,1), targets(:,2), 'ob', 'MarkerFaceColor', 'c')
for i = 1:size(targets,1)
 text(targets(i,1), targets(i,2), num2str(i), 'Color', 'k', 'FontSize',
20)
end

% Plotting objects
for i = 1:numObj

 objHeight = objMatrix(i,5);

 % Color of objects changes based upon height (110 mm = green, 220 mm =
black, anything else = red)
 if (objHeight > 3 || i == 1)
 Color = 'k';
 elseif objHeight > 1
 Color = 'g';
 else

48

 Color = 'r';
 end

 plot([xObjMin(i) xObjMax(i)], [yObjMin(i) yObjMin(i)], Color,
'LineWidth', 2)
 plot([xObjMax(i) xObjMax(i)], [yObjMin(i) yObjMax(i)], Color,
'LineWidth', 2)
 plot([xObjMax(i) xObjMin(i)], [yObjMax(i) yObjMax(i)], Color,
'LineWidth', 2)
 plot([xObjMin(i) xObjMin(i)], [yObjMax(i) yObjMin(i)], Color,
'LineWidth', 2)

end

% Graph's X-Y limits.
xlim([xMin xMax]);
ylim([yMin yMax]);
axis equal

% Start timer.
tic

%% Iteration Loop

superFlag = 0; % Flag to break out of all RRT* iterations

for i = 1:maxIt

 repeat = 1;
 while repeat == 1

 % DESTINATION OBJECTIVE
OPTION___

 % Loop through all combinations of paths
 cntflag = 0;

 for j = 1:numTree

 if targetPage(j,8) ~= 1 % If target is not yet reached, generate
next vertex for path
 xRand = targetPage(j,5); % Target tree x
 yRand = targetPage(j,6); % Target tree y
 cntflag = 1;
 break
 end

 end

 if targetPage(:,8) == 1 % If all targets reached, end program

49

 superFlag = 1; % Break out of all iterations
 break
 end

 % Assign tree that has not yet completed it's path to bestTree to
have another point in the tree placed
 curTree = j;
 curVertexIndex = size(tree(curTree).Vertices,1); % Assign the next
connecting vertex

 % Create unit vector point for plot
 xOrigin = tree(curTree).Vertices(curVertexIndex, 1);
 yOrigin = tree(curTree).Vertices(curVertexIndex, 2);

 % Start and End targets must not be the same.
 if (xOrigin == xRand) && (yOrigin == yRand)
 continue
 end

 % Calculate the distance magnitude.
 xVec = xRand - xOrigin;
 yVec = yRand - yOrigin;
 mag = norm([xVec yVec]);

 % If the distance to the target is less than the distance increment,
make the increment shorter so
 % it reaches the target, then mark it as a satisfying objective
 if mag < distInc
 xUnit = xVec;
 yUnit = yVec;
 targetPage(curTree,8) = 1; % Mark tree as completed
 xNew = xOrigin + xUnit; % New x vertex
 yNew = yOrigin + yUnit; % New y vertex
 else % Otherwise, calculate the unit vector normally
 xUnit = round((xVec/mag)*distInc);
 yUnit = round((yVec/mag)*distInc);
 xNew = xOrigin + xUnit; % New x vertex
 yNew = yOrigin + yUnit; % New y vertex
 % If the new point is the target point, mark as destination
reached
 if (xNew == xRand) && (yNew == yRand)
 targetPage(curTree, 8) = 1; % Mark tree as completed
 end
 end

 % If the point is not yet used, assign it to a bank of used points
 repeat = 0;
 end

 if superFlag == 1 % Flag to break out of all iterations
 break
 end

50

 % Assign unit vector point to best tree.
 tree(curTree).Vertices = [tree(curTree).Vertices; xNew yNew];
 costArraySize = size(tree(curTree).Vertices,1);
 tree(curTree).Cost(costArraySize,1) = tree(curTree).Cost(curVertexIndex)
+ hypot(xUnit, yUnit);
 tree(curTree).VertexConn{end+1,1} = [];

 hold on;

 % Keeps tally of which vertex is connected to each other vertex
 % Each row of the cell matrix corresponds to the row of the vertex number
 % The array in each cell matrix holds the vertex numbers that uses that
row number vertex as an origin point
 connArraySize = size(tree(curTree).VertexConn{curVertexIndex,1},2);
 tree(curTree).VertexConn{curVertexIndex,1}(connArraySize+1) =...
 size(tree(curTree).Vertices,1);

 % Plot lines to show the shortest distance to each point
 [Color] = defineColor(curTree);
 plot([xOrigin xNew], [yOrigin yNew], 'Color', Color);
 axis([xMin xMax yMin yMax]);
 pause(tPause)

 % If the option to avoid objects is active, determine if path runs into
object and move path if applicable
 if objAvoid == 1

 % AVOIDANCE
FUNCTION___

 % avoid path running into objects
 [treeVerticesNew, newTreeCost, treeAvoidObject, connIndex, insideObj,
targetPageJumpOut, objNum, treeInObj] =...
 objectAvoidance(tree(curTree), objMatrix, targetPage(curTree,:),
distInc, avoidException);
 tree(curTree).AvoidObject = treeAvoidObject;

 % If a point is inside an object, move it outside, and animate
 if insideObj == 1

 if (avoidanceActivated(1, objNum) == 0)

 newTree = numTree + 1; % New tree index
 targetPage(newTree,1:2) = targetPage(curTree,1:2); % New
tree's start and end index (same as original tree)
 targetPage(newTree,3) = xOrigin; % New tree's start x
coordinate (before jump happens)
 targetPage(newTree,4) = yOrigin; % New tree's start y
coordinate (before jump happens)

51

 targetPage(newTree,5:6) = targetPage(curTree,5:6); % New
tree's target coordinate (same as original tree)
 targetPage(newTree,7) = 1; % Indicate that newly created tree
was the result of a jump
 targetPage(newTree,9) = curTree; % Tree that this new tree
originated from

 % Transfer vertices from old tree to new tree (including the
vertices inside object)
 tree(newTree) = tree(curTree);

 % Indicate which vertex is on top of an object
 % or obstacle.
 tree(newTree).InObject = treeInObj;

 % JUMP COST
FUNCTION___

 % Calculate cost of new tree jumping onto objects
 [jumpCost, jumpedObj] =
jumpObjectCost(tree(newTree).Vertices, tree(newTree).VertexConn, objMatrix,
jumpWeight);
 tree(newTree).JumpedObj = [tree(newTree).JumpedObj
jumpedObj];
 finalIndex = size(tree(curTree).Vertices,1);
 tree(newTree).JumpCost(finalIndex,1) = jumpCost;

 % Replace color that jumps onto object with newTree color
 [newTreeColor] = defineColor(newTree);
 plot(xOrigin, yOrigin, 'ob') % Blue circle indicates jump
location
 plot(xNew, yNew, 'r*') % Red start indicates landing location
 plot([xOrigin xNew], [yOrigin yNew], 'Color', 'y')

 avoidanceActivated(1, objNum) = 1; % Prevents multiple trees
from being created after initial encounter with object
 numTree = size(targetPage,1); % Increase number of trees to
be completed after creation of new tree

 else

 % If there was already an encounter with an object, erase
plotted line that intrudes into object again
 plot([xOrigin xNew], [yOrigin yNew], 'Color', 'w')

 end

 tree(curTree).Vertices = treeVerticesNew; % New vertices from
objectAvoidance function

52

 tree(curTree).Cost = newTreeCost; % New cost from objectAvoidance
function
 pause(tPause)
 xOrigin = tree(curTree).Vertices(connIndex,1); % New start x
coordinate for tree segment
 yOrigin = tree(curTree).Vertices(connIndex,2); % New start y
coordinate for tree segment
 xNew = tree(curTree).Vertices(end,1); % New end x coordinate for
tree segment
 yNew = tree(curTree).Vertices(end,2); % New end x coordinate for
tree segment
 plot([xOrigin xNew], [yOrigin yNew], 'Color', Color); % Tree
color for tree segment
 jumpIndicator = 0; % Indicator for jump if target is on object
 pause(tPause)

 elseif (insideObj == 2) && (jumpIndicator == 0)

 jumpIndicator = 1; % Indicator for jump if target is on object
 plot(xOrigin, yOrigin, 'ob') % Blue circle indicates jump
location
 plot(xNew, yNew, 'r*') % Red start indicates landing location

 else

 % If no encounter with an object, set avoidance to 0 to allow new
tree to be created for next encountered object
 avoidanceActivated = zeros(1, numObj);
 targetPage(curTree,7) = targetPageJumpOut; % Set output for jump
status from objectAvoidance function
 jumpIndicator = 0; % Indicator for jump if target is on object

 end
 end

 %RRT STAR
FUNCTION___

 if RRT_Star == 1

 % Rearrange vertex connections to optimize distance cost
 [bestTreeVertexConnNew, minVtxIdx, newTreeCost] =
jumpNeighCost2(tree(curTree), neighborhood, objAvoid);

 % If there is a change in the connections for optimization, change
vertex connections, and animate
 if minVtxIdx ~= 0

 tree(curTree).Cost = newTreeCost;
 tree(curTree).VertexConn{curVertexIndex,1}(end) = [];

53

 tree(curTree).VertexConn{minVtxIdx,1} =
[tree(curTree).VertexConn{minVtxIdx,1} size(tree(curTree).Vertices,1)];
 plot([xOrigin xNew], [yOrigin yNew], 'Color', 'w')
 pause(tPause)
 xOrigin = tree(curTree).Vertices(minVtxIdx,1);
 yOrigin = tree(curTree).Vertices(minVtxIdx,2);
 plot([xOrigin xNew], [yOrigin yNew], 'Color', Color);
 pause(tPause)

 end
 end

 % Display the number of iterations
 disp(['Iteration: ' num2str(i)])

end

% Display the total running time
toc

%% Results

% MINIMUM COST
FUNCTION___

% Find best cost path for combinations of paths so all targets are visited

% Determine cost of rotation
for i = 1:numTree

 for j = 2:(size(tree(i).Vertices)-1)

 vec1 = tree(i).Vertices(j,:) - tree(i).Vertices(j-1,:);
 vec2 = tree(i).Vertices(j+1,:) - tree(i).Vertices(j,:);
 calcRotCost =
round(acosd(dot(vec1,vec2)/(norm(vec1)*norm(vec2))))*rotWeight;
 tree(i).RotCost = [tree(i).RotCost calcRotCost];

 end

end

% Solve single traveling salesman problem with the Mixed-integer Linear
% Programming (MILP)
[pathOrderMin,x_tsp] = Multiple_TSP_V4(tree, targets,
targetPage,numSalesmen,depotPt);

% Variable for exporting
totalVertices = [];
result = 1;

54

if result

 % Plot each path in treeOrder so the best cost path is highlighted in the
figure
 for i = 1:(numTarget+(numSalesmen-1))

 activeTree = pathOrderMin(i);

 % Only plot points that have continuity to the targeted point
 continuousVertices =
[find(~cellfun(@isempty,tree(activeTree).VertexConn));
size(tree(activeTree).Vertices,1)] ;
 treeLength = size(continuousVertices); % Length of continuous points
 tree(activeTree).Vertices =
tree(activeTree).Vertices(continuousVertices, :);
 tree(activeTree).VertexConn =
tree(activeTree).VertexConn(continuousVertices(1:(end-1), :));
 tree(activeTree).Cost = tree(activeTree).Cost(continuousVertices, :);
 tree(activeTree).JumpCost =
tree(activeTree).JumpCost(continuousVertices(continuousVertices <=
size(tree(activeTree).JumpCost,1), :));
 tree(activeTree).AvoidObject =
tree(activeTree).AvoidObject(continuousVertices, :);

 % Add zeros to the end of jump cost to match the number of elements
in vertices
 if size(tree(activeTree).Vertices, 1) >
size(tree(activeTree).JumpCost, 1)

 tree(activeTree).JumpCost(numel(tree(activeTree).Vertices(:,1)))
= 0;

 end

 % Total Vertices of Each Tree.
 totalVertices = [totalVertices; tree(activeTree).Vertices
tree(activeTree).JumpCost];

 for j = 1:(treeLength-1)

 xOrigin = tree(activeTree).Vertices(j,1);
 yOrigin = tree(activeTree).Vertices(j,2);
 xNew = tree(activeTree).Vertices(j+1,1);
 yNew = tree(activeTree).Vertices(j+1,2);
 % Plot each segment
 pb = plot([xOrigin xNew], [yOrigin yNew], 'Color', 'b',
'LineWidth', 2);
 pause(tPause)

 end

55

 end

end

% Auto-refine RRT* Toggle
refine = 1;
% Manual refine RRT* Toggle
manualrefine = 1;

% Refine RRT*
if refine

 objDispMarg = 0;
 totalRefVertices = [];

 % Refine best path
 for i = 1:(numTarget+(numSalesmen-1))

 activeTree = pathOrderMin(i);
 treeEval = tree(activeTree);
 [refVert, refCost] = refinedRRT(treeEval, objMatrix, distInc,
objDispMarg, rotWeight);
 totalRefVertices = [totalRefVertices; refVert];

 for k = 1:(size(refVert,1)-1)

 hold on;
 xRefVertOrigin = refVert(k,1); yRefVertOrigin = refVert(k,2);
 xRefVertNew = refVert(k+1,1); yRefVertNew = refVert(k+1,2);
 plot([xRefVertOrigin xRefVertNew], [yRefVertOrigin, yRefVertNew],
'Color', 'm', 'LineWidth', 2)
 pause(tPause)

 end

 end

end

hold off;

%% Manual Refine RRT* Check
if manualrefine

 hold on
 numseltree = length(pathOrderMin);
 straight = [1 1 1 0 0 1];
 jumptree = [0 0 0 1 2 0];
 jumpdist = norm([534.3934 1491.7923] - [556.3348 1221.9086])/50;

56

 rollcost = zeros(numseltree,1);
 jumpcost = zeros(numseltree,1);
 rotcost = zeros(numseltree,1);

 for i = 1:numseltree

 rftree(i).Vertices = tree(pathOrderMin(i)).Vertices;
 pb = plot(rftree(i).Vertices(:, 1), rftree(i).Vertices(:,2), 'b--',
'LineWidth', 2);
 hold on

 end

 for i = 1:numseltree

 if (i == 1 || i == 4 || i==6)
 nu = size(rftree(i).Vertices(:,1),1);
 rftree(i).Vertices(:,1) = linspace(rftree(i).Vertices(1,1),
rftree(i).Vertices(end,1), nu);
 rftree(i).Vertices(:,2) = linspace(rftree(i).Vertices(1,2),
rftree(i).Vertices(end,2), nu);
 pp = plot(rftree(i).Vertices(:, 1), rftree(i).Vertices(:,2), 'm',
'LineWidth', 2);
 treelength = norm(rftree(i).Vertices(end, :) -
rftree(i).Vertices(1, :));
 rollcost(i) = treelength - jumptree(i) * jumpdist;
 jumpcost(i) = jumptree(i) * jumpWeight;
 elseif i == 2
 nu = size(rftree(i).Vertices(:,1),1);
 extrpt1 = 29;
 extrpt2 = 39;
 rftree(i).Vertices(1:extrpt1,1) = linspace(rftree(i).Vertices(1,1),
rftree(i).Vertices(extrpt1,1), extrpt1);
 rftree(i).Vertices(1:extrpt1,2) = linspace(rftree(i).Vertices(1,2),
rftree(i).Vertices(extrpt1,2), extrpt1);
 rftree(i).Vertices(extrpt2:end,1) =
linspace(rftree(i).Vertices(extrpt2,1), rftree(i).Vertices(end,1), nu-
extrpt2+1);
 rftree(i).Vertices(extrpt2:end,2) =
linspace(rftree(i).Vertices(extrpt2,2), rftree(i).Vertices(end,2), nu-
extrpt2+1);
 plot(rftree(i).Vertices(:, 1), rftree(i).Vertices(:,2), 'm',
'LineWidth', 2)
 length1 = norm(rftree(i).Vertices(end, :) -
rftree(i).Vertices(extrpt2, :));
 length2 = norm(rftree(i).Vertices(extrpt2, :) -
rftree(i).Vertices(extrpt1, :));
 length3 = norm(rftree(i).Vertices(extrpt1, :) -
rftree(i).Vertices(1, :));
 rollcost(i) = length1 + length2 + length3 - jumptree(i) *
jumpdist;

57

 jumpcost(i) = jumptree(i) * jumpWeight;
 elseif (i == 3)
 nu = size(rftree(i).Vertices(:,1),1);
 extrpt = 37;
 rftree(i).Vertices(1:extrpt,1) = linspace(rftree(i).Vertices(1,1),
rftree(i).Vertices(extrpt,1), extrpt);
 rftree(i).Vertices(1:extrpt,2) = linspace(rftree(i).Vertices(1,2),
rftree(i).Vertices(extrpt,2), extrpt);
 rftree(i).Vertices(extrpt:end,1) =
linspace(rftree(i).Vertices(extrpt,1), rftree(i).Vertices(end,1), nu-
extrpt+1);
 rftree(i).Vertices(extrpt:end,2) =
linspace(rftree(i).Vertices(extrpt,2), rftree(i).Vertices(end,2), nu-
extrpt+1);
 plot(rftree(i).Vertices(:, 1), rftree(i).Vertices(:,2), 'm',
'LineWidth', 2)
 length1 = norm(rftree(i).Vertices(end, :) -
rftree(i).Vertices(extrpt, :));
 length2 = norm(rftree(i).Vertices(extrpt, :) -
rftree(i).Vertices(1, :));
 rollcost(i) = length1 + length2 - jumptree(i) * jumpdist;
 jumpcost(i) = jumptree(i) * jumpWeight;
 elseif i == 5
 nu = size(rftree(i).Vertices(:,1),1);
 extrpt = 22;
 rftree(i).Vertices(1:extrpt,1) = linspace(rftree(i).Vertices(1,1),
rftree(i).Vertices(extrpt,1), extrpt);
 rftree(i).Vertices(1:extrpt,2) = linspace(rftree(i).Vertices(1,2),
rftree(i).Vertices(extrpt,2), extrpt);
 rftree(i).Vertices(extrpt:end,1) =
linspace(rftree(i).Vertices(extrpt,1), rftree(i).Vertices(end,1), nu-
extrpt+1);
 rftree(i).Vertices(extrpt:end,2) =
linspace(rftree(i).Vertices(extrpt,2), rftree(i).Vertices(end,2), nu-
extrpt+1);
 plot(rftree(i).Vertices(:, 1), rftree(i).Vertices(:,2), 'm',
'LineWidth', 2)
 length1 = norm(rftree(i).Vertices(end, :) -
rftree(i).Vertices(extrpt, :));
 length2 = norm(rftree(i).Vertices(extrpt, :) -
rftree(i).Vertices(1, :));
 rollcost(i) = length1 + length2 - jumptree(i) * jumpdist;
 jumpcost(i) = jumptree(i) * jumpWeight;
 end

 end

end

% Calculate Total Cost manually.
totalcost = sum(rollcost+jumpcost)/2.5;

58

% Plot Final Results
xticklabels({'0', '500', '1000','1500','2000','2500', '3000','3500','4000'})
yticklabels({'0', '500', '1000','1500','2000','2500', '3000','3500','4000'})
ylabel('Y-Position [mm]')
xlabel('X-Position [mm]')
title({'Navigating Multiple Traveling Salesmen Problem with','Refined
Rapidly-exploring Random Tree with Jumping Option'})
legend([pb pp], {'RRT*','Refined RRT*'}, 'Location', 'NW')
text(6, 60, ['Total Cost:', num2str(totalcost)])

59

Jumping Rover RRT*’s Object Avoidance Criteria Function

% Develop by Isaac Shyu, Kai Chuen Tan, and MyungJin Jung
% Rapidly-exploring Random Tree* (RRT*) object avoidance criteria function
% Object Avoidance Criteria

function [xNewVec, yNewVec] = avoidCriteria(distInc, treeVertices, objPoints,
xObjMin, xObjMax, yObjMin, yObjMax, objNum, xConnVtx, yConnVtx, xPrevConnVtx,
yPrevConnVtx)

 xVtx = treeVertices(end,1);
 yVtx = treeVertices(end,2);

 % APPROACH FROM
LEFT___

 % If approaching from left, divert around in clockwise:
 if (yConnVtx > yObjMin(objNum)) && (yConnVtx < yObjMax(objNum)) &&
(xConnVtx <= xObjMin(objNum))

 xVec = xConnVtx - xPrevConnVtx;
 yVec = yConnVtx - yPrevConnVtx;

 if (yVec > 0) && (yVtx > objPoints(objNum,2))
 xNewVec = xObjMin(objNum) - xConnVtx;
 yNewVec = distInc;
 elseif (yVec < 0) && (yVtx < objPoints(objNum,2))
 xNewVec = xObjMin(objNum) - xConnVtx;
 yNewVec = -distInc;
 elseif (yVec > 0) && (yVtx < objPoints(objNum,2))
 if xVec > yVec
 xNewVec = xObjMin(objNum) - xConnVtx;
 yNewVec = -distInc;
 else
 xNewVec = xObjMin(objNum) - xConnVtx;
 yNewVec = distInc;
 end
 elseif (yVec < 0) && (yVtx > objPoints(objNum,2))
 if xVec > abs(yVec)
 xNewVec = xObjMin(objNum) - xConnVtx;
 yNewVec = distInc;
 else
 xNewVec = xObjMin(objNum) - xConnVtx;
 yNewVec = -distInc;
 end
 else
 xNewVec = xObjMin(objNum) - xConnVtx;
 yNewVec = distInc;
 end

60

 % APPROACH FROM
RIGHT__

 % If approaching from right, divert around in clockwise:
 elseif (yConnVtx > yObjMin(objNum)) && (yConnVtx < yObjMax(objNum)) &&
(xConnVtx >= xObjMax(objNum))

 xVec = xConnVtx - xPrevConnVtx;
 yVec = yConnVtx - yPrevConnVtx;

 if (yVec > 0) && (yVtx > objPoints(objNum,2))
 xNewVec = xObjMax(objNum) - xConnVtx;
 yNewVec = distInc;
 elseif (yVec < 0) && (yVtx < objPoints(objNum,2))
 xNewVec = xObjMax(objNum) - xConnVtx;
 yNewVec = -distInc;
 elseif (yVec > 0) && (yVtx < objPoints(objNum,2))
 if abs(xVec) > yVec
 xNewVec = xObjMax(objNum) - xConnVtx;
 yNewVec = -distInc;
 else
 xNewVec = xObjMax(objNum) - xConnVtx;
 yNewVec = distInc;
 end
 elseif (yVec < 0) && (yVtx > objPoints(objNum,2))
 if abs(xVec) > yVec
 xNewVec = xObjMax(objNum) - xConnVtx;
 yNewVec = distInc;
 else
 xNewVec = xObjMax(objNum) - xConnVtx;
 yNewVec = -distInc;
 end
 else
 xNewVec = xObjMax(objNum) - xConnVtx;
 yNewVec = -distInc;
 end

 % APPROACH FROM
BOTTOM___

 % If approaching from bottom, divert around in clockwise:
 elseif (xConnVtx > xObjMin(objNum)) && (xConnVtx < xObjMax(objNum)) &&
(yConnVtx <= yObjMin(objNum))

 xVec = xConnVtx - xPrevConnVtx;
 yVec = yConnVtx - yPrevConnVtx;

 if (xVec > 0) && (xVtx > objPoints(objNum,1))
 xNewVec = distInc;
 yNewVec = yObjMin(objNum) - yConnVtx;
 elseif (xVec < 0) && (xVtx < objPoints(objNum,1))

61

 xNewVec = -distInc;
 yNewVec = yObjMin(objNum) - yConnVtx;
 elseif (xVec > 0) && (xVtx < objPoints(objNum,1))
 if yVec > xVec
 xNewVec = -distInc;
 yNewVec = yObjMin(objNum) - yConnVtx;
 else
 xNewVec = distInc;
 yNewVec = yObjMin(objNum) - yConnVtx;
 end
 elseif (xVec < 0) && (xVtx > objPoints(objNum,1))
 if yVec > abs(xVec)
 xNewVec = distInc;
 yNewVec = yObjMin(objNum) - yConnVtx;
 else
 xNewVec = -distInc;
 yNewVec = yObjMin(objNum) - yConnVtx;
 end
 else
 xNewVec = -distInc;
 yNewVec = yObjMin(objNum) - yConnVtx;
 end

 % APPROACH FROM
TOP__

 % If approaching from top, divert around in clockwise:
 elseif (xConnVtx > xObjMin(objNum)) && (xConnVtx < xObjMax(objNum)) &&
(yConnVtx >= yObjMax(objNum))

 xVec = xConnVtx - xPrevConnVtx;
 yVec = yConnVtx - yPrevConnVtx;

 if (xVec > 0) && (xVtx >= objPoints(objNum,1))
 xNewVec = distInc;
 yNewVec = yObjMax(objNum) - yConnVtx;
 elseif (xVec < 0) && (xVtx <= objPoints(objNum,1))
 xNewVec = -distInc;
 yNewVec = yObjMax(objNum) - yConnVtx;
 elseif (xVec > 0) && (xVtx <= objPoints(objNum,1))
 if abs(yVec) > xVec
 xNewVec = -distInc;
 yNewVec = yObjMax(objNum) - yConnVtx;
 else
 xNewVec = distInc;
 yNewVec = yObjMax(objNum) - yConnVtx;
 end
 elseif (xVec < 0) && (xVtx >= objPoints(objNum,1))
 if abs(yVec) > abs(xVec)
 xNewVec = distInc;
 yNewVec = yObjMax(objNum) - yConnVtx;
 else

62

 xNewVec = -distInc;
 yNewVec = yObjMax(objNum) - yConnVtx;
 end
 else
 xNewVec = distInc;
 yNewVec = yObjMax(objNum) - yConnVtx;
 end

 % APPROACH FROM BOTTOM
LEFT___

 % If approaching from bottom left, divert around in clockwise:
 elseif (xConnVtx <= xObjMin(objNum)) && (yConnVtx <= yObjMin(objNum))

 xVec = xVtx - xConnVtx;
 yVec = yVtx - yConnVtx;
 xPrevVec = xConnVtx - xPrevConnVtx;
 yPrevVec = yConnVtx - yPrevConnVtx;

 if (xPrevVec >= 0) && (yPrevVec >= 0)
 if (xVec > yVec)
 xNewVec = distInc;
 yNewVec = yObjMin(objNum) - yConnVtx;
 elseif (xVec < yVec)
 xNewVec = xObjMin(objNum) - xConnVtx;
 yNewVec = distInc;
 else
 xNewVec = xObjMin(objNum) - xConnVtx;
 yNewVec = distInc;
 end
 elseif (xPrevVec < 0)
 xNewVec = xObjMin(objNum) - xConnVtx;
 yNewVec = distInc;
 elseif (yPrevVec < 0)
 xNewVec = distInc;
 yNewVec = yObjMin(objNum) - yConnVtx;
 else
 xNewVec = distInc;
 yNewVec = yObjMin(objNum) - yConnVtx;
 end

 % APPROACH FROM TOP
LEFT___

 % If approaching from top left, divert around in clockwise:
 elseif (xConnVtx <= xObjMin(objNum)) && (yConnVtx >= yObjMax(objNum))

 xVec = xVtx - xConnVtx;
 yVec = yVtx - yConnVtx;
 xPrevVec = xConnVtx - xPrevConnVtx;
 yPrevVec = yConnVtx - yPrevConnVtx;

63

 if (xPrevVec >= 0) && (yPrevVec <= 0)
 if (xVec > abs(yVec))
 xNewVec = distInc;
 yNewVec = yObjMax(objNum) - yConnVtx;
 elseif (xVec < abs(yVec))
 xNewVec = xObjMin(objNum) - xConnVtx;
 yNewVec = -distInc;
 else
 xNewVec = distInc;
 yNewVec = yObjMax(objNum) - yConnVtx;
 end
 elseif (xPrevVec < 0)
 xNewVec = xObjMin(objNum) - xConnVtx;
 yNewVec = -distInc;
 elseif (yPrevVec > 0)
 xNewVec = distInc;
 yNewVec = yObjMax(objNum) - yConnVtx;
 else
 xNewVec = distInc;
 yNewVec = yObjMax(objNum) - yConnVtx;
 end

 % APPROACH FROM TOP
RIGHT__

 % If approaching from top right, divert around in clockwise:
 elseif (xConnVtx >= xObjMax(objNum)) && (yConnVtx >= yObjMax(objNum))

 xVec = xVtx - xConnVtx;
 yVec = yVtx - yConnVtx;
 xPrevVec = xConnVtx - xPrevConnVtx;
 yPrevVec = yConnVtx - yPrevConnVtx;

 if (xPrevVec <= 0) && (yPrevVec <= 0)
 if (abs(xVec) > abs(yVec))
 xNewVec = -distInc;
 yNewVec = yObjMax(objNum) - yConnVtx;
 elseif (abs(xVec) < abs(yVec))
 xNewVec = xObjMax(objNum) - xConnVtx;
 yNewVec = -distInc;
 else
 xNewVec = xObjMax(objNum) - xConnVtx;
 yNewVec = -distInc;
 end
 elseif (xPrevVec > 0)
 xNewVec = xObjMax(objNum) - xConnVtx;
 yNewVec = -distInc;
 elseif (yPrevVec > 0)
 xNewVec = -distInc;
 yNewVec = yObjMax(objNum) - yConnVtx;
 else
 xNewVec = xObjMax(objNum) - xConnVtx;

64

 yNewVec = -distInc;
 end

 % APPROACH FROM BOTTOM
RIGHT__

 % If approaching from bottom right, divert around in clockwise:
 elseif (xConnVtx >= xObjMax(objNum)) && (yConnVtx <= yObjMin(objNum))

 xVec = xVtx - xConnVtx;
 yVec = yVtx - yConnVtx;
 xPrevVec = xConnVtx - xPrevConnVtx;
 yPrevVec = yConnVtx - yPrevConnVtx;

 if (xPrevVec <= 0) && (yPrevVec >= 0)
 if (abs(xVec) > yVec)
 xNewVec = -distInc;
 yNewVec = yConnVtx - yObjMin(objNum);
 elseif (abs(xVec) < yVec)
 xNewVec = xObjMax(objNum) - xConnVtx;
 yNewVec = distInc;
 else
 xNewVec = -distInc;
 yNewVec = yObjMin(objNum) - yConnVtx;
 end
 elseif (xPrevVec > 0)
 xNewVec = xObjMax(objNum) - xConnVtx;
 yNewVec = distInc;
 elseif (yPrevVec < 0)
 xNewVec = -distInc;
 yNewVec = yObjMin(objNum) - yConnVtx;
 else
 xNewVec = -distInc;
 yNewVec = yObjMin(objNum) - yConnVtx;
 end

 % IF ALL ELSE
FAILS__

 % If fails, continue to penetrate objects to show errors and bugs.
 else

 xVec = xVtx - xConnVtx;
 yVec = yVtx - yConnVtx;
 xNewVec = xVec;
 yNewVec = yVec;

 end
 end

65

Jumping Rover RRT*’s Color Options for Each Tree

% Develop by Isaac Shyu
% Rapidly-exploring Random Tree* (RRT*)
% Color Option

% Define color of line plot

% Input:
% -bestTree- a single-digit number indicating tree assignment

% Output:
% -Color- color designation of plot, letter or RGB ratio

function [Color] = defineColor(bestTree)
 if bestTree == 1
 Color = 'r'; %red
 elseif bestTree == 2
 Color = 'g'; %green
 elseif bestTree == 3
 Color = 'b'; %blue
 elseif bestTree == 4
 Color = 'm'; %magenta
 elseif bestTree == 5
 Color = 'k'; %black
 elseif bestTree == 6
 Color = [0.4 0.5 0.7]; %grey/blue
 elseif bestTree == 7
 Color = [1 0.19 1]; %pink
 elseif bestTree == 8
 Color = [1 0.64 0.19]; %orange
 elseif bestTree == 9
 Color = [0.54 0.17 0.06]; %dark red
 elseif bestTree == 10
 Color = [0.09 0.9 0.8]; %aqua
 elseif bestTree == 11
 Color = [0.45 0.1 0.9]; %purple
 elseif bestTree == 12
 Color = [0.45 0.45 1]; %light blue
 elseif bestTree == 13
 Color = [0.48 0.7 0.1]; %yellow green
 elseif bestTree == 14
 Color = [0.04 0.43 0.05]; %forest green
 elseif bestTree == 15
 Color = [1 0.85 1]; %light pink
 elseif bestTree == 16
 Color = [1 0.8 1]; %light purple
 elseif bestTree == 17
 Color = [0.59 0.59 0.59]; %gray

66

 elseif bestTree == 18
 Color = [0.49 0.33 0.04]; %brown
 elseif bestTree == 19
 Color = [0 0.51 0.52]; %dark cyan
 elseif bestTree == 20
 Color = [0.51 0 0.53]; %dark pink
 elseif bestTree == 21
 Color = 'r'; %red
 elseif bestTree == 22
 Color = 'g'; %green
 elseif bestTree == 23
 Color = 'b'; %blue
 elseif bestTree == 24
 Color = 'm'; %magenta
 elseif bestTree == 25
 Color = 'k'; %black
 elseif bestTree == 26
 Color = [0.4 0.5 0.7]; %grey/blue
 elseif bestTree == 27
 Color = [1 0.19 1]; %pink
 elseif bestTree == 28
 Color = [1 0.64 0.19]; %orange
 elseif bestTree == 29
 Color = [0.54 0.17 0.06]; %dark red
 elseif bestTree == 30
 Color = [0.09 0.9 0.8]; %aqua
 elseif bestTree == 31
 Color = [0.45 0.1 0.9]; %purple
 elseif bestTree == 32
 Color = [0.45 0.45 1]; %light blue
 elseif bestTree == 33
 Color = [0.48 0.7 0.1]; %yellow green
 elseif bestTree == 34
 Color = [0.04 0.43 0.05]; %forest green
 elseif bestTree == 35
 Color = [1 0.85 1]; %light pink
 elseif bestTree == 36
 Color = [1 0.8 1]; %light purple
 elseif bestTree == 37
 Color = [0.59 0.59 0.59]; %gray
 elseif bestTree == 38
 Color = [0.49 0.33 0.04]; %brown
 elseif bestTree == 39
 Color = [0 0.51 0.52]; %dark cyan
 elseif bestTree == 40
 Color = [0.51 0 0.53]; %dark pink
 elseif bestTree == 41
 Color = 'r'; %red
 elseif bestTree == 42
 Color = 'g'; %green
 elseif bestTree == 43
 Color = 'b'; %blue
 elseif bestTree == 44

67

 Color = 'm'; %magenta
 elseif bestTree == 45
 Color = 'k'; %black
 elseif bestTree == 46
 Color = [0.4 0.5 0.7]; %grey/blue
 elseif bestTree == 47
 Color = [1 0.19 1]; %pink
 elseif bestTree == 48
 Color = [1 0.64 0.19]; %orange
 elseif bestTree == 49
 Color = [0.54 0.17 0.06]; %dark red
 elseif bestTree == 50
 Color = [0.09 0.9 0.8]; %aqua
 elseif bestTree == 51
 Color = [0.45 0.1 0.9]; %purple
 elseif bestTree == 52
 Color = [0.45 0.45 1]; %light blue
 elseif bestTree == 53
 Color = [0.48 0.7 0.1]; %yellow green
 elseif bestTree == 54
 Color = [0.04 0.43 0.05]; %forest green
 elseif bestTree == 55
 Color = [1 0.85 1]; %light pink
 elseif bestTree == 56
 Color = [1 0.8 1]; %light purple
 elseif bestTree == 57
 Color = [0.59 0.59 0.59]; %gray
 elseif bestTree == 58
 Color = [0.49 0.33 0.04]; %brown
 elseif bestTree == 59
 Color = [0 0.51 0.52]; %dark cyan
 elseif bestTree == 60
 Color = [0.51 0 0.53]; %dark pink
 elseif bestTree == 61
 Color = 'r'; %red
 elseif bestTree == 62
 Color = 'g'; %green
 elseif bestTree == 63
 Color = 'b'; %blue
 elseif bestTree == 64
 Color = 'm'; %magenta
 elseif bestTree == 65
 Color = 'k'; %black
 elseif bestTree == 66
 Color = [0.4 0.5 0.7]; %grey/blue
 elseif bestTree == 67
 Color = [1 0.19 1]; %pink
 elseif bestTree == 68
 Color = [1 0.64 0.19]; %orange
 elseif bestTree == 69
 Color = [0.54 0.17 0.06]; %dark red
 elseif bestTree == 70
 Color = [0.09 0.9 0.8]; %aqua

68

 elseif bestTree == 71
 Color = [0.45 0.1 0.9]; %purple
 elseif bestTree == 72
 Color = [0.45 0.45 1]; %light blue
 elseif bestTree == 73
 Color = [0.48 0.7 0.1]; %yellow green
 elseif bestTree == 74
 Color = [0.04 0.43 0.05]; %forest green
 elseif bestTree == 75
 Color = [1 0.85 1]; %light pink
 elseif bestTree == 76
 Color = [1 0.8 1]; %light purple
 elseif bestTree == 77
 Color = [0.59 0.59 0.59]; %gray
 elseif bestTree == 78
 Color = [0.49 0.33 0.04]; %brown
 elseif bestTree == 79
 Color = [0 0.51 0.52]; %dark cyan
 elseif bestTree == 80
 Color = [0.51 0 0.53]; %dark pink
 end
end

69

Jumping Rover RRT*’s Neighborhood Cost Function

% Develop by Isaac Shyu
% Rapidly-exploring Random Tree* (RRT*)
% Neighborhood Cost Function (Version 2)

% Finds the least cost connection for a new vertex in a neighborhood of
vertices
% This version looks at cost potential in chains throughout the defined
neighborhood radius

% Inputs are:
% -tree- the tree of interest
% -neighborhood- radius around the new point that creates a circle where
vertices inside the circle can connect to the new vertex

% Output is:
% -vertexConnNew- new cell array for connection indices
% -minVtxIdx- the vertex index that the new point is connected to (will
return 0 if no change in vertex connections)

function [vertexConnNew, minVtxIdx, newTreeCost] = jumpNeighCost2(tree,
neighborhood, objAvoid)

 %% Initializing Neighborhood Points
 treeVertices = tree.Vertices; % Vertices of the tree in which it was
placed
 treeCost = tree.Cost; % Array of each vertex for the cumulative cost to
travel to each vertex from the origin
 treeVertexConn = tree.VertexConn; % Cell array of vertices that a vertex
is an origin point for
 treeAvoidObject = tree.AvoidObject; % Indicator for the object avoidance
option

 newVertex = treeVertices(end,:); % Coordinates of the newest vertex
placed
 newIdx = size(treeVertices,1); % Index of the newest vertex placed

 % If the object was moved to prevent running into something and has more
than 2 vertices find connecting vertices
 if (objAvoid == 1) && (size(treeVertices,1) > 2)

 % Find the connecting vertex index to the new index vertex
 flag = 0;
 for i = 1:size(treeVertexConn,1)
 for j = 1:size(treeVertexConn{i},2)
 if treeVertexConn{i}(j) == newIdx

70

 flag = 1;
 connIdx = i;
 break
 end
 end
 if flag == 1
 break
 end
 end
 connAvoidObject = treeAvoidObject(connIdx);

 % Find the previous connecting vertex index to the connecting index
vertex
 flag = 0;
 for i = 1:size(treeVertexConn,1)
 for j = 1:size(treeVertexConn{i},2)
 if treeVertexConn{i}(j) == connIdx
 flag = 1;
 prevConnIdx = i;
 break
 end
 end
 if flag == 1
 break
 end
 end
 prevConnAvoidObject = treeAvoidObject(prevConnIdx);
 end

 % Distance for every point in the tree to the newest vertex placed
 vertexDistances = sqrt((treeVertices(:,1)-newVertex(1,1)).^2 +
(treeVertices(:,2)-newVertex(1,2)).^2);
 vertexDistances(end,:) = []; %get rid of the newest vertex distance
(since it's 0)

 % Find the index of the vertices are in the neighborhood radius
 indicesInNeighborhood = find(vertexDistances(:,1) < neighborhood);
 indicesInNeighborhood(:,2) = 0;

 % If there is only one other vertex in the vicinity (or none cause the
neighborhood is too small or the
 % one the new vertex is already connected to) skip rest of function
 if size(indicesInNeighborhood,1) <= 1
 vertexConnNew = treeVertexConn;
 minVtxIdx = 0;
 newTreeCost = treeCost;

 % If one of the two previous connected points were moved to avoid a
object, don't change the
 % connection to prevent creating a path that passes through an object
 elseif (connAvoidObject == 1) || (prevConnAvoidObject == 1)
 vertexConnNew = treeVertexConn;

71

 minVtxIdx = 0;
 newTreeCost = treeCost;
 else

 %% Main Loop to Find Neighborhood Connections

 % For each index in "indicesInNeighborhood", find the total cost from
the origin point
 possibleCost = zeros(size(indicesInNeighborhood,1),2);

 for i = 1:size(indicesInNeighborhood,1)
 refIndex = indicesInNeighborhood(i);
 possibleCost(i,:) = [refIndex
(treeCost(refIndex)+vertexDistances(refIndex))];
 end

 %% Assigning New Vertex Connections
 if range(possibleCost(:,2)) == 0 % If all the costs are the same,
keep the connections the same
 vertexConnNew = treeVertexConn;
 minVtxIdx = 0;
 newTreeCost = treeCost;
 else
 [~, minNeighVtxIdx] = min(possibleCost(:,2)); % Find minimum
distance from all unlinked vertices in the neighborhood
 minVtxIdx = indicesInNeighborhood(minNeighVtxIdx,1); % Pull
minimum vertex index

 % Remove new vertex index from existing vertex connection
 vertexConnNew = cellfun(@(x) x(x~=newIdx), treeVertexConn,
'UniformOutput', 0);
 vertexConnNew{minVtxIdx} = [vertexConnNew{minVtxIdx} newIdx]; %
Add new vertex index to the minimum distance vertex
 newTreeCost = treeCost;
 newTreeCost(newIdx,1) = possibleCost(minNeighVtxIdx,2);
 end
 end
end

72

Jumping Rover RRT*’s Object Jump Cost Function

% Develop by Isaac Shyu
% Rapidly-exploring Random Tree* (RRT*)
% Object Jump Cost

% Determines if next vertex is on top of an object and whether it had jumped
there

% Inputs:
% -treeVertices- n x 2 matrix that contains the coordinates for each vertex
indicated by the index number
% -vertexConn- cell array that holds arrays containing the vertex numbers
that the cell index number is connected to
% -objectMatrix- matrix that contains the object dimensions (center
coordinates, length, width, height)
% -jumpWeight- weight for the cost of jumping

% Output:
% -jumpCost- the cost of jumping onto an object
% -jumpedObj- the array containing which objects were jumped over

function [jumpCost, jumpedObj] = jumpObjectCost(treeVertices, vertexConn,
objMatrix, jumpWeight)

 %% Initialize objects

 numObject = size(objMatrix,1);
 jumpedObj = [];

 % Object limits extracted
 objHeight = objMatrix(:,5);
 widthHalves = objMatrix(:,3)/2;
 lengthHalves = objMatrix(:,4)/2;
 xObjMin = objMatrix(:,1) - widthHalves;
 xObjMax = objMatrix(:,1) + widthHalves;
 yObjMin = objMatrix(:,2) - lengthHalves;
 yObjMax = objMatrix(:,2) + lengthHalves;
 xObjMax(3) = xObjMax(3) + 2;
 xObjMin(6) = xObjMin(6) - 2;
 yObjMax(5) = yObjMax(5) + 2;
 yObjMin(6) = yObjMin(6) - 2;
 xObjMin(2) = xObjMin(2) -1.5;
 yObjMax(2) = yObjMax(2) +1.5;
 xObjMin(1) = xObjMin(1) -1;
 xObjMax(1) = xObjMax(1) +1;
 yObjMax(1) = yObjMax(1) +1;
 yObjMin(1) = yObjMin(1) -1;

73

 %% Query Point Analysis

 queryIndex = size(treeVertices,1); % Index of the last vertex plotted
 xQueryVtx = treeVertices(queryIndex,1); % x value of last vertex plotted
 yQueryVtx = treeVertices(queryIndex,2); % y value of last vertex plotted

 % Determine if last plotted vertex is inside object limits
 queryInsideX_min = (xQueryVtx > xObjMin);
 queryInsideX_max = (xQueryVtx < xObjMax);
 queryInsideY_min = (yQueryVtx > yObjMin);
 queryInsideY_max = (yQueryVtx < yObjMax);

 % Determine if last plotted vertex is inside an object
 for i = 1:numObject
 if (queryInsideX_min(i) == 1) && (queryInsideX_max(i) == 1) &&
(queryInsideY_min(i) == 1) && (queryInsideY_max(i) == 1)
 queryVtxHeight = objHeight(i);
 jumpedObj = [jumpedObj, i];
 break
 else
 queryVtxHeight = 0;
 end
 end

 %% Connecting Vertex Analysis

 flag = 0;

 % Finding vertex that connects to last vertex plotted
 for i = 1:size(vertexConn,1)
 for j = 1:size(vertexConn{i},2)
 if vertexConn{i}(j) == queryIndex
 flag = 1;
 connIdx = i;
 break
 end
 end
 if flag == 1
 break
 end
 end

 xConnVtx = treeVertices(connIdx,1); % x value of vertex connecting to
last vertex plotted
 yConnVtx = treeVertices(connIdx,2); % y value of vertex connecting to
last vertex plotted

 % Determine if vertex connecting to last plotted vertex is inside object
limits
 connInsideX_min = (xConnVtx > xObjMin);
 connInsideX_max = (xConnVtx < xObjMax);

74

 connInsideY_min = (yConnVtx > yObjMin);
 connInsideY_max = (yConnVtx < yObjMax);

 % Determine if vertex connecting to last plotted vertex is inside an
object
 for i = 1:numObject
 if (connInsideX_min(i) == 1) && (connInsideX_max(i) == 1) &&
(connInsideY_min(i) == 1) && (connInsideY_max(i) == 1)
 connVtxHeight = objHeight(i);
 break
 else
 connVtxHeight = 0;
 end
 end

 %% Determine Jump Costs
 % If there is a net gain in height, calculate the resulting cost from the
jump weight; otherwise, the cost is 0
 if queryVtxHeight > connVtxHeight
 heightDiff = queryVtxHeight - connVtxHeight;
 jumpCost = heightDiff * jumpWeight;
 else
 jumpCost = 0;
 end

end

75

Jumping Rovers’ mTSP with MILP Function

% Develop by Kai Chuen Tan
% Contributed by Changhuang Wan
% Mixed-integer Linear Programming (MILP)
% Multiple Traveling Salesman Problem (mTSP)

% Determines the route to execute for each rover.

function [pathOrderMin, x_tsp] = Multiple_TSP_V4(tree, targets, targetPage,
numSalesmen, depotPt)

% Applied Mixed Linear Integer Programming (MILP)
% to solve multiple Traveling Salesman Problem (mTSP)
% by using "intlinprog."

% Initialization.
%----------------
% Initial Checkpoint (CP) for the "targetPage" input column number.
initialCP = 1;
% Final Checkpoint (CP) for the "targetPage" input column number.
finalCP = 2;
% Size of the Row for the "targetPage."
sizeRow = 1;
% Minimum Cost ID Column for the "minCostIDnPath" array.
ID_column = 1;
% Minimum Amount of Cost Column for the "minCostIDnPath" array.
cost_column = 2;

% Extract data from the inputs.
%-------------------------------
% Number of checkpoints.
numCPs = size(targets,sizeRow);
% Number of paths/trees between two checkpoints.
numPaths = size(tree,sizeRow);
% Different pairs of checkpoints with replacement.
rowNum = 1;
for i = 1:numCPs
 for j = 1:numCPs
 if i == j
 continue
 else
 PairsCPs(rowNum,1:2) = [i j];
 rowNum = rowNum + 1;
 end
 end
end
% Number of different pairs of checkpoints without replacement (nCk).
lenPairCPs = length(PairsCPs);

76

% A list of different combinations of a pair of checkpoints.
combinationCPs = targetPage(:,initialCP:finalCP);
% An array that stores the cost for each path.
cost = zeros(numPaths,sizeRow);
% An array that determines and stores
% the minimum cost for each pair of checkpoints with its ID.
minCostIDnPath = zeros(lenPairCPs,2);

% Multiple Traveling Salesman Problem (mTSP) Solving Process.
%---

% Stage 1 Process: Re-order the combination of checkpoints order
% to be ascending for all possible paths/trees.
%--
for i = 1:size(targetPage,sizeRow)

 % If there is a jump cost and the jump cost is not included in
 % the jump cost tree property
 if ~isempty(tree(i).JumpCost)

 % Add the jump cost to the total cost for the path/tree.
 cost(i) = tree(i).Cost(end) + sum(tree(i).JumpCost);

 else

 % or else, let the total cost of each path/tree
 % to be just the total travel cost of each path/tree.
 cost(i) = tree(i).Cost(end);

 end

end

% Stage 2 Process: Determine the minimum cost for
% each checkpoints combination.
%---

% For instance, there are a combination of Checkpoint 1 and Checkpoint 2
% and a combination of Checkpoint 2 and 1 (Different CP 1 to CP 2 path);
% the combination with the least cost will be selected.

for i = 1:size(PairsCPs,sizeRow)

 % Identity of the checkpoint the path/tree will start from.
 begin = PairsCPs(i,initialCP);
 % Identity of the checkpoint the path/tree will finish at.
 finish = PairsCPs(i,finalCP);

 % Find paths/trees that contain the same initial checkpoint.

77

 % Index (Column by column; from top to bottom).
 pathStart = find(combinationCPs(:,initialCP) == begin);

 % Find paths/trees within pathStart that contain the end checkpoint.
 pathStartFinish = find(combinationCPs(pathStart,finalCP) == finish);

 % Determine paths/trees that contain
 % both the start and finish checkpoints.
 idPath = pathStart(pathStartFinish);

 % Determine the path/tree that has
 % the minimum cost within idPath (index).
 [~,minCostIdPath] = min(cost(idPath));

 % Determine the path/tree that has the minimum cost for the given start
 % and finish checkpoint combo.
 % Store tree index for the given start and finish combo and
 % respective path/tree index cost.
 minCostIDnPath(i,ID_column) = idPath(minCostIdPath);
 minCostIDnPath(i,cost_column) = cost(minCostIDnPath(i,ID_column));

end

minCostPath = minCostIDnPath(:,cost_column);
minCostPath = [minCostPath; zeros(numCPs-1,1)]'; % minCostPath size should
be PairsCPs+numCPs-1 by 1

% Stage 3 Process: MATLAB TSP: Solver-Based Methods
%---
% Sub-stage 1: Equality Constraints
%**********************************
% First type of equality: [Aeq] * [x_tsp] = [beq].
% The first constraint enforces that all checkpoints must be visited once.
% Aeq Properties:
% 1.) Size: 1 x number of different combinations of checkpoints(c).
% 2.) [1_1, 1_2, 1_3,..., 1_c-2, 1_c-1, 1_c]
%Aeq = spones(1:length(PairsCPs));
% beq Properties:
% 1.) Size: 1 x 1 (Scalar)
% 2.) [Total Number of Checkpoints]
%beq = numCPs+(numSalesmen-1);

% Second type of equality:
% The second constraint enforces that there must be two paths/trees
% are attached to a checkpoint.
% Illustration Example:
% (Path 1) (Checkpoint 1) (Path 2)
% ----------------------------X----------------------------

% Initialize how many equalities equation and how many x_tsp together with
% u_i

78

% Row
% 2 equalities for deport and return
% 2 * number of targets for non starting points (entry and exit)
% Column
% number of combinations with replacements and number of u_i's.
%%
Aeq = zeros(2*numCPs,length(PairsCPs)+numCPs-1);
beq = zeros(2*numCPs,1);

%%
for CPnum = 1: numCPs

 % Find the paths/trees that include a specific checkpoint.
 % "whichPath" is a logical array (1 or 0 only).
 whichPath = (PairsCPs(:,1) == CPnum);
 % Include paths/trees where a specific checkpoint is at either end.
 % Sum of column 1 and column 2 in logical term (1 or 0)
 % Include in the constraint matrix.
 Aeq(CPnum,1:length(PairsCPs)) = whichPath';
 Aeq(CPnum, length(PairsCPs)+1:length(PairsCPs)+numCPs-1) =
zeros(1,numCPs-1); % For u_i

end

% "beq" is a (number of checkpoints+1) x 1 matrix
% because there are 2 equality constraints.
% beq vector is the number of paths/trees.
for CPnum = 1 : numCPs

 if CPnum == depotPt

 beq(CPnum) = numSalesmen;

 else

 beq(CPnum) = 1;

 end
end

for CPnum = 1: numCPs

 % Find the paths/trees that include a specific checkpoint.
 % "whichPath" is a logical array (1 or 0 only).
 whichPath = (PairsCPs(:,2) == CPnum);
 % Sum of column 1 and column 2 in logical term (1 or 0)
 % Include in the constraint matrix.
 Aeq(numCPs+CPnum,1:length(PairsCPs)) = whichPath';
 Aeq(numCPs+CPnum, length(PairsCPs)+1:length(PairsCPs)+numCPs-1) =
zeros(1,numCPs-1); % For u_i

79

end

% "beq" is a (number of checkpoints+1) x 1 matrix
% because there are 2 equality constraints.
% beq vector is the number of paths/trees.
for CPnum = 1 : numCPs

 if CPnum == depotPt

 %beq(CPnum+1) = 2*numSalesmen;
 beq(numCPs+CPnum) = numSalesmen;

 else

 %beq(CPnum+1) = 2;
 beq(numCPs+CPnum) = 1;

 end
end

% Third type of equality:
% The third constraint enforces that all rovers must start and end at
% a specific visiting point.

A = zeros((numCPs - 1)*(numCPs-2),lenPairCPs+numCPs-1);
b = zeros((numCPs-1)*(numCPs-2),1);
Ineqnum =0;

for i=2:numCPs
 for j=2:numCPs
 if i~= j
 Ineqnum = Ineqnum+1;
 A(Ineqnum,1:lenPairCPs+numCPs-1) = zeros(1,lenPairCPs+numCPs-1);
 A(Ineqnum,lenPairCPs+i-1) = 1; % ui
 A(Ineqnum,lenPairCPs+j-1) = -1; % uj
 if i<j
 A(Ineqnum,(numCPs-1)*(i-1)+j-1) = numCPs-numSalesmen+1; % xij
 else
 A(Ineqnum,(numCPs-1)*(i-1)+j) = numCPs-numSalesmen+1; % xij
 end
 b(Ineqnum) = numCPs-numSalesmen;
 end

 end
end

% Sub-stage 2: Binary Bounds for the x_tsp
%**
% Number of decision variables (x_ij) or Index of x_tsp.
xtspIndex = 1:(lenPairCPs+numCPs-1);

80

% Lower bound for the x_ij is zero.
lower_Bound = zeros(lenPairCPs+numCPs-1,1);
% Lower bound for the u_i and u_j is 1.
lower_Bound(lenPairCPs+1:end) = ones(1,numCPs-1);
% Upper bound for the x_ij is one.
upper_Bound = ones(lenPairCPs+numCPs-1,1);
% Upper bound for the u_i and u_j is the maximum number of targets
upper_Bound(lenPairCPs+1:end) = numCPs*ones(1,numCPs-1);

% Sub-stage 3: Optimizing the solution of x_tsp
% with MILP using "intlinprog"
%**
MILP_Settings = ...
 optimoptions('intlinprog','Display','iter','Heuristics','advanced');
[x_tsp] = ...
 intlinprog(minCostPath, xtspIndex, A, b, Aeq, beq,...
 lower_Bound, upper_Bound, MILP_Settings);

% Sub-stage 4: Constraint the number of subtours
% by adding an inequality constraint
% and optimize the solution of x_tsp again
% with MILP using "intlinprog" and
%***
% Determine which index of the x_tsp vector has elements of one.
x_tsp = round(x_tsp);

minCostIDnPathIndex = find(x_tsp == 1);

for i = 1:length(minCostIDnPathIndex)

 if minCostIDnPathIndex(i) > lenPairCPs
 break
 end
 realMinCostIDnPathIndex(i) = minCostIDnPathIndex(i);
end

% Determine each path order.
pathOrderMin = minCostIDnPath(realMinCostIDnPathIndex', ID_column);

end

81

Jumping Rover RRT*’s Object Avoidance Function

% Develop by Isaac Shyu
% Rapidly-exploring Random Tree* (RRT*)
% Object Avoidance

function [treeVerticesNew, newTreeCost, treeAvoidObject, connIdx, insideObj,
targetPageJumpOut, objNum, treeInObj] =...
 objectAvoidance(tree, objMatrix, targetPage, distInc, avoidException)
 %% Initialize objects
 treeVertices = tree.Vertices;
 treeCost = tree.Cost;
 treeVertexConn = tree.VertexConn;
 treeAvoidObject = tree.AvoidObject;
 treeInObj = tree.InObject;

 %Number of objects in test area
 numObj = size(objMatrix,1);

 %object limits extracted
 widthHalves = objMatrix(:,3)/2;
 lengthHalves = objMatrix(:,4)/2;

 %% Consider vehicles's width and marker distance
 xObjMin = objMatrix(:,1) - widthHalves;
 xObjMax = objMatrix(:,1) + widthHalves;
 yObjMin = objMatrix(:,2) - lengthHalves;
 yObjMax = objMatrix(:,2) + lengthHalves;
 xObjMax(3) = xObjMax(3) + 2;
 xObjMin(6) = xObjMin(6) - 2;
 yObjMax(5) = yObjMax(5) + 2;
 yObjMin(6) = yObjMin(6) - 2;
 xObjMin(2) = xObjMin(2) -1.5;
 yObjMax(2) = yObjMax(2) +1.5;
 xObjMin(1) = xObjMin(1) -1;
 xObjMax(1) = xObjMax(1) +1;
 yObjMax(1) = yObjMax(1) +1;
 yObjMin(1) = yObjMin(1) -1;
 %object points extracted
 objPoints = [objMatrix(:,1) objMatrix(:,2)];

 %% Query Point Analysis

 queryIndex = size(treeVertices,1); %index of the last vertex plotted
 xQueryVtx = treeVertices(queryIndex,1); %x value of last vertex plotted
 yQueryVtx = treeVertices(queryIndex,2); %y value of last vertex plotted
 treeAvoidObject(queryIndex,1) = 0; %indicator for if point needs to be
moved to avoid object
 xStart = targetPage(3);

82

 yStart = targetPage(4);
 xEnd = targetPage(5);
 yEnd = targetPage(6);

 %determine if last plotted vertex is inside object limits
 queryVtxInsideX_min = xQueryVtx > xObjMin;
 queryVtxInsideX_max = xQueryVtx < xObjMax;
 queryVtxInsideY_min = yQueryVtx > yObjMin;
 queryVtxInsideY_max = yQueryVtx < yObjMax;

 %determine if tree start is inside object limits
 queryStartInsideX_min = xStart > xObjMin;
 queryStartInsideX_max = xStart < xObjMax;
 queryStartInsideY_min = yStart > yObjMin;
 queryStartInsideY_max = yStart < yObjMax;

 %determine if tree target is inside object limits
 queryTargetInsideX_min = xEnd > xObjMin;
 queryTargetInsideX_max = xEnd < xObjMax;
 queryTargetInsideY_min = yEnd > yObjMin;
 queryTargetInsideY_max = yEnd < yObjMax;

 %determine if last plotted vertex is inside an object
 insideObj = 0;
 objNum = NaN;
 for i = 1:numObj
 if (queryVtxInsideX_min(i) == 1) && (queryVtxInsideX_max(i) == 1) &&
(queryVtxInsideY_min(i) == 1) && (queryVtxInsideY_max(i) == 1)
 insideObj = 1;
 objNum = i;
 break
 end
 end
 % objNum = i;
 if(~isnan(objNum))
 %determine if the tree start is on top of the object
 if (queryStartInsideX_min(objNum) == 1) &&
(queryStartInsideX_max(objNum) == 1) &&...
 (queryStartInsideY_min(objNum) == 1) &&
(queryStartInsideY_max(objNum) == 1)
 startOnObj = 1;
 else
 startOnObj = 0;
 end

 %determine if the tree target is on top of the object
 if (queryTargetInsideX_min(objNum) == 1) &&
(queryTargetInsideX_max(objNum) == 1) &&...
 (queryTargetInsideY_min(objNum) == 1) &&
(queryTargetInsideY_max(objNum) == 1)
 targetOnObj = 1;
 else

83

 targetOnObj = 0;
 end

 %determine if target is on top of object
 if (avoidException(1,objNum) == 1) && (targetOnObj == 1)
 targetObjException = 1;
 elseif (avoidException(1,objNum) == 1) && (startOnObj == 1)
 targetObjException = 1;
 else
 targetObjException = 0;
 end
 end
 %% Move Newest Vertex Outside Object, if Applicable

 if (insideObj == 0) %if not inside the object, the vertex coordinates
remain the same
 treeVerticesNew = treeVertices;
 newTreeCost = treeCost;
 connIdx = 0;
 targetPageJumpOut = 0;
 %if inside an object, but the vertex is already on top of the object or ,
output not inside object
 elseif (insideObj == 1) && (treeInObj(1,objNum) == 1)
 treeVerticesNew = treeVertices;
 newTreeCost = treeCost;
 connIdx = 0;
 insideObj = 0;
 targetPageJumpOut = 1;
 %if the target is on top of the object, output inside object = 2
 elseif (targetObjException == 1) && (targetOnObj == 1)
 treeVerticesNew = treeVertices;
 newTreeCost = treeCost;
 connIdx = 0;
 insideObj = 2;
 targetPageJumpOut = 0;
 %if the start vertex is on top of the object, output inside object = 3
 elseif (targetObjException == 1) && (startOnObj == 1)
 treeVerticesNew = treeVertices;
 newTreeCost = treeCost;
 connIdx = 0;
 insideObj = 3;
 targetPageJumpOut = 0;
 else %avoidance by tree of object needed
 treeInObj = zeros(1, numObj);
 treeInObj(1,objNum) = 1;
 %identify the vertex that the newest vertex is connected to
 flag = 0;
 for j = 1:size(treeVertexConn,1)
 for k = 1:size(treeVertexConn{j},2)
 if treeVertexConn{j}(k) == queryIndex
 flag = 1;
 connIdx = j;
 break

84

 end
 end
 if flag == 1
 break
 end
 end
 xConnVtx = treeVertices(connIdx,1);
 yConnVtx = treeVertices(connIdx,2);

 %identify the vertex that the connecting vertex is connected to
 flag = 0;

 %if the number of vertices is less than 2, make the previous
connecting vector 0
 if size(treeVertexConn,1) < 2
 xPrevConnVtx = 0;
 yPrevConnVtx = 0;
 else %otherwise, find the next previous connecting vertex connecting
to the connecting vertex
 for j = 1:size(treeVertexConn,1)
 for k = 1:size(treeVertexConn{j},2)
 if treeVertexConn{j}(k) == connIdx
 flag = 1;
 prevConnIndex = j;
 break
 end
 end
 if flag == 1
 break
 end
 end
 xPrevConnVtx = treeVertices(prevConnIndex,1);
 yPrevConnVtx = treeVertices(prevConnIndex,2);
 end

 %function to determine new vector direction
 [xNewVec, yNewVec] = avoidCriteria(distInc, treeVertices, objPoints,
xObjMin, xObjMax, yObjMin, yObjMax, objNum,...
 xConnVtx, yConnVtx, xPrevConnVtx, yPrevConnVtx);

 %unit vector calculation
 mag = norm([xNewVec yNewVec]);
 xUnit = round((xNewVec/mag)*distInc);
 yUnit = round((yNewVec/mag)*distInc);
 xNewVtx = xConnVtx + xUnit;
 yNewVtx = yConnVtx + yUnit;

 %new vertex coordinates for query vertex
 treeVerticesNew = treeVertices;
 treeVerticesNew(queryIndex,1) = xNewVtx;
 treeVerticesNew(queryIndex,2) = yNewVtx;

85

 %flag to indicate that the point was moved to avoid object (1 =
needed to be moved)
 treeAvoidObject(queryIndex,1) = 1;

 %new cost value for changing coordinates
 newTreeCost = treeCost;
 newTreeCost(queryIndex,1) = newTreeCost(connIdx,1) + hypot(xConnVtx-
xNewVtx, yConnVtx-yNewVtx);
 targetPageJumpOut = 0; %indicate point is not a result of jumping
 end
end

86

Jumping Rover’s Refined RRT* Function

% Develop by Isaac Shyu
% Rapidly-exploring Random Tree* (RRT*)
% Refined RRT*

% Refines tree path to make it smoother and optimized

% Inputs:
% -tree- path to be refined
% -objectMatrix- matrix that contains the object dimensions (center
coordinates, length, width, height)
% -distInc- the incremental distance in which the vertices in each path are
evaluated
% -objDispMarg- margin for object display (discrepancy between actual border
of object and displayed border on plot)

% Output:
% -refVert- refined vertices for given tree
% -refCost- corresponding cost for given refined vertices

function [refVert, refCost] = refinedRRT(tree, objMatrix, distInc,
objDispMarg, rotWeight)

jumpedObj = tree.JumpedObj;
numObj = size(objMatrix,1);
widthHalves = objMatrix(:,3)/2;
lengthHalves = objMatrix(:,4)/2;
xObjMin = objMatrix(:,1) - widthHalves - objDispMarg;
xObjMax = objMatrix(:,1) + widthHalves + objDispMarg;
yObjMin = objMatrix(:,2) - lengthHalves - objDispMarg;
yObjMax = objMatrix(:,2) + lengthHalves + objDispMarg;
 xObjMax(3) = xObjMax(3) + 2;
 xObjMin(6) = xObjMin(6) - 2;
 yObjMax(5) = yObjMax(5) + 2;
 yObjMin(6) = yObjMin(6) - 2;
 xObjMin(2) = xObjMin(2) -1.5;
 yObjMax(2) = yObjMax(2) +1.5;
 xObjMin(1) = xObjMin(1) -1;
 xObjMax(1) = xObjMax(1) +1;
 yObjMax(1) = yObjMax(1) +1;
 yObjMin(1) = yObjMin(1) -1;
refVert = tree.Vertices;
refVertOld = [];
refCost = tree.Cost;
prevAngle = 180;
n = 3; flag = 0;

87

while n < 10 %will keep iterating to find an angle between three points
greater than angleMax
 numPoint = size(refVert,1);
 %find where the angle between three points is greater than a threshold
 for i = n:(numPoint-2)
 %start vertex
 x0 = refVert(i-1,1); y0 = refVert(i-1,2)
 %middle vertex
 x1 = refVert(i,1); y1 = refVert(i,2)
 %end vertex
 x2 = refVert(i+1,1); y2 = refVert(i+1,2)
 v1 = [x1-x0; y1-y0] %start vector
 v2 = [x2-x1; y2-y1] %end vector
 x0_old = x0; x2_old = x2; y0_old = y0; y2_old = y2;
 angle = round(acosd(dot(v1,v2)/(norm(v1)*norm(v2)))) %angle between
vectors
 if (angle > 0) && abs(prevAngle-angle) > 1 %if the angle is greater
than the max allowable angle, record the vertex index
 prevAngle = angle;
 apexVtx = i;
 break
 end
 end
 if i == (numPoint-2) %if no apex was found, break out of while loop
 break
 end

 trigger = 0;
 k = 0;

 while trigger ~= 1 %will keep iterating a shorter tree path until path
intersects an object

 %find interpolated points on either side of the middle vertex
 slope = (y2 - y0)/(x2 - x0 + 0.001);
 b = y2 - slope*x2;
 if x2 > x0
% xq = x0:0.05:x2;
 xq = linspace(x0, x2, 10);
 elseif x2 < x0
% xq = x0:-0.05:x2;
xq = linspace(x2, x0, 10);
 elseif (x2 == x0) && (x0 > 0)
 x2 = x2 + 0.1;
 xq = x0:0.05:x2;
 elseif (x2 == x0) && (x0 < 0)
 x2 = x2 - 0.1;
 xq = x0:-0.05:x2;
 end
 x = [x0, x2];
 v = slope*x + b;
 vq1 = interp1(x,v,xq);

88

 %find if any of the interpolated points are inside an object
 for j = 1:numObj
 %if the object was jumped over, ignore the intersection of tree
with object
 if ismember(j, jumpedObj) == 1
 continue
 end
 for q = 1:size(xq,2)
 if (xObjMin(j) <= xq(q)) && (xObjMax(j) >= xq(q)) &&
(yObjMin(j) <= vq1(q)) && (yObjMax(j) >= vq1(q))
 trigger = 1;
 flag = 1;
 break
 end
 end
 if flag == 1
 flag = 0;
 break
 end
 end

 if (size(refVert,1) < (apexVtx+2)) || (apexVtx-2 < 0) %prevents error
out from not enough points to connect to
 trigger = 1;
 elseif isequal(refVert, refVertOld) == 1
 trigger = 1;
 n = n + 1;
 elseif trigger ~= 1 %removal of apex vertex
 x0_old = x0; x2_old = x2; y0_old = y0; y2_old = y2; refVertOld =
refVert;
 x0 = refVert(apexVtx-1,1); y0 = refVert(apexVtx-1,2);
%establishing new initial vertex for segment before apex
 x2 = refVert(apexVtx+1,1); y2 = refVert(apexVtx+1,2);
%establishing new end vertex for segment before apex
 refVert(apexVtx,:) = []; %removal of apex vertex
 end
 if trigger ~= 1
 apexVtx = apexVtx - 1; %iterating apexVtx to prevent error out
from few vertices at the end of path
 else
 x0 = x0_old; x2 = x2_old; y0 = y0_old; y2 = y2_old; %restore old
vertices and coordinates
 refVert = refVertOld ;
 apexVtx = apexVtx + 1;
 xEndVtx = refVert(apexVtx+1, 1); %identify the end vertex between
removed vertices
 yEndVtx = refVert(apexVtx+1, 2);
 xVec = xEndVtx - refVert(apexVtx, 1); %define vector from apex to
end vertex
 yVec = yEndVtx - refVert(apexVtx, 2);
 xUnitVec = xVec/norm([xVec yVec])*distInc; %define unit vector
scaled to distance increment

89

 yUnitVec = yVec/norm([xVec yVec])*distInc;
 m = 1;
 while hypot(xUnitVec*m, yUnitVec*m) < hypot(xVec, yVec) %plot
interpolated points between apex and end vertices
 refVert = [refVert((1:(apexVtx+m-1)),:); refVert(((apexVtx+m-
1):end),:)];
 refVert(apexVtx+m,:) = [xUnitVec*m + refVert(apexVtx,1),
yUnitVec*m + refVert(apexVtx,2)];
 m = m + 1;
 end
 end
 end
end

%editting tree vertices (eliminating points on straight lines) and cost based
on refined vertices
i = 1;
finish = 0;

%removing redundant points
while finish == 0
 a = refVert(i+1, 1:2) - refVert(i, 1:2);
 b = refVert(i+2, 1:2) - refVert(i+1, 1:2);
 angle = acosd(dot(a,b)/(norm(a)*norm(b))); %find if angle between 3
points is greater than 0
 if angle == 0 %if angle equals 0, remove repetitive coordinate for a
straight line
 refVert(i+1,:) = [];
 else
 i = i + 1;
 end
 if (i+2) > size(refVert,1)
 finish = 1;
 end
end

%evaluating cost
for j = 1:(size(refVert,1)-1)
 if j > 1
 vec1 = refVert(j,:) - refVert(j-1,:);
 vec2 = refVert(j+1,:) - refVert(j,:);
 rotCost =
round(acosd(dot(vec1,vec2)/(norm(vec1)*norm(vec2))))*rotWeight;
 else
 rotCost = 0;
 end
 refCost(j+1) = norm(refVert(j+1, 1:2) - refVert(j, 1:2)) + refCost(j) +
rotCost;
end

%eliminating any extra costs at end
refCost((size(refVert,1)+1):end) = [];

90

end

91

Jumping Rovers’ Scenario Function

function[targets, numTarget, objMatrix] = Senario(num)

switch num
 case 1 %basic 3 targets, 1 in each corner, object off-screen
 %Target locations
 targets = [5 5; 45 5; 45 45];
 numTarget = size(targets,1);

 %Objects [x, y, width(x), length(y), height]
 objMatrix = [75 75 8 8 2];

 case 2 %2 targets with 1 object in between
 %Target locations
 targets = [5 25; 45 25];
 numTarget = size(targets,1);

 %Objects [x, y, width(x), length(y), height]
 objMatrix = [25 25 8 8 2];

 case 3 %2 targets with 1 long object in between
 %Target locations
 targets = [5 25; 45 25];
 numTarget = size(targets,1);

 %Objects [x, y, width(x), length(y), height]
 objMatrix = [25 25 8 20 2];

 case 4 %3 targets diagonal, 1 target on top of the object in center
 %Target locations
 targets = [5 5; 25 25; 45 25];
 numTarget = size(targets,1);

 %Objects [x, y, width(x), length(y), height]
 objMatrix = [25 25 8 8 2; 35 25 8 10 4];

 case 5 %2 targets, 2 objects adjacent to different heights
 %Target locations
 targets = [25 5; 25 45];
 numTarget = size(targets,1);

 %Objects [x, y, width(x), length(y), height]
 objMatrix = [25 30 20 8 2; 25 35 8 8 4];

 case 6 %2 targets, 2 long objects of different heights
 %Target locations
 targets = [5 25; 45 25];

92

 numTarget = size(targets,1);

 %Objects [x, y, width(x), length(y), height]
 objMatrix = [20 25 8 24 2; 30 25 8 24 6];

 case 7 %4 targets, 4 random objects of different heights
 %Target locations
 targets = [5 5; 35 25; 25 35; 25 45];
 numTarget = size(targets,1);

 %Objects [x, y, width(x), length(y), height]
 objMatrix = [20 20 10 10 2; 35 25 8 25 4; 20 35 8 8 4; 25 35 8 8 6];

 case 8 %4 targets, 5 adjacent objects of different heights
 %Target locations
 targets = [5 5; 25 25; 25 45; 45 45];
 numTarget = size(targets,1);

 %Objects [x, y, width(x), length(y), height]
 objMatrix = [15 25 8 25 2; 25 25 8 25 4; 35 25 8 25 6];

 case 9 %basic 3 targets, 1 in each corner, No Object.
 %Target locations
 targets = [5 5; 40 75 ; 75 5];
 numTarget = size(targets,1);

 %Object [x, y, width(x), length(y), height]
 objMatrix = [0, 0, 0, 0, 0];

 case 10
 %Target locations
 % Initialize Starting Coordinate.
 x_CP_Start = 500; % Lattitude
 y_CP_Start = 500; % Longitude

 % Set equidistant distance between checkpoints.
 for row = 1 : 16
 for column = 1 : 2
 if column == 1
 targets(row,column) = x_CP_Start;
 x_CP_Start = x_CP_Start + 1000;
 else
 targets(row,column) = y_CP_Start;
 if x_CP_Start > 4000
 x_CP_Start = 500;
 y_CP_Start = y_CP_Start + 1000;
 end
 end
 end
 end

93

 targets = targets/50;
 numTarget = size(targets,1);

 %Object [x, y, width(x), length(y), height]
 objMatrix = [10, 70, 23, 23, 0.5;...
 30, 70, 23, 23, 0.5;...
 30, 50, 23, 23, 0.5;...
 30, 30, 23, 23, 0.5;...
 50, 30, 23, 23, 0.5];

 case 11
 %Target locations
 targets = [3 10; 15 2; 2 1; 14 16; 16 12; 5 15; 8 12; 10 10]*4;
 numTarget = size(targets,1);
 objMatrix = [0, 0, 0, 0, 0];

 case 12 %manual
 %Target locations
 targets = [2 1; 15 2;3 10; 14 16; 16 12]*4;
 numTarget = size(targets,1);

 %Objects [x, y, width(x), length(y), height]
 objMatrix = [3 8 4 2 0.5; 10 10 2 2 0.5; 12 16 2 6 0.5; 13 5.5 2 4
0.5;...
 16 14 6 2 0.5; 14 16 2 2 1.1; 17 9 2 2 0.5]*4;
 otherwise
end
end

94

Experimental MATLAB Codes

Parallel Programming Initiation Code

% Develop by Kai Chuen Tan.
% Initiate parallel programming mode to control both rovers
% simultaneously
% Clear History.
clear all; clc; close all; % Clear all workspace, clear command window, and
close all figures.
delete(instrfind); % Arduino Clear Ports.

Advanium = raspi ('192.168.0.7','pi','Caltechtkc12345@'); % Connect the
MATLAB to the Raspberry Pi Zero W.
% Power Data Acquisition (DAQ)
openShell(Advanium); % Type 'cd Desktop/', then 'python Power_DAQ.py &'

% Clear History.
clear; clc; close all; % Clear all workspace, clear command window, and close
all figures.
delete(instrfind); % Arduino Clear Ports.
%delete(gcp('nocreate'));

Imap = 'I90'; % Jumping Rover 2's map.
Kmap = 'K0'; % Jumping Rover 1's map.

JRteam = {@IJR, @KJR}; % Jumping Rover Functions
settings = {Imap; Kmap}; % Jumping Rovers' map selections

% Run Jumping Rover 1 and Jumping Rover 2 functions at the same time.
parfor rover_Num = 1:2

 JRteam{rover_Num}(settings{rover_Num,:});

end

95

Jumping Rover 1’s Function

function [] = KJR(Kmap)

% Raspberry Pi Jumping Rover - Coordinate-based command.
% Original code by MyungJin for Charging Rover and Blimp.
% Edited by Kai for Raspberry Pi Jumping Rover.

% Attempt a connection between the Raspberry Pi and Computer.
%Advanium = raspi ('192.168.2.5','pi','Caltechtkc12345@'); % Connect the
MATLAB to the Raspberry Pi Zero W.
Advanium = raspi ('192.168.0.7','pi','Caltechtkc12345@'); % Connect the
MATLAB to the Raspberry Pi Zero W.
%Advanium = raspi ('192.168.43.42','pi','Caltechtkc12345@'); % Connect the
MATLAB to the Raspberry Pi Zero W.

%% VICON Setup
HostName = 'localhost:801'; % Initialize the host name.
addpath('C:\Program Files\Vicon\DataStream SDK\Win64\MATLAB'); % Adds the
MATLAB folder to the top of the search path for the current MATLAB session.
% Load the Software Development Kit (SDK).
fprintf('Hello, creators. SDK is loading...\n');
Client.LoadViconDataStreamSDK();
fprintf('Loading Complete, sir!\n');

Kai_Client = Client(); % Create a new client.

% Connect to the server.
fprintf('VICON System is connecting to %s ...', HostName);

% Waiting for a connection.
while ~Kai_Client.IsConnected().Connected

 %Establish direct connection.
 Kai_Client.Connect(HostName);
 fprintf('.');

end

% Enable several different data types. (RasPi)
Kai_Client.EnableSegmentData();
Kai_Client.EnableMarkerData();
Kai_Client.EnableUnlabeledMarkerData();
Kai_Client.EnableDeviceData();

% Set the streaming mode.
Kai_Client.SetStreamMode(StreamMode.ClientPull);

% Set the global up axis.

96

Kai_Client.SetAxisMapping(Direction.Forward, Direction.Left, Direction.Up);
% Define positive X, Y, Z directions.

% Obtain the axis mapping.
Kai_Client.GetAxisMapping();

% Discover the VICON Version Number. (RasPi)
Output_GetVersion_RasPi = Kai_Client.GetVersion();
fprintf('Version: %d.%d.%d\n', Output_GetVersion_RasPi.Major,
Output_GetVersion_RasPi.Minor, Output_GetVersion_RasPi.Point);

%% Position Data Recorder Log Files
current_moment = clock; % Store current clock time, [year month day hour
minute seconds].

% Store year, month, day, hour, minute.
dateNtime = [num2str(current_moment(1), '%02d'),...
 num2str(current_moment(2), '%02d'),...
 num2str(current_moment(3), '%02d'),...
 '_',...
 num2str(current_moment(4), '%02d'),...
 num2str(current_moment(5), '%02d')];

existance = 7; % Existance is 7.

% If the file does not exist.
if exist('CoOp_Mission_Data', 'dir') ~= existance && exist('mission_data',
'dir') ~= existance

 mkdir('CoOp_Mission_Data'); % Create the CoOp_Mission_Data folder.

end

% Create Positioning Data File in csv file format (RasPi).
File_Name_Pos = ['CoOp_Mission_Data/Data_Pos_', dateNtime, '.csv'];
FID_Pos = fopen(File_Name_Pos, 'w'); % Open the file ID with write access.
disp('Opening Cooperational Mission Data File...') % Report the status
message.

% Start
missionFile = xlsread([Kmap,'.xlsx']);

% Set matrix for coordinates with scaling
next_RP(:,1) = missionFile(:,1);
next_RP(:,2) = missionFile(:,2);
next_RP(:,3) = missionFile(:,3);

% GPIO Initializations
% GPIO Pins Initialization

97

Jump_STBY = 20; % Motor Controller Switch Pin.
Drive_Jump_BIN1 = 4; % Motor Controller Clockwise Input Pin.
Drive_Jump_BIN2 = 23; % Motor Controller Direction Counter-clockwise Input
Pin.
Drive_Jump_Speed_PWMB = 19; % Motor Controller Speed Control Pin.
Drive_STBY = 17; % Motor Controller Switch Pin.
Drive_Left_Forward_AIN1 = 27; % Motor Controller Direction Forward Input Pin.
Drive_Left_Backward_AIN2 = 22; % Motor Controller Direction Reverse Input
Pin.
Drive_Left_Speed_PWMA = 18; % Motor COntroller Speed Control Pin.
Drive_Right_Forward_BIN1 = 5; % Motor Controller Direction Forward Input Pin.
Drive_Right_Backward_BIN2 = 6; % Motor Controller Direction Reverse Input
Pin.
Drive_Right_Speed_PWMB = 12; % Motor COntroller Speed Control Pin.

% Motor Pins Configuration
configurePin(Advanium, Jump_STBY, 'DigitalOutput'); % Set the Stanby Pin /
Motor Switch as the Digital Output Pin.
configurePin(Advanium, Drive_Jump_BIN1, 'DigitalOutput'); % Set the Clockwise
Pin as the Digital Output Pin.
configurePin(Advanium, Drive_Jump_BIN2, 'DigitalOutput'); % Set the Counter-
clockwise Pin as the Digital Output Pin.
configurePin(Advanium, Drive_Jump_Speed_PWMB, 'PWM'); % Set the Speed Control
Pin as the Pulse Width Modulation Pin.
configurePin(Advanium, Drive_STBY, 'DigitalOutput'); % Set the Stanby Pin /
Motor Switch as the Digital Output Pin.
configurePin(Advanium, Drive_Left_Forward_AIN1, 'DigitalOutput'); % Set the
Forward Pin as the Digital Output Pin.
configurePin(Advanium, Drive_Left_Backward_AIN2, 'DigitalOutput'); % Set the
Reversed Pin as the Digital Output Pin.
configurePin(Advanium, Drive_Left_Speed_PWMA, 'PWM'); % Set the Speed Control
Pin as the Pulse Width Modulation Pin.
configurePin(Advanium, Drive_Right_Forward_BIN1, 'DigitalOutput'); % Set the
Forward Pin as the Digital Output Pin.
configurePin(Advanium, Drive_Right_Backward_BIN2, 'DigitalOutput'); % Set the
Reversed Pin as the Digital Output Pin.
configurePin(Advanium, Drive_Right_Speed_PWMB, 'PWM'); % Set the Speed
Control Pin as the Pulse Width Modulation Pin.
writeDigitalPin(Advanium, Drive_STBY, 1); % Turn on the Motor Controller.
writeDigitalPin(Advanium, Jump_STBY, 1); % Turn on the Motor Controller.
writePWMFrequency(Advanium, Drive_Left_Speed_PWMA, 2000); % Set the PWM
Frequency to be 2 kHz.
writePWMFrequency(Advanium, Drive_Right_Speed_PWMB, 2000); % Set the PWM
Frequency to be 2 kHz.

% PWM Duty Cycle (%) / Velocity.
MinVel = 0.07;
MedVel = 0.12;
%MaxVel = 0.14;
turnComp = 1; % Compensation value for turning to stay on a straight line
path (overcome difference in left/right motor)

98

coordNum_RP = 1; % Coordinate index number (RPi)
%scale = 1; % Scaleable value for coordinate system to actual test area for
dimensional purposes
%xOffset = 0; yOffset = 0; zOffset = 0; angOffset = 0; % Offsets to match
with actual test area for dimensional purposes
thetaDegTol_RasPi = 20; % (RaspPi)Tolerance for degree difference in current
heading and desired heading

distTol_RasPi = 100; % Tolerance for distance difference between current
position and desired position (mm).
%linJumpDist_RasPi = 800; % Distance forward that the rover jumps (mm).
linJumpDist_RasPi = 920; % Distance forward that the rover jumps (mm).

% Raspberry Pi Settings
jump_RP = 0; % Jump servo command
PWML_RP = 0; % PWM Left motor (Range: 0.00-1.00)
PWMR_RP = 0; % PWM Right motor (Range: 0.00-1.00)
DIRL_RP = 0; % Direction Left motor (2 = forward, 1 = backward 0 = idle)
DIRR_RP = 0; % Direction Right motor (2 = forward, 1 = backward, 0 = idle)
PWM_adj_RP = 0.018; % Adjustment for mismatched motors
jumpTrigger_RP = 0; % Jump triggered from xlsx files.

%shellOpen = 1; messageOpen = 0; % Shell Status, Message Status, and Request
Status Initialization

disp('\nJumping Rover Power Data is Recording in Real-time...\n') % Report
the status message.

% Iterating through all coordinates

tic % Begin time recording

while coordNum_RP <= size(missionFile,1)

 Pos_time = toc;

 [~, dTheta_RP, distError_RP, RoverPos_RP] = posHeadRasPi(Kai_Client,
next_RP(coordNum_RP,:)); % Evaluate next vector and error in heading

 % (RPi) write data (time, position, heading, power) of rover to mission
data file
 recordDataLocRasPi(FID_Pos, Pos_time, RoverPos_RP)

 % Raspberry Pi Error Adjustment
 if distError_RP < distTol_RasPi

 coordNum_RP = coordNum_RP + 1; %iterate coordinate index by 1

99

 jumpTrigger_RP = 0; %trigger toggle jump command on and off to avoid
multiple jumps

 % Change heading
 elseif abs(dTheta_RP) > thetaDegTol_RasPi

 %Rotation direction
 if dTheta_RP > 0 % Reverse left and forward right to turn left

 DIRL_RP = 1;
 DIRR_RP = 2;
 PWML_RP = MinVel;
 PWMR_RP = MinVel + 1.8*PWM_adj_RP;

 elseif dTheta_RP < 0 % Forward left and reverse right to turn right

 DIRL_RP = 2;
 DIRR_RP = 1;
 PWML_RP = MinVel;
 PWMR_RP = MinVel + 1.8*PWM_adj_RP;

 end

 PWML_RP = max(MinVel, PWML_RP);
 PWMR_RP = max(MinVel + PWM_adj_RP, PWMR_RP);
 jump_RP = 0;

 % Minimize distance error
 elseif distError_RP > distTol_RasPi

 PWML_RP = 0;
 PWMR_RP = 0;
 DIRL_RP = 0;
 DIRR_RP = 0;

 if next_RP(coordNum_RP,3) == 1 % If there is a 1 in the z-coordinate
position, jumping is needed

 %if distance between the current position and the desired
position is less than the forward distance the robot can jump, jump
 if (distError_RP <= linJumpDist_RasPi) && (jumpTrigger_RP == 0)

 jump_RP = 1;
 jumpTrigger_RP = 1;

 else

 % Run forward motion
 jump_RP = 0;

100

 [DIRL_RP, DIRR_RP, PWML_RP, PWMR_RP] =
fwdMotionRasPi(dTheta_RP, thetaDegTol_RasPi, turnComp, MedVel, PWM_adj_RP);

 end

 else

 % Run forward motion
 jump_RP = 0;
 [DIRL_RP, DIRR_RP, PWML_RP, PWMR_RP] = fwdMotionRasPi(dTheta_RP,
thetaDegTol_RasPi, turnComp, MedVel, PWM_adj_RP);

 end
 end

 [jump_RP] = normMtrCtrl(Advanium,...
 Drive_Left_Forward_AIN1, Drive_Left_Backward_AIN2,
Drive_Left_Speed_PWMA,...
 Drive_Right_Forward_BIN1, Drive_Right_Backward_BIN2,
Drive_Right_Speed_PWMB,...
 jump_RP, PWML_RP, PWMR_RP, DIRL_RP, DIRR_RP);

 if jump_RP == 1

 % GPIO Initializations
 % GPIO Pins Initialization
 Jump_STBY = 20; % Motor Controller Switch Pin.
 Drive_Jump_BIN1 = 4; % Motor Controller Clockwise Input Pin.
 Drive_Jump_BIN2 = 23; % Motor Controller Direction Counter-clockwise
Input Pin.
 Drive_Jump_Speed_PWMB = 19; % Motor Controller Speed Control Pin.
 Drive_STBY = 17; % Motor Controller Switch Pin.
 Drive_Left_Forward_AIN1 = 27; % Motor Controller Direction Forward
Input Pin.
 Drive_Left_Backward_AIN2 = 22; % Motor Controller Direction Reverse
Input Pin.
 Drive_Left_Speed_PWMA = 18; % Motor COntroller Speed Control Pin.
 Drive_Right_Forward_BIN1 = 5; % Motor Controller Direction Forward
Input Pin.
 Drive_Right_Backward_BIN2 = 6; % Motor Controller Direction Reverse
Input Pin.
 Drive_Right_Speed_PWMB = 12; % Motor COntroller Speed Control Pin.

 % Motor Pins Configuration
 configurePin(Advanium, Jump_STBY, 'DigitalOutput'); % Set the Stanby
Pin / Motor Switch as the Digital Output Pin.
 configurePin(Advanium, Drive_Jump_BIN1, 'DigitalOutput'); % Set the
Clockwise Pin as the Digital Output Pin.

101

 configurePin(Advanium, Drive_Jump_BIN2, 'DigitalOutput'); % Set the
Counter-clockwise Pin as the Digital Output Pin.
 configurePin(Advanium, Drive_Jump_Speed_PWMB, 'PWM'); % Set the Speed
Control Pin as the Pulse Width Modulation Pin.
 configurePin(Advanium, Drive_STBY, 'DigitalOutput'); % Set the Stanby
Pin / Motor Switch as the Digital Output Pin.
 configurePin(Advanium, Drive_Left_Forward_AIN1, 'DigitalOutput'); %
Set the Forward Pin as the Digital Output Pin.
 configurePin(Advanium, Drive_Left_Backward_AIN2, 'DigitalOutput'); %
Set the Reversed Pin as the Digital Output Pin.
 configurePin(Advanium, Drive_Left_Speed_PWMA, 'PWM'); % Set the Speed
Control Pin as the Pulse Width Modulation Pin.
 configurePin(Advanium, Drive_Right_Forward_BIN1, 'DigitalOutput'); %
Set the Forward Pin as the Digital Output Pin.
 configurePin(Advanium, Drive_Right_Backward_BIN2, 'DigitalOutput'); %
Set the Reversed Pin as the Digital Output Pin.
 configurePin(Advanium, Drive_Right_Speed_PWMB, 'PWM'); % Set the
Speed Control Pin as the Pulse Width Modulation Pin.
 writeDigitalPin(Advanium, Drive_STBY, 1); % Turn on the Motor
Controller.
 writeDigitalPin(Advanium, Jump_STBY, 1); % Turn on the Motor
Controller.

 end

 if coordNum_RP > size(missionFile,1)

 % (RasPi) Switch off the Driving Motor Controller
 writeDigitalPin(Advanium, Drive_Left_Forward_AIN1, 0); % Turn off the
forward pin.
 writeDigitalPin(Advanium, Drive_Left_Backward_AIN2, 0); % Turn off
the reverse pin.
 writeDigitalPin(Advanium, Drive_Right_Forward_BIN1, 0); % Turn off
the forward pin.
 writeDigitalPin(Advanium, Drive_Right_Backward_BIN2, 0); % Turn off
the reverse pin.
 writeDigitalPin(Advanium, Drive_Jump_BIN1, 0); % Turn off the
clockwise pin.
 writeDigitalPin(Advanium, Drive_Jump_BIN2, 0); % Turn off the
counter-clockwise pin.
 writeDigitalPin(Advanium, Drive_STBY, 0); % Turn on the Motor
Controller.
 writeDigitalPin(Advanium, Jump_STBY, 0); % Turn on the Motor
Controller.

 end
end

% Disable Raspberry Pi Functions
% fclose(fid_loc); % (Arduino) Close Location File
fclose(FID_Pos); % (RPi) Close Location File
% fclose(fid_pwr); % (Arduino) Close Power File

102

system(Advanium, 'pkill -f Power_DAQ.py'); % Terminate the pyhton script.
%getFile(Advanium, '/home/pi/Desktop/*.csv', 'C:\Users\User\Desktop'); % Save
data.
getFile(Advanium, '/home/pi/Desktop/PowerDataPackage/*.csv',
'C:\Users\tan.783\Desktop\Multiple Jumping Rovers MATLAB
Code_V2\MATLAB\CoOp_Mission_Data'); % Save data.
disp('Closing mission data files.')

end

103

Jumping Rover 1’s Forward Motion Control Function

% Jumping Rover 1's Forward Motion Control Function
function [DIRL, DIRR, PWML, PWMR] = fwdMotionRasPi(dTheta, thetaDegTol,
turnComp, speed, PWM_adj)

if dTheta > thetaDegTol
 DIRL = 2;
 DIRR = 2;
 PWML = min(max(round(speed - abs(dTheta)/1000*turnComp),0), 1);
 PWMR = min(round(speed + abs(dTheta)/1000*turnComp + PWM_adj),1);
elseif dTheta < -thetaDegTol
 DIRL = 2;
 DIRR = 2;
 PWML = min(round(speed + abs(dTheta)/1000*turnComp),1);
 PWMR = min(max(round(speed - abs(dTheta)/1000*turnComp + PWM_adj),0),1);
else
 DIRL = 2;
 DIRR = 2;
 PWML = speed;
 PWMR = speed+PWM_adj;
end

end

104

Jumping Rover 1’s Jump Function

function [] = Jump_Test(Advanium)

% Execute Jump.py Python Script.
system(Advanium, 'python /home/pi/Desktop/Jump.py');

end

105

Jumping Rover 1’s Motion Control Function

% Jumping Rover 1's Motion Control Function
function [jump] = normMtrCtrl(Advanium,...
 Drive_Left_Forward_AIN1,
Drive_Left_Backward_AIN2,Drive_Left_Speed_PWMA,...
 Drive_Right_Forward_BIN1,
Drive_Right_Backward_BIN2,Drive_Right_Speed_PWMB,...
 jump, PWML_val, PWMR_val, DIRL, DIRR)
% Master Control

% Left Motor Direction
% Left Forward.

if (DIRL == 2)

 writeDigitalPin(Advanium, Drive_Left_Forward_AIN1, 1); % Set the
direction to be forward.
 writeDigitalPin(Advanium, Drive_Left_Backward_AIN2, 0); % Turn off the
reverse pin to prevent stalling the motor.

% Left Stop.
elseif (DIRL == 0)

 writeDigitalPin(Advanium, Drive_Left_Forward_AIN1, 0); % Set the
direction to be forward.
 writeDigitalPin(Advanium, Drive_Left_Backward_AIN2, 0); % Turn off the
reverse pin to prevent stalling the motor.

% Left Reverse.
elseif (DIRL == 1)

 writeDigitalPin(Advanium, Drive_Left_Forward_AIN1, 0); % Set the
direction to be forward.
 writeDigitalPin(Advanium, Drive_Left_Backward_AIN2, 1); % Turn off the
reverse pin to prevent stalling the motor.

end

% Right Motor Direction
% Right Forward.
if (DIRR == 2)

 writeDigitalPin(Advanium, Drive_Right_Forward_BIN1, 1); % Set the
direction to be forward.
 writeDigitalPin(Advanium, Drive_Right_Backward_BIN2, 0); % Turn off the
reverse pin to prevent stalling the motor.

% Right Stop.

106

elseif (DIRR == 0)

 writeDigitalPin(Advanium, Drive_Right_Forward_BIN1, 0); % Set the
direction to be forward.
 writeDigitalPin(Advanium, Drive_Right_Backward_BIN2, 0); % Turn off the
reverse pin to prevent stalling the motor.

% Right Reverse.
elseif (DIRR == 1)

 writeDigitalPin(Advanium, Drive_Right_Forward_BIN1, 0); % Set the
direction to be forward.
 writeDigitalPin(Advanium, Drive_Right_Backward_BIN2, 1); % Turn off the
reverse pin to prevent stalling the motor.

end

writePWMDutyCycle(Advanium, Drive_Left_Speed_PWMA, PWML_val); % Set the PWM
Duty Cycle.
writePWMDutyCycle(Advanium, Drive_Right_Speed_PWMB, PWMR_val); % Set the PWM
Duty Cycle.

% Jump action.
if (jump == 1)

 Jump_Test(Advanium)

end

end

107

Jumping Rover 1’s Location and Heading Angle Tracker Function

% Function that outputs the position and heading angle of the Jumping Rover 1
function [WheelCenter, JRAng, GlobalAng] = OrganizeVICON_RoverRasPi(marker)

%Offset vector TBD
offset = [0 0];

%Labeling Rover and Goal
switch marker(3,1).obj_name

% case 'Goal'
% Goal_Marker_1 = 1;

 case 'RaspJumpingPi'
 RaspJumpingPi = 3;
end

% Marking Jumping Rover markers
WheelRight = 1;
FrontRight = 2;
WheelLeft = 3;
BackCenter = 4;

% Define Axis.
x_Dir = 1;
y_Dir = 2;
z_Dir = 3;

% Organizing data from Vicon for rover orientation
 WheelCenter(x_Dir) = (marker(RaspJumpingPi,WheelLeft).Translation(x_Dir) +
marker(RaspJumpingPi,WheelRight).Translation(x_Dir))/2;
 WheelCenter(y_Dir) = (marker(RaspJumpingPi,WheelLeft).Translation(y_Dir) +
marker(RaspJumpingPi,WheelRight).Translation(y_Dir))/2;
 WheelCenter(z_Dir) = (marker(RaspJumpingPi,WheelLeft).Translation(z_Dir) +
marker(RaspJumpingPi,WheelRight).Translation(z_Dir))/2;

 % Back Center Coordinates.
 RearCenter = [marker(RaspJumpingPi,BackCenter).Translation(x_Dir)
marker(RaspJumpingPi,BackCenter).Translation(y_Dir)
marker(RaspJumpingPi,BackCenter).Translation(z_Dir)];

% Heading Vector.
JRVec = [WheelCenter(x_Dir)- RearCenter(x_Dir)+offset(x_Dir);
WheelCenter(y_Dir)- RearCenter(y_Dir)+offset(y_Dir)];

% Heading Angle.
JRAng = atan2d(JRVec(y_Dir),JRVec(x_Dir));

108

% Global Vector.
GlobalVec = [100; 0];

% Global Angle.
GlobalAng = atan2d((det([GlobalVec JRVec])),dot(GlobalVec, JRVec));

end

109

Jumping Rover 1’s VICON Identification Function

function [marker] = PingVICONRasPi(MyClient)

for i=1:2 % Numbers seem to vary during the first 2 runs

 % Get a frame if VICON is paused, do loop will wait

 while MyClient.GetFrame().Result.Value ~= Result.Success
 end% while

 fprintf('\n');

 % Get the frame number
 Output_GetFrameNumber = MyClient.GetFrameNumber();

 % Get the timecode
 Output_GetTimecode = MyClient.GetTimecode();

 % Count the number of subjects
 SubjectCount = MyClient.GetSubjectCount().SubjectCount;

 for SubjectIndex = 1:SubjectCount

 % Get the subject name
 SubjectName = MyClient.GetSubjectName(SubjectIndex).SubjectName;

 % Get the root segment
 RootSegment = MyClient.GetSubjectRootSegmentName(SubjectName
).SegmentName;

 % Count the number of segments
 SegmentCount = MyClient.GetSegmentCount(SubjectName).SegmentCount;

 % Count the number of markers
 MarkerCount = MyClient.GetMarkerCount(SubjectName).MarkerCount;

 for MarkerIndex = 1:MarkerCount

 % Get the marker name
 MarkerName = MyClient.GetMarkerName(SubjectName, MarkerIndex
).MarkerName;

 % Get the marker parent

110

 MarkerParentName = MyClient.GetMarkerParentName(SubjectName,
MarkerName).SegmentName;

 % Get the global marker translat ion
 Output_GetMarkerGlobalTranslation =
MyClient.GetMarkerGlobalTranslation(SubjectName, MarkerName);
 Output_GetMarkerGlobalTranslation.mk_name=MarkerName;
 Output_GetMarkerGlobalTranslation.obj_name=SubjectName;
 Output_GetMarkerGlobalTranslation.mkr_count=MarkerCount;
 marker(SubjectIndex,MarkerIndex)=Output_GetMarkerGlobalTranslation;

 end % MarkerIndex
 end % SubjectIndex
end % Double check

end % Function Ends.

111

Jumping Rover 1’s Next Vector and Heading Error Evaluation Function

% Function that evaluates next vector and error in heading
function [nextVec, dTheta, distError, RoverPos] = posHeadRasPi(Kai_Client,
next)

 [Marker] = PingVICONRasPi(Kai_Client); % Collects activated marker
coordinates
 [RoverPos, ~, GlobalAng] = OrganizeVICON_RoverRasPi(Marker); % Determines
center of rover and heading; RoverPos(1 = x, 2 = y, 3 = z), heading in vector
form
 nextVec = next(1:2) - RoverPos(1:2); % Vector to reach next coordinate
 dTheta = atan2d(nextVec(2), nextVec(1)) - GlobalAng; % Heading angle
change needed

 % Adjust the range of reading from (-180 Degrees - 180 Degrees) to (0
Degree - 360 Degrees).
 if dTheta > 180

 dTheta = dTheta - 360;

 elseif dTheta < -180

 dTheta = dTheta + 360;

 end

 % Overall length between the jumping rover position and the next tartget
position.
 distError = sqrt((RoverPos(1)-next(1))^2 + (RoverPos(2)-next(2))^2);

end

112

Jumping Rover 1’s Location Data Acquisition Function

%Record Jumping Rover 1's Location Data
function [] = recordDataLocRasPi(fid_loc, time, RoverPos)

 % Store data in a vector form.
 dataLog = [double(time) double(RoverPos(1)) double(RoverPos(2))
double(RoverPos(3))];

 % Initialize the variable as empty string.
 format_string = '';

 for i=1:1:length(dataLog)

 format_string = strcat(format_string, '%3.2f'); % Float type
instead of string.

 if i < length(dataLog)

 format_string = strcat(format_string, ','); % Different
Column

 else

 format_string = strcat(format_string, '\n'); % New line.

 end

 end

 % Write to the csv file.
 fprintf(fid_loc, format_string, dataLog);

end

113

Jumping Rover 2’s Function

% Jumping Rover following set of coordinates
%Original code by Myungjin for Charging Rover and Blimp
%Editted by MyungJin for Jumping Rover

%% Setup
r2d = 180 / pi;

%% Serial
%com = 'com8';
% com = 'com8';
% com = 'com12';
%init_Serial;
s = serial('com8', 'Baudrate', 9600, 'DataBits', 8, 'Timeout', 1);
fopen(s);

%% Vicon
init_Vicon;
init_Object;

%% Logfile
init_Log;

%% Parameter
JR_I_ID = hex2dec('C1'); %Jumping rover id (to distinguish between other
rovers and blimp)
command = 65;
STPSPD = 111;
TRNSPD = 60;
PWML = 0; %PWM Left motor (Range: 0-255)
PWMR = 0; %PWM Right motor (Range: 0-255)
DIRL = 0; %Direction Left motor (1 = forward, 0 = backward)
DIRR = 0; %Direction Right motor (1 = forward, 0 = backward)
JUMP = STPSPD; %Jump servo command
% command packet
%[ID command PWML PWMR DIRL DIRR JUMP CHECKSUM END]
cntWP = 1;
disable = 0;
%timeold = 0;
loop = 1;
count = 0;
gooddata = 0;
volt = 0;
curr =0;
packet = zeros(1,10);
JumpDist = 255;
jump_init = 0;
t_jump = 0;

114

%% Start.
% coord = xlsread(strcat('I90', '.xlsx'));
coord = assignjump(Imap, JumpDist);
%coord = assignjump('I90', JumpDist);
numWP = size(coord(:,1),1);

% pause(7);

tic
while(disable < 50)

 % positoins and attitude
 [marker] = PingVICON(MyClient);
 [Goal, C_I, Vec_I, C_K] = OrganizeVICON_Rover(marker, Goal, JR_I, JR_K);
 time = toc;
 displacement = [coord(cntWP, 1) - C_I.x; coord(cntWP, 2) - C_I.y];
 distance = sqrt(displacement(1)^2 + displacement(2)^2);
 dangle = atan2((det([Vec_I, displacement])), dot(Vec_I, displacement)) *
r2d;

 % terminating condition
 if (Goal.z < 200)
 disable = disable + 10;
 end

 % Running (jumping or rolling)
 if(coord(cntWP, 3) == 1)
 JUMP = STPSPD;
 if (abs(dangle) > 10)
 if dangle > 0
 DIRL = 0;
 DIRR = 1;
 PWML = .4 * dangle;
 PWMR = .4 * dangle;
 elseif dangle < 0
 DIRL = 1;
 DIRR = 0;
 PWML = .4 * abs(dangle);
 PWMR = .4 * abs(dangle);
 end
 PWML = max(42, PWML);
 PWMR = max(42, PWMR);
 elseif dangle >= 0
 DIRL = 1;
 DIRR = 1;
 forward = distance;
 PWML = .6*forward + dangle;
 PWMR = .6*forward - dangle;
 elseif dangle < 0
 DIRL = 1;
 DIRR = 1;
 forward = distance;

115

 PWML = .6 *forward + abs(dangle);
 PWMR = .6 *forward - abs(dangle);
 end
 PWML = min(60, PWML);
 PWML = uint8(max(0, PWML));
 PWMR = min(60, PWMR);
 PWMR = uint8(max(0, PWMR));
 if (distance < 50 && jump_init == 0)
 jump_init = 1;
 t_jump = toc;
 end
 if(jump_init == 1 && toc-t_jump < 1.4)
 PWML = 0;
 PWMR = 0;
 DIRL = 0;
 DIRR = 0;
 JUMP = TRNSPD;
 end
 if(jump_init == 1 && toc - t_jump > 1.43)
 jump_init = 0;
 t_jump = -99999;
 cntWP = cntWP + 1;
 JUMP = STPSPD;
 end
 else
 JUMP = STPSPD;
 if (abs(dangle) > 15)
 if dangle > 0
 DIRL = 0;
 DIRR = 1;
 PWML = .9 * dangle;
 PWMR = .9 * dangle;
 elseif dangle < 0
 DIRL = 1;
 DIRR = 0;
 PWML = .9 * abs(dangle);
 PWMR = .9 * abs(dangle);
 end
 PWML = max(42, PWML);
 PWMR = max(42, PWMR);
 elseif dangle >= 0
 DIRL = 1;
 DIRR = 1;
 forward = distance;
 PWML = 1.5*forward + dangle;
 PWMR = 1.5*forward - dangle;
 elseif dangle < 0
 DIRL = 1;
 DIRR = 1;
 forward = distance;
 PWML = 1.5 *forward + abs(dangle);
 PWMR = 1.5*forward - abs(dangle);
 end

116

 PWML = min(80, PWML);
 PWML = uint8(max(0, PWML));
 PWMR = min(80, PWMR);
 PWMR = uint8(max(0, PWMR));
 if (C_I.z > 180)
 PWML = uint8(max(80, PWML));
 PWML = uint8(max(80, PWML));
 end
 collision = [C_I.x-C_K.x, C_I.y-C_K.y, C_I.z-C_K.z];
 if norm(collision) < 270
 PWML = 0;
 PWMR = 0;
 DIRL = 0;
 DIRR = 0;
 JUMP = STPSPD;
 end
 if distance < 150
 cntWP = cntWP + 1;
 end
 end

 % command
 scommand = [JR_I_ID command PWML PWMR DIRL DIRR JUMP 0 13];
% scommand = [ID command 8 9 0 DIRR JUMP 0 13];
 checksum = 0;
 for i = 2:1:7
 checksum = bitxor(checksum, scommand(i));
 end
 scommand(8) = checksum;
 fwrite(s, scommand);

 % vc telemetry
 if(s.BytesAvailable >= 10)
 for k = 1:10
 packet(k) = fread(s, 1, 'uint8');
 end
 checksum = 0;
 for j = 3:8
 checksum = bitxor(checksum, packet(j));
 end
 if (packet(1) == 193 && packet(2) == 0 && packet(9) == checksum &&
packet(10) == 13)
 count = double(packet(3)) * 256 + double(packet(4));
 volt = (double(packet(5)) * 256 + double(packet(6))) / 100;
 curr = (double(packet(7)) * 256 + double(packet(8))) / 10;
 gooddata = 1;
 else
 flushinput(s);
 gooddata = 0;
 end
 end

117

 % log
 data_to_log = [double(time), double(C_I.x), double(C_I.y), double(C_I.z),
double(PWML), double(PWMR), double(JUMP), double(count),double(volt),
double(curr), double(gooddata), double(C_K.x), double(C_K.y), double(C_K.z)];
 if loop == 1
 fprintf(fid_I, 'time [s], pos_x [mm], pos_y [mm], pos_z [mm], PWML,
PWMR, JUMP, count, volt [V], curr [mA], gooddata \n');
 format_string = '';
 for i=1:1:length(data_to_log)
 format_string = strcat(format_string, '%3.4f');
 if i < length(data_to_log)
 format_string = strcat(format_string, ',');
 else
 format_string = strcat(format_string, '\n');
 end
 end
 end
 fprintf(fid_I, format_string, data_to_log);
 loop = loop + 1;

 if cntWP > numWP
 disable = 99999;
 end
end

%% Terminate
% disable all functions
fclose(fid_I);
PWML = 0;
PWMR = 0;
DIRL = 0;
DIRR = 0;
JUMP = STPSPD;
scommand = [JR_I_ID command PWML PWMR DIRL DIRR JUMP 0 13];
checksum = 0;
for i = 2:1:7
 checksum = bitxor(checksum, scommand(i));
end
scommand(8) = checksum;
fwrite(s, scommand);
fclose(s);
disp('Terminated!');

118

Jumping Rover 2’s Log File Initialization Script

%% Log File Initialization

thismoment = clock;
date_time = '';
for i = 1:5
 date_time = [date_time, num2str(thismoment(i), '%02d')];
 if i == 3
 date_time = [date_time, '_'];
 end
end

if exist('mission_data', 'dir') ~= 7
 mkdir('mission_data');
end

file_name = ['mission_data/JR1_',date_time,'.csv'];
fid_I = fopen(file_name, 'w');

119

Jumping Rover 2’s VICON Objects Initialization Function

%% Objects
% Labeling Rovers and Goal
[marker] = PingVICON(MyClient);
for i = 1:size(marker,1)
 switch marker(i,1).obj_name
 case 'magic_wand'
 Goal.idx = i;

 case 'Jumping_Rover2'
 JR_I.idx = i;

 case 'RaspJumpingPi'
 JR_K.idx = i;
 end
end

% Wand
Goal.marker = 2;

% Jumping rover_Isaac
for j = 1:4
 switch marker(JR_I.idx,j).mk_name
 case 'Left'
 JR_I.L = j;

 case 'Right'
 JR_I.R = j;

 case 'Front'
 JR_I.F = j;

% case 'BRight'
% JR_I.BR = j;

% case 'Back'
% JR_I.B = j;
 end
end

% Jumping rover_Kai
for j = 1:4
 switch marker(JR_K.idx,j).mk_name
 case 'WheelRight'
 JR_K.WR = j;

 case 'FrontRight'
 JR_K.FR = j;

120

 case 'WheelLeft'
 JR_K.WL = j;

 case 'BackCenter'
 JR_K.BC = j;

 otherwise
 end
end

121

Jumping Rover 2’s VICON Initialization Function

%% Vicon Initialization

% adds the specified folders to the top of the search path for the current
MATLAB® session.
addpath('C:\Program Files\Vicon\DataStream SDK\Win64\MATLAB')

% Load the SDK
fprintf('Loading SDK...');
Client.LoadViconDataStreamSDK();
fprintf('done\n');

% Program options
HostName = 'localhost:801';

% Make a new client
MyClient = Client();

% Connect to a server
fprintf('Connecting to %s ...', HostName);
while ~MyClient.IsConnected().Connected
 % Direct connection
 MyClient.Connect(HostName);

 fprintf('.');
end
fprintf('\n');

% Enable some different data types
MyClient.EnableSegmentData();
MyClient.EnableMarkerData();
MyClient.EnableUnlabeledMarkerData();
MyClient.EnableDeviceData();

% Set the streaming mode
MyClient.SetStreamMode(StreamMode.ClientPull);

% Set the global up axis
MyClient.SetAxisMapping(Direction.Forward, ...
 Direction.Left, ...
 Direction.Up); % Z-up

Output_GetAxisMapping = MyClient.GetAxisMapping();

% Discover the version number
Output_GetVersion = MyClient.GetVersion();

122

fprintf('Version: %d.%d.%d\n', Output_GetVersion.Major, ...
 Output_GetVersion.Minor, ...
 Output_GetVersion.Point);

123

Jumping Rover 1’s Python Scripts

Jump Activation Code

import RPi.GPIO as GPIO
from gpiozero import PWMOutputDevice
from gpiozero import DigitalOutputDevice

import time
from time import sleep

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

Rolling Motor Driver Pinouts
Roll_STBY = 17
Left Motor
Roll_L_PWMA = 18
Roll_L_AIN1 = 27
Roll_L_AIN2 = 22
Right Motor
Roll_R_PWMB = 12
Roll_R_BIN1 = 5
Roll_R_BIN2 = 6
Rolling Motors Setup
GPIO.setup(Roll_STBY, GPIO.OUT)
LMotor = PWMOutputDevice(Roll_L_PWMA, True, 0, 50)
RMotor = PWMOutputDevice(Roll_R_PWMB, True, 0, 50)
GPIO.setup(Roll_L_AIN1, GPIO.OUT)
GPIO.setup(Roll_L_AIN2, GPIO.OUT)
GPIO.setup(Roll_R_BIN1, GPIO.OUT)
GPIO.setup(Roll_R_BIN2, GPIO.OUT)

Jumping Motor Driver Pinouts
Jump_STBY = 20
Jump_PWMB = 19
Jump_BIN1 = 4
Jump_BIN2 = 23
Jumping Motor Setup
GPIO.setup(Jump_STBY, GPIO.OUT)

124

JMotor = PWMOutputDevice(Jump_PWMB, True, 0, 50)
GPIO.setup(Jump_BIN1, GPIO.OUT)
GPIO.setup(Jump_BIN2, GPIO.OUT)

Jumping Mechanism System

GPIO.output(Jump_BIN1, True)
GPIO.output(Jump_BIN2, False)
GPIO.output(Jump_STBY, True)

for i in range (5,11):

 JMotor.value = i/10
 time.sleep(0.06)

time.sleep(0.4)
JMotor.value = 0

GPIO.output(Roll_L_AIN1, True)
GPIO.output(Roll_L_AIN2, False)

GPIO.output(Roll_R_BIN1, True)
GPIO.output(Roll_R_BIN2, False)

GPIO.output(Roll_STBY, True)

##for i in range (1,9): #9

LMotor.value = i/10
RMotor.value = i/10
time.sleep(0.015) #0.015
LMotor.value = 0.7
RMotor.value = 0.7
#time.sleep(0.10)
time.sleep(0.05)

GPIO.output(Jump_BIN1, False)
GPIO.output(Jump_BIN2, True)
JMotor.value = 5/10
time.sleep(0.30)

GPIO.output(Roll_L_AIN1, False)
GPIO.output(Roll_R_BIN1, False)

125

#GPIO.output(Roll_STBY, False)

GPIO.output(Jump_BIN2, False)
#GPIO.output(Jump_STBY, False)
GPIO.output(Roll_L_AIN2, False)
GPIO.output(Roll_R_BIN2, False)
#GPIO.output(Roll_STBY, False)

126

Power Data Acquisition Code

import time
from time import sleep
from ina219 import INA219

import os, shutil
from datetime import datetime

#remove previous file.
shutil.rmtree('/home/pi/Desktop/PowerDataPackage/')
path = "/home/pi/Desktop/PowerDataPackage"
os.mkdir(path)

ina = INA219(shunt_ohms = 0.1,
 max_expected_amps = 3,
 address = 0x40)

ina.configure(voltage_range = ina.RANGE_16V,
 gain = ina.GAIN_AUTO,
 bus_adc = ina.ADC_128SAMP,
 shunt_adc = ina.ADC_128SAMP)

timestr = time.strftime("%Y%m%d_%H%M%S")
filename = 'PowerDAQ_' + timestr + '.csv'

file = open("/home/pi/Desktop/PowerDataPackage/"+filename, "a")

if
os.stat("/home/pi/Desktop/PowerDataPackage/"+filename).st_size
== 0:
 file.write("Time\tVoltage\tCurrent\tPower\n")

current_Time = time.time()

try:

 while (round(time.time()-current_Time,3) <= 60):

127

 file.write(str(round(time.time()-
current_Time,3))+"\t"+str(round(ina.voltage(),3))+"\t"+str(round
(ina.current(),3))+"\t"+str(round(ina.power(),3))+"\n")

except KeyboardInterrupt:
 pass

file.close()

exit (0)

128

Jumping Rover 2’s Arduino Sketches

Jumping Rover 2 Main Code

//
/////////
/*
 Jumping Rover Code
*/
//
/////////

#include <avr/io.h>
#include <string.h>
#include <stdio.h>
#include <avr/interrupt.h>
#include <Adafruit_INA219.h>
#include <Servo.h>
#include <Wire.h>
#include "config_JR.h"
#include "serial_JR.h"

Adafruit_INA219 ina219;

//Timer2 Overflow Interrupt for periodic telemetry
ISR(TIMER2_OVF_vect){

 TCNT2 = 100; // timer set for 10 ms
 ovf_idx++;
 if(ovf_idx == 18){ // 10ms * 20 = 200ms == 0.2s, temporality
set to 1s
 telemetryready = true;
 }
 if(ovf_idx > 19){
 sendtelemetry = true;
 ovf_idx = 0;
 count++;
 }
}

void setup(){

129

 // serial communication
 Serial.begin(9600);
 // Timer 2 Overflow
 Timer2Init();

 Wire.begin();
 ina219.begin();

 digitalWrite(STBY, HIGH);
 pinMode(13, OUTPUT);

}

void loop(){

 // trasmit telemetry
 if(telemetryready == true){
 telemetryready = false;
 VCRead();
 }

 if(sendtelemetry == true){
 sendtelemetry = false;
 checksum = 0x00;
 for(chk_idx = 2; chk_idx < 8; chk_idx++){
 checksum ^= telemetry[chk_idx];
 }
 telemetry[8] = checksum;
 //Serial.flush();
 for (int i=0; i <= 8; i++){
 Serial.write(telemetry[i]);
 }
 }

 // receive command
 trigger = 0;
 while(Serial.available() > 0){
 temp = Serial.read();
 delay(4);

 if (temp == 0x88){
 trigger = 1;

130

 }

 if (trigger == 1){
 cmd[cmd_idx] = (unsigned char)(temp);
 cmd_idx++;

 }

 if(temp == 0xFF){
 receiveCOMPLETE = true;
 //Serial.flush();
 trigger = 0;
 cmd_idx = 0;
 break;

 }
 }

 if(receiveCOMPLETE == true){
 receiveCOMPLETE = false;
 header_cmd = cmd[0];
 basic_cmd = cmd[1];
 jump = cmd[2];
 PWML_val = cmd[3];
 PWMR_val = cmd[4];
 DIRL = cmd[5];
 DIRR = cmd[6];
 TBD = cmd[7];
 end_cmd = cmd[8];

 }
 if (header_cmd != 0x88){
 //if robot id does not equal 136 (88 in HEX), do nothing
 }
 else if (basic_cmd > 0x00 && basic_cmd < 0x0B){ //basic
commands for test_serial in MATLAB
 basicMtrCtrl(basic_cmd);
 }
 else{ //normal controls for Rover_Follow in MATLAB
 normMtrCtrl(jump, PWML_val, PWMR_val, DIRL, DIRR);
 }

131

 header_cmd = 0x00;
 basic_cmd = 0x00;
 jump = 0x00;
 PWML_val = 0x00;
 PWMR_val = 0x00;
 DIRL = 0x00;
 DIRR = 0x00;

}

132

Jumping Rover 2’s Configuration Code

#ifndef __config_JR_H__
#define __config_JR_H__

// define Rover IO pins
// A6, A7 are for I2C Communication
#define VOLT2 A6
#define CURR2 A7

//digital
//TB6612FNG pinouts
#define AIN1 4 //Left For.
#define AIN2 2 //Left Rev.
#define PWML 6 //Left PWM (for AIN1 and AIN2)
#define BIN1 7 //Right For.
#define BIN2 8 //Right Rev.
#define PWMR 5 //Right PWM (for BIN1 and BIN2)
#define STBY 3 //STBY

//servo pinout
Servo PWMV;

//motors
#define MINSPD 75
#define MEDSPD 110
#define MAXSPD 255

//servo speed
#define TRNSPD 1465
#define STLSPD 1514
#define STOPSPD 1515

//variables
//motor control
unsigned char PWMV_val;
unsigned char PWML_val;
unsigned char PWMR_val;
unsigned char DIRL;
unsigned char DIRR;
unsigned char jump;

#endif

133

Jumping Rover 2’s Timer Interrupt Code

/* initialization */

void Timer2Init(void){

 // timer2 configuration for 10ms
 TCCR2B = 0x00; // normal mode, timer2 stop
 TCNT2 = 100; // initial value of timer2

 // timer2 interrupt configuration
 TIFR2 = 0x00; // clear timer overflow flag
 TIMSK2 = (1<<TOIE2); // enable timer2 overflow
interrupt
 TCCR2A = 0x00; // normal wave gen mode
 TCCR2B |= (7<<CS20); // set scale factor 1024, start
timer2

}

134

Jumping Rover 2’s Serial Initialization Code

#ifndef __serial_JR_H__
#define __serial_JR_H__

#define HEADER01 0xA5 // type of vehicle
#define HEADER02 0x05 // vehicle number
#define NUM_DATA 0x06 // number of data

// System Baud Rate
#define BR9600 9600
#define BR19200 19200
#define BR38400 38400
#define BR57600 57600
#define BR74880 74880
#define BR115200 115200

// initialize Timer2
void Timer2Init(void);

// periodic telemetry variables
volatile unsigned char ovf_idx;
bool telemetryready;
volatile bool sendtelemetry;
volatile unsigned char count;

//servo variables
unsigned long time1; //difference in time
unsigned long time2; //difference in time
bool jumpAct; //toggle servo jump activation
bool detachAct; //toggle detach servo pin activation

//command values
volatile unsigned char telemetry[30]; //
telemetry packet
unsigned char nbyte;
unsigned char checksum; // checksum
unsigned char chk_idx;
unsigned char temp;
unsigned char trigger = 0;
volatile unsigned char cmd[9]; // command
unsigned char cmd_idx = 0; // command index

135

unsigned char header_cmd; // header of
command
unsigned char basic_cmd; // basic
command
unsigned char TBD; // extra
command value
unsigned char end_cmd; //end
command
unsigned char val_cmd[10]; // value
of command
bool receiveCOMPLETE = false;

#endif

136

Jumping Rover 2’s Power Data Acquisition Code

void VCRead(){
 uint16_t Vraw;
 uint16_t Iraw;

 float v = 5.03;
 float cur = 1023.34;
 //Vraw = (uint16_t)(v*100);
 //Iraw = (uint16_t)(cur);

 Vraw = (uint16_t)(ina219.getBusVoltage_V()*100);
 Iraw = (uint16_t)(ina219.getCurrent_mA());
 if (Vraw < 0){
 Vraw = 0;
 }
 else if (Iraw < 0){
 Iraw = 0;
 }

 telemetry[0] = HEADER01;
 telemetry[1] = (unsigned char)(Vraw >> 8);
 telemetry[2] = (unsigned char)(Vraw & 0xFF);
 telemetry[3] = (unsigned char)(Iraw >> 8);
 telemetry[4] = (unsigned char)(Iraw & 0xFF);
 telemetry[5] = 0x00;
 telemetry[6] = 0x01;
 telemetry[7] = 0x02;
}

137

Jumping Rover 2’s Motion Control Code

void normMtrCtrl(int jump, int PWMRL_val, int PWMR_val, int
DIRL, int DIRR){
 //Left motor direction
 if (DIRL == 2){ //Left forward
 digitalWrite(AIN1, HIGH);
 digitalWrite(AIN2, LOW);
 }
 else if (DIRL == 0){ //Left neutral
 digitalWrite(AIN1, LOW);
 digitalWrite(AIN2, LOW);
 }
 else if (DIRL == 1){ //Left reverse
 digitalWrite(AIN1, LOW);
 digitalWrite(AIN2, HIGH);
 }

 //Right motor direction
 if (DIRR == 2){ //Right forward
 digitalWrite(BIN1, HIGH);
 digitalWrite(BIN2, LOW);
 }
 else if (DIRR == 0){ //Right neutral
 digitalWrite(BIN1, LOW);
 digitalWrite(BIN2, LOW);
 }
 else if (DIRR == 1){ //Right reverse
 digitalWrite(BIN1, LOW);
 digitalWrite(BIN2, HIGH);
 }

 analogWrite(PWML, PWML_val);
 analogWrite(PWMR, PWMR_val);

 if (jump == 0xFE){
 PWMV.attach(9);
 PWMV.writeMicroseconds(TRNSPD); //DELAY NOT YET TESTED FOR
SPRING COMPRESSION
 delay(1750);
 PWMV.writeMicroseconds(STOPSPD);
 delay(500);
 }
}

138

Appendix B. Computer-Aided Design Drawings

Figure B.1: Jum
ping Rover 2 D

esign CAD
 D

rawings

139

Figure B.2: Jum
ping Rover 2’s Jum

ping M
echanism

 D
esign

140

Figure B.3: Spooling W
heel D

esign CAD
 D

rawing

141

Figure B.4: Spool Puller D
esign CAD

 D
rawing

142

Figure B.5: Jum

ping Rover 1’s U
pper Chassis C

AD
 D

rawing

143

Appendix C. Additional Research Images and Tables

Figure C.1: Sequential Time-lapse of the Jumping Rover Team Performing the Physical

Experiment of the mTSP Mission

0 s 5 s 11 s

14 s 18 s 21 s

23 s 27 s 32 s

144

Table C.1: Jumping Rover 1’s Assigned Coordinates for the Experimental Test

x-coordinate [mm] y-coordinate [mm] Jumping Signal
(1 - Jump, 0 – No Jump)

600 1200 0
600 2000 1
20 1900 0
20 1200 0

400 200 0
400 50 0

Table C.2: Jumping Rover 2’s Assigned Coordinates for the Experimental Test

x-coordinate [mm] y-coordinate [mm] Jumping Signal
(1 - Jump, 0 – No Jump)

400 200 0
3000 400 0
3000 1800 0
3200 2350 0
3195 2720 1
2857 2762 0
2900 2900 0
2863 3123 1
2400 3200 0
2400 2800 0
2000 2800 0
1660 2300 0
1110 890 0
400 200 0

	Abstract
	Acknowledgments
	Acknowledgments
	Vita
	Vita
	Table of Contents
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 : Introduction
	1.1 : Background and Motivation
	Figure 1.1: Luna 9
	Figure 1.2: Viking 1

	1.2 : Research Significance
	1.3 : Thesis Focus
	1.4 : Thesis Overview

	Chapter 2 : Problem Statement
	Figure 2.1: An Example Operating Area from Top View

	Chapter 3 : Motion Planning And Task Allocation
	3.1 : Energy Consumption Model
	3.2 : Introduction to Rapidly-Exploring Random Tree (RRT) and Rapidly-Exploring Random Star (RRT*)
	3.3 : Modification of Rapidly-Exploring Random Star (RRT*) for Jumping Rovers
	Figure 3.1: Jumping Rovers' RRT* Flow Chart

	3.4 : Jumping Rovers’ Refined (RRT*)
	Figure 3.2: Refined RRT* Flow Chart
	Figure 3.3: Refined RRT* with an Obstacle Illustration

	3.5 : Task Allocation via MILP

	Chapter 4 : Experimental Environments And Customized Jumping Rovers
	4.1 : Experimental Environments
	Figure 4.1: MATLAB Simulation’s mTSP Scenario
	Figure 4.2: The mTSP Experimental Environment

	4.2 : Algorithm Implementation
	Figure 4.4: Trees Between Target 1 and Target 2 and Between Target 1 and 3.
	Figure 4.6: Single TSP’s Solution Using Refined RRT* and RRT* Paths

	4.3 : Jumping Rovers’ Design and Construction
	Figure 4.7: Jumping Rover 2 with Lesser Power Consumption and Lower Jumping Height
	Figure 4.8: Jumping Rover 1 with More Power Consumption and Higher Jumping Height
	Figure 4.9: Jumping Rover 2’s Jumping Mechanism Isometric View
	Figure 4.10: Jumping Rover 1’s Jumping Mechanism Top View
	Figure 4.11: Information Flow Chart for Both Jumping Rovers
	Figure 4.12: Jumping Rover 2’s Power and Signal Pathways
	Figure 4.13: Jumping Rover 1’s Power and Signal Pathway

	Chapter 5 : Simulation and Experimental Results
	Figure 5.1: mTSP 3D Trajectories with Two Jumping Rovers
	Table 5.1: Energy Consumed by Each Rover while Running at its Assigned Route.
	Figure 5.3: 2D Trajectories with Jumping Options
	Figure 5.4: 2D Trajectories to Avoid Jump if Possible
	Table 5.2: Comparative Results for the mTSP without Jumping Option

	Chapter 6 : Conclusion
	6.1 : Contributions
	6.2 : Additional Applications
	6.3 : Future Work
	6.4 : Summary

	Bibliography
	Appendix A. Codes
	Simulation MATLAB Codes
	Experimental MATLAB Codes
	Jumping Rover 1’s Python Scripts
	Jumping Rover 2’s Arduino Sketches

	Appendix B. Computer-Aided Design Drawings
	Figure B.1: Jumping Rover 2 Design CAD Drawings
	Figure B.2: Jumping Rover 2’s Jumping Mechanism Design
	Figure B.3: Spooling Wheel Design CAD Drawing
	Figure B.4: Spool Puller Design CAD Drawing
	Figure B.5: Jumping Rover 1’s Upper Chassis CAD Drawing
	Appendix C. Additional Research Images and Tables
	Figure C.1: Sequential Time-lapse of the Jumping Rover Team Performing the Physical Experiment of the mTSP Mission
	Table C.1: Jumping Rover 1’s Assigned Coordinates for the Experimental Test
	Table C.2: Jumping Rover 2’s Assigned Coordinates for the Experimental Test

