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Abstract

This paper proposes a robust and adaptive nonlinear
Kalman filter for synchronous machine parameter
calibration. The key idea is to develop the polynomial
chaos-based analysis of variance (ANOVA) method
for suspicious parameter detection. ANOVA allows
us to derive a set of adaptive weights that can be
used to address local parameter optimality issue when
performing joint state and parameter estimation. It
is shown that if erroneous parameters have strong
correlations, the widely used methods that augment
state and parameter for joint estimation will lead to
large biases. By contrast, thanks to the derived
adaptive weights for the suspicious parameters, the
proposed method can effectively deal with the parameter
dependence, yielding much better calibration results. In
addition, the robustness of the proposed method enables
us to filter non-Gaussian noise. Simulations carried out
on the IEEE 39-bus system validate the effectiveness and
robustness of the proposed approach.

1. Introduction

In 1996, a major blackout occurred in the US
Western Electricity Coordinating Council (WECC)
system. According to the detailed post event analysis,
the critical reason is that the simulated results from
the models do not match the actual responses, which
leads to wrong decision makings. On the other hand,
the North American Electric Reliability Corporation
(NERC) requires generator owners to validate and
calibrate their models and associated controllers every
five years [1, 2]. This becomes particular important
with the increasing penetration of renewable energy
integration. Indeed, the synchronous machines are
typically used as picking units to mitigate renewable
generation stochasticity and uncertainties, and if their
models are not reliable, the controls can be misleading
that may cause cascading failures.

There are two main ways of calibrating generator

parameters [3]. The first one is to shut down
the generator and perform detailed field tests [4].
Although this would yield very accurate results, it
is time consuming and costly. By contrast, with
the wide-area deployment of phasor measurement
units (PMUs), measurement-based methods are paid
increasingly attention. The key idea is to leverage the
generator point of coupling voltage phasors as generator
model inputs and compare the model outputs with the
measured values [5]. If there is a large discrepancy, the
model is declared as invalid and parameter calibration
is required. To find suspicious parameters, trajectory
sensitivity analysis has been widely used [6, 7]. After
that, the suspicious parameters are augmented together
with the states for joint estimation. To this end, many
different methods have been developed [8]. In [9],
the least square method is used to estimate inertia
constant and primary frequency control droop of a
synchronous generator. While in [10], the extended
Kalman filter (EKF) is developed for mechanical power,
inertia constant, damping factor and transient reactance
estimation. To deal with the weakness of EKF in
handling the system strong nonlinearity, unscented
Kalman filter (UKF) [11,12] and ensemble Kalman filter
(EnKF) [13] have been proposed for joint state and
parameter estimation. Optimization methods based on
heuristic approach, such as particle swarm optimization
[14], and Bayesian inference [15] have also been
developed. However, these methods will achieve
poor performance when the suspicious parameters have
strong dependence and in the presence of non-Gaussian
measurement noise.

To address the aforementioned challenges, this paper
proposes a robust and adaptive nonlinear UKF for
synchronous machine parameter calibration. It has the
following contributions:

• The generalized polynomial chaos-based analysis
of variance (ANOVA) method is developed to
detect suspicious parameters and investigate the
parameter dependence. Analysis results from
the ANOVA are further used to derive a set of
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adaptive weights that can be used to address local
parameter optimality issue when performing joint
state and parameter estimation;

• The adaptive weights have been integrated with
the robust UKF to achieve good robustness
against non-Gaussian noise. Comparison results
with UKF and EnKF are presented to demonstrate
the effectiveness and robustness of the proposed
method.

The remainder of the paper is organized as follows:
Section II presents the problem formulation while
Section III describes the proposed robust and adaptive
parameter estimator. Section IV analyzes the simulation
results, and finally Section V concludes the paper.

2. Problem Formulation

The synchronous machine dynamics can be
described by a set of differential and algebraic
equations. Without loss of generality, the two-axis
generator model with IEEE-DC1A exciter and TGOV1
turbine governor is used as an example in this paper.
Formally, we have [16]:

Differential equations of generator:

dδ

dt
= ω − ωs, (1)

2H

ωs

dω

dt
= TM − Pe −D (ω − ωs) , (2)

T ′do
dE′q
dt

= −E′q − (Xd −X ′d) Id + Efd, (3)

T ′qo
dE′d
dt

= −E′d −
(
Xq −X ′q

)
Iq, (4)

Differential equations of IEEE-DC1A exciter:

TE
dEfd

dt
= − (KE + SE (Efd))Efd + VR, (5)

TF
dVF
dt

= −VF+
KF

TE
VR−

KF

TE
(KE + SE (Efd))Efd,

(6)

TA
dVR
dt

= −VR +KA (Vref − VF − V ) , (7)

Differential equations of TGOV1 turbine-governor:

TCH
dTM
dt

= −TM + PSV , (8)

TSV
dPSV

dt
= −PSV + PC −

1

RD

(
ω

ωs
− 1

)
, (9)

Algebraic equations:

Vd = V sin (δ − θ) , Vq = V cos (δ − θ) , (10)

Id =
E′q − Vq
X ′d

, Iq =
Vd − E′d
X ′q

, (11)

Pe = VdId + VqIq, Qe = −VdIq + VqId, (12)

where δ and ω are the rotor angle and speed,
respectively; ωs is the nominal synchronous speed;
T ′do, T ′qo, TE , TF , TA, TCH and TSV are time
constants, in seconds; KE , KF and KA are controller
gains; Vref and PC are known control inputs; E′q ,
E′d, Efd, VF , VR, TM and PSV are the q-axis and
d-axis transient voltages, field voltage, scaled output
of the stabilizing transformer and scaled output of the
amplifier, synchronous machine mechanical torque and
steam valve position, respectively; Xd, X ′d, Xq and X ′q
are generator parameters; V and θ are the terminal bus
voltage magnitude and phase angle, respectively; Pe and
Qe are the active and reactive electrical power outputs;
Vd and Vq are the d and q axis voltage magnitudes,
respectively; Id and Iq are the d and q axis currents,
respectively.

The above differential and algebraic equations can
be discretized and the following discrete-time state
space form is derived:

xk = f(xk−1,pk,uk) +wk, (13)

zk = h(xk,pk) + vk, (14)

where (13) and (14) correspond to equations (1)-(9)
and (10)-(12), respectively; xk is the state vector that
includes state variables of the synchronous generator,
the exciter and the governor; zk is the measurement
vector that contains generator terminal real and reactive
power; pk is the parameter vector that includes all the
22 parameters of generator and its associated exciter
and governor; the noises wk and vk are assumed to
be white and with covariance matrices Qk and Rk,
respectively; uk represents the input vector; f(·) and
h(·) are the vector-valued functions. Since Vref and PC

are locally controlled, they are typically assumed to be
known parameters.

When there is an event occurring in the system,
the generator terminal voltage phasor can be leveraged
as u and substituted into the differential and algebraic
equations. The resulted P and Q from the model are
compared with the measured quantities to determine
whether the model is adequate. If the difference is
statistically significant, suspicious parameters need to
be found out and calibrated. There are two challenges
for this decentralized parameter calibration framework:
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1) the identification of suspicious parameters can be
challenging if the erroneous parameters are strongly
dependent with each other; 2) the PMU measurement
errors are not necessarily Gaussian. This paper proposes
a robust and adaptive UKF to address these challenges,
which are shown in the next section.

3. Proposed Robust and Adaptive Filter
for Parameter Calibration

In this section, a generalized regression form is first
derived, which allows carrying out sensitivity analysis
and suspicious parameter detection. Then, adaptive
weights are derived for joint suspicious parameter
calibration and state estimation.

3.1. Derivation of Generalized Regression
Form

Following the UKF framework, if the initial state
estimate x̂k−1|k−1 ∈ Rn×1 and its covariance matrix
Σxx

k−1|k−1 at time step k-1 is given, 2n weighted sigma
points can be generated via

χj
k−1|k−1

= x̂k−1|k−1 ±
(√

nΣxx
k−1|k−1

)
j
, (15)

where wj = 1/2n, j = 1, ..., 2n. Then χ(j)
k|k−1

is
propagated through the nonlinear model (13) to obtain
the transformed samples:

χj
k|k−1

= f
(
χ(j)

k−1|k−1

)
. (16)

Next, the predicted state x̂k|k−1 and its covariance
matrix Σxx

k|k−1 are obtained through

x̂k|k−1 =

2n∑
j=1

wjχ
(j)
k|k−1

,

Σxx
k|k−1 =

2n∑
j=1

wj(χ
(j)
k|k−1

− x̂k|k−1)(χ
(j)
k|k−1

− x̂k|k−1)
T+Qk.

By processing the predicted state vector and the
measurement vector together, we get the following
batch-mode regression form:[

zk
x̂k|k−1

]
=

[
h(xk,pk,uk)

xk

]
+

[
vk
δk

]
(17)

where δk is the state prediction error that has zero mean
and covariance matrix Σxx

k|k−1. (17) can be rewritten in
a compact form as

yk = g(xk,pk,uk) + ek. (18)

This generalized regression form provides us a
convenient way of conducting sensitivity analysis and
state filtering.

3.2. Sensitivity Analysis and Adaptive
Weights Derivation

It is worth pointing out that in (18), xk, uk and the
erroneous parameters of pk are all random variables.
For the generalized polynomial chaos (gPC) method,
the stochastic outputs can be represented as a weighted
sum of a given set of orthogonal polynomial chaos basis
functions. The latter are derived from the probability
distribution of the input random variables. For example,
let yk the output vector, ξ = [ξ1, ξ2, ...ξN ] a vector of
random variable, which in this paper represents pk when
xk and uk are replaced by the predicted state vector and
generator terminal voltage phasor, φi(ξ1, ξ2, ...ξN ) the
polynomial chaos basis and ai the ith polynomial chaos
coefficient. Thus, we have the following expansion [17]:

y =

∞∑
i=0

aiφi(ξ) (19)

From the polynomial chaos coefficients, the mean, µ,
and the variance, σ2, of the output y can be easily
calculated via

µ = a0, σ
2 =

∞∑
i=1

a2iE[φ2i ], (20)

where E[.] is the expectation operator.
On the other hand, according to ANOVA, a nonlinear

function g can be expanded with N random variable as
follows [17]:

g(ξ1, . . . , ξN ) = g0 +
∑

1≤j1≤N

gj1(ξj1)

+
∑

1≤j1<j2≤N

gj1,j2(ξj1 , ξj2) + . . .+ g1,2,...,N .
(21)

where ξi, i = 1, ..., N are random variables following
a known probability; the functions gjk(ξjk), 1 ≤
jk ≤ N , gjk,jl(ξjk , ξjl), 1 ≤ jk ≤ jl ≤ N , etc.,
are the so-called first-order, second-order,... ANOVA
components, respectively. Define Tj1,...,js as the
fraction of the variance σ2(g) contributed by gj1,...,js ,
we have

Tj1,...,js =
σ2(gj1,...,js)

σ2(g)
. (22)

where Tj1 indicates that the variance is only contributed
by ξj1 ; Tj1,j2 is the variance contributed by the
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dependence of (ξj1 , ξj2). Note that Tj1,...,js satisfies the
following constraint:

N∑
i=1

Tj1 +
∑

1≤j1<j2≤N

Tj1,j2 + . . . Tj1,...,jN = 1. (23)

To find the relationship between gPC and ANOVA,
(19) is expanded to the following functional form:

y = a0 +

N∑
i=1

aiφ(ξi) +

N∑
i=1

i∑
j=1

ai,jφ(ξi, ξj)

+

N∑
i=1

i∑
j=1

j∑
r=1

ai,j,rφ(ξi, ξj , ξr) + . . . .

(24)

In practice, a truncated version of gPC is used, i.e.,

y =

Nl∑
i=0

aiφi(ξ), (25)

where Nl = (N + l)!/(N !l!) − 1 and N is the total
number of the random variables; l is the maximum order
of the polynomial chaos basis functions and this value is
typically set as 2 in the literature [18]. As a result, we
can obtain

y = a0 + (

N∑
i=1

aiφ(ξi) +

N∑
i=1

∑
j=i

ai,jφ(ξi, ξj))

+

N∑
i=1

∑
1≤j<i

ai,jφ(ξi, ξj).

(26)

By comparing the gPC expansion with that of the
ANOVA, we find that the first two summations and the
third summation represent respectively the first-order
and the second-order ANOVA components. To this end,
(22) can be calculated through

Tj1 =
σ2(gj1)

σ2(g)
=
a2iE[φ(ξi)

2] + a2i,jE[φ(ξi, ξj)
2]i=j

σ2
,

(27)

Tj1,j2 =
σ2(gj1,j2)

σ2(g)
=
a2i,jE[φ(ξi, ξj)

2]i 6=j

σ2
. (28)

By using the above two equations, the sensitivity of
each parameter to the response y can be analytically
determined. In this paper, only those values that
are larger than a certain threshold will be detected as
suspicious parameters for further calibration. According

to the suggestion in [18], the threshold for Tj1 is usually
set as 0.1%. Note that Tj1,j2 is much smaller than
Tj1. In this paper, in order to reduce the number of
calibrating less sensitive parameters, the 1% threshold
is assumed.

During the estimation process using nonlinear
Kalman filter, the value of Tji will be taken as the weight
of each parameter. This is because those parameters who
have higher sensitivity to an event can be calibrated in a
much easier manner and thus they should be assigned
with a higher weight. The value of Tji naturally reflects
that. On the other hand, since Tj1,j2 reveals the level
of dependence of two parameters, if this value is large,
we propose to break the dependence to avoid the local
optimality. This can be done as follows:

• Step 1: if there are several parameters that are
identified to have strong dependence, they will be
divided into two different groups;

• Step 2: one group of parameters will be used
together with the model states for joint estimation
while the other group remains unchanged;

• Step 3: once the estimation of the first group of
parameters is done, they will be kept unchanged
while augmenting the other group with model
states for joint estimation;

• Step 4: both groups of parameters are augmented
with model state for joint estimation, which will
further improve the accuracy of the estimated
parameters.

3.3. Joint State and Parameter Estimation

By applying the statistical linerization [19] to the
nonlinear measurement function h(·) around x̂k|k−1 ,
we can get

zk =Hk

(
xk − x̂k|k−1

)
+ ẑk|k−1 + vk + ςk, (29)

where ẑk|k−1 =
2n∑
j=1

wjz
(j)
k|k−1

is the predicted

measurement vector; zj
k|k−1

= h(χ(j)
k|k−1

); Hk =

(Σxz
k|k−1

)T (Σxx
k|k−1

)−1 is the statistical linerization
regression matrix, where

Σxz
k|k−1

=

2n∑
j=1

wj(χ
j
k|k−1

− x̂k|k−1)(z
j
k|k−1

− ẑk|k−1)T

(30)
and ςk is the statistical linearization error who has zero
mean and a covariance matrix that can be found in [19].
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Figure 1. Real power response using calibrated
parameters with adaptive weights.

Define a generalized state vector xg
k = [xT

k pTk ]
T

that includes the state vector and the suspicious
parameters. Then, by processing the predicted state
vector and the measurement vector together, we get

[ zk +Hkx̂k|k−1 − ẑk|k−1
x̂k|k−1
pk|k−1

]
=

[Hk 0
I 0
0 I

]
xg
k+

[ vk + ςk
δk
εk

]

where I is an identity matrix with appropriate
dimension. The above equation can be further rewritten
in a compact form as

z̃k = H̃kxk + ẽk, (31)

Following our previous work [19], the generalized
maximum-likelihood estimator will be applied to (31)
for joint state and parameter estimation.

Remark: It should be noted that since the accuracy
of the initial generator parameter is unknown while the
estimated generator states have much higher accuracy
than the parameters, the variances of the parameters at
the very beginning should be much larger than those
associated with the states. In this paper, the variances of
the suspicious parameters are set to be 100 times larger
than the states.

4. Numerical Results

Case studies are carried out on the IEEE 39-bus
system to evaluate the effectiveness and robustness of
the proposed method. To simulate a system event,
a three-phase short circuit occurs at t = 0.5s for the
line 33 and is cleared after 2 cycles by opening the
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Figure 2. Reactive power response using
calibrated parameters with adaptive weights.

transmission line 33-19. The time-domain simulation
results are taken as the true values. The simulated
voltage phasor and the calculated real and reactive
power at each generator’s terminal bus are treated
as PMU measurements. All synchronous generators
assumed for transient simulation are represented by the
detailed two-axis generator model with IEEE-DC1A
exciter and TGOV1 turbine-governor, whose parameter
values are taken from [20]. All simulations are
conducted 100 times and the average value is taken
as the final estimate. Three methods are tested and
compared, namely the traditional UKF and EnKF by
augmenting the suspicious parameters with states for
joint estimation, and the proposed robust and adaptive
UKF, called Adaptive generalized maximum-likelihood
UKF (GM-UKF). The initial states are calculated from
the power flow results under the steady-state before
the transient simulations and their associated covariance
matrix is 10−6I with appropriate dimensions. 1% error
for PMU measurements is assumed and the random
variable can be generated via: 1%×µm/3×rand(m, 1)
under the 99.7% confidence interval, where the mean
µm is the true value of the original measurement;
rand(m, 1) represents an m × 1 dimension random
variable that follows the standard normal distribution
and m is the number of measurements. The initial
parameter values are chosen using the current dataset
recorded in the planning department. It is worth pointing
out that these parameters are physical quantities and
have bounds. The initial parameters must stay within
their limits if the recorded dataset has some values
beyond the permitted bounds.

Two challenging cases are considered and tested:
Case 1) 6 erroneous parameters shown in Table.
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Table 1. Comparison results of parameter estimation in pu with and without adaptive weights, where
the values shown in the brackets represent their standard deviations.

True Wrong Estimated Estimated
parameters values without adaptiveness with adaptiveness
Xd=0.1218 0.2 µ=0.1938 (σ=0.036) µ=0.127 (σ=0.004)
M=0.7568 0.9 µ=0.7628 (σ=0.015) µ=0.7617 (σ=0.012)
T ′d=29.7 32 µ=32.5 (σ=0.14) µ=32.0 (σ=0.16)
KF=0.063 0.1 µ=0.0622 (σ=0.001) µ=0.0623 (σ=0.002)
KA=60 40 µ=70.20 (σ=10.8) µ=60.48 (σ=0.32)
RD=1 0.3 µ=1 (σ=0.001) µ=1 (σ=0.001)
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Figure 3. Real power response using calibrated
parameters with non-Gaussian noise.
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Figure 4. Reactive power response using
calibrated parameters with non-Gaussian noise.

1, where KA has strong correlations with KF and
Xd; the system process and measurement noises for
all methods are simulated by random variables with
zero mean and covariance matrix 10−6I of appropriate
dimensions. Note that, the set up is different from the
true measurement covariance matrix. This is because
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Figure 5. Validation of real power response
using calibrated parameters when transmission

line 15-16 is switched off at t=0.5s.
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Figure 6. Validation of reactive power response
using calibrated parameters when transmission

line 15-16 is switched off at t=0.5s.

in practice, we do not know the true value of the
measurement error and the developed methods should
deal with the unknown noise.

Case 2) the occurrence of non-Gaussian
measurement noise [21], where a bimodal Gaussian
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Figure 7. Validation of real power response
using calibrated parameters when transmission

line 29-38 is switched off at t=0.5s.

0 5 10 15 20

Time [s]

-1

-0.5

0

0.5

1

1.5

2

R
e

a
c
ti
v
e

 p
o

w
e

r 
[p

u
]

PMU measurements

Play-back model outputs

Validated model outputs by Adaptive GM-UKF

Figure 8. Validation of reactive power response
using calibrated parameters when transmission

line 29-38 is switched off at t=0.5s.

mixture model with zero means, covariance matrices
of 10−6I and 10−4I and weights of 0.9 and 0.1,
are assumed for measurement noise with appropriate
dimensions.

The results for Case 1 are displayed in Table. 1
and Figs. 1-2, where µ and σ represent the mean
and standard deviation of each parameter. In Table.
1, only the results for GM-UKF with and without the
adaptive weights derived from the sensitivity analysis
are shown. It can be found that due to the strong
dependency among parameters KA, KF and Xd, the
direct augmenting 6 parameters with system states
for joint estimation will yield local optimal solutions
of KA and Xd. By contrast, with the derived
adaptive weights and the strategy of breaking down the

parameter dependence, the proposed adaptive GM-UKF
can achieve much higher accuracy of calibrating the
suspicious parameters. By further looking at the
standard deviation for each estimated parameter, it is
observed due to the lack of capability in dealing with
correlated parameters, the method without adaptive
weights has much larger variances. This is expected as
the searching space for it is quite random and as a result,
a good solution may be obtained sometimes. However,
the solutions are not satisfactory most of the time. By
contrast, with the adaptive weights, the correlations
among erroneous parameters can be addressed and the
search space is around the optimal values, yielding
small standard deviations of the estimated parameters.
The comparison results validate the effectiveness of the
proposed adaptive weights in enhancing the parameter
calibrations. The conclusion can be also validated by
the results in Figs. 1-2, where the proposed method with
adaptive weights gets much better matches for the real
and reactive power than other alternatives.

For the Case 2, in the presence of non-Gaussian
noise, EnKF has serious issues of getting converged
results. Although UKF does not diverge, their results
are strongly biased, see the comparison results between
Figs. 1-2 and Figs. 3-4. The results are expected
because UKF and EnKF are derived based on Gaussian
assumption and the non-Gaussian noise significantly
deteriorates their estimation efficiency. By contrast,
thanks to the adpativeness and robustness of the
proposed method, it can filter out the non-Gaussian
noise and its performance is slightly affected.

To further validate the effectiveness of the calibrated
parameters for different scenarios, two additional events
have been simulated, including the transmission line
switches at 15-16 and 29-38, respectively at t=0.5s. It
can be found from Figs. 5-8 that the real and reactive
responses using the calibrated parameters would yield
quite similar outcomes to the actual ones captured by
PMU measurements. The tests using other events show
a similar conclusion. As a result, the performance of the
proposed method can be effectively validated.

5. Conclusion

This paper proposes a robust and adaptive nonlinear
UKF for generator parameter calibration. The
generalized nonlinear regression form is first derived
that allows us to derive adaptive weights from the
gPC-based ANOVA method. In addition, new strategy
is developed to address the strong dependency between
suspicious parameters. Finally, a generalized regression
form that considers suspicious parameters and system
states simultaneously is developed for robust filtering.
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Simulation results on the IEEE 39-bus system validate
the effectiveness and robustness of the proposed
approach under various conditions. Further work will
be on testing the developed method using realistic power
plant and field PMU measurements.
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