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Abstract 
This paper presents a new statistical parametric 

model to predict the times-to-failure of broad classes 

of identical devices such as on-load tap changers, 

switched capacitors, breakers, etc. A two-parameter 

Weibull distribution with scale parameter given by the 

inverse power law is employed to model the survivor 

functions and hazard rates of on-load tap changers. 

The resulting three-parameter distribution, referred to 

as IPL-Weibull, is flexible enough to assume right, left, 

and even symmetrical modal distribution. In this work, 

we propose an inferential method based on Bayes’ 

rule to derive the point estimates of  model parameters 

from the past right-censored failure data. Using the 

Monte Carlo integration technique, it is possible to 

obtain such parameter estimates with high accuracy.  

 

1. Introduction  

For electric utilities, the problems of accurately 

identifying the service times of equipment and 

scheduling preventive maintenance are of critical 

importance as answers to these questions represent 

substantial savings to the utility [1],[2]. The service 

life of power equipment is affected by several factors 

that include but are not limited to insulation strength, 

thermal and non-thermal stress, moisture, etc. Many 

factors that impact the lifetime of a device are not 

practical for monitoring since failure databases with a 

complete list of all the failure-inducing factors rarely 

exist. This is further exacerbated by the fact that the 

impact of a number of failure-causing factors is neither 

well documented nor is the failure mechanism well 

understood. Given the limitations of the accurate 

logging of equipment failure, a probabilistic aging 

model that captures the most salient features of the 

aging process, is the most practical for predicting the 

times-to-failure.  

In reliability literature, the degradation of 

equipment, in particular, degradation induced by the 

aging of the device, is consistent with the Weibull 

distribution [3],[4]. The density function and the 

hazard function of the Weibull distribution have many  

 

 

interesting properties. In particular, the hazard 

function can assume a variety of shapes. For most 

aging-related failures, the hazard increases with time, 

thus increasing the probability of failure given that the 

device has survived until the present time instant.  

Previous work in this area focused either chiefly 

on failure models derived from simple distributions  or 

entirely ignored the impact of external stress on device 

aging. For example, in [5], an exponential failure 

model characterized by a single parameter is 

presented. The authors utilize Bayesian learning to 

estimate failure-times based on historical failure data. 

The exponential distribution solves the problem of 

analytical tractability since it permits the use of a 

conjugate prior distribution for the parameter of 

interest. However, the exponential model lacks the 

flexibility that a Weibull distribution offers which 

makes it less suitable to model device lifetimes. In [6], 

a distribution based on Perks Hazard function is 

presented. The model, however, does not incorporate 

the impact of external stress on equipment aging.  

In this work, we present a failure model that is 

obtained by combining the inverse power law and the 

Weibull distribution. This enables accurate modeling 

of non-thermal stress-related failures in devices like 

on-load tap changers given a high penetration of 

intermittent non-scheduled generation. Since the 

failure database is often only partially available, we 

assume that the failure data contains only the 

following information: year of installation, the total 

number of assets, censoring number, and retirement 

history without replacement. An inferential technique 

based on Bayes’ rule is developed to obtain the point 

estimates of model parameters. This enables us to 

predict the future performance of the assets that have 

survived based on the past failure history of similar 

devices, given similar failure mechanisms.  

 

2. Problem Statement 

In this paper, we consider the problem of 

accelerated aging of devices like distribution 
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transformers equipped with load tap-changers and 

switchable capacitor banks, given a high penetration 

of intermittent non-scheduled generation. The variable 

generation interferes with the regular operation of the 

tap-changers, causing them to operate much more 

frequently, usually outside of the design limits. Due to 

the mechanical nature of the tap-changing devices, the 

increased frequency of operation leads to accelerated 

degradation of the device, which often results in 

premature failure of the equipment.  

Consider a substation transformer or a voltage 

regulator with 𝜆(𝑡𝑖) as the tap-ratio at the time 

instant,𝑡𝑖. Let us consider a planning horizon, 𝜏 with Κ 

number of discrete time instants. If ℎ is a  fixed time 

step, the number of tap operations in a discrete 

interval, [𝑡𝑖 , 𝑡𝑖−ℎ] with Δ𝑉 as the step change in 

voltage in per unit is 

𝛿𝑗 =
|𝜆(𝑡𝑖) − 𝜆(𝑡𝑖−ℎ)|

Δ𝑉
; 𝑖 = 1, … , Κ 

The cumulative tap operations over the planning 

period, 𝜏 is then given by 

𝜁 = ∑ 𝛿𝑗

Κ−1

𝑗=0

(1) 

The interaction of the intermittent non-scheduled 

generation with the on-load tap changers results in 

heavy operational stresses being imposed on the tap-

changing devices. Since direct measurement of such 

time-dependent stress is difficult, if not entirely 

impossible, the change in the number of cumulative 

operations is a highly reliable indicator of such 

operational stress.  

In this work, we formulate a relationship between 

the mechanical stress imposed on tap-changing 

equipment and the resultant change in the number of 

cumulative operations. We use this relationship to 

develop an inverse power law-Weibull failure 

probability model of on-load tap-changers (OLTCs) 

and switchable capacitor banks. The parametric failure 

model can be used to forecast the remaining useful life 

and probability of failure of equipment given a high 

penetration of non-scheduled generation. It is 

important to note that in this work, we only consider 

the mechanical stresses imposed on the OLTCs and 

switched capacitors.  

If 𝑝(𝑡) is the probability density function of the 

time to failure, 𝑡 of a device, then the probability of 

that device failing before time 𝑡 is given by 

𝐹𝑇(𝑡) = Pr {𝑇 ≤ 𝑡} = ∫ 𝑓(𝑢)
𝑡

0

𝑑𝑢 (2) 

In the succeeding sections, we will examine the 

form of the function, 𝑓(𝑢). In general, a parametric 

failure model takes the form [7] 

𝔉 = {𝑓(𝑡; 𝜃̅): 𝜃̅ ∈ Θ, Θ ⊂ ℝ𝑘} (3) 

In equation (3), θ̅ is the vector of model parameters 

that can take values in the parameter space, Θ . The 

problem then reduces to one of estimating the 

parameters that characterize the failure model. 

3. Stress Ratio Factor  

The development of the stress ratio factor is 

predicated on the understanding that an OLTC 

changes taps under the application of a force and hence 

stress on the contacts. Tap failure can either happen 

due to the asynchronous operation of the switches, 

usually caused by a broken axis or due to the carbon 

formation and oxidation of contacts. While a broken 

axis may be a sudden event, the carbon formation on 

the contacts represents gradual aging, exacerbated by 

the intermittent non-scheduled generation [8].  

The carbon formation and oxidation of contacts are 

direct results of operational stresses imposed by the 

varying power flow conditions. It is possible to encode 

the information about the stresses and hence the 

gradual wear and tear of OLTCs in terms of the 

number of cumulative tap operations over the length 

of the planning period. If 𝑚 is the force (=stress) 

imposed on the contacts of the tap mechanism per tap 

operation, we can write for the total stress over the 

device lifetime, assuming 𝜁 cumulative operations 

𝑀0 = 𝜁𝑚 (4) 

where, 𝑀0 represents the total baseline mechanical 

stress over the device lifetime. The baseline stress is 

indicative of wear and tear of the device under normal 

conditions when accelerated aging of the device can 

be ignored. If 𝜁𝑃𝑉 is the cumulative operations of the  

tap-changer in the presence of solar generation, then  

𝑀𝑃𝑉 = 𝜁𝑃𝑉𝑚 (5) 

The stress ratio factor is 

𝛾 =
𝑀𝑃𝑉

𝑀0

=
𝜁𝑃𝑉

𝜁
(6) 

At  time instant, 𝑡, the stress ration factor as a function 

of time is 

𝛾(𝑡) =
𝜁𝑃𝑉(𝑡)

𝜁(𝑡)
(7) 

where, 𝜁𝑃𝑉(𝑡) is the cumulative tap operations till time 

instant, 𝑡 given a high penetration of solar generation 

and 𝜁(𝑡)is the cumulative number of operations till the 

time, 𝑡 in the absence of solar generation.  

 

4. Parametric Aging Model 

The accurate prediction of equipment failure due 

to accelerated aging is usually a matter of critical 

importance in asset management. Since it is not 

completely known when an equipment will fail in the 

foreseeable future, the service life of a newly-installed 

or an in-service equipment must only be a prediction. 
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However, if the service history (failure times) of a 

similar population is considered, then the error in the 

prediction can be minimized. Due to a scarcity of 

statistical information about the failure rates of power 

equipment, it becomes necessary to resort to 

probabilistic parametric models to derive an estimate 

about imminent and long-term failures. Note that we 

are restricting ourselves only to the failures caused by 

gradual or accelerated aging of equipment. In this 

work, we do not consider random failures due to 

external influences. Although the methods we present 

in this work have been applied to lifetime estimation 

of mechanical assets, like distribution transformers 

equipped with a load tap-changer mechanism and 

switched capacitors, the generality of the theory is 

preserved. As such, the parametric models developed 

here can be used to conduct failure estimation studies 

in any setting, where the gradual or accelerated aging 

due to the application of mechanical stress is the main 

cause of equipment failure.  

In the case of distribution system transformers, 

aging-related failures contribute over 70% of the total 

failures, while random failures account for roughly 

30% of the total failures [9]. Among the aging-related 

failures, the wearing out of On-load tap changers 

(OLTCs), has been singled out as a significant cause 

of transformer failure [10]. To address the problem, 

we consider the lifetime estimation of OLTCs and 

switched capacitor banks in a way that will help 

formulate replacement strategies.  

The lifetime of a device under non-thermal stress 

has been shown to follow the inverse-power law (IPL). 

It is a parametric equation characterized by parameter 

𝑛, referred to as the stress endurance coefficient. The 

IPL can be expressed mathematically as 

𝐿(𝑀) = (
𝑀

𝑀0

)
−𝑛

𝐿0 (8) 

where, 𝐿(𝑀) is the life as a function of applied stress 

𝑀, 𝐿0 is the device lifetime corresponding to baseline 

stress, 𝑀0 and 𝑛 is the stress-endurance coefficient. 

The baseline stress is the amount of stress below, 

which accelerated the aging of a device can be 

neglected.  

Weibull distribution has been extensively used to 

model the distribution of time to failure. A random 

variable 𝑇 has a three-parameter Weibull distribution 

with parameters 𝛼, 𝜂, and 𝛽, if its density function is 

given by [11] 

𝑓𝑇(𝑡|𝛼, 𝜂, 𝛽) =
𝛽

𝜂
(

𝑡 − 𝑎

𝜂
)

𝛽−1

exp [− (
𝑡 − 𝑎

𝜂
)

𝛽

] ; 𝑡 ≥ 𝑎 (9) 

Where 𝛼 is called the delay or minimum life in the 

context of 𝑇 representing device lifetime. So, the 

support of 𝑓𝑇(𝑡|𝛼, 𝜂, 𝛽) is 𝑡 ≥ 𝑎. For 𝑡 being a duration 

which is nonnegative, and 𝛼 the minimum duration, 

the domain of 𝛼 does not encompass ℜ but rather a 

smaller interval [0. ∞ ). The second parameter, 𝜂 is 

called the characteristic life or scale parameter from a 

statistical point of view. It is called characteristic life 

for the reason that for the same 𝛼, 𝜂 and varying 𝛽 the 

cumulative density functions (𝐹𝑇(𝑡)), of all Weibull 

variates, intersect at a point with coordinates 𝑡 = 𝛼 +
𝜂 and 𝐹𝑇(𝛼 + 𝜂|𝛼, 𝜂, 𝛽) ≈ 0.6321. In other words, the 

scale parameter, 𝜂 is the time at which 63.2% 

population has failed. The domain of 𝜂 is (0, ∞) and it 

is measured in the same units as the random variable 

𝑇. The third parameter, 𝛽 is the Weibull-slope, called 

the form or shape parameter of the Weibull 

distribution. It is a dimensionless quantity with 

domain (0, ∞).  

To model the device lifetime under the application 

of stress, the inverse power law (8) can be combined 

with a two-parameter Weibull distribution. The two-

parameter Weibull distribution is obtained by setting 

the delay parameter to zero in (9), since items typically 

start to fail after the age of 𝑡 = 0. To get the modified 

IPL-Weibull distribution, we replace the scale 

parameter, 𝜂 in (9) by 𝐿(𝑀), and set 𝛼 = 0. This 

results in the probability density function of the form 

as 
𝑓𝑇(𝑡|𝛽, 𝐿0, 𝑛) =

{

𝛽

𝐿0
𝛽

(𝑡)𝛽−1 (
𝑀

𝑀0
)

𝛽𝑛

exp [− (
𝑀

𝑀0
)

𝛽𝑛

(
𝑡

𝐿0
)

𝛽

] ; 𝑡 ≥ 0

0                                                                           ;  𝑡 < 0

(10)
 

 

The ratio (
𝑀

𝑀0
) is the stress-ratio factor. Substituting 

(6), the density function with 𝜓 = [𝛽, 𝐿0, 𝑛]; the set of 

model parameters, takes the form 

 

𝑓𝑇(𝑡|𝜓) = {

𝛽

𝐿0
𝛽

𝑡𝛽−1𝛾𝛽𝑛 exp (−𝛾𝛽𝑛
𝑡𝛽

𝐿0
𝛽

)

0 ;  𝑡 < 0

; 𝑡 ≥ 0 (11) 

  

5. Statistical Properties of IPL-Weibull 

The probability density function of the IPL-

Weibull distribution has several interesting statistical 

properties. The critical functions that completely 

specify the distribution of the random variable 𝑇,  are 

hazard rate function, also known as failure rate 

function, survivor or reliability function, and the 

failure probability or the cumulative density function. 

In this section, we will examine the closed-form 

solutions of these functions. In addition, we will also 

derive the closed-form representations of the 

expectation, median and  mode  of the IPL-Weibull 

distribution. 
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5.1 Survivor Function or Reliability Function  

The survivor function is the complement of the 

failure probability function. In simple terms, it is the 

probability of survival beyond time,𝑡. Mathematically, 

it is given by 

𝑆𝑇(𝑡) = Pr{𝑇 > 𝑡|𝜓} = ∫ 𝑓(𝑢)
∞

𝑡

𝑑𝑢 (12) 

For the IPL-Weibull model, we can get the survivor 

function by substituting (10) in (12) and using 

integration by parts.  The result evaluates to an upper 

incomplete gamma function which can be further 

solved using exponential integral transformation. This 

results in for the survivor function of the IPL model as  

𝑆𝑇(𝑡) = exp [−𝛾𝛽𝑛 (
𝑡

𝐿0

)
𝛽

] (13) 

5.2 Failure Probability Function 

 

The survivor function and failure probability function 

are related by the expression 

𝑆𝑇(𝑡) = 1 − 𝐹𝑇(𝑡) (14) 

Hence, the failure probability or cumulative density 

is given by 

𝐹𝑇(𝑡) = 1 − exp [−𝛾𝛽𝑛 (
𝑡

𝐿0

)
𝛽

] (15) 

5.2 Hazard Rate Function 

The hazard function is technically not a probability 

measure but rather an assessment of risk. Hazard 

function can be thought of as the probability of failure 

in the small infinitesimal interval of time [𝑡, 𝑡 + 𝑑𝑡] 
given that the equipment has survived till the time, 𝑡. 

A typical hazard function usually comprises of three 

parts. The first part represents early failures and is 

characterized by a decreasing failure rate. The second 

part is representative of random failures. Random 

failures are caused by external influences and are 

independent of the aging of the equipment. The second 

part of the hazard function is thus characterized by a 

constant failure rate. The third part is indicative of 

wear-out failures caused by decreasing mechanical or 

electrical strength of the materials. These failures 

share a strong correlation with the aging of devices and 

are characterized by increasing failure rates. The work 

presented in this paper is focused on the third part of 

the bath-tub failure rate curve.  

The Hazard function of the IPL-Weibull can be 

obtained from the definition of the hazard function   

 

ℎ𝑇(𝑡) = lim
𝑑𝑡→0

Pr[𝑡 < 𝑇 ≤ 𝑡 + 𝑑𝑡|𝑇 > 𝑡]

𝑑𝑡
 

 

Using this definition, we can write for the Hazard 

function of IPL-Weibull  

 

ℎ𝑇(𝑡) =
𝑓𝑇(𝑡|𝛽, 𝐿0, 𝑛)

𝑆𝑇(𝑡)
=

𝛽

𝐿0

(
𝑡

𝐿0

)
𝛽−1

𝛾𝛽𝑛(𝑡) (16) 

 

For the IPL-Weibull, the hazard function depends on 

the parameter, 𝛽. With 𝛽 = 1, the IPL-Weibull 

reduces to IPL-Exponential with a constant failure 

rate. This is given by the second part of the bath-tub 

curve characterized by random failures. With 𝛽 < 1, 

the failure rate is decreasing and 𝛽 > 1 represents an 

increasing failure rate. Thus, the hazard function of 

IPL-Weibull is very flexible and can assume a variety 

of forms, unlike a Gamma distribution whose density 

function is always right-modal. On the other hand, the 

Log-normal hazard function can only model a 

decreasing failure rate, which is inconsistent with 

aging-related failures.  

 

5.3 Expectation, Median and Mode 

The expectation or mean time to failure (MTTF) of an 

IPL-Weibull distributed random variable, 𝑇 is given 

by 

𝐸[𝑇] = 𝐿𝑜𝛾−𝑛 Γ (1 +
1

𝛽
) (17) 

Where, Γ (1 +
1

𝛽
) is the gamma function evaluated at 

(1 +
1

𝛽
). The median of the IPL-Weibull random 

variable 𝑇 can be found by setting, 𝐹𝑇(𝑡) =
1

2
 and 

solving for 𝑡.  

1 − exp [−𝛾𝛽𝑛 (
𝑡

𝐿0

)
𝛽

] =
1

2
⟹ 𝛾𝛽𝑛 (

𝑡

𝐿0

)
𝛽

= ln(2) 

This yields for the median  

𝑚 =
𝐿0

𝛾𝑛
[ln(2)]

1
𝛽 (18) 

The mode of the distribution is the value of the 

argument at which the density function has a local 

maximum. This can be easily found by taking the 

derivative of the density function and setting it equal 

to zero. Hence, for the IPL-Weibull distributed 

random variable, 𝑇 
𝑑𝑓𝑇(𝑡|𝛽, 𝐿0, 𝑛)

𝑑𝑡

=
𝛽𝛾𝛽𝑛

𝐿0
𝛽

[𝑡𝛽−1 exp (−𝛾𝛽𝑛 (
𝑡

𝐿0

)
𝛽

) 
−𝛾𝛽𝑛

𝐿0
𝛽

𝛽𝑡𝛽−1

+ exp (−𝛾𝛽𝑛 (
𝑡

𝐿0

)
𝛽

) (𝛽 − 1)𝑡𝛽−2] = 0 

Upon simplification, this results in for the mode of the 

IPL-Weibull  

𝑓𝑇(𝑡𝑚𝑎𝑥) =
𝐿0

𝛾𝑛
[1 −

1

𝛽
]

1
𝛽

(19) 
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6.  Bayesian Method Applied to Failure 

Estimation 

 
The time-to-failure of a device can be predicted 

from the cumulative failure density function given by 

(15). However, such a prediction is only possible if the 

point estimates of the parameters that characterize the 

failure model are available. The Weibull reliability 

model with the scale parameter given by the inverse-

power law is a three-parametric failure distribution 

model. The model parameters are the shape parameter, 

𝛽, the scale parameter, 𝐿0 and the stress parameter, 𝑛. 

To get the point estimates of the model parameters, we 

propose the use of Bayesian inference since the 

Bayesian method allows for the incorporation of 

expert knowledge on the device wear and tear in terms 

of the prior distribution of the model parameters. 

Although the degree of subjectivity involved in 

selecting the prior distribution has often led the 

proponents of the frequentist statistics to criticize the 

theory as lacking objectivity. However, in reliability 

studies, the ability to incorporate subjective 

knowledge in a failure model is a desirable feature. 

Also, the use of prior information can help mitigate the 

effect of a small sample size. In that regard, Bayesian 

inference is a preferred failure estimation tool of 

power equipment since the failure data of distribution 

transformers with on-load tap changers are usually 

very scarce and not readily available. Besides, 

Bayesian inference provides a more intuitive 

interpretation of the results in terms of probabilities 

that satisfy the likelihood principle.  

Bayesian inference is based on the rule of 

conditional probability, also known as the Bayes rule. 

If 𝓓 is the data vector of failure times that are 

independent and identically distributed, and 𝜓 is the 

set of model parameters, then the joint posterior 

distribution of 𝜓 conditioned on the data in 𝓓 is given 

by the Bayes rule as 

𝑔(𝜓|𝓓) =
𝑓(𝓓|𝜓)𝜋(𝜓)

𝑓(𝓓)
(20) 

Where the marginal probability distribution, 𝑓(𝓓) of 

the failure data, 𝓓  is given by 

𝑓(𝓓) = ∫ 𝑓(𝓓|𝜓)𝜋(𝜓)𝑑𝜓 (21) 

Since the marginal probability distribution, 𝑓(𝓓) is 

obtained by integrating out all the model parameters, 

it is often treated as a normalization constant and (20) 

reduces to  

𝑔(𝜓|𝓓) ∝ 𝑓(𝓓|𝜓)𝜋(𝜓) (22) 

 

 The failure times in 𝓓 are assumed to be a sample 

from a multi-parameter failure probability model. 

Assuming we have 𝑁 identical devices with similar 

failure mechanism, the vector  𝓓 is a collection of 

failure times of 𝑁 devices. 

 

𝓓 = {𝑡𝑖|𝑡𝑖 ≤ 𝐶}  𝑖 = 1,2, … , 𝑁 (23) 

 

Where 𝑡𝑖 is the failure/retirement time of 𝑖𝑡ℎ device, 

and 𝐶 is the present time instant. A data set given by 

(23) is a complete data set with no censoring. In the 

absence of censoring, the failure model is represented 

by the likelihood function  

𝑓(𝓓|𝜓) = ℒ(𝜓; 𝓓) = ∏ 𝑓(𝑡𝑖|𝜓)

𝑁

𝑖=1

(24) 

 In (24), 𝑓(𝑡𝑖|𝜓) is the failure density function of 𝑡𝑖 

given 𝜓. The Bayesian method is concerned with 

inferring the properties of 𝜓; the set of model 

parameters, based on the data in 𝓓. In that sense, the 

Bayesian method treats the model parameters as 

random variables with a joint prior distribution given 

by 𝜋(𝜓).  

However, the actual observed failure data of power 

equipment is rarely complete and is almost always 

censored. In the case of distribution transformers with 

on-load tap changers, the observed failure data will 

have two sets; a set of retired/failed OLTCs and a set 

of in-service OLTCs. Since the test duration is given 

by the fixed number of 𝑟 failures of the 𝑁 number of 

assets, such a failure data set is referred to as Type-II 

censored, and the censoring is on the right. With right-

censored data, a specimen not censored by the present 

time instant has survived till the present time, whereas 

a subject that is censored has retired/failed by the 

current time instant. For right-censored data, the 

likelihood function has the general form[11] 

ℒ(𝜓|𝓓) = ∏ 𝑓(𝑡𝑖) ∏ 𝑆(𝑡𝑗)

𝑗∈ℛ𝑖∈Ω

(25) 

Where Ω is the set of failed/retirement times, and ℛ is 

the set of censored times. Assuming 𝑁 total assets with 

𝑟 of the 𝑁 assets failed/retired by the present time 

instant, 𝐶 the likelihood function of the failure model 

is 

ℒ(𝜓|𝓓, 𝑁, 𝑟) = ∏ 𝑓(𝑡𝑖|𝜓) ∏ [1 − 𝐹(𝑠𝑗|𝜓)]

𝑁

𝑗=𝑟+1

𝑟

𝑖=1

(26) 

The probability that 𝑗𝑡ℎ OLTC will last at least 𝑠𝑗 years 

is  

Pr[𝐶𝑗 > 𝑠𝑗|𝜓] = 𝑆(𝑠𝑗|𝜓) = 1 − 𝐹(𝑠𝑗|𝜓) (27) 

With the likelihood function given by (26), the 

conditional joint posterior distribution of the model 

parameters is 

𝑔(𝜓|𝑡1, 𝑡2, … , 𝑡𝑟 , 𝑠𝑟+1, … , 𝑠𝑁 , 𝐶, 𝑁, 𝑟) =

𝐾 ∏ 𝑓(𝑡𝑖|𝜓) ∏ [1 − 𝐹(𝑠𝑗|𝜓)]

𝑁

𝑗=𝑟+1

𝑟

𝑖=1

 𝜋(𝜓) (28)
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Where 𝑡1, 𝑡2, … , 𝑡𝑟 are the failure times of the devices 

that have failed/retired by the present time instant, 

𝑠𝑟+1, … , 𝑠𝑁 are the survival times of the remaining 

𝑁 − 𝑟 devices, 𝐶 is the present time instant, 𝑁 is the 

total number of assets, and 𝑟 is the censoring number. 

The normalization constant 𝐾 is  

𝐾−1 = ∫ ∏ 𝑓(𝑡𝑖|𝜓) ∏ [1 − 𝐹(𝑠𝑗|𝜓)]

𝑁

𝑗=𝑟+1

𝑟

𝑖=1

 𝜋(𝜓)𝑑𝜓 

 

6.1  Point Estimates of Model Parameters 

In this work, we are interested in deriving the point 

estimates of the parameters that characterize the 

failure model. Consider a failure model, 𝑓(𝑡|𝜃) 

parameterized by 𝜃 in the parameter space, Θ. In 

deriving a point estimate of the parameter, 𝜃 referred 

to as 𝜃̂, the discrepancy between 𝜃 and 𝜃̂ is measured 

by the loss function, 𝐿(𝜃, 𝜃̂). A loss function is a 

mapping from the parameter space to real space. To 

measure the risk associated with the point estimator, 

we consider a quadratic loss function [7] 

𝐿(𝜃, 𝜃̂) = (𝜃 − 𝜃̂)
2

(29) 

The posterior risk of the estimator, 𝜃̂ is given by 

𝑅(𝜃̂|𝓓) = ∫ 𝐿(𝜃, 𝜃̂)𝑓(𝜃|𝓓)𝑑𝜃 (30) 

Where 𝑓(𝜃|𝓓) is the marginal conditional posterior 

distribution of the parameter, 𝜃 given the data in 𝓓. 

With a squared loss function, the point estimate or the 

Bayes estimator, 𝜃̂ of the parameter, 𝜃 is the 

expectation of 𝜃. 

𝜃̂(𝓓) = ∫ 𝜃𝑓(𝜃|𝓓)𝑑𝜃 = Ε(𝜃|𝓓) (31) 

6.2  Bayes Estimators of IPL Weibull Model 
  The Bayes estimators of the IPL Weibull model can 

be obtained from the joint conditional posterior 

distribution of the model parameters. The joint 

conditional posterior distribution of model parameters 

is proportional to the product of the likelihood 

function and the joint prior distribution of parameters. 

To get the joint conditional posterior we re-

parameterize the IPL Weibull model as 

 

𝑓(𝑡|𝛽, 𝜃, 𝛼) = 𝛽𝜃𝑡𝛽−1𝛾𝛼 exp(−𝛾𝛼𝜃𝑡𝛽) (32) 

 

Where 𝜃 = 𝐿0
−𝛽

 and 𝛼 = 𝛽𝑛. With little information 

known a priori about 𝛽 and 𝜃,[12]  proposes the use of 

Jeffrey’s vague prior for the scale and shape 

parameter. Jeffrey’s prior is an uninformative prior 

and is invariant to parameter transformation. For the 

stress parameter we assume a uniform prior.   

𝜋(𝛽) =
1

𝛽
; 𝜋(𝜃) =

1

𝜃
(33) 

𝜋(𝛼|𝐴, 𝐵) = {
1

𝐵 − 𝐴
0

,   𝐴 ≤ 𝛼 ≤ 𝐵, 𝐴, 𝐵 > 0 (34)  

Assuming the right-censored failure data in 𝓓 to be a 

sample from the Weibull distribution with scale 

parameter given by the inverse power law, the 

likelihood function of the IPL Weibull model can be 

obtained from (26). Substituting (13) and (32) in (26), 

we get for the right-censored IPL Weibull likelihood 

function  
ℒ(𝛽, 𝜃, 𝛼|𝑡1, … , 𝑡𝑟 , 𝑠𝑟+1, … , 𝑠𝑁 , 𝐶, 𝑁, 𝑟) =

𝛽𝑟𝜃𝑟 ∏ 𝑡𝑖
𝛽−1

𝛾𝛼𝑟

𝑟

𝑖=1

exp(−𝛾𝛼𝜃𝑃) (35)
 

Where 𝑃 is the rescaled test time given by 

𝑃 = ∑ 𝑡𝑖
𝛽

𝑟

𝑖=1

+ (𝑁 − 𝑟)𝐶𝛽 (36) 

With the prior distributions of model parameters 

defined in (33) and (34), the joint conditional posterior 

distribution of the parameters of IPL-Weibull model is  

 
𝑔(𝛽, 𝜃, 𝛼|𝑡1, … , 𝑡𝑟 , 𝑠𝑟+1, … , 𝑠𝑁 , 𝐶, 𝑁, 𝑟) ∝

𝛽𝑟−1𝜃𝑟−1 ∏ 𝑡𝑖
𝛽−1

𝛾𝛼𝑟

𝑟

𝑖=1

exp(−𝛾𝛼𝜃𝑃)
1

𝐵 − 𝐴
(37)

 

Since the Bayes estimators of parameters are nothing 

but conditional expectations of parameters, it follows 

from (31), that evaluating such expectations requires 

the knowledge of  marginal conditional posterior of 

model parameters. The marginal conditional posterior 

of a parameter  can be obtained by integrating out  all 

model parameters, except the parameter of interest 

from the joint conditional posterior of (37). Once the 

marginal conditional posterior of a parameter is 

obtained, the expectation or the Bayes estimator of the 

parameter can be calculated by evaluating the integral 

in (31). 

For the IPL Weibull model, the Bayes estimator of 

the shape parameter, 𝛽 is obtained by integrating out 

𝜃 and 𝛼 from the joint conditional posterior in (37). 

The Bayes estimator or the  expectation of 𝛽 is 

𝛽̂ = 𝐾𝛽,𝑟 ∫ 𝛽𝑟

∞

0

∏ 𝑡𝑖
𝛽−1

𝑟

𝑖=1

𝑃−(𝑟)𝑑𝛽 (38) 

Where 𝐾𝛽,𝑟 is the normalization constant and is given 

by 

𝐾𝛽,𝑟
−1 =

1

𝐵 − 𝐴
∬ 𝛽𝑟−1

∞𝐵

0𝐴

∏ 𝑡𝑖
𝛽−1

𝑟

𝑖=1

𝑃−(𝑟)𝑑𝛼𝑑𝛽 (39)  

The integrals in (38) and (39) do not have analytical 

solutions but can be solved via numerical integration. 

Similarly, the Bayes estimator of the re-parametrized 

scale parameter, 𝜃 can be obtained by integrating out 
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𝛽 and 𝛼 from (37). This gives the Bayes estimator of 

the scale parameter as 

𝜃̂ =
1

𝐵 − 𝐴

𝛾𝐴 − 𝛾𝐵

γA+Bln 𝛾

𝐼1

𝐼2

(40) 

Where  

𝐼1 = ∫ 𝛽𝑟−1
∞

0

∏ 𝑡𝑖
𝛽−1

𝑟

𝑖=1

𝑃−(𝑟+1)𝑑𝛽 (41) 

𝐼2 = ∫ 𝛽𝑟−1
∞

0

∏ 𝑡𝑖
𝛽−1

𝑟

𝑖=1

𝑃−(𝑟)𝑑𝛽 (42) 

The integrals in (41) and (42) can be evaluated by 

numerical integration and as such do not have closed-

form solutions. Finally, the Bayes estimator of the 

parameter 𝛼 can be obtained by integrating out 𝛽 and 

𝜃 from (37). This results in for the Bayes estimator of 

𝛼  

𝛼̂ =
𝐾𝛼,𝑟

𝐵 − 𝐴
∬ 𝛽𝑟−1

∞𝐵

0𝐴

∏ 𝑡𝑖
𝛽−1

𝑟

𝑖=1

𝑃−(𝑟)𝛼𝑑𝛼𝑑𝛽 (43) 

Where 

𝐾𝛼.𝑟
−1 = ∫ 𝛽𝑟−1

∞

0

∏ 𝑡𝑖
𝛽−1

𝑟

𝑖=1

𝑃−(𝑟)𝑑𝛽 

The Bayesian updating algorithm can be summarized 

in the following steps 

 Formulate the joint likelihood function of the 

failure model considering the censored failure 

data. This formulation with respect to IPL-

Weibull model in given in (35). 

 Choose prior distributions of parameters to be 

estimated and obtain the conditional joint 

posterior of model parameters. For the IPL 

Weibull model, this is given in (37).  

 Obtain marginal conditional posterior of 

parameters by integrating out the all the model 

parameters from the joint conditional posterior, 

except the parameter of interest.  

 The Bayes estimators of parameters can then be 

obtained by evaluating the integral in (31). 

7. Model Validation 
 

The analysis in the previous section assumes that 

the censored failure data is a sample from the Weibull 

distribution in which the scale parameter shares an 

inverse relationship with the applied stress. In order to 

check the validity of the assumption, we compute the 

Kolmogorov-Smirnov (KS) distance between the 

empirical distribution function and the fitted 

distribution function. KS test is a nonparametric test 

that is used to test the hypothesis that the sample 

(failure data) comes from a particular distribution. In 

our case, we hypothesize that the times to failure come 

from an IPL-Weibull distribution. The sample failure 

data is given in . The failure data assumes a total of 40 

assets installed ten years ago with a retirement history, 

as shown in Table 1. 

Figure 1 shows the result of the KS test. It is clear that 

the fitted IPL-Weibull provides an excellent fit to the 

failure data. Note that the fitted IPL-Weibull CDF uses 

point estimates of the parameters given by (38),(40) 

and (43). Figure 1 confirms that the KS test accepts the 

hypothesis that the failure data of  is a sample from the 

Weibull distribution with scale parameter given by the 

inverse power law.  

 

Table 1 Sample Data Set for Transformer 
from Single Vintage [6] 

 

8. Illustrative Example 
 

The proposed Bayesian method is applied to a 

model of the IEEE-34 Bus test system to estimate the 

lifetimes of voltage regulators with different 

penetration levels of solar generation. The test system 

Year Age Retirements Survivors Survivor 

Rate 

2009 0 0 40 100% 

2010 1 1 39 98% 

2011 2 0 39 98% 

2012 3 0 39 98% 

2013 4 0 39 98% 

2014 5 1 38 95% 

2015 6 2 36 90% 

2016 7 1 35 88% 

2017 8 5 30 75% 

2018 9 4 26 65% 

2019 10 6 20 50% 

Figure 1 Empirical and Fitted CDF from KS Test 
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has a nominal voltage of 24.9 kV. The feeder is 

characterized by long lines and light loads and requires 

two voltage regulators to keep the voltage within 

ANSI limits. Both the voltage regulators use line drop 

compensation (LDC) to measure the drop in voltage 

between the regulator and load center. To study the 

impact of solar generation on tap-changers, a full 

three-phase model of the circuit consisting of all 

circuit lines (single-phase and three-phase lines), 

regulators, customer loads, capacitor banks, 

substation, and in-line transformers, control elements 

of capacitors and voltage regulators are developed in 

OpenDSS. For the solar generation, a proportionally 

distributed configuration is chosen with the rated 

power of the PV systems proportional to the loads. 

Each PV system is interfaced with an inverter with a 

rating 10% higher than the PV panel. It is expected that 

an increase in the solar capacity will negatively impact 

the device lifetime due to a corresponding increase in 

the device wear and tear. 

This engineering judgment allows us to assign a 

prior distribution to the model scale parameter such 

that the inverse proportionality between device 

lifetime and applied stress is preserved. As for the 

stress parameter, since we assigned a uniform prior, 

the length of the interval, [𝐴, 𝐵] chosen will have an 

impact on the model predictions. Obviously, an expert 

with a priori information about the stress parameter 

will be able to assign more accurate values for a better 

forecast. This shows the proposed model is flexible 

and can incorporate subjective information, if 

available. Figure 2 shows the survivor data of  and the 

fitted IPL Weibull survivor functions with different 

lengths of the interval chosen for the stress parameter. 

For our purpose, given the sample failure data, the 

interval [0,1] of the stress parameter results in the best 

fit of the given survivor rate.  

To observe the impact of non-thermal stress or 

equivalently solar generation on the OLTC lifetimes, 

we designed annualized experiments over a 10-year 

planning horizon. The results of the tests are 

categorized into three scenarios which are 1) Load 

growth over the next ten years with no solar 

generation, 2) Load growth with low penetration of 

solar generation (30%) and 3)  Load growth with high 

penetration of solar generation (90%).  

Note that the photovoltaic (PV) penetration level is 

defined as the ratio of aggregate peak capacity of all 

PV systems and the total peak active load of the feeder. 

We consider a load growth of 3% for the first four 

years, followed by 5% and a 7% growth distributed 

equally for the remaining six years. This is within the 

conservative estimate of 3%-7% growth in feeder 

loads at the distribution level. We consider two 

different penetration levels for the solar generation 

over the ten-year planning horizon. Note that the 

accumulated stress on the OLTCs is proportional to 

the cumulative number of tap operations over the 

planning horizon.  

Since the failure data is censored on the right, we 

have two sets of observed lifetimes. One set contains 

the failed/retirement times (𝑡𝑖 ≤ 𝐶); 𝑖 = 1, … , 𝑟 and 

the second set includes the survival times of the 

OLTCs not failed or retired by the present time instant. 

The Bayesian method enables us to make an inference 

on the second set of OLTCs based on the data in the 

first set since the failure/retirement time of the second 

set is unknown at the present time instant. The 

inference is valid because the OLTCs in both the sets 

experience similar failure mechanisms. Figures 3 and 

4 show the failure density function, hazard rate and the 

survival function of the two voltage regulators of IEEE 

34 bus system under different scenarios.  

Figure 2 Survivor Functions of IPL-
Weibull with different intervals for stress 

parameter 

Figure 3 PDF, Hazard Rate and Survivor 
Function for  VR-1 
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The regulators are assumed to have survived until 

the present time instant and hence are not censored. 

From Figure 3 and Figure 4, it is clear that while a low 

PV penetration may not significantly reduce the 

lifetimes of voltage regulators, sustained high PV 

penetration has a significant impact on the device's 

lifetime. This is further evinced by the hazard rates of 

both the regulators, which show a marked increase 

towards the end of device lifetime with high PV 

penetration. 

It is interesting to note how the failure density 

changes after new data are acquired. Figure 5 shows 

the impact of censoring number on the failure density 

function. The transition of failure density from the 

poor initial estimate (blue curve) to the final estimate 

(green curve) is remarkably fast. The mean time to 

failure in the initial estimate with 𝑟 = 1 is 114200 

years, considering no PV penetration.  With 𝑟 = 20, 

the mean time to failure is 10.255 years. This suggests 

the method is very robust. Since the inference on the 

surviving assets is drawn from the set of failed/retired 

assets, the proposed method will perform better with a 

large amount of censored failure data.   

Table 2 list the point estimates of the model 

parameters as a function of the censoring number. As 

more failure data are acquired, the failure prediction 

improves. The most likely (𝛽̂, 𝜃̂, 𝛼̂) with 𝑟 = 20 is 

(3.52,9.16,0.1108) for voltage regulator-1in the No PV 

scenario. Table 3 and Table 4 list some statistical 

properties of the failure density function shown in  

Figure 3 and Figure 4. The impact of heavy PV 

penetration on device lifetime is quite apparent. This 

can be realized by observing the mean time to failure 

(MTTF) of the two voltage regulators under low PV 

and high PV penetration and compare that with the No 

PV scenario. With a high PV penetration, the MTTF 

of voltage regulator 1 is 7.33 years and for voltage 

regulator 2, the MTTF with high PV penetration is 

7.09 years.  

 

Table 2 Impact of censoring on Point 
Estimates of Model Parameters 

Parameter r=1 r=5 r=10 r=15 r=20 

β̂ 0.43 1.11 1.83 2.65 3.5217 

L0̂ 7655 30.7 13.09 10.06 9.1617 

n̂ 0.88 0.34 0.21 0.14 0.1108 

 
Table 3 Statistical Properties of Aging 

Distribution of VR-1 

Property No PV 30%PV 90%PV 

Mean Time to 

Failure (MTTF) 

10.25  9.58 7.33 

Median 10.238 9.59 7.34 

Mode 10.33 9.68 7.41 

 
Table 4 Statistical Properties of Aging 

Distribution of VR-2 

Property No PV 30%PV 90%PV 

Mean Time to 

Failure (MTTF) 

10.25  9.06 7.09 

Median 10.238 9.07 7.10 

Mode 10.33 9.15 7.17 

 

9. Conclusions 
Accurate prediction of service times of power 

equipment is a critical issue in asset management. The 

development of statistical models that can incorporate 

the most salient features  thought to strongly determine 

the device lifetime is pivotal to reliability and the 

economic operation of the power system. Such models 

are especially sought in situations where a portion of 

the installed population fails or is retired 

Figure 5 Impact of Censoring on Failure 
Time Prediction 

Figure 4 PDF, Hazard Rate and Survivor 

Functions for VR-2 
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progressively, assuming similar failure mechanism for 

the entire population. A good example of this is on-

load tap changers and switched capacitors on 

distribution feeders with significant solar or wind 

generation.  

In this work, we propose the use of IPL-Weibull 

distribution to accurately model the impact of 

operational stress on the tap-changers given a high 

penetration of solar generation. Also, a Bayesian 

approach to estimate the model parameters is 

presented. The method uses point estimates of the 

model parameters, which are obtained via Bayesian 

updating of the acquired failure data. The model is 

flexible and can incorporate subjective information, if 

available, in the form of the prior distribution of 

parameters.  

The future work in this direction will involve the 

quantification of uncertainty in parameter estimation. 

This can be done by obtaining the posterior predictive 

distribution of the times-to-failure of devices not 

censored by the present time instant. For the IPL 

Weibull model, numerical integration techniques are 

not sufficient to derive the posterior predictive 

distribution. However, simulation procedures like 

Metropolis Hastings algorithm or Gibbs sampler can 

be used to simulate to posterior predictive distribution 

of the IPL Weibull failure model.  
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