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Abstract 
The essential component of studying how humans 

and robots relate is to observe how they interact with 

each other. This fact has been taken for granted until the 

COVID-19 pandemic made all such HRI study-based 

interactions verboten. We address the question of how 

HRI research can continue in an environment where 

physical distancing is the most effective approach to 

containing the spread of the disease. In this paper we 

present a pilot study that indicates that Remote-HRI (R-

HRI) studies can be a feasible alternative. The results 

suggest, importantly, that whether the participant 

interacts with the robot in-person (but physically-

distanced) or remotely, their perception of the robots is 

unaffected. We observed increased effort and 

frustration by participants when interacting remotely 

with the robot – for which there may be an underlying 

cultural cause. However, all participants completed 

their tasks with the robot and had a neutral to positive 

experience using it.    

1. Introduction  

With a global pandemic affecting all aspects of 
society, research into human-robot interactions have 
faced the problem of how to undertake studies while 
maintaining public health requirements. Although 
countries in Europe and Asia have reopened, there are 
still spikes in infection rates occurring in some areas, 
and governments remain on alert for possible future 
outbreaks. In the USA, many states remain open, but 
with uncontrolled community spread, government 
officials are beginning to roll back their previous 
reopening plans.  

The SARS-Cov-2 virus that causes COVID-19 is 
highly contagious and very dangerous to the elderly and 
those with underlying conditions. Unfortunately, these 
populations are the ones in which most HRI research is 
focused – as a simple Google Scholar search would 
attest. Recognizing this problem, Feil-Seifer et al. [1] 
identify nine research questions that must be answered 
so that human-oriented research such as HRI can 
continue within the context of this pandemic. 

One area they identify is the need to develop 
methodologies that would facilitate HRI research in a 

practical and ethical way during the pandemic [1]. This 
is crucial since significant work on assistive and 
companion robots is done with the elderly and 
populations with underlying health conditions [2]–[8] 
and it is these populations that are most at risk if they 
are exposed to the virus [9].  

1.1. Remote Usability Testing 

We believe that the answer to the question posed by 
Feil-Seifer et al. can be addressed by the work done in 
Remote Usability Testing (RUT) [10], [11]. 

Conventional usability testing involves gathering 
participants, which represent the target user group of the 
software under test, into a lab where there is a moderator 
to observe them as they work on specified tasks to 
identify usability errors [12]. The protocol for usability 
tests involves the participant being encouraged to talk 
aloud as they work through their task. This permits the 
moderator to gain some insight into the participant’s 
thought processes, and to identify any 
misunderstandings that may occur as the user interacts 
with the system [12]. 

While this method has a number of advantages – a 
common one being high-quality quantitative data – 
significant drawbacks also occur. Impediments include, 
high costs, difficulty in creating environments that 
represent end users’ environment, and most importantly, 
identifying a representative sample of participants that 
can physically come to the lab. The last problem is 
exacerbated by the fact that software is sold 
internationally. This means that a representative sample 
of participants must be drawn from across the globe 
wherever the software is sold [13]. 

RUT addresses these problems. Video 
conferencing tools like Zoom®, MS Teams® and 
Google Meet® provide the real-time interaction needed. 
Each of these applications have screen sharing and other 
collaborative tools to facilitate interaction with the 
moderator and the participant. Prior to these systems, 
software such as Cisco WebEx® and GoToMeeting® 
provided similar functionality. Both unmoderated and 
moderated remote usability testing approaches are used, 
and studies have shown the benefits of both [14]–[16]. 

The lessons learned from, and applied to, RUT 
provide a roadmap for undertaking remote human-robot 
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interaction experiments in a pandemic. Firstly, studies 
have shown that RUT is as effective as the conventional 
in-lab approach [14], [16]. More recently it has been 
shown that the lab environment can be replicated as a 
virtual environment without any significant workload 
differences from the conventional lab or even a remote 
testing approach [17].  

1.2. Remote Human-Robot Interaction 

While there are remote-controlled robots, this is not 
what is being proposed in this work since a remotely-
controllable robot still needs to be tested before it can be 
deployed. In this paper, we propose a Remote Human-
Robot Interaction (R-HRI) study methodology where 
experiments are either done where: (a) the participant is 
present but physically distanced from the robot or; (b) 
the participant is physically remote. 

In the first case, all public health requirements 
pertaining to controlling the transmission of viruses and 
specifically coronaviruses are enforced [18], and 
includes not touching the robot. This is especially 
important for team-based studies or studies where 
different participants are usually required to touch the 
robot. Since disinfecting the robot could potentially 
damage its screen or other interfaces, the moderator acts 
as the intermediary for the participant and the robot in 
these circumstances. The key difference between this 
role and that of a RUT moderator is, whereas the 
usability testing moderator encourages elicitation of 
thought processes, the R-HRI moderator’s role is more 
like that of a proxy for the participant. That is, they help 
the user perform tactile or other interactions that would 
violate public health protocols and do so without 
attempting to elicit information on the user’s thought 
processes.  

In the fully-remote case, the participant and the 
robot are in different locations. Being able to perform 
experiments under such conditions is important when 
HRI studies involve at-risk populations, where going 
into their living spaces is prohibited. In this 
configuration, the moderator plays a similar role to that 
of a moderator in RUT, with the modifications to the 
role as described above. 

We designed an experiment to determine whether 
R-HRI is feasible. This feasibility is evaluated from the 
human attitude, cognitive workload and human 
experience perspectives and focus on three questions: 
1. Will a human participating in an R-HRI experiment 

manifest the same attitudes towards robots 
regardless of whether they interact with the robot 
in-person or remotely? 

2. Will the cognitive workload of getting the robot to 
perform an action be the same whether interacting 
with the robot remotely or in-person? 

3. Will the user’s experience with the robot be the 
same whether it is in-person or remotely? If not, are 
the aspects of the experience in an R-HRI study so 
different that it would be infeasible to use? 
We undertook a pilot study to provide initial 

answers to these questions. We did a pilot study as a 
precursor to a full study for a number of reasons. Firstly, 
we had to determine what potential impact the 
supporting technologies, network, cameras, speakers, 
etc., will have on the R-HRI experiment. While we did 
not focus on technology design in this study, we 
informally made note of its configuration and potential 
effects. Additional details on this are provided in the 
Discussion section. Secondly, we wanted to determine 
if these forms of R-HRI were indisputably negative 
experiences. Undertaking a full study without first 
determining the merit of the idea would be unwise. 

2. Related Work 

The term Remote-HRI was used by [19] to describe 
how participants in the study by Huber and Weiss used 
a remote-controlled, off-the-shelf robotic arm. In their 
study, the term was applied to operating the robot with 
a remote-control, and this was evaluated against 
Physical-HRI – the term they used to describe 
participants manually controlling the robot. The Huber-
Weiss definition differs from the definition in the work 
presented here because our definition focuses on the 
nature of the physical relationship the user has with the 
robot during the experiment - specifically that of the 
separation – and not as a method of controlling the 
robot.  

Most research pertaining to remote robot 
interaction focuses either on how to use a robot to 
interact with a remote environment [20], [21] or how to 
manipulate the robot from a remote location 
(teleoperation) [22], [23]. There have been some studies 
that focus on the success of HRI outcomes by 
establishing common ground between human and robot. 
Work done by Stubbs et al. [24] discusses the use of a 
robot proxy – a system that simulates the robot’s 
responses – to improve interaction outcomes by 
establishing common ground between the human and 
robot. While HRI was part of the study, the main focus 
of this work was on the effectiveness of the grounding 
process between the human and robot. As a result, issues 
regarding physical separation, attitudes and experience 
are not examined. The case is similar for other work on 
robot proxies and grounding [25], [26]. 

Most recently, work done by Honig and Oran-Gilad 
investigated interaction using online video surveys to 
evaluate the quality of hand gestures used to 
communicate with robots [27]. The study was motivated 
by some of the same factors that motivate RUT, namely 
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the cost and effort associated with mounting in-person 
studies – especially in situations where the robot has not 
been fully tested for interaction with humans. The study 
did not use a moderator, nor was real-time interaction 
used; however, the researchers had participants watch 
videos and respond using a video – asynchronously. The 
results showed that the method of interaction had no 
effect for 7 of the 8 selected gestures and that their 
approach might a viable alternative to in-person testing 
especially during the prototyping stage. Their 
assessment is similar to the investigation presented in 
this paper.  

The area of human-robot proxemics investigates 
physical- and psychological distancing between humans 
and robots [28], [29]. The focus of this area of research 
is in determining how humans react to robot’s behaviors 
when they are within a certain distance from the user, as 
well as determining how a robot can affect human 
behavior or determine human emotions and other types 
of affect. Human-robot proxemics does not directly 
address the questions we seek to answer in this paper. 
While physical distancing is studied in proxemics, this 
is done within the context of making the robot model 
social and cultural norms. Physical distancing in our 
work is a constraint under which experiments must be 
executed. So, we do not investigate physical distance by 
itself, as we would with a human-robot proxemic study 
[28], but instead, preset a physical distance from the 
robot and perform HRI studies with that condition. 

Although there is previous work that focuses on the 
outcomes of the nature of interaction the user has with a 
robot, those works have not investigated how these 
interactions function in a physically-restricted setting. 
They also have not investigated the impact these 
interactions have on user attitudes, workload and 
experience. In this paper, we address these restrictions 
and their impact on interaction by undertaking a pilot 
study to determine the viability of Remote-HRI as a way 
to undertake HRI studies within the context of a global 
pandemic where physical interaction is limited. 

3. The Method 

3.1. Participants 

The pilot study was done with participants 
consisting of seven males between the ages of 22 and 46 
(� = 32.3, � = 7.36) and one moderator (male, 22). 
The participants were recruited from a computer science 
research group, whose primary areas of research do not 
involve social robots. Before their participation in this 
pilot study, four out of the seven participants (57%) had 
prior interaction with some robot that was different than 
the one used in this study. We used the advice given by 
Macefield [30] where a baseline of 5-10 participants 

being a sensible baseline for early usability studies. We 
believed this advice could apply to our study. 

3.2. The Experiment Conditions 

Mode of interaction with the robot was the 
independent variable. It was evaluated at two levels: in-
person interaction with a moderator, and remote 
interaction with a moderator. 

The in-person environment was designed to meet 
all public health requirements that are known to reduce 
the likelihood of human-to-human transmission of 
infections [18]. Participants were required to wear face 
masks and stand no less than two meters away from the 
robot and moderator. Any interaction with the robot that 
required touch had to be done through the moderator, 
who was the only person allowed to touch the robot. The 
in-person tests were done in an open outdoor courtyard 
to reduce the possibility of aerosolized particles 
circulating in the test location – even though airborne 
transmission of the virus has not been verified [18]. This 
environment also facilitated remote interaction with the 
robot. A laptop with a built-in webcam and augmented 
with an external Bluetooth speaker was used to run the 
video conferencing application. The robot was placed in 
front of this system so that the remote user can see 
Zenbo move around and so that the robot can hear the 
remote user’s commands. 

We used a computer research lab as an on-site 
remote environment. The lab accommodates six 
researchers; however, no more than three people were 
allowed to be in the lab at any given time to facilitate 
adequate spacing. Gloves and hand sanitizer were 
provided to participants – if they chose to use the laptop 
provided to interact with the robot remotely. Face masks 
were required while inside of the lab.  

3.3. The Robot 

The ASUS Zenbo companion robot was used in this 
study, see Figure 1. The robot is a multi-purpose 
intelligent assistant that has been described as cute [31]. 
It is designed to work in educational, business and 
health and safety environments with roles such as: a 
teacher assistant’s storyteller; a companion robot for the 
elderly and; a retail service assistant [32]. Given the 
intended uses for the robot, we believed they made it a 
good candidate for operation by first-time users.  

 We chose to use some of the Zenbo robot’s built-
in functions since these applications have been tested by 
other researchers [33]. We chose these applications to 
reduce confounding that may occur with custom 
applications that are less established, less tested and 
could introduce unexpected outcomes in this pilot study.  
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For each experiment, we had each participant go 
through a pre-selected list of nine functions available 
with Zenbo.  These functions are listed in Table 1. We 
chose these functions because the robot’s expected 
reactions were easy to describe to participants. The 
chosen commands are also simple and we anticipated 
that the commands that there would be easy for 
participants to issue.  

We also required a range of commands to have 
users do testing with Zenbo. The robot offers oral and 
movement responses. The user can also interact with 

Zenbo using voice directives or touch. Of the nine 
instructions, five commands (1, 2, 3, 4 and 9) were voice 
directives that resulted in an oral response from Zenbo. 
Three commands (6, 7, 8) were voice directives that 
resulted in an oral and movement response by Zenbo. 
One command (5), required physically touching the 
robot and resulted in movement by the Zenbo robot. For 
all commands except Command 5, the participants 
interacted with Zenbo themselves. However, to perform 
Command 5, the participant could not touch the robot 
but instead had to ask the moderator to perform the 
action.  

3.4. Devices Used for Remote Access 

Participants had three options to access the robot 
remotely: (i) use the laptop provided; (ii) use their 
personal laptop or; (iii) use their smartphone. The laptop 
provided to participants ran the Chrome web browser 
and the remote desktop application AnyDesk®. We 
used the Jitsi [34] video conferencing website to allow 
participants to communicate with the Zenbo companion 
robot, see it move around and to communicate with the 
moderator. The AnyDesk application was used to give 
the participants a clear picture of the robot’s face and its 
expressions because these were hard to discern through 
the video conferencing website. AnyDesk was installed 
on Zenbo to make this type of connection possible. 
Participants who chose to use their own laptop had to 
install AnyDesk and then use the application to request 
a connection to the robot. The moderator ensured this 
was done at the start of the session. The final device 
option was for participants to use their smartphones. 
With this option participants had to install the Jitsi 
application to get the best quality connection. 
Additionally, using the smartphone prevented 
participants from using the AnyDesk application since 
it was not possible to use both the Jitsi and AnyDesk 
applications simultaneously. Using this arrangement, 
participants saw the robot’s expressions only through 
the Jitsi video conferencing application. 

3.5. The Survey Instruments 

For this study we selected five survey instruments 
that could help us determine whether: (a) participants’ 
mode of interaction with the robot (in-person/remotely) 
affected their attitudes towards the robot; (b) the effort 
expended in interacting with the robot depended on 
interaction modality and; (c) the quality of the 
participants’ experience with the robot was affected by 
the interaction mode. 

We used the Negative Attitude towards Robots 
Scale (NARS) [35] to determine the level of negative 
perceptions held by the participants towards robots. 

Table 1. List of Zenbo commands numbered 1-9 

Command Function Expected 
Reaction 

1) “Hey, Zenbo” Prepare to 
receive a 
command 

Blue “ears” 
appear and waits 
for a command 

2) What can you 
do? 

Opens list of 
functions 

Display functions 

3) “What date is it 
tomorrow” OR 
“What date is it 
tomorrow on the 
lunar calendar” 

Date report Tomorrow’s date 
in the 
calendar/lunar 
calendar 

4) “What is the 
weather in 
Barbados today?” 
OR 
“What is the 
weather today?” 

Weather 
report 

Reports the 
weather 

5) Stroke its head 
(ask moderator) 

Basic 
interaction 

Shows a shy 
expression 

6) “Follow me” Following  Follows the user 

7) “Tell me a 
story” 

Entertainment Tells the user a 
story 

8) “I want to take a 
picture” / “I want 
to take a selfie” 

Photo Takes a picture of 
the user 

9) “I want to listen 
to music 

Entertainment Plays music 

 

Figure 1. The Zenbo intelligent robot. 
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NARS is a 14-item scale that has three subscales. The 
first, six-item subscale, measures negative attitudes 
towards human-robot social interactions (HRSI). The 
second, five-item subscale, measures the negative 
attitudes towards the social influence of robots (SIR) 
and the third, three-item subscale, measures negative 
attitudes towards emotional interactions with robots 
(EIR). Measuring negative perceptions was important 
since there are very few companion, assistive or service 
robots commonly available in our region. This meant 
that any impression participants may have had about 
robots would likely not have been from prior exposure, 
but from second-hand sources like popular media. The 
higher the NARS score, the more negative the 
participant’s attitude towards robots. This means that by 
using this scale we could determine whether 
participants’ attitudes change after each interaction with 
the robot (Pretest: α = .76; Posttest I: α = .66; Posttest 
II: α = .68). 

The Robotic Social Attributes Scale (RoSAS) [36] 
was used to get a better sense of the perceptions held by 
participants, especially if NARS showed that 
participants did not have any negative attitudes towards 
robots. RoSAS is an 18-item scale with three subscales: 
Warmth, Competence and Discomfort, each consisting 
of six items. The higher the score in each subscale, the 
greater the perception by the user of the robot possessing 
the characteristics described by the items of the 
subscale. For example, a robot that is perceived as 
warm, implies that the participant scored it highly in the 
six items: happy, feeling, social, organic, compassionate 
and emotional that comprises the warmth subscale. We 
used this scale to determine if any of these perceptions 
changed based on the interaction modality used with the 
robot (Pretest: α = .89; Posttest I: α = .78; Posttest II: α 
= .75). 

In addition to human perception, we also assessed 
use of the robot in an effort to capture whether the 
interaction affected levels of technology adoption. We 
used the Extended Technology Acceptance Model 
(TAM2) [37] scale to determine participants’ attitudes 
towards accepting a companion robot for use if one were 
available. TAM2 measures technology acceptance, and 
we regarded it as a viable indicator of the quality of the 
interaction with the robot. We assessed the factors: 
Intention to Use (IU); Perceived Usefulness (PU) and 
Perceived Ease of Use (PEU). The higher the TAM2 
score, the more likely the participant is to accept and/or 
adopt the technology under assessment (In-Person: α = 
.82; Remotely: α = .82). 

The NASA Task Load Index (TLX) consists of six 
subscales: Mental Demand (MD), Physical Demand 
(PD), Temporal Demand (TD), Performance (P), Effort 
(E) and Frustration (F) [38]. Its total score measures the 
workload associated with a specific task. A key measure 

we wanted to capture was the quality of the participants’ 
experience with the Zenbo robot within the constraints 
of the experiment environment. To achieve this, we 
examined the Performance(P), Effort(E) and 
Frustration(F) factors of the TLX with the two modes 
of interaction (In-Person: α = .81; Remotely: α =.74). 

The short version of the User Experience 
Questionnaire [39] is a seven-point, eight-item 
inventory that allows subjects to provide a full 
assessment of their experience using a technology. It has 
two subscales: Pragmatic Quality, which measures how 
efficiently you can perform the task using the product; 
and Hedonic Quality, which measures how interesting 
and stimulating it is to use the product to perform the 
task. Values greater than 0.8 represent a positive 
evaluation, values less than -0.8 represent a negative 
evaluation. Values between -0.8 and 0.8 represent a 
neutral evaluation. Given this, we can determine the 
quality of the participant’s experience after each 
interaction mode (In-Person Pragmatic: α = .95; 
Remotely Pragmatic: α = .87); (In-Person Hedonic: α = 
.97; Remotely Hedonic: α = .85). 

3.6. The Experiment Design 

We used a counterbalanced measures design with 
the independent variable (interaction mode) at two 
levels: in-person and remote. The seven participants 
were randomly assigned to either Group A (which first 
interacted with the robot in-person and then remotely) 
or Group B (which interacted with the robot remotely 
first, and then, in-person). Data was collected over a 
period of nine hours. 

3.7. Procedure 

Before starting the experiment, participants from 
the research group were given an online copy of the 
informed consent form, which they had to read and then 
click to accept. After giving consent, basic demographic 
information such as age and whether that had ever 
interacted with a robot was collected. Participants then 
filled out the NARS and RoSAS inventories, and were 
instructed on how to issue the nine commands shown in 
Table 1 to interact with the robot. After their first 
interaction, they were instructed to fill out the five 
inventories. When they completed the surveys, they 
used the same commands to interact with the robot a 
second time using a different interaction modality. For 
example, a participant that was assigned to Group A, 
would complete the NARS and RoSAS inventories in 
the pretest, interact with the Zenbo robot in-person, and 
then complete the five inventories in posttest. After their 
second interaction, the five inventories are again 
completed in the second posttest. The process is the 
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same for Group B participants who start with the remote 
interaction mode. 

4. Results 

Given the small sample size of the pilot study, we 
used the Friedman’s non-parametric test on the NARS 
and RoSAS data for within subject analysis of the 
effects of the interaction modalities against attitudes 
towards robots. To analyze the other scales that 
measured technology adoption (TAM2), workload 
effort (NASA TLX), and user experience (UEQ), we 
tested for normality using a visual test (Q-Q Plot) 
verified by a Shapiro-Wilk test, which has more power 
than the Kolmogorov-Smirnov normality test [40]. If the 
data met the normality requirement, we investigated the 
presence of effects using a repeated measures t-test, 
since it functions with small sample sizes [41]. Data 
samples that failed the normality tests were analyzed 
using the Wilcoxon Signed-Rank test. 

4.1. NARS 

We performed the Friedman’s Test on the three 
subscales of the NARS separately. The three treatments 
were the pre-interaction versus in-person interaction 
versus remote interaction against the independent 
variable interaction modality at two levels: in-person 
and remote. For the HRSI subscale there was no 
significant effect of the interaction modality on user 
attitudes, Χ�2, � = 7) = 3.43, � = 0.18. For the SIR 
subscale, there was no significant effect of the 
interaction modality on social interaction attitudes, 
Χ�2, � = 7) = 0.5, � = 0.78. Finally, for the EIR 
subscale, there was no significant effect of the 
interaction modality on attitudes towards emotional 
interactions with robots, Χ�2, � = 7) = 0.28, � =

0.87. 

4.2. RoSAS 

We performed a Friedman’s test on the three 
subscales of the RoSAS inventory. The three treatments 
were the pre-interaction versus the in-person interaction 
versus the remote interaction against the interaction 
modality at two levels: in-person and remotely. For the 
Warmth subscale there was no significant effect of the 
interaction modes on this attitude, Χ� = 2, � = 7) =

0.5, � = 0.78. For the Competent subscale there was no 
significant effect of the interaction modalities on the 
attitude, Χ� = 2, � = 7) = 2, � = 0.37. For the 
Discomfort subscale, there was no significant effect of 
the interaction modalities on this attitude, Χ�2, � =

7) = 1.36, � = 0.51. 

4.3. TAM2 

For the TAM2 scale, we used Q-Q plots to perform 
normality visual tests. They appeared to indicate that the 
data for all three subscales were normally distributed, 
Figure 2. We ran the Shapiro-Wilk normality for 

 

Figure 2: Q-Q plots of (a) TAM2 IU subscale; (b) 
TAM2 PU subscale and; (c) TAM2 PEU subscale 
showing that the subscale data may fit a normal 

distribution, with minimum ��value of 0.871, 2(c), 

and maximum ��value of 0.9861, 2(b). 

Table 2: Statistics and Normality Tests for TAM2 

 In-Person 
(N=7) 

Remotely 
(N=7) 

Subscale: Intention to Use (IU) 

Mean 8.571 9.571 
S.D. 2.7 3.5 
Shapiro-Wilk Normality Test 
  W 0.960 0.912 
  p-value 0.92 0.46 
Subscale: Perceived Usefulness (PU) 

Mean 15.571 16.857 
S.D. 4.791 2.794 
Shapiro-Wilk Normality Test 
W 0.979 0.935 
p-value 0.995 0.683 
Subscale: Perceived Ease of Use (PEU) 

Mean 20.429 17.714 
S.D. 4.035 6.317 
Shapiro-Wilk Normality Test 
W 0.931 0.850 
p-value 0.643 0.139 
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additional verification, Table 2, which allowed us to use 
the t-test for all subscale analysis. We performed a 
repeated measures t-tests on the Intention to Use (IU) 
subscale from the TAM2 inventory. The results 
indicated that the interaction modality had no effect on 
Intention to Use t(6) = .733, p = .49.  

We performed a repeated measures t-test on the 
Perceived Usefulness (PU) subscale and the results 
indicated that the interaction modality had no effect on 
Perceived Usefulness t(6) = .668, p = .53. Finally, we 
performed a repeated measures t-test on the Perceived 

Ease of Use (PEU) subscale and the results indicated 
that the interaction modality had no effect on Perceived 
Ease of Use t(6) = -1.056, p = . 33. 

4.4. NASA Task Load Index 

For the NASA TLX scale, we used Q-Q plots to 
perform normality visual tests that appeared to indicate 
that the data for all three subscales were normally 
distributed, Figure 3. We ran the Shapiro-Wilk as a 
verification test for normality, Table 3, which allowed 
us to use the t-test to analyze the Performance and 
Frustration subscales. The t-test normality requirement 

was not met for the In-Person interaction modality for 
the Effort subscale, so we used the Wilcoxon Signed-
Rank test. 

The result of the repeated measures t-test for the 
interaction modality showed that it had no effect on 

Performance t(6) = 1.456, p = .196. The repeated 
measures t-test for the Frustration subscale showed 
there was a significant effect of the interaction modality 
on Frustration, t(6) = 2.53, p = .04. This implied that 
interacting with the robot remotely was more frustrating 
than in-person interaction.   The results of the Wilcoxon 
Signed-Rank test showed that the interaction modality 
had an effect on Effort � = −2.154, � = 0.031). This 
implies that interacting with the robot remotely required 
more effort than interacting with the robot in-person. 

4.5. UEQ 

 The Q-Q Plots appear to indicate that the data for 
the UEQ subscales were normally distributed, Figure 4. 
Both subscales passed the Shapiro-Wilk normality test, 

 

Figure 4: Q-Q Plot of UEQ (a) Pragmatic subscale 
and; (b) Hedonic subscale showing that the data 
seems to follow a normal distribution.  

 

Figure 3: Q-Q Plot of NASA TLX (a) Performance 
subscale; (b) Effort subscale and; (c) Frustration 
subscale showing that the data may fit a normal 
distribution.  

Table 3: Statistics and Normality Tests for NASA TLX 

 In-Person 
(N=7) 

Remotely 
(N=7) 

Subscale: Performance 

Mean 18.775 36.372 
S.D. 10.724 16.461 
Shapiro-Wilk Normality Test 
  W 0.824 0.979 
  p-value 0.081 0.972 
Subscale: Effort 

Mean 3.81 9.796 
S.D. 2.768 5.940 
Shapiro-Wilk Normality Test 
W 0.751 0.875 
p-value 0.02 0.227 
Subscale: Frustration 

Mean 3.537 7.755 
S.D. 2.54 4.962 
Shapiro-Wilk Normality Test 
W 0.845 0.823 
p-value 0.125 0.080 
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see Table 4, which meant we could use the t-test. For the 
Pragmatic subscale, the repeated measures t-test t(6) = 
-0.254, p = .81 showed there was no effect of the 
interaction modality on the pragmatic quality of the 
experience. For the Hedonic subscale the repeated 
measure t-test t(6) = .950, p = .38, showed that there was 
no effect by the interaction mode on the hedonic quality 
of the experience. 

5. Discussion 

In this paper we presented a pilot study of a 
Remote-HRI methodology in which we examined 
whether: 

 
1. The participants’ mode of interaction (in-person 

versus remotely) with the robot affected their 
attitudes towards the robot;  

2. The workload associated with interacting with the 
robot depended on the interaction mode and; 

3. The quality of the participants’ experience with the 
robot was affected by the interaction mode.  
 
To address these questions, we first examined 

participants’ attitudes towards robots using the NARS 
and RoSAS inventories and found that the mode of 
interaction had no effect. We then used the TAM2 
inventory to examine the acceptance of social robot 
technology and the intention to adopt such technology. 
We also found that the interaction mode had no effect 
on these attitudes.  

The interaction workload was examined using the 
NASA TLX scale and we found that the interaction 
mode affected the level of effort and frustration 
reported, specifically, that interacting with the robot 
remotely required more effort and triggered more 
frustration than the in-person interaction. This is an 
important finding, and we believe that this merits further 
investigation on two fronts: (i) the voice recognition 
capabilities of the robot and; (ii) the technological 

infrastructure of the experiment environment. 
Regarding the first issue, the Zenbo robot showed 
difficulty in recognizing the wake-up command “Hey 
Zenbo” in the in-person interaction mode with 
participants sometimes shouting or changing their 
pronunciation in an effort to get the robot to respond. 
This effect was noticed for most of the other nine 
commands. We suspect that this may be a result of the 
dataset used to train the robot’s voice recognition 
system combined with the fact that the experiment was 
performed at a Caribbean university where the 
participants spoke with accents from three different 
Caribbean countries. The second issue is simpler to 
rectify, and that is to ensure a reliable wireless or wired 
network connection, and a speaker that produces a clear 
sound so that the robot can hear and process the remote 
voice commands. We observed that when there was 
slight distortion in the speaker because a participant was 
speaking too loudly into the remote device, the Zenbo 
robot could not process the command.  

We investigated the quality of the participants’ 
experience using the Short UEQ inventory and found 
that the experiences were neutral and that there was no 
significant difference in the quality of experience based 
on the interaction mode. We suspect that the negative 
experience may also be related to the Zenbo voice 
recognition system since the majority of the commands 
were voice commands and Zenbo had demonstrable 
difficulty in responding to them. 

5.1. Limitations 

These results have limitations beyond the 
inconsistent response of the robot due to its voice 
recognition system. First, the extent to which command 
repetition affected effort and frustration cannot be 
quantified since we did not gather that data and only 
observed this phenomenon as part of the experiment. 
Second, the effect of the supporting technology was not 
examined since we focused on other aspects of the 
Remote-HRI methodology. The quality of the network 
connection may have influenced aspects of the 
interaction since there were some points when 
performance degraded and affected sound and/or video 
quality. These factors need to be captured so that the 
remote environment can be adequately designed and its 
effects mitigated. Lastly, we did not capture the effect 
of the smartphone remote device versus the laptop 
remote device and whether that affected any of our 
measures. We also must examine this in our full study. 

6. Conclusions and Future Work 

The ability to conduct HRI studies has been 
constrained by the current COVID-19 pandemic. 

Table 4: Statistics and Normality Test Results UEQ 

 In-Person 
(N=7) 

Remotely 
(N=7) 

Subscale: Pragmatic 

Mean 0.464 0.25 
S.D. 1.805 1.458 
Shapiro-Wilk Normality Test 
  W 0.897 0.857 
  p-value 0.351 0.157 
Subscale: Hedonic 

Mean 0.464 0.96 
S.D. 1.82 1.27 
Shapiro-Wilk Normality Test 
W 0.912 0.954 
p-value 0.468 0.869 
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Finding a way to conduct these studies in an ethical and 
safe way is important, especially since most HRI 
research focuses on using social robots to improve 
quality of life for two of the most at-risk populations – 
the elderly and those with underlying health conditions. 

In this paper we presented the results of a pilot 
study designed to assess the possibility of a Remote-
HRI methodology. The results indicated that for our first 
and third questions, the participants’ perceptions of the 
robot and their user experiences were unaffected by 
interaction modes. This may imply that experiments 
focused on evaluating user attitudes towards robots can 
be performed remotely once the commands can be 
issued vocally with limited physical contact. The results 
for our second question require further analysis due to 
two other factors that were not examined as part of this 
study: the supporting technology and the robot’s voice 
recognition system. We do not believe that these two 
factors would prevent adoption of Remote-HRI, indeed, 
we are confident that upon fuller study, we will be able 
to provide mitigation strategies to reduce the effects of 
these factors. 

Consequently, we will undertake future work in a 
full study to validate these results and also to investigate 
whether the participants’ age and dialect has some effect 
on attitudes and experiences within the interaction 
modes. We will also evaluate whether different types of 
robotic applications are more suited for different types 
of Remote-HRI interaction besides those that are 
primarily voice driven, since successfully facilitating 
physical interactions will have a significant impact on 
the feasibility of R-HRI studies. 
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