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Abstract 
The proposed new technologies in the context of 

industry 4.0 challenge the current practices of 

scheduling in industry and their associated research in 

academia. The conventional optimization techniques 

that are employed for solving scheduling problems are 

either computationally expensive or lack the required 

quality. Therefore, in this paper, we propose an 

adaptive scheduling framework to address scheduling 

problems taking into account multi-objective optimality 

measures. The framework is motivated by a hybrid 

design to combine the use of heuristic and metaheuristic 

approaches. The main idea behind the presented 

concept is to achieve an acceptable tradeoff between the 

quality of the suggested solutions for a problem and the 

required computational effort to obtain them. The 

perused narrative in such implementation is combining 

some advantages of heuristic and metaheuristic 

approaches such as: the light execution time of 

heuristics and the robustness as well as the quality of 

metaheuristic approaches. The framework is evaluated 

for solving hybrid flow shop scheduling problems that 

are derived from a real use case.  

1. Introduction  

The emerging concepts of industry 4.0 enabled 

many appealing opportunities as well as new challenges. 

These have significant impacts on the strategic and 

operative management activities of manufacturing 

enterprises [5]. However, to achieve the current visions 

of industry 4.0, practitioners and academics need to 

commit to fundamental modifications to the traditional 

practices in the industry and the associated research in 

academia. Although profound steps toward the 

digitization of the industrial environment have been 

accomplished, the current implementation of industry 

4.0 projects still exhibits strong practical nature with 

insufficient research efforts [29]. Among core 

management processes in any enterprise is scheduling 

activities since they intersect with many strategic and 

operative levels of operation in any manufacturing 

environment. One of the main challenges that are 

evident by the adoption of the industry 4.0 technologies 

is the instant required reaction to changes in the 

recorded system state [32]. Energetic reaction to 

different events in a manufacturing system allows to 

exploit several optimization potentials on both operative 

and strategic levels through optimized scheduling.  The 

optimization potential increases when the system is 

characterized by high variety in product types and 

shorter lead times. In addition, the disruptions in supply 

chain (e.g. a late delivery of raw material that are used 

for producing some product type) would possibly 

require major modification of production planning, 

which could be carried out as quick as possible.  

One of the main data streams in the context of 

scheduling policies is machine breakdowns. For 

instance, Nahhas et al. [29] investigated the 

optimization potential of different industry 4.0 concepts 

and concentrated on scheduling problems. The authors 

studied hybrid flow shop scheduling problems taking 

into consideration the impact of including machine 

breakdowns in the optimization. They concluded in their 

findings that considering machine breakdowns during 

the optimization is not recommended since the 

computational effort to solve the problems significantly 

increased. Therefore, a thorough investigation of 

adaptive solution techniques is suggested to propose 

new frameworks for dealing with scheduling problems 

with light execution time while maintaining high 

solution quality. In this research, we present an adaptive 

scheduling framework that is inspired by a hybrid 

design to address scheduling problems with light 

execution time. The framework is designed to solve 

scheduling problems and deliver high solution quality 

with relatively less required computational effort in 

comparison to the conventional stat of the art 

metaheuristic optimization techniques. The evaluation 

of the framework is based on real-world problems that 

are extracted from the production log of a manufacture 

in the field of print circuit board assembly production. 
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The presented approach is compared to Genetic 

Algorithms for solving the problems. In addition, the 

solution approaches presented in Aurich et al. [3] and 

later compared against Genetic Algorithms (GA) in 

Nahhas et al. [28] for solving a two-stage Hybrid Flow 

Shop (HFS) are reconstructed and compared against the 

presented framework. An HFS scheduling problem 

involves several processing stages. On every stage at 

least two parallel machines are available to process all 

jobs. In addition, all jobs must follow the same 

technological order to be processed on different stages 

[31]. In the course of the presented paper, a 

mathematical formulation of the considered problem is 

presented in the second section. The problem is 

formulated based on a thorough analysis of the 

investigated production environment. The third section 

comprises an overview of the state-of-the-art 

approaches that are often used to solve HFS scheduling 

problems. Followed in the fourth section, a novel 

adaptive scheduling framework is proposed. The 

evaluation of the presented framework for solving thirty 

problem instances is presented in the fifth section. 

Finally, the paper is closed with some suggestions and 

further research directions. 

 2. Problem statement 

2.1. System description 

The presented scheduling framework is evaluated 

based on the case study, which is derived from the field 

of Printed Circuit Board (PCB) assembly production. A 

PCB usually go through four main processing 

procedures. The first operation is carried out on the so-

called Surface Mounting Device (SMD) machines. In 

this stage, hundreds of components are mounted on the 

surface of an empty PCB. This processing stage is 

characterized by major and minor family sequence-

dependent setup times. The first investigations of family 

sequence-dependent setup time can be found in [20, 38]. 

The surface mounting process of PCB is highly 

automated. Therefore, the setup process of machines 

significantly impacts the level of system efficiency [38]. 

Accordingly, considering the number of major setup 

times is crucial to enhance the overall system utilization. 

The nature of the production in such manufacturing 

environments is highly customized, in which hundreds 

of part types might be demanded. In turns, setting 

scheduling policies in such environment is even more 

complicated. Therefore, the part types that share raw 

materials, other properties, and operational procedures, 

are clustered into groups or families [38]. Jobs with 

different part types require different processing time on 

the different processing stages, while only minor setup 

times (20 minutes) are required to configure the 

machines. However, jobs with different family types 

provoke major setup time (45-120 minutes) to configure 

the machines when switching from one to another. The 

investigated production environment, five parallel 

machines with different speeds are available to process 

jobs.  

The second operation is performed on Automated-

Optical-Inspection (AOI) quality control machines. In 

this processing stage, the PCBs undergo different 

quality tests to ensure that the components are placed 

correctly. In the investigated system, five parallel 

machines with different speeds are used to process jobs 

on the AOI processing stage. The third operation is 

performed using Selective Soldering (SS) machines. In 

the investigated system many jobs must undergo the 

third stage, where five parallel machines are available. 

Jobs are scheduled with sequence-independent minor 

setup times on the machines in the second and third 

stages. The fourth and final operation is the conformal 

coating process, which is performed using two identical 

parallel Conformal Coating (CC) machines with family 

major and minor setup times. The structure of the 

investigated system is presented in Figure 1. 
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Figure 1. The investigated production environment.
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2.2. Problem formulation 

The required notions and preliminaries for the 

mathematical formulation of the problem is presented in 

the following: 

• Let J ∈ {Jj,…, Jn} denotes a set of n 

jobs ( j = 1,…, n) that are released for scheduling. 

• Let S = {S1,…, Ss} denotes a set of s processing 
stages (s ∈ {1,…, 4}) that contain a set Ms of parallel 
machines on each.  

• Let Mi, s∈ Ms= {M1,…, Mms
} denotes a machine in 

the set Ms of m machines on processing stage s 
(i ∈ {1, …, ms}).  

• Let dj  (dj ∈ {1,…, 20}) denotes the days left to the 

due date of a job 𝐽𝑗 which corresponds to the priority 

of the job.  

• Let Cj denotes the completion time of a job in Jj  

• Let 𝑇𝑗 be the recorded tardiness of a job in Jj where: 

𝑇𝑗 = {
(𝐶𝑗 − 𝑑𝑗 ) 𝑖𝑓 (𝐶𝑗 − 𝑑𝑗 ) > 0

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑒𝑖𝑠𝑒
 

• Let 𝑈𝑗 be the associated unit penalty of a tardy job in 

Jj where: 𝑈𝑗 = {
1 𝑖𝑓 𝐶𝑗 > 𝑑𝑗 

 0 𝑂𝑡ℎ𝑒𝑟𝑤𝑒𝑖𝑠𝑒
 

• Let γ
1
 = Cmax, max Cj :∀ Jj (j ∈ {1,…, n}) denotes 

the makespan or the maximum completion time of 
the set of job J. 

• Let γ
2
 = MS ∈ {0,…,n - 1} denotes the number of 

required major setup times on the first stage to 
process all jobs. 

• Let γ
3
 = T, T = ∑  , Tj

n
j=1  : ∀ Jj (j ∈ {1,…, n}) be the 

total tardiness of all jobs. 

• Let γ
4
 = U, U = ∑ Uj

n
j=1  : ∀ Jj (j ∈ {1,…, n}) be the 

total number of recorded penalties of all jobs. 

Let ℍ be the set of all production schedules for a set 
of jobs J. The goal is to obtain a production schedule 
H ∈ ℍ. This production schedule is subject to the 
minimization of the makespan, the necessary number of 
major setup times to complete all jobs, the total tardiness, 
and the number of penalties as demonstrated in formula 
(1). 

γ
1
(H) = Cmax , γ

2
(H)= MS 

γ
3
(H) =∑ Tj

n

j=1

,  γ
4
(H) =∑Uj

n

j=1

  

min Z(H)⇔  min γ
1
(H) ∧  min γ

2
(H) ∧  

min γ
3
(H) ∧ min γ

4
(H): ∀ 𝐻 ∈  ℍ  

To further formulate the objective function, a 

weighted sum approach has been adapted as shown in 

formula (2). 

arg min
H∈ H

 Z(H) = W1 .γ
1

+ W2 . γ
2

+ W3 . γ
3

+ W4 . γ
4
 

:∀ (W
1
+W2+W3+W4 = 1), W ≥ 0  

The assumptions and operational constraints that are 

subject to this problem formulation are listed in the 

following: 

• The number of jobs during the considered 

scheduling period is known and fix. 

• The processing times of jobs on different stages are 

known and fix. 

• A job can be processed on only one machine at the 

same time.  

• Preemption of jobs is not allowed. 

• Jobs that belong to the same family cannot be 

processed on different machines at the same time. 

• A machine can process only one job at the same 

time. 

• The buffer capacity between processing stages is 

assumed to be unlimited. 

3. Related works 

Although setting scheduling policies is an operative 

task it has a profound impact on major strategic 

decision-making processes, which are directly linked to 

operational costs [34]. From an academic point of view, 

their challenging and complex nature has been an 

interesting puzzle for many scholars. However, the 

majority of those puzzles have been proven to be NP-

Hard combinatorial optimization problems [11, 22]. 

This implies that with the currently available 

computational power and advances, it is implausible to 

develop polynomial algorithms that can deliver optimal 

solutions. 

Nevertheless, some implementations of the exact 

optimization methods as for instance branch and bound 

[7] or dynamic programming [14] have been proposed 

for solving small size scheduling problems. Although 

such solution techniques guarantee optimal or bounded 

optimal solutions, their required computational effort 

can easily grow exponentially for solving complex 

scheduling problems. For a comprehensive discussion 

about the adoption of exact methods for solving Hybrid 

Flow Shop (HFS) scheduling problems, one can refer to 

the contribution of Kis and Pesch [18].  

In reality, scheduling activities are usually carried 

out based on experiences, intuitions, and well-

established constructive policies. These practices 

formed another research stream in the scientific 

community that deals with the so-called Priority 

Dispatching Rules (PDRs). PDRs are basically simple 

(1) 

(2) 

) 
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constructive heuristics that are mostly based on 

computing some index to priorities jobs and dispatching 

them for production. The Earliest Due Date (EDD), the 

Longest Processing Time (LPT), and the Shortest 

Processing Time (SPT) are some examples of such 

simple constructive heuristics. The EDD as the name 

implies is used to minimize the total tardiness and 

incurred penalties of jobs. The SPT is widely used for 

the minimization of the makespan Cmax and/or the mean 

flow time as suggested in [15]. However, the 

oversimplified design of PDRs usually overlooks many 

crucial aspects of an investigated problem, which lead 

to potential loss of optimization opportunities. Based on 

this simple discussion, one can notice the evident gap 

between the research conducted on HFS scheduling 

problems and scheduling in practice [34].  

The anticipated middle ground between these two 

directions in scheduling is improvement heuristic and 

metaheuristic optimization techniques. Improvement 

heuristics are complex heuristics that inherit iterative 

optimization behavior. After constructing an initial 

solution for a problem, an improvement procedure is 

designed to conduct systematic modifications on it to 

seek some improvement for optimizing some objective 

function [37]. Some of the earliest contributions in the 

HFS scheduling fields are presented by Wittrock [38], 

Gupta [12], and Voss [36]. Wittrock addressed the 

identical parallel machines scheduling problem for 

minimizing the makespan with major and minor setup 

times. A similar investigation is presented in [20]. A 

fairly more complicated two stages HFS with a single 

machine on the second stage was investigated by Gupta 

[12] and later improved by Voss [36]. The authors also 

perused minimizing the makespan. Some similar 

investigations on the two-stages HFS scheduling 

problems can be found in [13, 23, 30]. However, the 

majority of these contributions address HFS scheduling 

problems to minimize a single objective measure as 

pointed out also by Ruiz [34]. For solving multi-

objectives HFS scheduling problems, metaheuristics are 

the dominant adopted solutions techniques. These 

techniques proved their superiority over conventional 

heuristics for solving very complex combinatorial 

optimization problems [9]. 

The majority of metaheuristic approaches are based 

on mimicking some natural phenomena as for instance: 

Simulated Annealing (SA) [17] (annealing process of 

metal), Genetic Algorithms (GA) [10] (evolution 

theory), Swarm Intelligence [24] (swam behavior), and 

several other evolutionary algorithms [16]. Generally, 

every metaheuristic approach consists of two main 

components: A heuristic search algorithm and an overall 

control strategy that guide this heuristic. The prevalence 

adoption of metaheuristic techniques can be traced back 

to their ability to seek solutions that are subject to multi-

objective optimality measures. In addition, the 

population-based metaheuristics are able to conduct a 

broad and extensive search in the solution space of a 

problem. Thus, they report significant performance for 

solving complex HFS as presented in [2, 3, 6, 19, 27, 30, 

35].  

Some multi-objective optimization of the HFS 

scheduling problems was presented in Aurich et al. [3] 

and later compared against Genetic Algorithms (GA) in 

Nahhas et al. [28]. In those papers, the authors 

investigated a two-stage Hybrid Flow Shop (HFS) 

scheduling problem with family sequence-dependent 

setup times. Their problem formulation targets the 

minimization of multi-objective optimality measures. 

They presented a comparison between well-known 

Priority Dispatching Rules (PDRs), a heuristic named 

ISBO, and conventional metaheuristic optimization 

techniques such as SA [17], Tabu Search [8] and later 

GA in [28]. They reported outperformance in terms of 

minimizing the makespan and the total number of major 

setup times using the ISBO. However, a clear 

dominance could not be concluded, since the presented 

approach failed to outperform the metaheuristic 

approaches in terms of minimizing the total tardiness. 

As mentioned earlier, we will reconstruct the presented 

heuristic in [3] and compare its performance against the 

proposed framework. The most recent investigation of 

the problem is presented in [21]. The authors 

successfully applied neural networks for solving the 

problem and compared their results against the solutions 

presented in [3]. The reported results showed an 

outperformance of the presented concept for solving the 

problem to minimize the makespan with a slight 

deviation for minimizing the total tardiness. However, 

the reported number of required major setup is rather 

high.  

The investigated problem was proven to be NP-

hard and is less complicated to the considered problem 

in this paper. In this paper, we deal with a four-stage 

HFS scheduling problem with parallel machines that 

have different speeds on the processing stages. Based on 

the conducted analysis of the related works in the 

literature, the majority of the presented conventional 

solutions for solving HFS scheduling problems exhibit 

either concrete or generic nature. The specifically 

designed heuristics are effective to solve moderate size 

problems, in which a single objective is usually perused 

such as the majority of Priority Dispatching Rules 

(PDRs) [15]. Thus, such algorithms often fail to address 

the various needs and objectives of real industries. In 

addition, advanced constructive heuristics such as in [3, 

38] usually require a thorough analysis of the considered 

problem to be accordingly designed. Accordingly, their 

complicated structure is very tedious to modify for 

addressing even minor changes in a considered system.  
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4. A novel adaptive scheduling framework 

4.1. A conceptual model and the main 

components of the framework 

To address the drawbacks of conventional heuristic 

and metaheuristic approaches, we investigate hybrid 

optimization strategies to present a near real-time 

scheduling framework that delivers at the same time 

solutions with high-quality. In Figure 2, an adaptive 

scheduling framework that utilizes the light execution 

time of heuristic approaches and the robustness of 

metaheuristic approaches is proposed. The framework 

consists of two main components that are linked to a 

conventional cyber representation of the production 

system. The core component of the presented 

framework is the adaptive scheduling component. This 

component basically collects problem-data and have 

access to: 

• Possible performance and objective measures (e.g. 

Makespan, due dates and total tardiness).  

• Operational constraints (e.g. family operational 

constraint, buffer capacities between processing 

stages, raw materials constraints).  

• Real-time events that could trigger a rescheduling 

process (e.g. arrivals of new high priority jobs, long 

machine breakdowns).  

• Different scheduling algorithms 

• Feedback loops from the data analytics component 

to adjust the performance of the optimization 

model. 

Operational constraints might be extracted through 

analyzing historical and real-time data streams. Machine 

breakdowns are an example of such data streams that 

could be predicted to achieve planned maintenance 

strategy using fuzzy logic as suggested in [1]. Thus, 

such breaks in the production schedule could be 

included in the optimization in form of fuzzy rules to 

achieve higher stability with more accurate solutions. 

The adaptive scheduling component consists of two 

subcomponents, namely, the optimization model and the 

evaluation model. 
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Figure 2. An adaptive scheduling framework.
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In the presented framework, we relied on Genetic 

Algorithms (GA) [10] to design the optimization model. 

Furthermore, the evaluation model is based on discrete 

event simulation, which is used to evaluate the fitness of 

the solutions that are proposed by the optimization 

model. The adoption of GA is motivated by their broad 

and common adoption for solving optimization 

problems in scheduling literature [19, 26, 28, 33, 34]. 

The optimization model can have access to many state 

of the art heuristics, Priority Dispatching Rules (PDRs) 

and/or other specifically designed algorithms that are 

used for solving scheduling problems. In our 

prototypical implementation, we included four self-

developed simple heuristics, which we will briefly 

discuss in the coming subsection. The framework is 

designed to present solutions that are subject to multi-

objective optimization as mentioned earlier in the 

mathematical formulation of the problem. Thus, to 

address the requirements and various objectives of real-

world manufacturing environments in contrast to the 

majority of the contributions in the HFS literature [34]. 

In the presented evaluation of the framework, we 

formulated a multi-objectives optimization problem 

considering two main accepts:  

• The system efficiency and utilization level: through 

the minimization of the makespan and the total 

number of major setup times, which is required to 

process all jobs. 

• The customer satisfaction: through the 

minimization of the total tardiness and the 

associated recorded penalties in delivery 

appointments of jobs. 

The internal design of the optimization model is 

based on using many heuristics that are controlled by a 

metaheuristic approach during the scheduling interval 

for solving the problem. We argue that scheduling 

policies need to be adjusted with respect to changes in 

the system state to deliver better production schedules. 

This implies that simulating the use of different 

scheduling policies overtime considering simulated 

system states would allow achieving a higher 

optimization potential. In turn, we solve the scheduling 

the problem using an indirect encoding. The GA is 

encoded to switch between different heuristics overtime 

during the simulated scheduling period. The encoding 

of the GA algorithms will be discussed in detail in the 

coming subsections.  

The role of the data analytics component is to 

analyze different data streams to provide feedback loops 

to adjust the optimization. Data streams such as machine 

breakdowns, arrivals of new jobs, inventory levels of 

required raw materials, major deviations between 

suggested production plans and actual ones can be 

analyzed to derive rules for adjusting the optimization 

model. Production environments are inherently 

associated with high structural complexity. The goal of 

this component is to analyze certain deviations of the 

proposed production plans from the actual executed 

plans. These uncertainties can be addressed by the 

adaptive component in the next optimization run 

through adjusting certain operational constraints (e.g. 

adjusted planned maintenance schedules) and other 

sensitive parameters. In addition, one can probably 

investigate training some machine learning models on 

the obtained solutions to extract knowledge. Here it is 

of a major interest to investigate whether machine-

learning models can be used to solve scheduling 

problems based on collected historical solutions of some 

optimization techniques? The evaluation of this 

component is however not in the scope of this paper due 

to the extensive required analysis on the obtained 

solutions. 

4.2. The design of the solution strategy 

Dealing with Hybrid Flow Shop (HFS) scheduling 

problems includes solving two main sub problems 

namely, the allocation and the sequencing problems. 

Solving an HFS scheduling problem fundamentally 

involves answering two main questions:  

• How jobs should be allocated to the available 

machines in every processing stage?  

• What is the best sequence to process allocated jobs 

on every machine to satisfy some objective values? 

Usually dealing with these sub problems 

independently is a very common practice as suggested 

in [4, 31] and conducted in [3, 12, 28, 36]. The goal is, 

eventually, to reduce the complexity of an investigated 

problem. In the presented evaluation of the concept, the 

allocation and sequencing parts of the problem are also 

solved independently. This implies that after allocating 

jobs to SMD machines, five single machine scheduling 

problems are to be solved. For solving the allocation 

part of the problem, we argue that using several 

algorithms would outperform using a single specifically 

designed heuristic or a robust metaheuristic over a 

determined scheduling period. To know exactly which 

algorithm must be used at which point in time during the 

scheduling period, Genetic Algorithms (GA) are used. 

For solving the sequencing part of the problem on 

the machines, the sequencing algorithm presented in [3, 

28] is adopted. Adopting this algorithm is crucial to 

maintain a fair comparison between the presented 

framework and the algorithms suggested in [3, 28]. 

Briefly, the sequencing algorithm is designed to 

dispatch jobs taking into account the tradeoff between 

the number of major setup times and the priority of jobs. 

For dispatching jobs on the second, third and fourth 

processing stages, the Earliest Due Date rule is used to 

minimize the total tardiness. 
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4.3. Genetic algorithms and problem encoding 

The encoding of the genetic algorithms targets the 

problem indirectly by optimizing the selection of 

different algorithms to solve the scheduling problem. In 

this context, a solution candidate in the population of 

genetic algorithms is a vector of integer values that 

contains indexes of the included heuristics at predefined 

points in time Tn. We set the optimization to select two 

heuristics per day for twenty days scheduling period for 

solving the allocation part of the problem. In addition, 

we also encoded the GA for directly solving the 

allocation problem through allocating the families to the 

available machines in the first processing stage. A 

representation of a solution individual of the hybrid 

framework and pure GA is presented in Figure 3. At the 

beginning of the optimization, a random set of solution 

individuals is generated to form the first population of 

the GA. Thereafter, every solution individual is 

evaluated using the simulation model based on the 

objective function, which is presented in the 

mathematical formulation (see. Section 2.2).  

Based on the assigned fitness values, a tournament 

selection strategy is adopted to pick the parents for 

evolving a new generation of solutions. The decision to 

adopt tournament selection is motivated by the ability to 

select solutions with low quality to generate the new 

offspring. In turn, this practice ensures maintaining 

higher diversity in the generated solution candidates and 

can contribute to avoiding being trapped in local optima 

[25]. The tournament selection strategy has been 

profoundly discussed in [25]. After the selection 

process, a uniform crossover and random mutation 

operators are used to mix the genes of the parents and 

pass them to the next generation. Finally, elitism 

strategy is implemented in this GA to ensure that the 

best solution candidates survive to the next generation 

[19]. After the evolving process, the new population is 

passed to the simulation model to investigate their 

fitness. This process is repeated until the optimization 

converges. We formulated a simple convergence 

function based on the relative distance between the best 

and the worse solution candidates using the mean of 

their fitness in the current population. 

1 4 2 1 ... 2 3 1

1 2 5 1 ... 4 3 4

Hybrid Framework

Genetic Algorithms

Heuristic indexing

First-stage machine indexing

F1 F2 F3 F4 ... F20 F21 Fn

T1 T2 T3 T4 ... T15 T16 Tn

 
Figure 3. Problems encoding in GA. 

4.4. Included heuristics 

In the presented evaluation of the framework, we 

included four simple heuristics to be used for solving the 

allocation part of the problem in the first processing 

stage. All allocation heuristics are targeting the 

allocation problem on a family level. This practice is 

enforced as an operational constraint by the 

manufacture, since preparing two machines for 

processing jobs from the same family is not possible in 

the meantime. We initially tested eight heuristics and the 

optimization converged avoiding four of them. A simple 

description of the included heuristic is briefly discussed 

in the following: 

1. Total family first fit ascending: After accumulating 

the processing time of jobs per family, the families 

are sorted in ascending order. Additionally, the 

SMD machines are also sorted in ascending order 

with respect to their current workload. Then, the 

first family is allocated to the first SMD machine 

(lowest loaded machine) before finally updating the 

load of the machine. This process is iteratively 

conducted until all families are allocated. 

2. Partial family first fit ascending: Similarly, the 

processing time of jobs with the next highest five 

priorities are accumulated per family. Then, the 

families are sorted in ascending order. Additionally, 

the SMD machines are also sorted in ascending 

order with respect to their current workload. Then, 

the first family is allocated to the first SMD 

machine (lowest loaded machine) before finally 

updating the load of the machine. This process is 

iteratively conducted until all families are allocated. 

3. Highest priority first fit ascending: After 

accumulating the processing time of jobs per 

family. The families are then sorted in ascending 

order with respect to the priorities of their jobs. 

Similarly, machines are sorted in ascending order 

based on their current workload. Then the first 

family is allocated to the first machine before 

updating the load of the machine. This process is 

repeated until all families are allocated.  

4. Highest priority-Smallest family first fit ascending: 

After accumulating the processing time of jobs per 

family. The families are then sorted in ascending 

order based on the accumulated processing time. 

Once again, the families undergo a second 

ascending sorting based on the priorities of their 

jobs. Similarly, machines are sorted in ascending 

order based on their current workload. Then the 

smallest family that contains the highest priority is 

allocated to the first machine before updating the 

load of the machine. This process is repeated until 

all families are allocated. 
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5. Evaluation and computational results  

Thirty HFS scheduling problem instances are 

solved using the proposed framework and compared 

with pure GA, the proposed  algorithm in [3, 28], and 

the EDD rule. The GA is encoded for solving the 

problem through allocating the families to the available 

machines in the first processing stage. We set the 

population size of the GA to 15 and used a 0.4 mutation 

rate. The parameters of the GA are obtained empirically 

based on initial analysis. The desired solutions are 

subject to the minimization of the makespan Cmax 

(minutes) the total number of major setup time required 

to process all jobs MS, the total tardiness over all jobs T 

(minutes) and the associated number of recorded 

penalties U. The used weights are 0.2, 0.2, 0.4 and 0.2 

respectively. For calculating the fitness value of the 

proposed solution candidate by the GA, we normalized 

the objective values to a range between zero and one. 

The normalization is necessary since the considered 

objective values have different natures. The results for 

solving thirty problem instances are shown in Table 1. 

The EDD delivers good results to minimize the total 

tardiness and the recorded number of penalties. 

However, it fails to report even acceptable results for 

minimizing neither the makespan nor the total number 

of major setup times.

Table 1. The computational results for solving thirty problem instances. 

 

P MS U T MS U T MS U T MS U T

1 17595 51 0 0 19056 52 0 0 17807 49 4 1021 19685 132 1 121

2 14247 40 0 0 15691 42 0 0 14380 41 5 2134 16339 134 1 790

3 16680 48 0 0 16886 50 0 0 16735 48 3 1413 18766 127 0 0

4 18234 48 0 0 19281 56 0 0 18432 47 4 652 19890 130 0 0

5 16745 42 0 0 17928 44 0 0 16785 44 6 2351 18694 121 1 49

6 17413 51 0 0 17648 50 0 0 18904 47 5 1546 20182 127 3 605

7 16483 42 0 0 16834 43 0 0 16620 43 3 473 17602 129 0 0

8 16997 46 0 0 20467 46 0 0 17575 43 4 1936 18124 135 0 0

9 16349 46 0 0 15658 46 0 0 16425 48 2 354 16703 134 0 0

10 14288 40 0 0 15936 40 0 0 14708 40 2 206 16876 132 0 0

11 18159 51 0 0 20522 57 2 500 18279 47 4 1900 19546 134 1 1499

12 15632 43 0 0 19232 43 0 0 16116 40 4 1994 17596 129 0 0

13 12358 39 0 0 14606 39 0 0 12941 38 2 886 15438 133 0 0

14 16099 43 0 0 17605 42 0 0 16026 43 2 816 17899 128 0 0

15 15098 38 0 0 16691 41 0 0 15480 40 0 0 16224 134 0 0

16 15420 40 0 0 15918 46 0 0 15478 43 4 586 16699 139 0 0

17 16330 40 0 0 18886 43 0 0 16359 41 4 1888 18817 135 0 0

18 16514 47 0 0 19767 46 0 0 16584 47 2 835 17994 128 0 0

19 17059 47 0 0 17921 50 0 0 17132 43 3 1418 19371 132 0 0

20 16022 45 0 0 18083 44 0 0 16821 44 5 503 18147 135 0 0

21 16777 48 0 0 17480 48 0 0 17472 45 2 254 19500 126 0 0

22 16004 44 0 0 15771 46 0 0 16579 42 5 1809 17698 138 1 407

23 16725 43 0 0 19838 45 0 0 17367 44 2 241 18450 127 0 0

24 15466 45 0 0 16440 43 0 0 15479 43 2 857 17536 138 0 0

25 15711 49 0 0 19190 52 0 0 15911 47 6 2222 17104 142 1 404

26 17077 44 0 0 21300 48 0 0 17305 44 2 1078 18210 125 0 0

27 17916 47 0 0 21190 48 0 0 18568 44 3 1413 19031 137 0 0

28 17510 46 0 0 17779 51 0 0 17550 45 5 1433 20314 140 0 0

29 17342 43 0 0 18225 46 0 0 17232 41 3 1106 19545 131 1 115

30 16516 37 0 0 16893 38 0 0 17319 36 1 197 19378 130 0 0

Hybrid Framework GA ISBO EDD
                

Incomplete dominance Complete dominance 
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Although the ISBO minimally outperforms the 

hybrid framework for minimizing the number of the 

major setup times, it fails to avoid violations in the 

delivery dates and reports in average 1117 minutes total 

tardiness per problem instance. On the contrary, GA 

provides good results without any violations except one 

problem instance. The presented framework reports a 

complete dominance in terms of minimizing all 

objective values for solving twenty-three problem 

instances in comparison to the pure GA. These solutions 

are highlighted in blue in Table 1. Besides, partial 

dominance can be concluded for solving the rest of the 

considered problem instance as highlighted in grey in 

the same table. However, the outperformance of the GA 

for minimizing the number of major setups in these 

problems is very minimal. Besides, the proposed 

approach outperforms both heuristics and the GA in 

terms of the makespan in at least 93% of the considered 

problem instances. Generally, the proposed framework 

is able to dominate all approaches in minimizing at least 

three objective values and a minimal difference in the 

fourth objective value. 

 

6. Conclusions and future research 

directions 

In this paper, we proposed a hybrid scheduling 

framework to address scheduling problems in 

manufacturing environments adaptively. The presented 

proof of concept is evaluated for solving a multi 

objective HFS scheduling problem. The presented 

evaluation is conducted on thirty problem instances that 

are extracted from a real manufacturing environment in 

contrast to many contributions in the field of HFS 

scheduling [34]. The reported results increase the 

confidence in the stability and the robustness of the 

framework for delivering high-quality solutions taking 

into consideration various objective concerns of 

industrial environments. In addition, the framework 

delivers high-quality solutions with light execution time 

to adaptively react to the dynamic changes in the shop 

floor. Although, the optimization is carried out on a 

normal notebook with the following characteristics 

(CPU 4 x 2.6 GHz, RAM 8 GB), the average required 

computational effort by the hybrid approach for solving 

the problem instances is 5:57 minutes. Pure GA requires 

in average 50:12 minutes for solving the problems. This 

correspond to ten times more computational effort than 

the hybrid approach. Detailed results of the 

computational effort for solving the problems are 

presented in Figure 4.  

Based on this result, we suggest further 

investigation of the potentials and minor limitations of 

hybrid solution strategies for solving different 

scheduling problems. Whether hybrid strategies 

outperform the robustness of metaheuristics techniques 

remains an open question that require further evaluation 

of such techniques for solving different problems.  

 

 
Figure 4. Required computational effort  
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