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Abstract 
 

Palletizing in the air cargo sector faces a large 

number of constraints (e.g., aviation safety 

regulations) and represents a highly complex problem. 

In air cargo operations, there is hardly any digital 

support to optimize the palletizing process. As a result, 

desired objectives (e.g., optimal utilization of the 

possible loading weight, maximum use of the available 

loading space, or both) are often only met by chance. 

The goal of this research is to report on the design and 

performance of an intelligent decision support system 

that we built for the air cargo context. This system 

supports the manual palletizing process by 

considering far more constraints as well as more 

complex item shapes and unit load devices than any 

other system we know. We explain the problem 

context, including the essential requirements; model 

the solution design; and develop the intelligent 

decision support system as an artifact, which we then 

evaluate. 

 

1. Introduction  
 

Air cargo transportation surpasses other modes of 

transportation in terms of delivery speed and reliability 

[20] and has thus become increasingly popular. 

Indeed, between 2014 and 2019, the air cargo market 

grew steadily, and cargo volumes increased by about 

20% [16]. At the same time, global air traffic was 

responsible for about 918 million tons of CO2 in 2018, 

which is about 2.4% of global CO2 emissions from 

fossil fuels, thus putting pressure on the industry to 

reduce costs and optimize the use and consumption of 

resources [11]. On the other hand, only 1% of the 

world’s cargo is transported by air, but this portion  

accounts for about 35% of overall cargo value [1]. As 

such, better utilization of the available transport 

volume can have a significant and positive impact on 

economic returns.  

Ground handling agents recognize that digital 

transformation offers a solution to meet the existing 

cost, time, and performance pressures in the air cargo 

sector. These systems are already used to support and 

optimize airline processes and systems, including 

passenger and baggage handling, lounge services, and 

staff planning and scheduling [17]. 

However, when it comes to palletizing air cargo, 

there is hardly any digital support for optimizing the 

palletizing process and reducing the loading time of 

cargo on so-called unit load devices (ULDs). ULDs 

are standardized and heterogeneous pallets or 

containers on or in which cargo is positioned. A human 

palletizer places individual cargo items onto or into a 

ULD either by hand or by forklift. As such, the quality 

of a palletizing solution strongly depends on the 

experience and creativity of the palletizer. When the 

palletizing process becomes more complex, 

inexperienced palletizers usually follow their own 

heuristics in combination with a trial-and-error 

approach. In doing so, desired goals (e.g., optimal 

utilization of the possible load combined with 

maximum utilization of the available loading space 

within a narrow time window) are often only achieved 

by chance. Only through years of professional 

experience is it possible for individuals to 

continuously improve their palletizing skills to 

achieve the desired results satisfactorily. On the other 

hand, there is a clear shortage of qualified personnel in 

air cargo operations and the risk of a loss of knowhow 

due to the age-related retirement of air cargo 

employees in the near future [6]. 

In research, especially in operations research, this 

NP-hard problem is called the pallet loading problem 

(PLP) or container loading problem (CLP) [4, 5]. 

Research in this area usually seeks solutions using 

exact methods or heuristics [27]. The resulting 

research artifacts are well understood theoretically, but 

to cope with complexity, they often ignore constraints 

from reality as well as non-cuboid and irregular cargo 

items. In particular, these constraints often relate to the 

process of pallet and container loading. Specific 

constraints [5, 24] and/or object shapes [10] may also 

arise depending on industrial characteristics. These 

constraints are discussed in the literature [3, 4] but are 

not fully applied in research approaches. One reason 

for the lack of practical relevance of current PLP and 

CLP approaches, especially in the air cargo sector, is 
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that research does not consider all relevant constraints 

[4, 24], and the feasibility of solution approaches  is 

usually demonstrated by testbeds with cube-shaped or 

cuboid objects only [3, 9]. In the air cargo context, the 

complexity of the overall problem is greatly increased 

due to the complex shapes of many cargo items and 

ULDs as well as the constraints imposed by strict 

aviation safety regulations. Current solutions in 

research and practice do not reflect this full 

complexity. As a result, reality is not adequately 

reflected, so there is a lack of practical and feasible 

solutions. 

For this reason, the goal of this research is to report 

on the design and performance of an intelligent 

decision support system (IDSS) we built for the air 

cargo context. This system supports the manual 

palletizing process by considering far more constraints 

as well as more complex item and ULD shapes than 

any other system we know. The IDSS generates 

practicable solutions via an applied genetic algorithm 

(GA) and supports human palletizers before and 

during physical assembly by visualizing, monitoring, 

and validating the generated palletizing solutions. 

After presenting related work, we narrow down the 

problem context and describe the associated 

requirements that the solution design must consider 

(e.g., by enumerating all relevant constraints based on 

input from a large air cargo company). Furthermore, 

we present the solution design and the results of the 

evaluation of the IDSS followed by a discussion and 

conclusion of this research work. 

 

2. Related Work 
 

The PLP belongs to the family of three-

dimensional cutting and packing problems, in which a 

set of small items must be grouped and assigned to a 

set of larger items [26]. A distinction can be made 

between the manufacturer’s problem (MP) and the 

distributor’s problem (DP) [13]. In the MP, 

homogenous items (i.e., identical boxes) are placed 

onto identical pallets. In the DP, heterogenous items 

of varying dimensions are placed onto standardized 

pallets. Due to its non-repetitive nature and solution 

time requirements, the DP is more difficult [13]. 

The PLP is closely related to the CLP, and many 

approaches can be assigned to the same problem 

classifications [2]. One of the few differences between 

these problems is that research on CLP assumes that 

the primary object is a rigid-walled container that 

supports cargo laterally. Such rigid walls are usually 

replaced by a safety net on pallets [2]. 

In the literature, numerous studies have explored 

the mentioned loading problems. A comprehensive 

overview of the CLP is provided by Bortfeldt and 

Wäscher [4]. They review the literature with regard to 

practical constraints based on Bischoff and Ratcliffe’s 

work [3] and conclude that only very few papers 

consider multiple real-world constraints 

simultaneously. Pollaris et al. [24] update this review 

by focusing on the vehicle routing problem and come 

to a similar conclusion regarding the simultaneous 

inclusion of practical constraints in loading solutions. 

Zhao et al. [27] provide a complementary review to 

Bortfeldt and Wäscher [4] focusing on the design and 

implementation of solution methods for the CLP. 

Exact methods (e.g., mathematical models or mixed 

integer programming [MIP]); placement heuristics 

(e.g., layer or wall-building approaches); and 

improvement heuristics or metaheuristics, such as tabu 

search and genetic algorithm are presented as common 

solution methods [27]. 

Although these previous studies provide useful 

insights, there is little research on air cargo, which has 

its own specifics. Only MIP approaches are found in 

the air cargo context [14, 22], sometimes in 

combination with placement heuristics [8] or 

metaheuristics [21]. All approaches consider the 

heterogeneous shapes of ULDs [8, 21, 22], with the 

exception of Hong Ha and Nananukul [14], who use a 

cuboid ULD container for their MIP model. The recent 

paper by Brandt and Nickel [5] offers a detailed 

literature review focusing on the air cargo context, 

which also contains the papers mentioned before. 

Their research provides a consolidated problem 

definition of air cargo loading planning and 

subordinates the loading problem of ULDs as a 

subproblem. Furthermore, they illustrate that in the air 

cargo context, research on loading problems does not 

consider all real-world constraints simultaneously, in 

line with Bortfeldt and Wäscher [4] and Pollaris et al. 

[24]. 

In addition to the constraints, consideration of 

strongly heterogeneous, non-cuboid or irregular items 

is necessary to realistically address the loading 

problems in the air cargo context. Only a few studies 

have examined irregular placement problems for the 

two-dimensional case, while research on the three-

dimensional case is even more scarce and primarily 

focuses on item placement. One of the very few 

examples is the paper by Egeblad et al. [10], which 

investigates container loading of irregular shapes from 

the perspective of a furniture manufacturer. The 

authors divide the input items into the categories of 

large (mainly irregular items), medium (boxes), and 

small (boxes) and employ multiple heuristics for each 

shape type. 

 

3. Methodology 
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To achieve our research goal, we applied a design-

oriented approach following a design science research 

(DSR) methodology [23]. Prior to designing and 

developing our solution, we determined which 

quantitative and qualitative criteria must be met to 

capture and narrow down the problem context in order 

to solve the defined problem. In cooperation with a 

large air cargo company, we conducted joint 

workshops with experts, observed operations onsite at 

the cargo hub, and conducted consecutive interviews 

with palletizers over a period of several months. We 

also conducted a literature review, which allowed us 

to draw on existing models and approaches when 

designing our solution, including optimization 

approaches for loading problems in both operations 

research and generative design. The definition of the 

problem context follows the reasoning in DSR that 

“making improvements should . . . be formally 

grounded in kernel theories from the knowledge base” 

[12] based on previous development methods and 

theoretical results. 

Based on the defined problem context, which 

includes the essential requirements, we modeled the 

solution design, developed the IDSS as an artifact, and 

then evaluated the IDSS. These steps correspond to the 

DSR approach of proving the feasibility of a problem 

solution and then evaluating its performance. In the 

following, we present the definition of the problem 

context, the solution design, and the results of our 

evaluation. 

 

4. Problem Context: Air Cargo Palletizing 

 
4.1. Size and Shape Heterogeneity  
 

Air cargo has an enormous variety of cargo items 

and pallet contours, as shown in Figure 1. Therefore, 

palletizing problems in the air cargo context can be 

classified as DPs [13]. Among other things, cargo 

items differ in shape, packaging material, weight, load 

capacity, and substructure. Most items have a cuboid 

shape and are often delivered pre-palletized on a 

wooden pallet or grouped together to form one multi-

piece item. Irregular item shapes are less common [5] 

but require higher loading effort as they cannot simply 

be placed on a pallet. In particular, irregular items 

cannot be placed haphazardly because they must be 

arranged on a pallet such that the final palletizing 

layout corresponds to a given pallet contour (although 

pallets and contours may vary in type and size). For 

containers with solid metal walls, the contour is 

already fixed and rigid. 

To the best of our knowledge, no statistics 

currently exist regarding the frequency of different 

cargo item sizes and shapes. According to the results 

of our workshops, experts estimate that about 95% of 

objects are cuboid in shape, but they are strongly 

heterogeneous in terms of their dimensions. The 

remaining 5% of non-cuboid and irregular items have 

unpredictable variance in size and shape, which 

greatly increases the complexity of palletizing. 

 

 
Figure 1. Heterogeneous cargo items and 

pallet contours 

According to the experts we interviewed, this 

unpredictable variance has a direct influence on 

palletizing efficiency. For example, an increasing 

heterogeneity of cargo items has a negative influence 

on the load factor of a load device. The load factor is 

one of the most important measurements in palletizing 

and represents loading efficiency in terms of the load 

volume used. The load factor is calculated by relating 

the load volume used by already loaded cargo items to 

the maximum available load volume of the load device 

when empty. According to Brandt and Nickel [5], the 

physical volume capacity of aircrafts could only be 

utilized to 60 or 70% for most flights. If we break this 

down to the ULD level, the average utilization of a 

loaded ULD should be also within these percentage 

ranges. The experts noted that a loaded container with 

a load factor of 75% and more is desirable. 

Furthermore, from a load factor of 75%, no additional 

load securing of the cargo in the container by nets or 

tie-down straps is required. However, a load factor of 

75% or above is a threshold that experienced 

palletizers can typically reach. Indeed, achieving a 

good load factor depends on other factors other than 

item heterogeneity, such as the weight and size of the 

cargo or regulatory requirements, which may prevent 
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the desired load factor from being achieved. 

Nevertheless, as a key figure, the load factor of an 

ULD generally provides a significant way of 

estimating loading efficiency. 

 

4.2. Constraints in Air Cargo Palletizing 
 

When air cargo pallets are loaded, major 

constraints must be considered. A distinction is made 

between hard and soft constraints [4]. Hard constraints 

must be fulfilled to find a palletizing solution. In 

contrast, soft constraints tolerate deviations within 

defined limits. One such constraint is the time window 

within which a pallet must be completed. In addition, 

there are a number of strict aviation safety regulations, 

which are primarily standardized by the International 

Air Transport Association (IATA) through its Cargo 

Handling Manual [15]. 

In summary, there are essentially six aviation 

safety-related (ASR) constraints that a pallet must 

meet to be transported by air. They are all hard 

constraints, with the exception of the balance, which 

needs to be within a given tolerance range. These 

constraints, which we briefly describe in the 

following, primarily relate to more complex pallet 

loading but can also be applied to containers. 

Stability (ASR1): A distinction is made between 

static and dynamic stability. A pallet is statically stable 

if it is able to withstand gravity at every stage of its 

construction. Dynamic stability describes a pallet’s 

ability to withstand the centrifugal forces that may 

occur during transport. 

Maximum Weight (ASR2): The total weight of 

cargo items on the pallet must not exceed a certain 

weight limit. The actual value of the weight limit 

depends on the type of pallet used, the regulatory 

requirements, and the intended position of the pallet in 

the aircraft. 

Floor Load (ASR3): The floor load describes a 

fixed maximum point load per square meter that must 

not be exceeded during palletizing. If this limit is 

exceeded, the pallet may become physically deformed, 

making it difficult or practically impossible to secure 

the load in the aircraft. 

Balance (ASR4): The weight of the cargo items 

should be evenly distributed across the base area of the 

pallet. This facilitates pallet transportation, and in the 

case of air cargo, it may influence the balancing of the 

airplane. 

Incompatibility (ASR5): This constraint 

combines the characteristics of separation and 

positioning constraints. Due to regulatory 

requirements, especially for certain types of goods 

(e.g., dangerous goods, live animals, etc.), it is 

necessary to load these goods either separately on 

different pallets or at a certain distance on the same 

pallet. 

Contour (ASR6): The cargo items must be placed 

within the pallet contour. While certain oversized 

cargo is allowed to overhang and extend over two or 

more pallets, this is a special case that goes beyond our 

consideration. 

Overall, an optimized palletizing solution can only 

be achieved by considering the aforementioned ASR 

constraints as well as other known constraints 

discussed in the literature [4, 5, 24]. Therefore, for the 

practicable realization of palletizing solutions, it is 

essential to consider additional constraints for 

palettizing (ACPs), which we derived from our 

workshops and interviews and then mapped with 

literature. 

Load Priority (ACP1): Higher-priority items 

should be preferred or fully loaded on a pallet before 

lower-priority items [4, 5, 24]. This constraint can be 

set as either hard or soft depending on the priority of 

the items that must be loaded. 

Stacking (ACP2): The way items are stacked may 

be limited to protect against damage [4, 5, 24]. For 

example, some items may have limits regarding how 

much weight can rest on them. This usually hard 

constraint also reflects the fragility of a cargo item. 

Item Grouping (ACP3): This soft constraint is 

related to which items are to be loaded together on the 

same pallet, for example, to meet customer demands, 

to combine partial deliveries from the same consignor, 

or to group items with identical transport destinations 

[4, 5, 24]. 

Non-overlap (ACP4): The items on the pallet 

must not overlap [4, 24]. Even though this hard 

constraint is not physically possible, it must be 

considered in the solution finding process by computer 

programs and algorithms. 

Orthogonality (ACP5): Rectangular objects like 

cube-shaped or cuboid items must be placed on the 

palette so that the edges of the objects are loaded 

orthogonal or parallel to the rectangular edges of the 

palette or contour [24]. This hard constraint serves to 

facilitate system development. However, it has a direct 

influence on the physical loading of a pallet and makes 

it easier for the palletizer to handle rectangular shaped 

items more efficiently in reality. 

Item Orientation (ACP6): The items may only be 

rotated in certain directions [4, 5, 24]. This constraint 

may be due to hard loading restrictions. For example, 

cargo items that are already pre-palletized on a 

wooden pallet can only be rotated vertically and not 

upside down. 

Complexity (ACP7): A palletizing solution must 

be realizable and executable by a human palletizer, a 

forklift driver, or even a palletizing robot depending 
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on the pre-defined problem context, size and weight of 

the cargo, and the available machines [4]. Above all, 

this hard constraint concerns the loading sequence of 

the cargo and from which loading direction the pallet 

has to be loaded. For containers, possible loading 

directions are specified by doors or openings. In the 

case of manual loading without mechanical support, 

the maximum permissible load of the human palletizer 

must be considered for occupational health and safety 

reasons. 

Positioning (ACP8): This hard constraint relates 

to absolute or relative positioning [4, 5, 24]. For 

absolute positioning, items must be loaded to certain 

positions on the pallet, for example, to reach them 

more easily. Relative positioning determines whether 

a minimum distance between items must be 

maintained when items are loaded together (see also 

incompatibility). 

Separation (ACP9): This hard constraint relates 

to separating items that must not be loaded together on 

a single pallet [4, 24]. This separation may be needed 

due to regulatory requirements or to the conflicting 

nature of the goods, which excludes loading them 

together on the same pallet (see also incompatibility). 

Complete Shipment (ACP10): Groups of cargo 

items may be included entirely or not at all [4, 5, 24]. 

This hard constraint applies especially to cargo items 

that may only be transported as a whole, such as 

several individual parts belonging to a single car or 

engine. 

 

5. Solution Design 
 

5.1. Genetic Algorithms 
 

The developed IDSS calculates a practicable 

solution for palletizing by applying a GA as a 

metaheuristic approach. GAs have become well 

established in research on three-dimensional cutting 

and packaging problems with high complexity and 

several optimization goals [7, 27]. In our case, using a 

GA is a suitable approach due to the high 

heterogeneity of items and ULDs in terms of size and 

shape. Therefore, each new combination of item sets 

and ULDs always represents a new palletizing task 

and thus always requires a new instantiation of 

optimization by the GA. This approach goes along 

with the non-repetitive nature of palletizing problems 

in the air cargo context according to their classification 

as DPs. Furthermore, a GA is preferable to exact 

methods. Unlike many other exact methods, GAs use 

stochastic operators instead of deterministic operators 

and have the ability to move freely through the 

solution space without context information such that 

the degree of adaptation of an individual solution is 

only evaluated with the help of a fitness function [18].  

For our research, we use a basic GA approach 

following Kramer [18]. The algorithm is shown as 

pseudo code in Figure 2. It starts with an initial set of 

arbitrary solution candidates and recombines and 

mutates them to generate new solutions. The 

underlying assumption is that the new solutions may 

be better than the old solutions. The solutions’ fitness 

is then assessed using self-defined fitness criteria, and 

the worst solutions are eliminated. The remaining 

superior solutions are then recombined and mutated 

again. This process is repeated until satisfying 

solutions are found. 
 
 

  initialize population 
  repeat 

      repeat 

          recombination 

          mutation 

          assessment 

      until population complete 

      selection 

  until termination condition 
 

Figure 2. Applied GA in pseudo code 
following Kramer [18] 

In our case, we modelled the identified constraints 

from Section 4.2. as individual fitness criteria, which 

were then weighted and combined linearly to form an 

overall fitness score. The constraints vary in their 

degree of satisfaction from simply modelled geometric 

and mechanical relationships (e.g., balance, contour) 

to a simulation with a real-time physics engine (e.g., 

stability). The applied GA enhances its solution-

finding capabilities with higher iteration rates and 

greater population sizes due to the resulting higher 

coverage of the solution space. However, the 

enhancement of the solution-finding capabilities is at 

the expense of the runtime for the calculation of the 

solutions, which is increased by this. 

 

5.2. User Interactions with the IDSS 
 

The main users of the IDSS are the supervisor, who 

is responsible for monitoring and validating the 

palletizing solutions, and the palletizer, who performs 

the physical assembly. Despite the automation made 

possible by the GA approach, the supervisor must 

approve finished ULDs before they can be loaded onto 

an aircraft [15]. There is also the question of how users 

can modify the solutions generated by the GA due to 

changing conditions and environmental factors. As 

such, the system design must consider the human 

element and should be able to combine human 

intelligence and machine intelligence to search for 
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satisfactory solutions and to adapt the implemented 

algorithm. Specifically, there are three types of user 

interactions with the IDSS that affect the generation of 

the palletizing layout solution: (1) the possibility to 

recalculate palletizing solutions if the user is not 

satisfied with them, (2) the possibility to modify the 

configuration of the GA to improve the solution-

finding capabilities of the algorithm if necessary, and 

(3) the possibility to modify the configuration of the 

assessment functionalities if the tolerance ranges of 

the constraints have to be altered. 
 

 
Figure 3. Adapted GDS process flow 

following Krish [19] 

In the first case, a user interface (UI) must be 

provided that allows users to validate the generated 

palletizing layouts and trigger a recalculation if they 

deem a layout to be unsatisfactory. For the challenges 

resulting from the second and third interaction types, 

the field of generative design systems (GDSs) offers a 

solution approach that explicitly includes user 

interactions to modify algorithms and constraints. 

The primary goal of a GDS is to use 

“computational capabilities to support human 

designers and (or) automate parts of the design 

process” [25]. In this context, palletizing solutions can 

be regarded as layout patterns or design layouts 

because the palletizing process in the air cargo context 

can be seen as a non-repetitive, highly complex, and 

creative design process that relies heavily on prior 

knowledge, experience, and creative solution 

competence. In a GDS-supported design process, the 

user plays a central role by continuously modifying the 

generative schema upon which the end results are 

based, with which the solution space is traversed in 

search of practicable design solutions [19]. IDSS users 

also need to undertake these necessary tasks to adjust 

and modify the configuration of the GA and the 

constraints. This area of responsibility is completely 

new in the air cargo sector and does not even exist at 

present. Nevertheless, these necessary user 

interactions must be considered in our system design 

to allow modifications to the configurations of the 

algorithm and assessment functionalities. For this 

purpose, a GDS approach provides a way to 

implement our IDSS through a cooperative constraint-

based human-machine interaction system design [19]. 

Figure 3 shows the GDS process flow following 

Krish [19], which we adapted to the palletizing support 

conditions in the air cargo context to generate 

optimized palletizing layouts. Instead of the typical 

idea input used at the beginning of a design process, 

we use applicable real-world data as our input. We use 

a GA as the rule algorithm. The source code is 

represented by the constraints, which are implemented 

as assessment functionalities. Finally, the generated 

palletizing layouts are the output, which can then be 

evaluated by the user. The user can also make 

necessary adjustments to the system by modifying the 

GA as well as the constraints. 

 

5.3. System Design 
 

 
Figure 4. System design 

Figure 4 shows the system design of our 

implemented IDSS, which supports the palletizing 

process and necessary user interactions at various 

points. The main system features include the 

generation of optimized and practicable palletizing 

layouts; the visualization, monitoring, and validation 

of the generated palletizing layouts; and support for 

physical palletizing by the UI. On the architectural 
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level, the palletizing layouts are calculated in the 

backend by the solution generator (SG). The SG is the 

heart of the system and consists of the GA and the 

assessment functionalities for the constraints. 

The frontend guides the user through the process 

across multiple screens and is connected to the 

backend via REST and WebSocket APIs as data 

interfaces. For this purpose, the backend provides 

suitable data interfaces for data input and output via a 

business logic layer. This enables external systems to 

be connected as data input sources. Input data are 

necessary for generating palletizing layouts, and 

configuration data are needed to establish the settings 

of the SG. The configuration data enable external 

systems or users to make necessary modifications to 

the algorithm or the assessment functionalities. 

 

6. Evaluation 
 

6.1. Dataset 
 

Our evaluation of the IDSS was carried out with 

special attention to the practical relevance of the 

palletizing layouts. To the best of our knowledge, no 

complete test dataset containing sufficient information 

for operational handling in a practical context is 

currently available for research purposes. However, to 

keep the practical relevance in focus, we applied 

Brandt and Nickel’s dataset [5]. The authors compiled 

this dataset from a large air cargo company. The 

dataset contains cargo-related information, such as 

outer dimensions, weight, priority, item groupings, 

incompatibilities between item characteristics, loading 

capacity, and orientation restrictions. Since the data 

were taken from a real application, the complexity 

prevailing in practice can be approximated to a high 

degree. These data contrast the testbed data commonly 

used in the literature (e.g. [3, 9]) as testbeds are 

artificially created and aim to challenge new methods’ 

ability to solve loading problems. It should be noted 

that the dataset also has some shortcomings. In 

particular, there is a lack of meta-information about 

the specific shapes or silhouettes, underlying wooden 

pallets, packaging materials, and weight distribution 

of the cargo items. 

Two test scenarios were defined for evaluation. In 

the first scenario (A), Brandt and Nickel’s original 

data [5] were applied. The dataset contains only 

cuboid items, and we used the original side lengths and 

the information provided for each single item. For the 

second scenario (B), we selected 5% of all existing 

items and randomly converted them into irregular 

object shapes, such as cylinders, L-shapes, or 

polygonal prisms of the same volume, all of which are 

supported by the IDSS. Examples of the supported 

item shapes are shown in Figure 5. This artificially 

created case, with an irregularity factor of about 5%, 

reflects the findings from operational experience 

within a cargo hub. We again used the additional 

information on the cargo items from the original 

dataset. 
 

 
Figure 5. Examples of supported item shapes  

For each scenario, we randomly selected five flight 

segments from the entire dataset and applied them to 

loading problems for single pallets. We limited the 

total number of items for a single pallet to 50. These 

restrictions were set because the SG should load a 

pallet with only a subset of the cargo for a flight. At 

the same time, the cumulative volume of the total 

number of items to be loaded exceeds the available 

space. This leads to a shortage of the available loading 

volume of the load device, so the maximum input 

approach is used. In addition, these restrictions 

increase the scenarios’ realism since items are 

normally distributed over several load devices in 

practice. 

To underline the suitability of our solution design 

for problems with heterogeneous pallets and contours, 

we added three different pallet types with different 

contours for each scenario. Combining the two 

scenarios A and B and the three pallet types with 

different contours, we have a total of six different 

scenario-to-palette/contour combinations. A visual 

representation of the pallet types and contours 

included can be found in Figure 6. 

 

6.2. Computational Results 
 

In the following, we present the computational 

results of our implementation. In addition, a 

summarized illustration of the measurement outcomes 

can be found in Table 1. 
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The backend was implemented in Java, and the 

experiments were executed on common consumer 

hardware. The hardware specifications include the use 

of an AMD Ryzen ThreadRipper 2950X with 3.5 

GHz, 16 cores, 32 threads, and 32 MB cache capacity 

and Ubuntu 18.04 as the operating system. The 

hardware had access to a total of 64 GB DDR4 2133 

MHz/PC4-17000 CL13 RAM. The population size of 

the GA was set to 8,000, and the algorithm was 

terminated after 300 iterations or one hour, whichever 

came first. The population size set was based on 

empirical values from previous test runs to achieve 

appropriate runtimes for the solution calculations. The 

time window was restricted based on the initial 

assumption that comparable restricted time windows 

exist within a cargo hub. 

Each scenario-pallet/contour combination was 

tested on five flight segments. To make the evaluation 

visible, we captured the measured values for total 

runtime, load factor, and irregularity ratio. The load 

factor is one of the most important metrics as it 

measures the amount of volume used for a loaded 

pallet. The irregularity ratio reflects the ability of the 

solution design to handle the complexity of loading 

irregular shapes and is defined as the percentage of 

loaded items with irregular shapes compared to all 

loaded items on the pallet. 

In addition, in Table 1, we present the measured 

values for a significant part of our assessment 

functions. These include all aviation safety-related 

constraints (ASR1–6) as well as the assessment 

functions for ASR4 and ASR5 consisting of their 

individual sub-assessments. For ASR4, the balancing 

of a pallet is rated along the x-, y-, or z-axis. In turn, 

ASR5 includes positioning (minimum distance 

between items) and separation constraints, the latter of 

which is checked over a three-dimensional area 

(horizontal and vertical). To map economic and 

practical requirements for the generated palletizing 

layouts, the ACP1–3 constraints, which are not 

relevant for aviation safety, also need to be included. 

Further, ACP4 to ACP7 are intended to support the 

calculation of practicable palletizing layouts and must 

all be fulfilled. For this reason, the measured results 

are not explicitly listed here. Specific examples for the 

fulfillment of ACP8 and ACP9 are already covered by 

ASR5. ACP10  is not considered as Brandt and 

Nickel’s dataset [5] does not currently provide 

information on complete delivery at the item level. 

The feasibility of ACP10 is proven by the very similar 

ACP3 constraint, which is a soft constraint and 

therefore has a tolerance range. 

The results show that the runtime for the solution 

calculations is comparatively high. Conducting 

several batch runs is common in operational business 

and depends on the physical presence of the items at 

the cargo hub. Some IDSS calculation runs to generate 

palletizing layouts can be started earlier and have a 

longer time window of up to several hours, while later 

runs have to be executed almost in real time. The 

solution meets the requirements for the first runs, but 

the runtime must be significantly accelerated to satisfy 

real-time operations. The high runtimes can mainly be 

explained by the assessment of the solution’s stability: 

Table 1. Computational results 
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namely, with the physical simulation, each palletizing 

layout is always built up piece by piece with a high 

degree of physical realism. While the simulation 

resolution can be lowered to achieve acceptable 

runtimes, such adjustment also lowers the accuracy of 

the physical calculations. Therefore, the key to 

optimizing runtimes is to significantly accelerate the 

physical simulation. 
 

 
Figure 6. Visualization of pallet types, 

contours, and calculated palletizing layouts 

The load factor is around 70%, which is a good 

ratio considering that the solution fulfills all aviation 

safety-related constraints. As mentioned in Section 

4.1., a load factor of 75% or above is aimed for in 

practice, but is not necessarily always useful if the 

emphasis is on practicable and loadable palletizing 

layouts. In addition, a relatively large number of 

heterogeneous irregular cargo items are selected for 

loading, if available. This reflects our efforts to 

explicitly address the complexity of loading 

heterogeneous irregular items. 

The consideration of aviation safety-related 

constraints is almost completely fulfilled. Specifically, 

with regard to the balance constraints, perfect balance 

on x- and z-axes is very difficult to achieve because a 

minimal deviation of the center of gravity of the load 

device from the geometric center is already penalized 

by the assessment of the GA. For the y-axis, a 

desirable constraint on equilibrium brings the center of 

gravity as low as possible, closer to the bottom of the 

load device, which is more difficult for high layouts. 

The stacking constraint is also met. In practice, fragile 

cargo can be supported from above by palletizing 

additional loading equipment, such as wooden pallets, 

to achieve better weight distribution from above. This 

special case is not yet supported in the IDSS. 

The measured economically relevant constraints of 

load priority, stacking, and item grouping have the 

greatest potential for improvement. Since they are soft 

constraints and are not relevant to aviation safety, 

improvements are always desirable and will be 

important when comparing our IDSS results with the 

performance of a human palletizer. All hard 

constraints, including non-overlap, orthogonality, 

item orientation, and complexity, are met by the 

solution design, but, as already mentioned, are not 

presented here. 

 

7. Discussion and Conclusion 
 

With our evaluation, we demonstrated the 

feasibility of generating practicable solutions while 

maintaining an acceptable load factor using the IDSS. 

Although a practical load-factor threshold has not yet 

been reached, the results represent solid progress. This 

progress is especially apparent as almost all of the 

constraints mentioned above were considered when 

generating the solution for the palletizing layouts, 

which increases the complexity considerably. From 

this point of view, acceptable load factors as well as 

satisfactory treatment of the complexity were 

achieved. Overall, we demonstrate that is possible to 

plan the palletizing of cargo items on a load device 

with a suitable time window for planning. 

A significant limitation of this study is the dataset 

we used. Currently, there is no realistic dataset 

containing relevant meta-information, such as 

material, weight distribution, or substructure. Also, 

this paper focuses strongly on the system’s design and 

backend. This means that the current task-oriented UI 

for the different roles must be advanced to ensure the 

successful and practical use of the IDSS in the future. 

Such advancement must occur before an evaluation 

with a human palletizer can be conducted to assess the 

solution-generation capabilities, the transformed 

processes, and the user experience. In addition, 

runtime is another challenge that will increase with the 

addition of even more complex item forms and 

possible further constraints. The current system is 

clearly too slow for real-time use. 

Nevertheless, we conclude that our solution 

approach demonstrates feasibility and that the 

technical evaluation indicates satisfactory 

performance. The proof of feasibility is also valid, 

with restrictions, for the runtime of the solution 

generation and is at the same time connected with the 

physical simulation of the stability assessment. Further 

research in this field can be extended to the use of 

graphical processor units for the physical calculation 

of parallelization, which are significantly more 

efficient. Further approaches to improve the IDSS 
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include the addition of the yet to be integrated 

constraints, such as complete shipment, and by 

enhancing and evaluating the existing constraints by 

analyzing the solution generation of the palletizing 

layouts and the layouts themselves. Furthermore, the 

possibilities of the GA have not yet been fully 

explored. The goal is to achieve greater population 

sizes and higher iterations in the same time window to 

improve the GA’s solution generation by optimizing 

or enhancing the current algorithm. The simultaneous 

consideration of both areas—the algorithm and 

constraints—supports further development to reach a 

real-time system. Last but not least, practice-oriented 

research based on a realistic dataset is strongly 

recommended when such a dataset becomes available. 
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