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Abstract

Business processes allow anomalies to occur during
execution. Anomaly detection aims to discover behav-
iors that are not typical or expected in the business pro-
cess. In fact, early detection helps prevent intrusion and
other risks in companies. There are several approaches
that address this problem in process mining. This pa-
per discusses anomaly detection approaches in business
process discovery using a real-world event log from an
ITIL-covered incident management process. We discuss
benefits and limitations of using knowledge from process
models discovered after treating anomalies.

1. Introduction

The life cycle of business process management
(BPM) involves a series of actions that are closely linked
to process models, usually designed by business ana-
lysts, and data, coming from the different process-aware
information systems (PAIS) that support the execution
of organizational processes. According to [1], in the
practice of this life cycle, process models are used in
the (re)design and configuration/implementation phases,
and data is used in the enactment/monitoring and diag-
nosis/requirements phases. However, few organizations
are able to connect the information in the data to the
information present in the models in order to optimize
the results of the BPM. For the sake of overcoming this
limitation, process mining appears as a bridge between
data science and process science, enabling organizations
to use information in the data (event logs) effectively to
optimize process models and the BPM life cycle.

One of the most explored types of process mining
today is the discovery of process models [2, 3]. The dis-
covery techniques use event logs from PAIS and produce
models without any prior information about the under-
lying processes. As a result, a real process model is ob-
tained that can be used, for example, to contrast what
is primarily expected from the execution of the process
with what is actually implemented in the systems that

support this process. Such discovery techniques assume
that the event log contains a representative sample of the
behavior of the process [1]. However, the event log may
also contain the representation of anomalous and infre-
quent behaviors, which do not stand for the typical and
expected behavior of the process. If this occurs, the dis-
covered models can: (i) represent behavior that is not
consistent with the real process [4], for instance when
the anomaly comes from malicious activity or wrong im-
plementations in the PAIS; (ii) represent additional be-
havior, whose presence in the model occurs as a side
effect of trying to represent all the existing behaviors in
the event log [4]; (iii) generate very complex process
models, which are of little use to a business analyst.

The ability to detect and treat anomalies is an impor-
tant feature in a process discovery algorithm, but it is
still a challenge for the process mining area [1]. There
are studies that aim to detect or treat anomalous paths
or activities in the processes, some of which only fo-
cus on detection [5, 6, 7], others focus only on treat-
ing them [8] (i.e. repairing or filtering), and others
focus in both tasks [9, 4]. They also follow different
analysis principles: count-based [8], reconstruction with
autoencoders-based [5, 9], prediction-based [10, 6] and
knowledge-based [7]. The way anomalies are treated
needs to be studied on a case-by-case basis, as, accord-
ing to [10, 11], infrequent behaviors can bring important
insights to the process. Thus, the focus is also to detect
the anomalies in order to understand them.

Although several methods have been analyzed using
real-world event logs, we have not found in the literature
a comparison of methods that follow different principles
applied to the same real-world event log. In addition,
previous studies inserted artificial anomalies in the event
logs in order to analyze the results in a supervised way,
which does not represent the reality of organizations.
The comparison among different methods of different
principles would be relevant to provide researchers and
professionals with clearer information about the bene-
fits and limitations arising from the principles adopted
in each approach. Thus, in this paper, we analyze three
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anomaly detection approaches, two count-based and one
reconstruction-based, using a real-world event log from
an incident management system. In addition, our anal-
ysis is carried out in an unsupervised way, in order to
reproduce the existing problem in organizations.

The incident management process is strongly char-
acterized by involving entities external to the business
and by involving many actions within the same life
cycle step of the incident. Such characteristics repre-
sent a challenge for the exploration of the event log, as
will be discussed throughout this paper. The contribu-
tions achieved with this study are: (i) discussion of ap-
proaches based on different principles and with applica-
tion in a real case; limitations and difficulties encoun-
tered with the application of each of them are discussed
based on an extensive set of experiments; (ii) applica-
tion of the approaches in an unsupervised environment,
i.e., without prior knowledge of what can be expected as
anomalies; (iii) discussion on the benefits of discovering
process models from anomaly filtering, providing useful
information to the business specialist.

The remainder of this paper is organized as follows:
Section 2 and Section 3 present the theoretical back-
ground and the related works, respectively; Section 4
and Section 5 aim at presenting the study setup and the
discussion on the results obtained with experiments; fi-
nally, Section 6 presents the conclusion of this paper.

2. Theoretical background

2.1. Basic concepts in process mining

Process mining relies on the concepts of events,
cases, traces, and logs. Given an event log L, an event is
the occurrence of a business process activity at a given
time. Event log L records events such that each event e
is defined in terms of the following attributes: #id(e),
#timestamp(e) and #activity(e). A case corresponds to
a process instance and consists of events such that each
event relates exactly to a case. A case c is defined in
terms of the attributes #id(c) and #trace(c). That trace
is a mandatory attribute of a case and corresponds to a
finite sequence of events such that each event appears
only once1. Thus, event log L is a set of cases such that
each event appears at most once in the full event log [1].

Process discovery consists of extracting process
models from event logs, i.e., automatically producing a
process model based only on an event log, using no prior
information. A systematic mapping [2] shows that most
researches being conducted on process mining (71%)
have addressed process discovery. The predominance

1For analysis purposes, the traces are represented by the sequence
of attribute values associated with the events that compose them. Un-
der this representation, more than one case can follow the same trace.

of process discovery is natural as other types of process
mining activities usually require a process model.

2.2. Anomalies in process mining

According to [12], in data mining, anomaly detection
is the process of finding data presenting behaviors that
are different than expected. Anomalies are also called
outliers, as in [13, 14]. In statistics, according to [15],
an outlier is an observation that deviates so much from
other observations that it arouses suspicions of having
been generated using a different mechanism. Although
outliers are deviations from normal behavior, they of-
ten contain useful information about atypical character-
istics that affect the data generation process under anal-
ysis [13].

In process mining, an outlier is a behavior that is
not or should not be part of the actual process, or an
infrequent behavior [8]. In [9], outliers are seen as er-
roneously logged activity or resource information, or
abnormal timestamps. Specific definitions of anoma-
lies depend on the application context, and can manifest
themselves as: one or more missing activities [5, 6, 8, 4],
change in execution order between activities [5, 6, 8],
anticipation or delay in the execution of an activity [7],
re-execution of an activity [5, 6], unexpected occurrence
of an exogenous or endogenous activity [7, 8, 10, 4], re-
placement of one activity with another [9], execution of
an activity associated with an incorrect resource [5, 6],
unexpected duration for activities [9, 7], long-term de-
pendencies between activities and resources [5]. The
study of anomalies in process mining is also oriented to
the level of granularity in which an anomaly is sought to
be identified, i.e., anomaly detection can be addressed at
the level of: anomalous attributes [9, 5, 6, 4], anomalous
events [5, 4] or anomalous cases [7, 5, 6].

The proposal of algorithms for anomaly detection
presupposes as input a case or elements of a case (such
as a window formed by events of a case). Their out-
puts are formatted as binary outputs or scores indicating
the degree of abnormality [12, 16]. In this paper, we
explore anomaly detection through two approaches pro-
posed in process mining field: a subsequence’s context-
based approach (count-based) [8] and a neural-based
(reconstruction with autoencoders-based) [6]. Addition-
ally, a low frequency filtering heuristic (count-based)
was explored to analyze whether the simple removal of
infrequent traces could improve the process model dis-
covery results. Those approaches are explained below.

Subsequence’s context-based approach. Study [8] pro-
poses an event log repair approach based on identify-
ing anomalous subsequences. In this paper, we only
describe the anomaly identification approach introduced
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by them. Authors defined: (i) given a subsequence β
in a specific sequence S, a context con(β, S) is de-
fined as the surrounding activities of a certain subse-
quence β in S. For instance, given a case (a, b, c), sub-
sequence (b) is surrounded by context (a, c); (ii) given a
context (α1, α2), cov(S, α1, α2) of that context is de-
fined as a subsequence of activities being covered by
that context in sequence S. Thus, in previous exam-
ple, the cov of context (a, c) is (b). Covering probability
CP (β, α1, α2) is defined as the conditional probability
of β being covered by context (α1, α2). This probabil-
ity is defined as N

D , in which N consists in the number
of times that subsequence β occurs within the (α1, α2)
context, and D consists of the total number of times
the context covers subsequences with length ≤ K. A
context is significant if its frequency in the event log is
higher than a threshold τ . The anomaly detection ap-
proach is defined by these parameters: K, CL, τ , L,
being K the maximum length of covered subsequences,
CL the context’s subsequence lengths, τ the threshold
and L the event log. Thus, given a case and a sequence
of events S in that case, whose context is (α1, α2) and
the covered sequence β, β is anomalous in that context
if when tested on the following conditions returns true:
(i) the context (α1, α2) is significant; (ii) the conditional
probability CP (β, α1, α2) is < τ . Both conditions im-
ply counting occurrences of activity sequences, so we
consider this a count-based approach.

Neural-based approach. In [5] a denoising autoencoder
was proposed to address the anomaly detection task for
both of cases and activities of an event log. An autoen-
coder is a type of neural network that, given an input,
expects an output that is a reproduction of the input.
First, authors transformed each case in the event log into
a one-hot-encoding representation, including both activ-
ities and event users. In this format, the order of events
is relevant. Each event is represented by a one-hot vector
with dimension n. Thus, the case is represented by se-
quential union of event vectors. The autoenconder was
trained using the backpropagation algorithm. Both input
and expected output of the autoencoder have the same
one-hot-encoding representation. After training, anoma-
lous cases were expected to be reproduced with a bigger
error than normal cases. Thus, a case is anomalous if re-
production error of that case is greater than an threshold
(τ ) or normal otherwise. τ is calculated using a scale
factor α applied to the average reproduction error of the
training dataset. Although it is an unsupervised anomaly
detection approach, authors evaluated it in a supervised
manner, as they had labels for anomalous cases.

Low frequency filtering heuristic. This approach re-
moves cases in the event log, based on the frequency

of traces (i.e., number of cases that reproduce the same
trace in the event log). Given n as input parameter, re-
moval starts with cases that reproduce the least frequent
trace until it reaches n cases removed or more. More
cases might be removed because more than one case can
reproduce the same infrequent trace.

3. Related work

In the task of detecting anomalies in event logs, sev-
eral approaches have been proposed [5, 6, 7]. In [5]
the authors proposed DAE, a model based on autoen-
coders for detecting anomalies in event logs. They com-
pared their results with those obtained by using other
techniques usually applied in anomaly detection, show-
ing that better results were obtained using autoencoders.
However, such study, as [6, 7], is focused on assessing
anomaly detection and not on how the approach can im-
prove process discovery. One of our interests herein is
the second type of perspective, since treating anomalies
in event logs can improve process discovery [8].

Some authors [9, 6, 17] addressed the detection or
treatment of anomalies in incident management event
logs, but without an in-depth analysis of the impact of
their approaches on discovering process models. In [9],
the authors addressed anomaly detection and reconstruc-
tion in event logs, exploring only approaches based on
autoencoders. The approach is good for reconstructing
the event log after deleting anomalous behavior. Al-
though one of the event logs analyzed is an incident
management event log (BPIC 2013), they do not offer
detailed assessment of their approach from the perspec-
tive of process discovery. On the other hand, [6, 17] pro-
posed approaches based on Gated Recurrent Units for
detecting anomalies in cases, events and attributes. The
authors tested their technique on real-world event logs,
including the BPIC 2013 event log, but evaluating the
approach from the anomaly detection perspective only.

In [8] the authors demonstrated repairing anoma-
lies can help improve the quality of the discovered pro-
cesses. In that study, anomalous behavior was identi-
fied based on the frequency of activities in a context.
The approach was evaluated on event logs of synthetic
and real-world events, including one for incident man-
agement, BPIC2013. The authors also compare their
approach with a filtering technique (Filter Matrix) and
with no filtering at all. However, they did not present a
comparison with approaches based on neural networks.

The comparison between neural-based and count-
based approaches is necessary because approaches
based on neural networks, especially autoencoders, have
demonstrated a good capability to detect anomalies in
business process event logs [5, 9]. On the other hand, the
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count-based approach in [8] has demonstrated a good
capability to improve the process discovery results af-
ter repairing the anomalous behavior. However, they
both have not been compared in the same scenarios. In
this paper, such a comparison is conducted in a realistic
unsupervised perspective, by considering a real-world
event log without labels indicating anomalies.

4. Study setting

Operational areas in organizations are constantly
looking for ways to optimize their processes. This need
arises mainly from processes requiring resources from
several sectors of the organization. Such collaborative
work makes processes complex, unstable and unpre-
dictable. In Information Technology (IT), process op-
timization is sought by adopting best practices frame-
works such as the Information Technology Infrastruc-
ture Library (ITIL) [18]. Among processes covered by
ITIL, the incident management process addresses ac-
tions required to correct failures and restore the normal
operation of a service as soon as possible, minimizing
the impact on business operations [18]. In this paper, we
discuss the exploration of an event log extracted from
an incident management platform, used by a real-world
organization, and follow the steps shown in Figure 1.

This study was carried out on an event log from an
incident management process [19]. The event log was
extracted from an instance of the ServiceNowTM plat-
form used by an IT company, where audit data and trans-
actional data are stored. Thus, the event log contains in-
formation regarding the context in which incidents occur
and it is organized from the perspective of the incidents’
life-cycle. Only information related to the state of the in-
cidents was submitted to anomaly detection approaches.

We applied the anomaly detection approaches to de-
tect anomalous cases and exclude them from the event
log, obtaining a filtered event log. Three anomaly de-
tection approaches were applied: a low frequency filter-
ing heuristic; subsequence’s context-based analysis [8];
neural-based analysis [5]. A procedure for excluding
random cases was applied to verify whether the previ-
ous approaches are not adopting a random behavior.

All filtered event logs were input to the process
discovery algorithm Inductive Miner Directly Follows
(IMDF) [20]. We used a specific implementation
(IMDFc) available in the PM4Py library [21]. The ob-
tained models were evaluated under the perspective of
process quality measures (fitness and precision) and in
relation to the number of cases pointed out as anoma-
lies. These quality measures were obtained by analyzing
the process models against the filtered log (log used in
model discovery) and against the original log. Besides

evaluating whether the discovered models adequately re-
flect the behaviors underlying the filtered logs, this study
aims to identify to what extent the models can be used
as a source of information about the behaviors under-
lying the original log. The evaluation also includes the
analysis of the parameters used in the anomaly detection
approaches. Finally, we discuss the highest quality pro-
cess models concerning the knowledge they can provide
about the incident management process.

4.1. Event log

The data available in the event log consists of: the
control flow of an incident’s life cycle (e.g., status, ac-
counting for reopenings and reassociations); incident
qualifications (e.g., priority, impact, urgency, service
level agreement, requesting agent, contacted agent);
time attributes associated with incidents (e.g., creation
date, closure date); attributes describing the assets that
an incident refers to (hardware, software and services);
resources involved in the handling of incidents (people
and teams); and textual descriptions (clarifications about
the incident, its object and how it was dealt with).

The publicly available event log2 is anonymized, in-
cludes only part of the information available in the sys-
tem and was created as a non-standardized (flat) file. It
is considered an enriched event log due to the large num-
ber of attributes associated with the incidents. Thus, its
contents explicitly reflect part of the information that
describes the company’s incident process, and implic-
itly represents the existence of different behaviors in the
process, since it has events with the same value in the
attributes, except for the timestamp attribute. As a side
effect, the event log contains many loops, which makes
analysis difficult. The event log has 12 months (Mar-
2016 to Feb-2017) of activity records, totaling 24,918
traces and 141,712 events. Figure 2 shows some at-
tributes of a case present in the enriched event log. Col-
ored highlights indicate the information present in the
simplified event log, some process characteristics and
conditions that might influence the anomalies detection
results. Such characteristics are indirectly represented
in the simplified event log.

For execution of this study, only the information
about the case identifier, the state of the incident and the
timestamp were presented to the algorithms. Hatched
area in Figure 2 composes the information in the sim-
plified event log. Anomaly detection approaches and
algorithms for process models discovery and extracting
quality measures have, depending on the event log con-
ditions, a high computational cost. In addition, even if

2Details about the event log can be found at https://
archive.ics.uci.edu/ml/datasets
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Figure 1. Method applied in this study

Figure 2. Excerpt from the event log

the execution cost was feasible, the complexity of the
process models when various descriptive attributes of
the incident are considered makes the model interpreta-
tion and qualitative analysis by business analysts very
difficult and sometimes impossible. The choosing of
these attributes is also capable of implicitly represent-
ing changes in the value of other attributes of the pro-
cess. The occurrence of these changes is represented by
the loops created in the incident state and by the perfor-
mance information (timestamp). In this study, perfor-
mance information is not being addressed. Timestamp
is used only to sort the events of each case.

4.2. Process model discovery: strategy and
quality measure

The IMDF is state of the art regarding process model
discovery from event logs. This algorithm is an adapta-
tion of the Inductive Miner framework (IM) [22] that
works on directly follows graphs rather than on event
logs. The computation performed by this adaptation can
be parallelized and the size of the resulting graph de-
pends quadratically on the number of activities in the
event log. The number of traces or events in the event
log does not impact the size of the generated graph. The
version of this algorithm implemented for PM4Py, used
herein, is optimized to build a sound process model, with
good values of fitness (in most cases, the algorithm guar-

antees maximum fitness) [21]. Such an implementation
receives an event log as an input and produces a pro-
cess model as an output, which is represented either as
a Petri net or as a process tree. In order to facilitate
understanding, in this paper, the generated models were
converted to BPMN notation. Figure 3 shows the pro-
cess model discovered for the incident event log, con-
sidering the state of the incident perspective (attribute
incident state). All gateways in Figure 3 refer to split or
join XORs, whose existences were discovered from the
event log. These gateways show the activities are both
optional and can be carried out within loops.

Figure 3. Process model obtained for the event log

with the incident’s state perspective

In order to evaluate discovered models, we are using
two process model quality measures [1, 23]. (i) Fitness
(or completeness) (F): assesses whether a process model
can reproduce the behavior present in the event log. A
process model is fully complete if all traces in the event
log can be replayed by the model from beginning to end;
(ii) Precision (P): assesses whether a process model can
generate only the behavior contained in the event log. A
process model is fully precise if every trace produced by
the model is contained in the event log.

According to [23], a highly complete process model
is not useful if it is too imprecise. Thus, these authors
claim that an algorithm that discovers process models
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should balance fitness and precision. They used the
F-score (FS) calculated with fitness and precision as:
FS = 2 ∗ ( F∗P

F+P ). These measures were applied in this
study based on two quality analysis strategies:

1st quality analysis strategy. In this procedure, the as-
sessment was mainly based on fitness and F-score mea-
sures. We looked for models that achieved at least 0.95
in fitness. Thus, models that were unable to reproduce
a significant part of the cases in the event logs were not
considered reliable to reveal knowledge on the process’
behavior. Then, models that did not reach values of at
least 0.9 in F-score over the original event log were dis-
carded, so that the remaining models presented a good
balance between fitness and precision. However, high
fitness values in the quality measure of the model over
the original event log can be a side effect of low preci-
sion of the model over the filtered event log (low preci-
sion means there are traces in the process model that do
not exist in the event log from which the model was gen-
erated). To avoid this situation, we also discard all mod-
els that showed a high difference (>= 0.25) between the
precision values obtained on the original event log and
the filtered event log.

2nd quality analysis strategy. This procedure chooses
the best results based on fitness and precision measures.
We discarded models that did not reach the minimum
value of 0.9 in both measures, against both event logs.
This is a more restrictive analysis. Although the fitness
values were relaxed compared to the first procedure’s
lower limit, the precision values must be high. A smaller
number of models is selected under this procedure.

4.3. Parameter setup

The use of low frequency filtering heuristic requires
one parameter: the number of cases to be excluded (n).
We performed this heuristic with n between 1,000 and
24,000, with steps of 1,000 cases. We got 20 process
models after filtering infrequent cases. We did not get
24 process models because some parameter values filter
the same cases and produce the same process models.

The application of subsequence’s context-based ap-
proach requires the following parameters to be de-
fined: subsequence length, threshold and context’s sub-
sequence length. The third parameter was fixed at
1 (CL = 1). The strategy was executed 150 times,
from a grid with the following combinations of val-
ues for the parameters: maximum length of cov-
ered subsequences K: {1, 2, 3, 4, 5}; threshold τ :
{0, 0.1, 0.2..., 0.9, 1}, {0.01, 0.02, ..., 0.09, 0.11} and
{0.91, 0.92..., 0.99}. Thus, after filtering cases detected
as anomalous and discovering process models for each

of them, we obtained 150 process models.
The neural-based approach is based in denoising

autoencoder proposed in [6]. We implemented a sim-
ilar input representation (one-hot encoding) and archi-
tecture. Main differences between our parameter set-
tings and those proposed by [6] are: (i) we trained de-
noising autoencoder using batchs of size 500; (ii) we do
not use validation set to make feasible to compare de-
noising autoencoder with subsequence’s context-based
approach. Since subsequence’s context-based analysis
use the whole event log to detect anomalies, we also
used the whole event log to train the denoising au-
toencoder. We defined an early stopping when train-
ing loss is increasing in last 10 epochs and defined a
maximum number of training epochs in 300; (iii) de-
noising autoencoders consist of an input layer with 522
neurons and two hidden layers settled to be half the in-
put layer size (261 neurons). Such parameters were set-
tled as fixed, as well as activation function for output
layer (function G = {sigmoid}), thus we focused in ex-
ploring other three parameters: activation functions for
the two hidden layers (function F ), learning rate (α),
and a scaling factor (σ). This approach was executed
270 times, from a grid with the following combina-
tions of values for the parameters: function F = {relu,
sigmoid, tangent hyperbolic}; α = {0.001, 0.5, 1}; σ
= {0, 0.1, 0.2..., 0.9, 1}, {0.01, 0.02, ..., 0.09, 0.11} and
{0.91, 0.92..., 0.98, 0.99}. Thus, after filtering anoma-
lous cases for each execution, we obtained 270 filtered
event logs and the same number of process models.

5. Results and discussions

This section presents discussions on the results ob-
tained in this study. First, we developed an analysis
of the relationship between the parameters used in the
anomaly detection approaches and the quality measures
of the process models. Next, we perform a qualita-
tive analysis on the selected process models. We com-
pared the anomaly detection approaches for characteriz-
ing what each one considered as anomalies, and high-
lighted the knowledge that can be extracted from event
logs without anomalies in the context of the incident
management process. For such analyzes, we considered
the set of models selected with the 1st and 2nd quality
analysis strategy. The 2nd quality analysis strategy se-
lects a few models, so we only present the quality mea-
sures for them.

5.1. Parameters analysis and quality measures

In this section, the results selected to observe the be-
havior of parameters and the quality measures followed
the 1st quality analysis strategy, but without the restric-
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tion on the F-score measure. Thus, eight process models
remained for low frequency filtering heuristic, 39 pro-
cess models for subsequence’s context-based approach
and 143 process models for neural-based approach3.

Low frequency filtering heuristic. The results consid-
ered in this approach have filtered up to 8,107 anoma-
lous cases. Analysis of the data revealed that the elimi-
nation of some anomalous cases (less than 16%) gener-
ates models with low precision both in the filtered event
log and in the original event log. On the other hand,
the elimination of more than 20% cases generates mod-
els in which the precision on the filtered event log de-
creases, although the precision for the original event log
is high and close to 1. The models generated by this
approach reach maximum precision and fitness (greater
than 0.936), both on the filtered event log and on the
original event log.

As mentioned above, if less than 16% and more
than 20% anomalous cases are eliminated, the gener-
ated models show a drop in the precision on the filtered
out event log. Therefore, these dropped cases are caus-
ing the model to be imprecise regarding the behavior of
the filtered event log, while remaining precise relative to
the original event log. Models are likely to allow addi-
tional behavior than what exist in the filtered event log,
so these behaviors could be contributing to the precision
of the original event log.

In that sense, we demonstrate the ability to generate
models with high quality from the removal of anoma-
lies (or infrequent behavior). These models were able
to correctly represent the real behavior seen in the origi-
nal event log and at the same time to correctly represent
the main behavior (or frequent behavior) seen in the fil-
tered event log. However, determining the appropriate
number of cases to be eliminated is dependent on an ex-
haustive search of the entire parameter space.

Subsequence’s context approach. The analysis of the se-
lected models allowed to identify behavior patterns of
the quality measures of process models and the number
of cases pointed out as anomalous (see Figure 4).

The content in Figure 4 shows that subsequences of
length 4 and 5 led to the detection of anomalies that, fre-
quently, did not allow the obtaining of models which met
the quality selection criteria. However, this subsequence
size allowed the achievement of the two best filters ob-
tained in this anomaly detection approach (see Table 1).
The results obtained with smaller subsequences lengths
lead to the generation of models with low precision on
the filtered event log, showing that some complexity still

3In addition to the three approaches discussed herein, random fil-
tering was carried out to attest that random solutions could not solve
the anomaly detection problem. No results obtained with random fil-
tering achieved the restrictions of the quality analysis strategies.

Figure 4. Parameters behavior for the subsequence’s

context approach

remains in the event log even with the removal of the
pointed anomalies. The process model discovery algo-
rithm, when meeting specific traces still present in the
event log, generates a variety of transitions in the model
making it imprecise. Subsequences of size 2 achieve
better results by eliminating a larger number of cases
(between 10,000 and 15,000 cases). The subsequences
with size 4 and 5 eliminate fewer cases (around 8,000)
and achieve the best results. Regarding the thresholds,
the predominance of low value thresholds (less than or
equal to 0.3) is observed. In general, large subsequences
generate good results combined with very small thresh-
olds. Smaller subsequences yield your best results with
thresholds close to 0.01.

Neural-based analysis. Following the same quality anal-
ysis strategy for selecting models, for this approach it
was also possible to observe some behavior patterns for
the parameter values (see Figure 5). Learning rate and
scaling factor influenced the filtering results in this strat-
egy. The different activation functions used in the hid-
den layers of autoencoder did not influence the quality
of the results. Scaling factors greater than 0.9 resulted in
fewer cases being filtered and had stable and low fitness
and precision measures. For cases with higher learning
rates (0.5, 1), low scaling factors provide improved pre-
cision for the original event log but worsened precision
for the filtered event log. As an effect, the high fitness
value for the original event log may be unwanted. How-
ever, the combination of scaling factors between 0.6 and
0.9 and a learning rate of 0.001 creates the right condi-
tions for good filtering. In a macro view, the values of
the learning rate also do not generate large variations in
results, except when combined with scaling factors be-
tween 0.6 and 0.9.

Table 1 presents details of quality measures related
to process model for best results obtained using the two
quality analysis strategies. Using the 1st quality strat-
egy, five process models remained for low frequency fil-
tering heuristic, two process models for subsequence’s
context-based approach and four process models for
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Figure 5. Parameters behavior for the neural-based analysis

neural-based approach. Using the 2nd quality strategy,
seven process models remained for first approach, one
process model for the second and one process model for
the third approaches. The low frequency filtering heuris-
tic generated some results with equal values for the pro-
cess model quality measures. In this case, only one of
the models is listed in the table. Quality measures for
the process model obtained using the original event log
(without filtering) are also presented.

5.2. Process models analysis

In this section, we present the analysis of the process
models discovered from the original and filtered event
logs, considering the results listed in Table 1. Figure 3
shows the process model discovered from the original
event log. This model contains all activities present in
the event log, including an activity exogenous to the
business process (-100). The model has a high fitness,
but low precision. Many extra behaviors are allowed be-
cause nine activities are connected to each other through
a loop. Moreover, the model allows for empty traces,
which does not make sense from a business perspective
and does not agree with good process modeling prac-
tices. Although this model reflects the event log, it does
not provide really useful knowledge, as it does not ab-
stract a structure for the business process.

The anomaly detection approaches filter the original
event log in different ways, pointing out more or less
anomalous cases, according to the combination of pa-
rameters applied. Some identical models were gener-
ated by more than one approach or by the same approach
applied with different parameter values. All models ob-
tained in the filterings under analysis are shown in the
Figures 6, 7 and 8, with reference to the models se-
lected with the 1st and the 2nd quality measure strate-
gies. None of models generated from filtered event logs
produce an empty trace. A summary of the main char-

acteristics related to each model is presented in Table 2.

The filtered event logs allowed generating process
models in which it is possible to observe behaviors sim-
ilar to the behaviors expected for an incident manage-
ment process. Thus, for extracting knowledge about the
business process, these models are more useful than the
model in Figure 3. The process models C/D showed
in Figure 6 reveal the following characteristics for the
business process underlying to the event log: the pro-
cess starts with the activity new; despite the existence
of loops in each activity (due to updates to context at-
tributes - see Section 2), there is a sequence of activi-
ties (new, active, awaiting user info, resolved, closed)
executed in the cases of the filtered event log which is
predominant in the original event log.

In general, the three approaches considered infre-
quent activities as anomalous. The noisy activity -100
was eliminated in all models. The (expensive) waiting
activities (awaiting evidence/problem/vendor/user info)
were eliminated in one or more models. Eliminating
these activities is not necessarily beneficial. On the one
hand, the models show that waiting for user’s informa-
tion is part of the mainstream of the process, alerting the
business analyst. On the other hand, the other waiting
activities are hidden from the analyst, generating misin-
formation. A similar reasoning can be outlined for the
treatment of cases that present loops. On the one hand,
knowing that there is a loop in the process can be im-
portant to trigger optimization actions in the organiza-
tion. On the other hand, inserting infrequent loops into
the model causes the model’s precision to deteriorate,
leading to false conclusions about the business process.
Such situations are inherent to the study of anomalies,
so it may be interesting for the business analyst to ac-
cess a process model generated from information about
the traces associated with anomalous cases.
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Table 1. Quality measures of process models for best results

Measures for full event log model: fitness (F) = 1.000, precision (P) = 0.536 and F-score (FS) = 0.698

Subsequence’s context-based Neural-based Low frequency filtering heuristic

anom.
cases

Ff Pf FSf Fo Po FSo anom.
cases

Ff Pf FSf Fo Po FSo anom.
cases

Ff Pf FSf Fo Po FSo

1st quality analysis strategy

2,485 1.000 0.735 0.847 0.995 0.829 0.904
2,491 1.000 0.781 0.877 0.995 0.829 0.904

4,006 1.000 0.936 0.967 0.989 0.988 0.989
7,427 1.000 0.760 0.863 0.987 0.996 0.991 7,034 1.000 0.865 0.928 0.987 0.996 0.991

8,074 1.000 0.738 0.849 0.992 0.982 0.987 8,526 1.000 0.753 0.859 0.987 0.996 0.991 8,107 1.000 0.884 0.938 0.950 0.999 0.974
8,450 1.000 0.740 0.851 0.992 0.982 0.987

2nd quality analysis strategy

4,013 0.916 0.950 0.933 0.919 0.973 0.945 4,006 1.000 0.936 0.967 0.989 0.988 0.989
10,252 1.000 0.975 0.987 0.942 0.999 0.969 10,252 1.000 0.975 0.987 0.942 0.999 0.969

13,039 1.000 0.936 0.967 0.942 0.999 0.969

Figure 6. Process models selected by the 1st quality measure strategy

Figure 7. Process model selected by the 2nd quality

measure strategy

Figure 8. Process model selected by the 2nd quality

measure strategy

6. Conclusion

In this paper, we analysed the ability of three
anomaly detection approaches to improve discovering
process model task, by filtering anomalous cases in a
real-world event log. We perform both quantitative and
qualitative analysis in an unsupervised setting. There is
not evidence of such approaches were compared previ-
ously in literature despite of being suitable candidates
for improving process discovery. In this paper we ex-

plored which parameter values influenced the most in
quality models. Also, we were able to find some be-
haviour patterns in parameter values. We observed that
the neural-based approach was the only one capable
of detecting a low number of anomalous traces (about
2,000) that allowed to generate a filtered event log from
which process models with good quality were discov-
ered. This shows that the autoencoder is capable of
detecting the anomalies that most affect model discov-
ery. For runs that filtered about 4,000 cases, the neuron-
based approach and low-frequency filtering heuristics
are competitive. However, the former led to the dis-
covery of a process model with parallelism (Figure 7),
which may show more effectiveness in reducing the va-
riety of anomalous behavior in the event log.

Our study is limited to a single event log with unique
characteristics. Thus, the results presented herein do not
allow extrapolating the findings to other event logs or
business domains. Thus, one way to expand this re-
search includes the design of a systematic experimen-
tation setting in which it is possible to produce results
that allow statistical generalization. In addition, the in-
volvement of stakeholders from the business area could
bring more expressive insights to qualitative analysis.
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Table 2. Qualitative analysis of process models for best results. Columns: strategy used to obtain model;

possible start activities; possible end activities; activities not included in model; loops not included in model;

percentage of anomalous cases removed from the event log prior to model discovery

Strategy Start activities End Act. Anomalous activities Anomalous loops %Anomalous cases

No filtering Any Any – All activities are –
involved in loops

1st quality analysis strategy

Seq 8,074 / Seq 8,450 A, AUI, N, R C -100, AE, AP, AV C, R 32 (Seq 8,074) / 34 (Seq 8,450)
Neu 2,485 / Neu 2,491 A, AUI, N, R C -100, AE, AP, AV C 10 (Neu 2,485) / 10 (Neu 2,491)
Neu 7,427 / Neu 8,526 A, AUI, N, R C -100, AE, AP, AV C, R 30 (Neu 7,427) / 34 (Neu 8,526)

Freq 4,006 A, AUI, N, R C -100, AE, AP, AV C 16
Freq 7,034 / Freq 8,107 A, AUI, N, R C -100, AE, AP, AV C, R 28 (Freq 7,034) / 33 (Freq 8,107)

2nd quality analysis strategy

Seq & Freq 10,252 / A, N, R C -100, AE, AUI, AP, AV C, R 41 (Seq & Freq 10,252) / 52 (Freq 13,039)Freq 13,039
Neu 4,013 / Freq 4,006 A, AUI, N, R C -100, AE, AP, AV C 16 (Neu 4,013) / 16 (Freq 4,006)
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