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1 Introduction

1.1 Goal and main result

The notion of single-peakedness has played a fundamental role in the design of rules
with appealing incentive properties in various economic and political models with public
or private components. We seek to identify the underlying fundamental property of a
domain of preferences that admits a non-trivial strategy-proof rule. In particular, we
enquire whether single-peakedness is indeed indispensable to the design of such rules in a
set up where multiple private goods are assigned to a set of agents with entitlements."

Our methodology postulates preference domains that admit the design of a strategy-
proof rule that satisfies some additional axioms,? and investigates the implications of this
postulate on the structure of preferences in the domain. Our main result is that if the
domain satisfies some “richness” conditions, then the existence of a rule satisfying these
axioms implies that the domain must satisfy a particular weakening of single-peakedness,
called semilattice single-peakedness. We also show that any domain of semilattice single-
peaked preferences admits a strategy-proof rule satisfying the same axioms.

The restriction of semilattice single-peakedness assumes a semilattice® on the set of
alternatives and requires that for any triple x,y, z of alternatives, a preference ordering
that has x as its peak must rank the supremum of the pair (z,y) above the supremum
of the pair (z,y). Chatterji and Massé (2018) show that this is equivalent to requiring
that (i) moving “closer” to the top in the order of the semilattice is improving and (ii)
the supremum of the peak of the preference ordering x and any other alternative w not
above = according to the order of the semilattice is at least as preferred as w.

The domain of semilattice single-peaked preferences is known to be salient for the
design of non-trivial and “simple” strategy-proof rules in the voting model (see Chatterji
and Massé6 (2018)). In spite of the significant differences between the voting model and
the private goods setting, the domain implications of the existence of strategy-proof rules
(satisfying other appealing properties) turns out to be identical. This may be seen as
evidence to support the view that some form of single-peakedness lies at the heart of
possibility results in the literature.

In the next subsection, we provide a heuristic description of our main result. The rest

!Three well studied partially predecessors of this formulation are Sprumont (1991), Mas-Colell (1992)
and Barbera and Jackson (1995). See also Barbera, Jackson and Neme (1997) and Klaus, Peters and
Storcken (1998). We describe the relation of those papers, and others, with our contribution in Section
4.

2Specifically, tops-onlyness, continuity, same-sidedness and individual rationality with respect to the
entitlements.

3 A semilattice on a set is a binary relation satisfying reflexivity, antisymmetry and transitivity with

the property that every pair of elements in the set has supremum.



of the paper is organized as follows. Section 2 introduces basic definitions and notation,
the desirable properties of rules and properties of preferences and domains. Sections 3
contains the results of the paper. In Section 4 we relate our results to existing results
in the literature on domain restrictions for strategy-proof rules for private goods, present
some corollaries of our main result, and discuss our axioms and richness conditions. An

Appendix collects the proofs of complementary results omitted in the main text.

1.2 A heuristic description of the main result

Consider a set of individual allotments given by the interval [0, W], where W > 0. Given
agent i and ¢' € [0, W], we define a semilattice =17 on [0, V] as follows: for any pair
x',y" € [0, W] on the same side of ¢* (either to the left or to the right of ¢* with respect to
the natural order of the reals), 2/ =7 3’ whenever 2’ is closer to ¢’ than 3. If 2% and y'
are on opposite sides of ¢’ they are unrelated under =¢'. Indeed, every pair ', " € [0, W]
has a supremum (or least upper bound or join): if 7 =9 ¢’ then sup, ,:{z’,3'} = 2’ and
if ° and 4 are unrelated under ~4"_ then sup, {2, y'} = ¢". B

Consider a preference R’ of agent i with toip t(R"), assumed unique, and with entitle-
ment ¢'. Semilattice single-peakedness with respect to —d' requires (i) preferences between
t(R') and ¢' are weakly declining in the usual sense of single-peakedness, and (ii) alterna-
tives “beyond” ¢' are dispreferred to ¢'. Figure 1.a (where arrows indicate the directions
in which =7 is increasing) depicts a semilattice single-peaked preference with respect to ¢’
for the case where t(R') < ¢'. Figure 1.b (where arrows indicate the increasing direction
of the reals) depicts a single-peaked preference with the same top and makes clear that
semilattice single-peakedness is a significant weakening of single-peakedness. Notice in
particular that allotments to the left of ¢(R’) in Figure 1l.a are ranked arbitrarily, and
that ¢* does not play any role in Figure 1.b.

0 t(R) q' w 0 t(RY) q' w

Figure 1.a Figure 1.b

The main intuition of why a domain that admits a strategy-proof and desirable rule
f has to be semilattice single-peaked can be obtained by looking at the set of allotments
that f can assign to i at R, together with some profile of the other agents’ preferences.

This set in Figure l.a is [t(R'),q'], provided that f is strategy-proof and individually
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rational with respect to ¢, and the domain of f is sufficiently rich. We sketch out why
the shape of R’ has to be as in Figure 1.a. First, assume that t(R’) < 2' < y* < ¢*. Then,
there exists a profile of the other agents’ preferences at which, together with R?, f selects
2! while f selects 3 if i submits any preference with top at 3. Strategy-proofness implies
that 2’ R'y’, and this argument applies also to single-peaked domains. Second, assume
that ¢ < 2! < W. Then, there exists a profile of the other agents’ preferences (each

W —q!

with allotment
n—1

as top, where n is the number of agents) at which, together with
R!, f selects ¢ while f selects z° if ¢ submits any preference with top at 2. Strategy-
proofness implies that ¢ R'z*, and no restriction can be obtained on the preference ordering
between any pair of i’s allotments above ¢'. Third, assume z' < t(R’). Then, ¢(R')P'z’
holds trivially, and no restriction can be obtained on the preference ordering between any
pair of 7’s allotments below ¢(R). Our Theorem 1 provides a precise formulation of this
intuition in a setting with potentially many private goods.

We now consider three formulations of private goods allocation models studied in
the literature. Barbera, Jackson and Neme (1997) consider the problem of allocating
W units of a perfectly divisible private good among n agents, each ¢ with entitlement
¢'.* This requires that if i asks for ¢ she must receive it. Individual rationality with
respect to ¢* would therefore require each agent to always receive an allotment at least
as preferred as ¢'. Sprumont (1991) studies the model without entitlements, and without
explicitly requiring individual rationality.” He characterizes the uniform rule as the unique
one satisfying strategy-proofness, efficiency and anonymity. His axioms, in particular
anonymity, effectively guaranties ¢¢ = % to each agent 7. All these models assume agents
have single-peaked preferences on the set of individual allotments [0, W] and characterize
specific families of rules that are strategy-proof.°

In contrast, rather than assuming single-peakedness from the outset, we postulate in
a multi-dimensional version of these models’ that the domain satisfies some “richness”
conditions and admits a strategy-proof rule that is tops-only, continuous, same-sided

and individually rational with respect ¢ = (¢',...,¢"). We assume richness because in

4This is a particular version of their general model without entitlements. Klaus, Peters and Storcken
(1998) conforms precisely to this description.

°This is also the general set up in Barbera, Jackson and Neme (1998).

SFor instance, Barbera, Jackson and Neme (1997) are also interested in situations where anonymity
is not a reasonable requirement, and consequently the uniform allocation rule is not appropriate. Agents
may have a wide range of priorities, seniorities or rights (different to entitlements) that the rule ought
to respect, at least partially. They characterize the class of all strategy-proof, efficient and replacement
monotonic rules as the family of sequential allotment rules (in Subsection 3.3 we describe with detail one
rule within this family).

"Considered first by Amorés (2002) and fully studied by Morimoto, Serizawa and Ching (2013). These

contributions are discussed in Subsection 4.3.



its absence strategy-proofness may be ineffectual. We show that the domain has the
semilattice single-peaked structure and observe that this structure suffices for the design
of a strategy-proof rule with these properties. The semilattice single-peakedness is a
generalization of Figure 1.a to R’ using the L; norm, where m is the number of goods to
be allotted (see Section 2 for details).

Moulin (1980) considers a public good model where the level of the public good be-
longs to [0, W]. A two-agent, anonymous, efficient and strategy-proof rule can be defined
by selecting a fixed ballot at some level ¢ € [0, W]; the rule selects at every profile of
preferences the median of the set of two tops and ¢. The preference restriction that is
implied by the strategy-proofness of this rule is exactly the semilattice single-peakedness
displayed in Figure 1.a. Chatterji and Massé (2018) consider the general version of the
public good problem with no structure on the set of alternatives and show that the same
notion of semilattice single-peakedness emerges as a consequence of strategy-proofness
along with tops-only, unanimity and anonymity, provided that the domain is rich. It is
known that only for n = 2, the private good case can be formulated as a public good case:
this is not the case for n > 3 and multiple goods.

The main contribution of this paper is to highlight the role of semilattice single-
peakedness as the fundamental underlying structure of preferences in a domain that per-

mits the design of strategy-proof rules in the disparate private and public goods models.

2 Preliminaries

2.1 Basic definitions and notation

Our general setup closely follows Morimoto, Serizawa and Ching (2013). Let N =
{1,...,n} be the finite set of agents, with n > 2, and let M = {1,...,m} be the
set of perfectly divisible goods, with m > 1. For each ¢ € M, let W, € R, be the
strictly positive amount of good ¢ that has to be allotted among agents in N and let
W= (Wi,...,W,) € RY¥,. For each ¢ € M, let X, = [0,W,] and X_, = [ocangn Xe-
For each agent i € N, let

rY'm

X:HKGMXE:{xi:(xi,... xi)ERI‘f|ng2§ngoreachﬁeM}

be agent 7’s set of possible allotments, which is the same for everyone. To emphasize
agent i’s allotment, we often write x = (2%, 27%) € X and given 7 € R we write (7)/7" as
the n — 1 dimensional vector with all components different to ¢ equal to 7.
Let
Z={v=(a',... 2" e XN | 2 =W}
1€EN

be the set of feasible allotments.



Given z',y' € X define the minimal boxr M B(x',y") of 2* and y' as the set of possible
allotments for agent 7 that lie between z* and % in the Li-norm, denoted by |||, where

for any z € RM, ||z]|,, = >",c) [2¢| ; namely,
MB(a',y') = {z' € X | o' =[], = [l2" = =], + [ = 9/ll, -

Remark 1. The minimal box between any pair 2%, y* € X can be written as a Cartesian

product of intervals; namely,

MB(x',y') = [Tseps[min{ap, y;}, max{zy, y;}]. (1)

[

Each agent i € N has a preference R € D' C R over X, where D' is a subset of R, the
set of all complete and transitive binary relations over X. We do not impose the continuity
of preferences. Note that different agents may have different sets of preferences. For any
2yt € X, 2'R'y" means that agent ¢ considers allotment z° to be at least as preferred as
allotment 3°. Let P and I* denote the strict and indifference relations induced by R! over
X, respectively. We assume that for each R’ € D* there exists t(R') € X, the top of R,
such that ¢(R') Py’ for all y* € X\{¢(R")}. When R’ is obvious from the context we write
t" instead of t(R'). For z' € X, let R!, denote any preference R" € D' with ¢t(R') = z*. We
assume throughout the paper that for each i € N and each 2! € X, the set D’ contains
at least one preference R;

We refer to the set D! x --- x D" as a domain of preferences, and often denote it as
D. A profile R = (R',...,R") € D is a n-tuple of preferences, one for each agent. To
emphasize R' in profile R we often write R = (R, R™").

2.2 Properties of rules

Since individual preferences are private information, they must be elicited through a rule.
A rule is a mapping f : D — Z that assigns to every profile R € D, a feasible allotment
f(R) e Z.

We are interested in rules that induce agents to tell the truth. A rule f : D — 7 is
strategy-proof if for all R € D, all i € N, and all R € D",

F(R)R /(R R™).
A rule f : D — Z is tops-only if for all R, R € D such that t(R’) = ¢(R") for all
i € N, f(R) = f(R). Hence, a tops-only rule f : D — Z can be written as a function
[+ XN — Z. Accordingly, we will often use the notation f(t!,...,¢") interchangeably
with f(R',..., R") since all the rules we study are tops-only.

A tops-only rule f : D — Z is component-wise unanimous if for all £ € M and all
(zf,...,2}) € X} such that Y, b = Wy, fi((x},zt,),..., (z},2",)) = z} holds for all

5



i € Nandall (z%,,...,2",) € XY, When m = 1 we refer to a component-wise unanimous
rule as just being unanimous.

A tops-only rule f : D — Z is continuous if its associated function f : XV — Z is
continuous.

Let ¢ € Z be a feasible allotment. A rule f : D — Z satisfies individual rationality
with respect to q if for all R € D and all i € N, f{(R)Rq'.

A rule f: D — Z is same-sided if for all R € D and all £ € M,

(i) if 355 te(R7) > Wy, then fj(R) < t,(R’) for each i € N, and
(i) if 35,y te(R?) < Wy, then f{(R) > t,(R') for each i € N.

We refer to a rule f : D — Z satisfying strategy-proofness, tops-onlyness, continuity,
same-sidedness and individual rationality with respect to q as a desirable rule.

A rule f: D — Z is efficient if for all R € D, the allotment f(R) is Pareto efficient;
namely, there exists no y € Z such that y*R'f*(R) for all i € N and ¢’ P7 f/(R) for at
least one j € N.

Observe that same-sidedness implies component-wise unanimity. For general domains,
efficiency and same-sidedness are two independent properties. We justify the property of
same-sidedness as a fairness axiom: if at a profile there is scarcity (or abundance) of a
good, then agents should be rationed by all receiving an allotment smaller (or larger) than
their tops. Under certain domains (for instance, the domain of single-peaked preferences

in the one-dimensional case), same-sidedness and efficiency are equivalent.

2.3 Properties of preferences and domains

A preference R' € D' is top-separable if for each each ¢ € M and z' € X we have that
(th, 2" )R (xh,a",) for all 2 , € X_,.®

A preference R' € D' is separable if for each pair 2%, y* € X and each ¢ € M we have
that, for all 2 ,, 4", € X, (z}, 2" ,)R'(y}, 2" ,) if and only if (2}, y" )R (ys, y* ,)-

Figure 2.a illustrates the allotment ¢ and the two allotments (¢, z° ,) and (x%, 2% ,)

involved in the top-separability condition and Figure 2.b illustrates the four allotments
(xh, 2% ,), (yb,z',), (x%,y",) and (y},y",) involved in the separability condition.

A preference R® € D' is Fuclidean if, for each 2% ,y* € X, 'Ry’ if and only if
|t(R?) — || < |[t(RY) — ||, where ||-|| is the Euclidean norm. Let £ be the set of all
Euclidean preferences. It is immediate to see that all Euclidean preferences are separable
and top-separable.

We will assume that each D? satisfies the following conditions.

8Top-separability was first introduced by Le Breton and Weymark (1999).
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SEPARABLE RICHNESS: A set of preferences D’ is separably rich if for every non-
separable preference R' € D' and every pair x%,y* € X such that 2'P'y’ there exists a
separable preference R € D' such that t(R') = t(R') and 2 Piy. A domain D x - .- x D"
is separably rich if, for each i € N, D' is separably rich.

RICHNESS RELATIVE TO ¢': A set of preferences D’ is rich relative to ¢¢ € X if for
all z',y', 2" € X such that z' # ¢', ¢" ¢ intMB(z',y") and 2* ¢ MB(xz',y") there exist
Riﬂ-, R;i € D’ such that ylP;,zl and a:’P;,zl A domain D! x --- x D" is rich relative to
q= (¢, ...,q") € Z if, for each i € N, D' is rich relative to ¢'.

The property of richness relative to ¢’ translates to this Euclidean setting the richness
condition used in Chatterji and Massé (2018) for semilattices in the case of a public good.
However, the present version of richness relative to ¢° € X is weaker because the existence
of the two preferences R, R, € D' is only required if ¢’ ¢ intM B(2', y").”

Figure 3.a depicts allotments z*, y*, 2*, ¢* € X satisfying the hypothesis of the property
of richness relative to ¢*. Figure 3.b illustrates the hypothesis of the property when ' = ¢'.

*a

Figure 3.a Figure 3.b

Separable richness requires that the domain D exclude certain non-separable prefer-
ences. For instance, assume m = 2 and consider z',y" € X with 2z, < yi for £ = 1,2.

Consider the non-separable preference R' € R with ¢(R') = ', where

(1, 25) P! (1, 95) P (w1, 23) P (2}, 43)-

9See Subsection 4.1 for a general discussion of the connection between the two approaches. It is easy

to see that the domain of Euclidean preferences does not satisfy this richness property since for each

allotment z* € X there exists a uniqye Euclidean preference whose peak is .



Then, any separable preference R’ with t(R?) = (2, x}) has to have (yi,z3)P*(yi,4) and
(28, y8)Pi(yi,vh). Accordingly, separability would require that R ¢ D'. However, note
that R’ is not top-separable. In Appendix 1 (proof of Statement 1) we show that, for any
non-separable but top-separable preference R* € D' and for any pair z°,y* € X such that
2 Py, there exists a separable preference R € R’ with the property that t(R') = t(R")
and 2 P'y’. Separable richness requires that at least one such preference R’ belongs to
Di.

A preference R’ € D¢ is multidimensional single-peaked if for all %, y* € X such that
x' € MB(y',t"), ' R'y". Denote the set of all multidimensional single-peaked preferences
by MSP. For z¢,y' z* € X such that 2* ¢ MB(y', %), denote by 7' as the allotment

2" —77||,, . Observe

in MB(y', z*) which is closest to «'; namely, " = arg min,icap(yi .1

that 2 is unique. Moreover, the following holds for every ¢ € M.

If min{y}, 2} <2} < max{y}, 2}}, then 7} = 2.
If zi < min{y}, zi}, then &% = min{y}, 2} }.

If max{y}, z;} < 2}, then ¥} = max{y}, 2} }.

Figure 4.a depicts a situation where z° R’y according to multidimensional single-peakedness

and Figure 4.b illustrates geometrically for 2 and w’ the corresponding 7' and w".

z* z*

i

Y_p

i

i

i

Y_o

Figure 4.a Figure 4.b

We now present the definition of semilattice single-peakedness.!”

SEMILATTICE SINGLE-PEAKEDNESS: A preference R' € D¢ is semilattice single-peaked
with respect to ¢* € X if
(SSP.1) for all 2%, y* € X such that 2' € M B(¢',t") and y* € M B(x",t), we have y* R’

x', and

0The notion of semilattice single-peakedness was first introduced in Chatterji and Massé (2018) for
the public good case by using a semilattice obtained from a given rule satisfying strategy-proofness,
unanimity, anonymity and tops-onlyness. Since the condition identified here for the private goods case
corresponds to the one identified for the public good case, we have decided to retain the same name, even
though our multidimensional Euclidean setting does not require the explicit reference to a semilattice.
In Subsection 4.1 we will describe how to obtain in our private goods case a semilattice on X inducing

the same domain of semilattice single-peaked preferences.



(SSP.2) for all 2* ¢ M B(¢',t"), " R® .

Given ¢' € X, denote the set of all semilattice single-peaked preferences by SSP(q'),
and given ¢ € Z, define SSP(q) = SSP(q') x --- x SSP(q").

Figures 5.a illustrates the hypotheses of the property (SSP.1), under which y'R‘xz’
has to hold. Figure 5.b illustrates the hypothesis of the property (SSP.2), under which
'R’z has to hold, and that SSP(¢’) is larger than the domain MSP because there are
R' € 8§8P(q') and ¥, 2" € X such that t(R') = t' but 2* € M B(y',t") and y'P,;z".

(P PR | . . th I

Figure 5.a Figure 5.b

Note that MSP and SSP(¢') contain non-separable preferences. It is easy to check
that the following properties hold for each ¢* € X.

(1) MSP and SSP(q') are top-separable, separably rich and rich relative to ¢',

(2) E S MSP ¢ SSP(¢') and (icx SSP(¢') = MSP, and

(3) & is top-separable, separable, separably rich (trivially) but it is not rich relative
to any ¢'. Figure 6 illustrates this last sentence by depicting two circles, with centers at
2" and y', representing indifference classes for the two unique Euclidean preferences R!,
and R; with peaks at z' and y, respectively. Then, z'P’y" and ziP;ixi necessarily hold,

since z° is closer to x’ than v is to z* and 2’ is closer to 3’ than 2 is to y'.

Figure 6



3 Results

3.1 Preliminaries

Remark 2. Let D! x --- x D" be a rich domain relative to ¢ € Z and let f : D — Z
be a tops-only rule satisfying individual rationality with respect to ¢q. Then, for all ¢t =
(t1,...,t") € X such that either (a) t* € M B(0,¢*) for all i € N or (b) t € M B(q', W)
for all i € N, we have that f(t) = ¢. To see that, assume t = (t',...,t") € XV is such
that t* € MB(0,q") for all i € N and f(t) # q. Then, by feasibility of f(¢) and ¢, there
exists ¢ € N such that fi(t) ¢ MB(t',q"). Since ¢' ¢ int M B(t', q"), by richness relative
to ¢' and tops-onlyness, there exists R, such that qzﬁt’ fi(t), which together with tops-
onlyness contradicts individual rationality with respect to ¢'. The argument for case (b)

is analogous. [ |

Remark 3. Let D! x --- x D" be a rich domain relative to ¢ € Z and let f : D — Z
be a tops-only rule satisfying same-sidedness and individual rationality with respect to
q. Fix £ € M and let w_, be such that ZjeN wi = Wy for all k£ # (. Assume that
te = (t},...,t}) € X} is such that t* = (t},w",) for all i € N and either (a) ¢, > ¢, for
all j € N or (b) t) < ¢j for all j € N. Then, for all i € N,

fi(te,w_y) = g

To see that, assume first that (a) holds. Hence, Zje N tz > W,. By same-sidedness,
fi(te,w_g) <t} for all i € N. To obtain a contradiction, assume f7 (t,, w_;) # q; holds for
some j € N. By feasibility of ¢, there exists i € N such that f}(t,, w_,) < g}. Accordingly
fi(te,w_g) & MB(q', (t;,w',)). Since ¢* ¢ int M B(q', (t;,w' ,)), by richness relative to ¢',
there exists ﬁ(lt i) such that

qip(it%,wie)f%(té? wi@)u (téa wj—ﬁ)j#i>u

which, together with tops-onlyness, contradicts that f is individually rational with respect

to ¢'. The argument for case (b) is analogous. |

3.2 The main result

Theorem 1. Let D be a domain that is top-separable, separably rich and rich relative
toq e Z. Let f: D — Z be a strategy-proof, tops-only and continuous rule satisfying
same-sidedness and individual rationality with respect to q. Then, for each i € N, D' is a
set of semilattice single-peaked preferences with respect to ¢'.

Proof: Let z',y' € X be such that ' € MB(¢',t") and y' € M B(x',t'). For (SSP.1)

we are required to show y' R .
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For { € M, let 2/, = L (W_, —t",) for all j € N,j # i. By same-sidedness, f
is component-wise unanimous and consequently, for all j # 4, all p, € [0, X,] and all
(Y7 € [0, XM,

FL(Pp t), (0, 2 Y7) = 1Ly, (2)

We only consider the case that i’s allotments (z),t",), (yi,t',) € X are such that
qg < 2} <yi <. An analogous argument applies to the excluded case where ¢} > z, >
v > 1.

Claim 1 (yy, a' ) Ry, (), aLy).

Proof of Claim 1 We note first that if y; = ¢}, the required conclusion follows from
the assumption that preferences are top-separable. If zi = yi, the claim follows from
reflexivity of R!;. So we henceforth assume ¢, < x} < y, < t..

(yi, " ,). By same-

To obtain a contradiction to Claim 1, suppose that (x},z" )P/,

sidedness, f is component-wise unanimous, and therefore

Fi(We,tly), (0,22, )7) = W (3)
By Remark 3,
Fil(We,tly), (a7, 2 )77) = qp. (4)
By continuity, there exists 7, such that for all j # i, 0 < Te < qz and
Fi(Weyty), (1, 22.)77) = g (5)
We now show that
Fl(ti ), (], 2L )7 < g (6)

holds as well. To obtain a antradiction, assume fi((t5, "), (1, 22,)7%) > yi.

It Wy = fi((t;, ), (r7, 22,)’7"), then

fi((tzv ti—é)v (d? Zif)j#) = (Wﬁv ti—é)P(in,tig)(fi((Wﬁv ti—é)v (d? Z];K)j#% ti—Z) = (yL i—é)a
which contradicts strategy proofness.

Hence, W, > fi((t}, 1), (r), 22,)77") > yi > ¢¢ and so (see Figure 7)

(e t2e) & MB((fi (65 t20), (1), 21 )77 8L,), (W, tLy)). (7)
zt,
(W tty) (fi:thy) (W, tL,)
t, - O — - - -
0 g v I7 W -
Figure 7
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Because ¢; < yj and (5) hold, we have that ¢’ ¢ int M B(f*((t,t,), (], 2°,)7%), (Wy, t1,))
and, since (7) holds as well, we can apply richness relative to ¢*. Therefore, there ex-

ists REW i, € D' such that f((¢),t",), (r], 2" )97&“)P(1We " )(y},tﬂe), which contradicts

strategy—proofness since, by (5),
fz((tza tz— ) (réa Z- )ﬁél)P(lWe,tl (fz((Wb ti—é)ﬂ (TZ, Ziﬁ)j#i)) = (yéa tl—Z)

Hence, (6) holds. Since for all j # i, 0 < rz < qﬁ and 0 < ¢/, Remark 3 implies that

Fi((0,82,), (rg, 22, )7%) = g (8)
By continuity, (5) and (8) there exists 7} € (0, W,) such that (if 2} = ¢} then 7} = ¢})
Fil(T120), (rg, 220)70) = . (9)

Next note that our contradiction hypothesis (z},z" ,) P (y;, 2" ,) and that the domain

ti
D is separably rich ensures that there exists a separable preference R!, € D' such that

(xh, 1" )P’ (yi,t",). By strategy-proofness, tops-onlyness, top-separability, (9) and the
contradiction hypothesis, we have that
Pt ty), (rs 2270 = (fi(t 1), (s 220)777), 1)
R (Fi((71, 1), (], 22,)777), 1)
= (aptly)
P 5 (g 1)
By (6), and the strict preference in the expression above, fi((ti,t,), (1], 27 ,)#) < yi < ti,
where the last strict inequality follows from our general assumption that ¢, < z) <
i <t Hence, (fi((t 1), (rf 2 JF0), 1) & MB{(yjt,), (1, #,)) and (g} 1",) ¢
int M B((y;,t",), (t;,t",)). By richness relative to ¢', there exists a preference R}, € D’
such that (yj,t" ) P (fi((th, 1), (], 22,)7")), #.p). By (5),
(E((Westy), (17, 22 )7 0) L) PE(fE (1), (1, 2201 70) 8 ),
which contradicts strategy-proofness. This completes the proof of Claim 1. O

Next, we repeat the argument used in the verification of Claim 1 to conclude that,
for any pair ¢,¢' € M, (yb, yb, 2° {f}g,})Rii (yp, 2%, 2" (0.ry) and use transitivity to conclude
that (yj, Yo, 27 ¢y py) Ris (24, 24, 27 ¢, ). Repeating the argument for £ € M\{¢, '} gives
the desired conclusion ' R¢, 2.

To prove (SSP.2), assume z* ¢ M B(t', ¢'). We want to show that 7' R'z". Define

Ly = {teM|z;<q <t}
Ly = {{eM|qg<t;<ay}
Ly = {teM|z;<t;<q}
Ly = {{teM|t <q <ai}
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By hypotheses, L; U Ly U L3 U Ly # (). Suppose Ly # () and let ¢ € L. By definition of 7,
T, = qb. Accordingly, =} < T, = ¢} < t}.

Claim 2.1 (T4, 2° )R (xh, 2 ).

Proof of Claim 2.1 We note first that if ¥} = ¢}, the required conclusion follows from

the assumption that preferences are top—separable. So we henceforth assume
T, < T, =q, <t}

Let 2/, = L (W_, —t",) for all j € N\{i}. To obtain a contradiction to Claim 2.1,
suppose that (z},z",) P/ (g}, 2,). By separable richness, there is a separable preference
Pl € D' such that (7, mfg)P

tt

(¢4, 2" ,). By separability,
By Remark 3, and component-wise unanimity that follows from same-sidedness,
PG tg), (Wey 2 )770) = (gt y). (11)
By same-sidedness,
fillwh thy), (We, 22, )77) < .
We next claim that
fél«x;v ti—f)’ (WZ7 Zj—f)jil) = xz
If this is not true,
Fil(@y ), (We, 2,)77) = yp < (12)

holds. Then, and since (y},qi ) & MB((z},t",),q") and (q},q",) ¢ intMB((x},t",),q"),

by richness relative to ¢, there exists a preference PZ € D' such that

’L tz )
(5 @) Py, (W 620)-

By separable richness, there is a separable preference Pt’; € D' such that t(}?’) = (zi,t",) =
t(R") and (¢}, ¢* Z)P( " )(yé, q¢',). By separability, (g, i—é)P(ix;;,til)(yé’ t',). Hence, by (11)
and (12),

fi((t27ti£)7 (va Zzﬁ)j#i) = (qzatifﬁp(ixé,tié)(yévti ) fz((ﬂ% ) (Wfa — )j#i%

a contradiction with strategy-proofness. Hence, fi((x},t",), (Wy, 27 ,)%") = xi. Thus, by
(11), (10), t(R") = («i,t",), tops-onlyness and component-wise unanimity that follows

from same-sidedness,
S tg). (We 2L )7) = (a4 ) Pl t10) = S((t5 1), (W, 2L, 79),
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a contradiction with strategy-proofness. This finishes the proof of Claim 2.1. O

Suppose Ly # () and let ¢ € Ly. By definition of 7*, 7} = ¢. Accordingly, t} < ¢/ =
Ty < Ty
Claim 2.2 (2%, 2° ,)R'(z), 2" ).
Proof of Claim 2.2 We note first that if ¥} = ¢}, the required conclusion follows from

the assumption that preferences are top-separable. So we henceforth assume
t, < q =1, <

Let 2/, = L (W_, —t',) for all j € N\{i}. To obtain a contradiction to Claim 2.2,
suppose that (:L‘é, z' )Pl (g}, 2" p). By separable richness, there is a separable preference
15;;- € D' such that (%, :L’i_e)PZ (qi, 2" ,). By separability,

(wh t20) P (ap 1y). (13)
By Remark 3, and component-wise unanimity that follows from same-sidedness,
Pt ), (Wey 22, )70) = (gj, 1)) (14)
By same-sidedness,
Fil(ag thy), (We, 21,)777) < .
We next claim that
le((ﬁ, tiﬁ)? (Wfa Zify;éi) = 37@

If this is not true

fil(@ tly), (W, 22 )70 = o < (15)
holds. Then, and since (yf},qi ) & MB((z},t",),q") and (q},q",) & intMB((z},t",),q"),
by richness relative to ¢°, there exists a preference P(Z it ) € D¢ such that

(4z, Qi—z)P(ix;é,ti_é)(yé’ q" )

By separable richness, there is a separable preference ptﬁ- € D' such that t(R’) = (x},t",) =
t(Ri) and (qzv qi_z)P(ixw_é)(yéy qi_z)' By separability, (qév ti—e)P(ixz,ti_ )(y£7 ) Hence, by (14),
(15) and

T2, (W 2L Y7) = (a1 1) Pl ) W 120) = Sl L), (We 22)7),

a contradiction with strategy-proofness. Hence, fi((x},t",), (Wy, 27 ,)7") = xi. Thus, by
(14), (15), t(R) = («i,t",), tops-onlyness and component-wise unanimity that follows

from same-sidedness,
(1), (We, 22 )7) = (2, L) P th) = F((t 1), (We, 27 %),

14



a contradiction with strategy-proofness. This finishes the proof of Claim 2.2. O

Suppose ¢ € Ly U L. By definition of 7%, 7 = t|. Then, (z},2" ,)R'(z}, 2" ,) follows
from the assumption that preferences are top-separable.

Moving from z° to 7° coordinate-by-coordinate and applying Claim 2.1 or Claim 2.2
or this last observation together with transitivity of R’ we establish that 2'R‘2‘. This
finishes the proof of Theorem 1. [ |

3.3 Semilattice single-peaked domains admit desirable rules

In this subsection we show that, for each ¢ € Z, the domain SSP(q) admits a strategy-
proof, tops-only and continuous rule that satisfies same-sidedness and individual ra-
tionality with respect to q. The rule that we will exhibit is the m—dimensional se-
quential allotment rule f? : SSP(q) — Z where, for each R € SSP(q), f1(R) =
(fEte(RY), ..., to(R™)))eem and, for each £ € M, (i) f¥* : SSP(q) — [0,W,] is the
sequential allotment rule that satisfies individual rationality with respect to ¢, (as de-
fined in Barbera, Jackson and Neme (1997) on the domain of single-peaked preferences
on [0, W;]) and (ii) its sequential adjustment function is uniform (up to feasibility). Ob-
serve that sequential allotment rules are tops-only, and since the domain of single-peaked
preferences on [0, W] is a subset of SSP(q,), the rule f/* : SSP(q;) — [0,W;] can be
identified with f : X — [0, W], and accordingly it can be extended to operate on the
larger domain SSP(q¢). Moreover, as established in Barbera, Jackson and Neme (1997),
/ has the property that (i) f(0,...,0) = f/(Wy,...,W;) = ¢, and (ii) ¢, can be seen

as a vector of guaranteed endowments since, for each ¢ € N and each t[i e X év \{i},
qui

[ (%7 tf) = qé'

For each ¢ € Z and ¢ € M, the definition of f* : X} — [0, W] is sequential and as
follows. Let t, = (t},...,t7) € X}¥ be arbitrary.

Suppose ZjeN tz = Wy. Then, f(t;) = ts.

Suppose > oyt > We If t, > ¢ for all i € N, then f/(t;) = q,. Otherwise, each
¢ with ¢, < g receives t; and leaves the process with ¢}, while the other agents remain.
The guaranteed endowments of the remaining agents are weakly increased by distributing
among them the not yet allotted amount uniformly. Agents with a top smaller (larger)
than or equal to the new guaranteed endowment receive the top and leave the process,
while the others remain. The process proceeds this way until there is no agent with a top
smaller (larger) than the current guaranteed endowment, and the rule assigns to those
remaining agents their last guaranteed endowment.

Suppose )¢y t) < Wy. If t}, < ¢} for all i € N, then f{(t;) = q;. Otherwise, each i
with t, > g; receives t; and leaves the process with ¢, while the other agents remain. The

guaranteed endowments of the remaining agents are weakly decreased uniformly, keeping
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them feasible and non-negative. Agents with a top larger than or equal to the new guar-
anteed endowment receive the top and leave the process, while the others remain. The
process proceeds this way until there is no agent with a top larger than the current guar-
anteed endowment, and the rule assigns to those remaining agents their last guaranteed
endowment.

For further reference, we state as Remark 4 a property of any of these sequential

allotment rules.

Remark 4. Let ¢, be such that >°. ¢, = Wy and f/ : SSP(q) — [0, W] be the
sequential allotment rule that satisfies individual rationality with respect to ¢, and its
sequential adjustment function is uniform (up to feasibility). Then, the followings hold:
(i) For each t;, = (t},...,t}) € X}V, at the end of the process, each agent i receives either
t, or ¢’s final guaranteed endowment which has been moving monotonically towards ¢
along the process.
(ii) Uncompromisingness: For each R € SSP(q), each £ € M, each i € N and each
R € SSP(q), if f{"'(R) < to(R') and f{"'(R) < to(R) (f{*(R) > t;(R’) and f{*'(R) >
to(RY), then fi** (R, R™") = fI(R).
(iii) Peak-monotonicity: For each R € SSP(q), each £ € M, each i € N and each R’ €
SSP(q). i) = ) (o) < (). then S/ (R, B) = [ (R) (0 (R R <
U (R)). .

The next example illustrates one of these sequential allotment rules f/* : SSP(q,) —

[0, W] by evaluating it at two different profiles of tops.

Example 1. Let N = {1,2,3,4} and W, = 7. Assume ¢, = (0,1,2,4) € Z is the
initial vector of guaranteed endowments, represented in Figure 8.a by the four circles.
In Figures 8 and 9 the horizontal axes represent the assignments of the good while the
vertical axes represent the agents. To simplify notation, we omit the reference to ¢, and
write f{ instead of fi".

Consider the vector of tops &, = (5,1,2.5,2) € X}. Since EjeNfZ >T7.05 =1=¢
and T, =2 <4 =g}, f2(f,) = 1 and f4(%,) = 2, and agents 2 and 4 leave with their tops.
The amount not allotted yet is W, = 4. The new updated guaranteed endowments for
agents 1 and 3 that remain are g} = ¢} + * = x and G5 = ¢ + x = 2 + x, where x is such
that g} +q; = 4. Hence, z = 1 and so q; = 1 and §; = 3, represented in Figure 8.b by the

two circles.
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agents agents

4 i, ° fAG) =2 4
73 =3 _ 73 3(7,) —
3 o tp q; =3 3 ty © £ (te) = 2.5
72 207} —
2 o} [l =1 2
1o & =1 1 0 7
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
=W, =W
Figure 8.a ¢ Figure 8.b ¢

Since §, = 2.5 < 3 = ¢, f3(f,) = 2.5. Since only agent 1 remains and one a half
units have not been allotted yet, the new guaranteed endowment for agent 1 is equal to
52 = 1.5, strictly smaller than fé = 5. Hence, f;(t;) = 1.5. Therefore, f}*(5,1,2.5,2) =
(1.5,1,2.5,2).

Consider the vector of tops ¢, = (4,0,0.5,1) € X}. Since > jen t)<T7and t) =4 >
0 = gq; agent 1 leaves with her top.

agents agents
4 t o a1 =25 4 t3 °
3 o ¢ =05 3 ot f3(t,) =05
2t o @ =0 2o f2t) =0
1o ty fit)=4 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 g
Figure 9.a =We Figure 9.b =,

The amount not allotted yet is W, = 3, and the updated guaranteed endowments for
4
z,0} = max{2 — z,0} and g? = max{q} — z,0} = max{4 — x,0}, where x is such that

agents 2, 3 and 4 that remain are ¢> = max{q? — z,0} = max{1 — z,0}, QZ’ = max{q; —
¢+ ¢ +q, = 3. Hence, z = 1.5 and so ¢} = 0, ¢ = 0.5 and ¢; = 2.5, represented
in Figure 9.b by three circles. Since t; = ¢> = 0 and ¢} = ¢> = 0.5 agents 2 and 3
leave with their tops and agent 4 receives her guaranteed endowment 2.5. Therefore,
%(4,0,0.5,1) = (4,0,0.5,2.5). m

Proposition 1.  For each q € Z, the rule f9: SSP(q) — Z whose sequential adjustment
function is uniform (up to feasibility) is strategy-proof, tops-only, continuous and satisfies

same-sidedness and individual rationality with respect to q.

Proof: Tops-onlyness, continuity and same-sidedness follow directly from the definition
of f4. It remains to verify strategy-proofness and individual rationality with respect to q.

Fix arbitrary agent ¢ € N and profile R € SSP(q). By Remark 4(i), for all ¢ €
M, fE(to(RY), ..., ts(R")) is either t,(R’) or i’s last updated guaranteed endowment
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of good ¢ used in the sequential process to define f7(t,(R'),...,t(R")). In both cases,
D (te(RY), ... te(R™)) € MB(t},q;). Hence,
f¥(R) € MB(t',q').

By (SSP.1), f%(R) R’ ¢" which means that f? satisfies individual rationality with respect
to ¢'.

To show that f? is strategy-proof, let R € SSP(q") be arbitrary. We have to verify
that

' = f¥(R) R* f*(R",R™") = 7. (16)

By Remark 4(i), 2° € M B(t',¢"). Consider the case of 7° € M B(z%,¢'). Then by
r' € MB(t,q"), 70 € MB(t,¢") and ' € M B(t",7"). Thus by (SSP.1), (16) holds.

Next consider the case of ¢ ¢ M B(x%,¢'). By Remark 4(ii) and (iii),

€ [0,z if ) < th; T, € [0,Wy] if 2}, = tl; T € [wg, W] if 2} > ).

Thus by z* € MB(t', q"), there are the following cases;

Case A: T, < q <l <t Case B: ¢, <7, <z} < t},
Case C: T, < q) <al =t Case D: ¢, <7} < 2} =1},
Case E: q <z, =t, <7, Case F: 7} < i, = t}, < ql,
Case G z, =1, < q, <7, Case H: 2, = t, < 7, < ¢,
Case I: T, > q, > x>t Case J: ¢b > 7% > ab > tl.

Thus by z¢ ¢ MB(af, q) 7' ¢ MB(q',t"). Let 2° be such that 7% = ¢/ for Cases
A, C, G and I; 7 = 7 for Cases B, D, H and J; and 7 = x} for Cases E and F.
Then, z* € MB(z',t"), 7' € MB(2',q") C MB(q',t"), and 7" is the closet point to 7' in
MB(q',t"). By (SSP.1), 2" € MB(t',¢') and 2 € M B(Z",t"), 2'R'Z". Since 7" is the closet
point to ' in M B(q', %), by (SSP.2) and 7 ¢ M B(q',t'), 7' R'Z'. Thus, by transitivity,
'R'Z" and (16) holds. [ |

Observe that, given ¢ € Z, there are many sequential allotment rules; in particu-

lar, those that use sequential adjustment functions that are not necessarily uniform (see
Barbera, Jackson and Neme (1997)).

4 Discussion and related literature

4.1 Semilattice single-peakedness for public and private goods

The notion of semilattice single-peakedness used in this paper corresponds to the definition

of semilattice single-peakedness relative to a semilattice over the set of alternatives used in
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Chatterji and Mass6 (2018) in a public good context. We now show how to obtain in our
private goods case a semilattice on X inducing the same set of semilattice single-peaked
preferences.
Let ¢* € X be given. Define the binary relation =4 over X as follows. For each pair
2ty € X, set
o=y s e MB(Y,q).

It is immediate to check that the binary relation =4 is reflexive (i.e., for all z € X,
2 =9 z%) and antisymmetric (for all 7,y € X, ' =9 ¢ and y* =7 2 imply 2/ = y').
To check that =7 is transitive, let 2%, y%,2* € X be such that 2 =7 ¢ and ' =7 2.
Equivalently, assume that 2* € M B(y',¢") and y* € M B(2%, ¢%) hold. Fix ¢ € M. The fact
that y* € M B(2", ¢') means that min{z}, ¢/} < yi < max{z},q,}. We distinguish between
two cases. First, 2; < ¢}, and so 2, < y, < ¢,. The fact that ' € MB(y’,¢') means
that min{y}, ¢/} = vi < 2} < ¢, = max{y}, ¢;}, which implies that min{z},¢}} < 2 <
max{z}, ¢;}. Second, ¢, < 2}, and so ¢/ < yi < zj. The fact that ' € M B(y’, ¢') means
that min{y}, ¢/} = ¢/ < 2!, < y, = max{y}, ¢/}, which implies that min{z}, ¢/} < 2} <
max{z;, ¢;}. Hence, in both cases, z} € [min{z}, ¢; }, max{z}, ¢;}], and so z}, € M B(z},q}).
Since this holds for all £ € M, we have that 2 € MB(z%,¢"). Thus, 2* = 2’ and =7 is
transitive.

Therefore, =7 is a partial order over X. Statement 2 in the Appendix says that -
is a semilattice; namely, for any pair z',y" € X, sup,,{z",y'} does exist. Moreover,
our definition of semilattice single-peakedness with resl;ect to ¢' here corresponds to the
notion of semilattice single-peakedness on (X, =¢") given by Chatterji and Mass6 (2018)
for the case of a public good (i.e., if X were the set of social alternatives). Indeed given
any triple t*, 2,9 of alternatives, a preference ordering that has t* as its top must rank
the supremum of the pair (#',4%) above the supremum of the pair (z%,%") (see Figures 5.a
and 5.b).

4.2 The case of one private good

We consider now the special case of our model where W units of one perfectly divisible
private good has to be distributed among the set of agents N. This is a special case of
our model with m = 1. We therefore set W, = W and X = [0, W].

In this case, the domain requirements of top-separability and separable richness are
vacuously satisfied. We only require that the domain be rich relative to q. Sprumont
(1991) studied this problem assuming that preferences are continuous and single-peaked.
He characterized the uniform rule as the unique rule that is strategy-proof, efficient and

1

anonymous on the single-peaked domain.!! The statement in Corollary 1 below corre-

YA rule f: D — Z is efficient if for all R € D, there is no € Z such that 2R f(R) for all i € N
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sponds to our Theorem 1 for this one-dimensional case.

Corollary 1. Assume m = 1 and let D = D' x --- x D" be a rich domain relative to
q € Z andlet f : D — Z be a strategy-proof, tops-only and continuous rule satisfying
same-sidedness and individual rationality with respect to q. Then, for each i € N, D' is a

set of semilattice single-peaked preferences with respect to ¢'.

A simple adaptation of the proof of Theorem 1 for the case m = 1 shows that Corollary
1 remains true after replacing same-sidedness by efficiency. In the one-dimensional case
with single-peaked preferences, same-sidedness is indeed equivalent to efficiency. However,
Morimoto, Serizawa and Ching (2012) showed that in the multiple-dimensional case with
continuous, strictly convex, and separable preferences, efficiency implies same-sidedness,
with the converse not being true.

Mass6 and Neme (2001) identified the maximal domain of preferences that admits a
strategy-proof, efficient and strong symmetric rule.!? Massé and Neme (2004) identified
a maximal domain of preferences that admits a strategy-proof, efficient, tops-only and
continuous rule. These two domains are similar to the one described here in Figure 1.a,
with ¢ = %, The main differences between the two domains and our are that (i) the
unique top condition is not imposed from the outset and (ii) preferences with some (and
very specific) indifference intervals at the same side of the peak have to be excluded.
The reasons underlying the second difference is that Massé and Neme (2001 and 2004)
required the rule to be efficient but not individually rational (because agents do not
have entitlements). For the case of a variable amount of the good, Ching and Serizawa
(1998) showed that the single-plateaued domain is the unique maximal domain containing
the domain of single-peaked preferences while admitting a strategy-proof, efficient and

symmetric rule.

4.3 The maximal domain property

A domain D is mazximal for a list of properties if (i) there is a rule on D satisfying the
properties and (ii) there is no domain D’ O D such there is a rule on D’ satisfying the

properties. Note that by Theorem 1 and Proposition 1, we have the following result.

Corollary 2. The set of all semilattice single-peaked preferences with respect to q is the
unique maximal domain for strategy-proofness, tops-onlyness, continuity, same-sidedness
and indiwidual rationality with respect to q that is top-separable, separably rich and rich

relative to q € Z.

and z7 PJ f7(R) for some j € N.
A rule f : D — Z is strong symmetric if for all R € D and all 4,5 € N such that R; = Rj,
FI(R) = [/(R).
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Proof: By Proposition 1, there is a rule on SSP(q) satisfying strategy-proofness, tops-
onlyness, continuity, same-sidedness and individual rationality with respect to ¢. Thus,
SSP(q) satisfies (i) of domain maximality.

Let D be a top-separable, separably rich and rich relative to ¢ € Z. Theorem 1
states D C SSP(q). Thus, SSP(q) also satisfies (ii) of domain maximality. Since D is an
arbitrary top-separable, separably rich and rich relative to ¢ € Z, SSP(q) is the unique

maximal domain for these properties. [ |

Note that a maximal domain for a list of properties may not be unique. Thus, the
uniqueness claim of Corollary 2 demonstrates that semilattice single-peakedness is es-
sential for our desirable properties (strategy-proofness, tops-onlyness, continuity, same-

sidedness and individual rationality with respect to q).

4.4 The model with variable endowments

We consider now a variant of our model where the entitlements are a variable as in earlier
work (Ching and Serizawa, 1998; Mizobuchi and Serizawa, 2006).
Let
Q={q¢=1(d"....a") ) ¢ =W}
ieN
be the set of entitlement profiles. A rule is a mapping f : D x () — Z that assigns to every
profile (R, q) € D x @ of preferences and entitlements a feasible allotment f(R,q) € Z.

The following result is a direct corollary of Theorem 1.

Corollary 3. Let D be a domain that is top-separable, separably rich and rich relative
toall g € Q. Let f : D x Q — Z be a strateqy-proof, tops-only and continuous rule
satisfying same-sidedness and individual rationality with respect to all ¢ € Q). Then, for

each i € N, D' is a set of multidimensional single-peaked preferences.

Proof: Letie N, R' € D', z' € X and y' € X be such that y* € MB(z',t"). We need
to show y' R'2%. Let ¢' = 2. Then, 2' € M B(q',t"). By Theorem 1, R’ is semilattice
single-peaked with respect to ¢'. Thus, (SSP.1) of semilattice single-peakedness implies
y' R 2t [ |

4.5 Other related literature: the case of many private goods

There is a rich literature studying rules in economies with more than one private good.
In contrast to our approach, they assume a given domain of preferences and identify rules
satisfying desirable properties on the domain.

Morimoto, Serizawa and Ching (2012) studied the multi-dimensional extension of
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Sprumont (1991).!3 They show that on the class of continuous, strictly convex, and
separable preferences a rule satisfies strategy-proofness, unanimity, weak symmetry and

4 This result extends to the class

nonbossiness if and only if it is the uniform rule.!
of continuous, strictly convex, and multidimensional single-peaked preferences. Adachi
(2010) provides a similar characterization of the uniform rule using strategy-proofness,
same-sidedness and envy-freeness.

Mas-Colell (1992) considers an economy with private goods and production. Agents
have continuous and convex preferences (i.e., they might or might not be satiated). He
defines the notion of Walrasian equilibrium with slacks (an extension of the notion of
competitive equilibrium in this more general setting with potentially satiated agents).
The main contribution of Mas-Colell (1992) is to identify sufficient conditions on the
economy under which a Walrasian equilibrium with slacks does exist and it is efficient;
the issue of truthful revelation is not addressed.'®

Barbera and Jackson (1995) considers an exchange economy with private goods. Agents
have initial entitlements and continuous, strictly quasi-concave and increasing preferences,
which are represented by utility functions. For the case of two agents they characterize
fixed-proportion trading as the class of all strategy-proof and individually rational rules.
For the case of any number of agents, they characterize fixed-proportion anonymous trad-
ing as the class of all strategy-proof, non-bossy, anonymous and tie-free rules. In contrast
with the rule that we exhibit in Proposition 1, those rules are not tops-only (although they
are tops-only on the range). Observe that their assumption that agents have increasing
preferences and our assumption that agents are satiated (i.e., for each 2* € X there exists
at least one R’ € D' such that t(R’) = z') imply that the two domains are different and
they reflect two very distant economic settings.

Moulin (2017) studies a family of collective decision problems where each agent i’s
preferences are single-peaked over a set in which agent i is interested, and this set is one-
dimensional. The model includes among others the voting model (Moulin (1980)), when
the set is a common subset of real numbers, and Sprumont’s (1991) division problem, when
the set of alternatives has n private components, and each agent i cares only about his/her

one-dimansional private component. Moulin (2017) shows the existence of strategy-proof

13 Amorés (2002) previously studied this extension. However, he only considered the case of two agents,
which can easily be seen as being equivalent to a public good case: by feasibility, once the allotment of
an agent is determined (the “public good”), the allotment of the other agent is determined as well.

YA rule f: D — Z is weak symmetric if for all R € D and all 4, j € N such that R; = R;, f/(R)I' f/(R).
A rule f: D — Z is non-bossy if the change of one agent’s preference does not alter allocations unless it
alters her own assignment.

Y Hurwicz (1972) and Zhou (1991) address this issue for two-agent pure exchange economies. Later
Serizawa (2002) and Serizawa and Weymark (2003) extend the analysis to many-agent pure exchange

economies.
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rules satisfying additional desirable properties like efficiency and fairness. The existence
result in Proposition 1 here can be recast as a multi-dimensional version of Moulin (2017)
where we are able to weaken the requirement that the domain of preferences be single-
peaked over a one-dimensional set to the requirement that the domain of preferences be

semilattice single-peaked over a multi-dimensional set.

4.6 Our axioms

The key ingredients in our analysis (and indeed in the entire literature on the division
problem) are the features that (i) the rules we consider satisfy the tops-only property
and continuity and (ii) the preference domain is rich relative to the entitlements. We
conjecture that the tops-only property and continuity of rules can be deduced from the
hypotheses of strategy-proofness and (a possibly strengthened version of) our richness
condition. We leave the search for a proof, or alternatively, for examples of rich domains
that violate semilattice single-peakedness with respect to entitlements but admit strategy-
proof rules that are individual rationality with respect to ¢; for each ¢ and that violate
tops-onlyness/continuity, for future work. We instead provide two examples of non-rich
domains which violate semilattice single-peakedness with respect to entitlements but ad-
mit rules that violate respectively continuity and tops-onlyness while satisfying the other
axioms (unanimity instead of same-sidedness in the first case), and conclude with two
examples that show the indispensability of strategy-proofness and individual rationality

respectively for Theorem 1.

Example 2a. Let M =1 and the total amount of the single good available W be one.
Let N = 2. In this simple case, the division problem can be reformulated as a pure public
good problem as follows. Let A = [0,1] and a € A denotes the division whereby agent 1
receives a and agent 2 receives 1 —a and where agents’ preferences are directly formulated
on A. That is, saying that agent 2 strictly prefers a to b means now that agent 2 strictly
prefers 1 — a to 1 — b. Assume that ¢ := ¢! = ¢* = 1/2.

The domain of preferences D is identical across the two agents and is specified as fol-
lows. First, there is exactly one preference R! /2 that has 1/2 as its top-ranked alternative
and this preference is single peaked. Second, for every x* € A\{1/2} there is exactly one
preference R; that has x' as its top-ranked alternative. In this preference ordering, 1/2
is ranked second and the preferences over the remaining alternatives are single-peaked
over A\{z'} with peak at 1/2. Figures 10.a depicts the utility representation of a pref-
erence R! /2 the unique one in D with peak at 1/2, and Figure 10.b depicts the utility

representation of a preference Rg /45 the unique one in D with peak at 3/4.
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It is straightforward to verify that this preference domain wviolates both richness relative
to ¢' and semilattice single-peakedness with respect to entitlements.

Consider the tops-only rule which picks the agents common peak whenever they an-
nounce the same peak and ¢ otherwise. This rule is unanimous and respects individual
rationality with respect to ¢. It is easily verified that this rule is strategy-proof and

violates continuity. [ |

The following is an example (adapted from Chatterji and Mass6 (2018)) that shows
that one may construct a non-tops-only rule (and therefore a non continuous rule, as
continuity of rules is defined only for tops-only rules in our set up) that satisfies our
remaining axioms on a domain and that violates semilattice single-peakedness with respect

to entitlements and richness relative to gq.

Example 2b. The setting is identical to the one in the previous example. The preference
domain is different from the previous example (but identical across agents). To describe
the preferences of agents on A, we partition it into the following four intervals: X =
[0,0.25),Y = [0.25,0.5),¢ = [0.5,0.5],Z = (0.5,1]. We will postulate that there are 5
categories of preferences R’ in the domain. Each preference in the category R will be
assumed to have a common structure as shown in the table below, where for instance,
R ranks the block X above the block Y, Y above ¢ and finally block Z is ranked last.
Analogous restrictions apply to R;, etc. Furthermore, the ranking of alternatives within
each of the blocks X,Y, Z will be assumed to be single peaked. Given a preference R’
drawn from this domain, we will we let 7, (R’) denote the peak of the preference R’
restricted to the block k£ € {X,Y, Z}.

R R, R R! R
X 'Y Z Z g
Y X Y ¢ Z
g ¢ q X X
Z Z X Y Y

16 This rule however does not satisfy same-sidedness. We also leave for future work to determine whether

an example can be constructed where the exhibited rule satisfies in addition same-sidedness.
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To see that the domain does not satisfy richness, consider the allotments z* = 0.1, 2 = 0.2
and y' = 0.3 and note that the hypothesis of the property are satisfied but the domain
does not contain a preference R’ for which y*P!z'. To define a two-agent rule on this
domain, we proceed as follows. Given a profile R = (R', R?) of preferences, let o (R)
= max(7,(R'), 7x(R?)) for k € {X,Y,Z}.'" Finally, consider the non tops-only, and
unanimous rule f : D! x D? — A defined by the following table where we suppress, for

k € {X,Y,Z}, the dependence of o4 (R) on R for notational convenience:

f | R R: R® R? R

Rl Ox Oy Oy (

R | oy oy oy q
R ||oy oy oz o0z
R} q q Oz Oz
Ryla a qa q

KRR R QR

By construction, f satisfies individual rationality with respect to q. To verify that f
is strategy-proof, we proceed in two steps. The configuration of preferences in the table
is used to argue that no agent can manipulate to a preferred block. Within a block,
strategy-proofness is guaranteed by the assumption that preferences within the block are
single-peaked and a particular phantom voter rule is used. Even though preferences within
a block are single-peaked, the overall preferences are not semilattice single-peaked with
respect to entitlements. [

It is straightforward to exhibit the indispensability of two of our axioms, respectively

strategy-proofness and individual rationality with respect to ¢; for each ¢, for Theorem 1.

Example 2c. Here too the setting is identical to the one in Example2a. The preference
domain is different (but identical across agents). (i) Assume the universal domain of
preferences. This domain is rich relative to ¢* for each i, violates semilattice single-
peakedness with respect to entitlements, but admits a dictatorial rule which satisfies all
our axioms other than individual rationality with respect to ¢* for each i.

(i) Consider now the case where the domain D = D U DSF where D is the set of all
complete, transitive preference that are represented by continuous utility functions that
attain a unique maximum and attain a minimum at ¢ whenever the top is different from
g, and D is the set of all single-peaked preferences on A with respect to the natural
order. Since D7 is rich relative to ¢’ for each 7, so is D. The rule that selects the median

of the two tops and ¢! = 0.5 on this domain (which corresponds to the uniform rule in

1"Recall that a preference R’ induces a single-peaked preference on each k € {X,Y, Z}: The alternative
ok (R) is the one chosen by a phantom voter rule applied to the interval k € {X,Y, Z} where the phantom
is located at the upper end of the interval.
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the original private good setting) satisfies all our axioms except strategy-proofness and

the domain is evidently not semilattice single-peaked with respect to entitlements. |

5 Appendix

5.1 Separable richness

We show that the following statement about separable richness holds.

Statement 1. Assume m > 2 and let R € R be a top-separable but non-separable
preference with the properties that t(RY) = 2 and, for a pair y',z' € X, y'P'2". Then,
there exists a separable preference R € R with the properties that t(]%z) =2’ and y’]—ﬁ”zZ

Separable richness of a domain D' requires that, for any top-separable preference
R" € D' and any pair y', 2* € X with y" P!, 2", there exists a separable preference R € D
with yZP;zZ (the statement above) and that R € D' (the separable richness requirement
imposed on the domain D*).

The set of additive preferences will be useful in the proof of Statement 1. A preference
R' is additively representable if for each ¢ € M there exists u} : X, — R such that, for
each pair z°,y' € X,

T RY & 3 e wp(T) > D e n wi(Yh)-

For every z' € X, define u'(z") = Y, ui(2;). It is immediate to see that any additively
representable preference is separable and top-separable.
Proof of Statement 1: Let R’ € R be a top-separable but non-separable preference
and let y*, 2" € X be any pair such that y' P’ 2", If 2* = y' the statement follows trivially
since 2/ P'z" holds for any separable preference R’ with t(R?) = ;.

Assume z° # 1, and define the non-empty set
Mgy ={l € M |z # y;}.

We proceed by distinguishing between two cases.

Case 1: There exists { € M,, such that 2% # 2 and yp # 2.

Define the separable preference R’ by choosing a family of functions v} : X, — R, one for
each £ € M, and an € > 0 such that (i) for all wi ¢ {z7, y%, 2},

u%(m%) > u%(y%) > u%(z%) > u%(w%) =¢ (17)

and (ii) for all £ € M\{¢} and w' € X, u}

—~

w}) = e. Then,

(') = up(a}) +e(m — 1)
“(y) = ullyy) +e(m — 1)
u'(2") = ui{zp) +e(m — 1)



Therefore, by (17), u'(2?) > ui(y) > u'(z"), t(R') = 2’ and y' P!, 2",
Case 2: For all { € M,, either x}, = 2} (and y} # z}) or y; = 2z} (and 2} # z}).
Define the sets

M, z:{EGMI¢y|x}}—z}L}

My = {0 € Mayy | y; = 2},
and note that M,—, U M,_, = M,,, and M,_, N M,_, = 0. Since M,,, # 0, we have
that M,—, # 0 or M,_, # (). We proceed by distinguishing between Subcase 2.1 when
M,_, # () and Subcase 2.2 when M,_, = 0 and M,_, # 0.

Subcase 2.1: M,—. # ().

This means that there exists ¢ € M,_, such that a% = 2z, # y;. But, since 2’ can be
obtained from y’ by substituting one by one y; by zj in each ¢ € M,_,, applying top-
separability at each step, and by transitivity of R’, we obtain that 2’ Py’ a contradiction
with the initial hypothesis. Observe that ¢* ¢ M,_, and accordingly, ¢* ¢ M,., (i.e.,
b, = yi.). Define the separable preference R by choosing a family of functions u} : X, —
R, one for each ¢ € M, and an ¢ > 0 such that (i) uX(z}) = ui(2}) = ui(y}) + ¢ > 2e,
(if) for all wi ¢ {4, v, 25}, ui(wp) = ¢, (iil) uju (.) = u}(y@) = ubu(2fe) + 22 > 4e, (iv)
for all wi. & {xh, yh, 2}, ube(win) = €, (v) for all £ € M\{¢, 0*}, uj(xh) = ui(y)) = 4e,
ui(28) = ¢, and (vi) for all w' ¢ {z', 4", 2} and £ € M\{(,¢*}, ui(w) = e. Then,

u'(2') = ul(yy) + € + up (25.) + 26 +4e(m — 2)

ug(yp) + upe (25) + 2 + de(m — 2)

V4
W) = ub(yd) + &+l (21) + £(m — 2)

and, for all w' ¢ {a%,y", 2'}, u'(w') = em. Therefore, since ¢ > 0 and m > 2, u'(z) >
ui(y') > ul(2) > u'(w') = em. Hence, t(R') = z' and ylpglz‘

Subcase 2.2: M,—, =0 and M,_, # (.

This means that there exists ¢ € M,—. such that yz = z% + :1:%\ Moreover, there exists
0* ¢ M,,, such that =), = yi. # 2., otherwise y* = 2’ would hold, which contradicts
the hypothesis that y?P'z’. Define the separable preference R’ by choosing a family of
functions u, : X, — R, one for each / € M, and an ¢ > 0 such that (i) u%(x%) =
ui(2}) + 2e = ui(yp) + 2e > 3e, (ii) for all wi ¢ {a}, yh, 22}, ui(wy) = e, (iii) uju(2.) =
Wp (Ype) = Wpe (2f) + € > 2e, (iv) for all wj. & {@he, Yje, 24 b, upe (i) = ¢, and (v) for all
wi € X and ¢ € M\{0, ¢*}, ui(wi) = e. Then,

u'(2') = ui(2) + 26 + v (25) + €+ e(m — 2)
w(y) = upl=zp) + upe(2)) + e +e(m —2)

(%) + upe (2) +£(m — 2)

and, for all w' ¢ {z',y', 2"}, u'(w' ) = em. Therefore, since € > 0 and u%(zi),u}(z}g) > g,
) =

AL . ANy . z
u'(z') > u'(y') > u'(2%) > u'(w m. Hence, t(R') = 2' and y' P, 2" |
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5.2 Semilattice

We show that the partial order =4 over X defined in Subsection 4.1 is a semilattice.
Statement 2. The partial order =4 over X is a semilattice.

Proof of Statement 2: Let 2,4° € X be arbitrary. We prove that there exists
sup, ,{z",y'}. Note that the set of upper bounds of z* and y* can be written as

Ly = MB(z',¢") N MB(y', ¢").

Note that this set is non-empty since ¢* € I,i,:. Define z* as follows; for each ¢ € M,
(a) if min{z}, v} < q; < max{z}, yi}, set z, = ¢,
(b) if ¢ < min{z}, yi}, set z, = min{z), y}},
() if max{z, vy} < ¢, set 2, = max{z}, yi}.
Figure 11 illustrates the definition of 2* as the projection of ¢' to M B(z",y"); that is,

2" is the closest allotment to ¢’ in M B(z",y") according to the L;-norm.

T_y

A

- - > Ty
1 1
Ty &7 Yo

Figure 11

Claim 1 sup,_,{z',y'} = 2"
Proof of Claim 1 We verify Claim 1 in two steps.
Step 1 The allotment 2 is an upper bound of z¢ and y*. Namely, 2! =7 2% and 2¢ =4 y/
or, equivalently, z* € M B(z",¢") N MB(y', ¢'). We show that ' € M B(y',q"). To show
that z' € M B(x', ¢*) is similar, and therefore omitted.

To obtain a contradiction, assume z' ¢ M B(y',q"). By (1), there exists £ € M such
that either 2, < min{y}, ¢/} or max{y}, ¢;} < z..

Assume 2} < min{y}, ¢/} holds. We proceed by distinguishing between two cases.

Case 1: 2} < ¢, < y,. Since 2} # ¢}, Case (a) does not hold. Case (b) does not hold
either, because otherwise i = z{. In order that Case (c) holds, max{y}, ¢;} = 2}, but then,
ys < 2% which is a contradiction.

Case 2: z; < y; < gj. Since z; # ¢, Case (a) does not hold. Case (b) does not hold
either, because otherwise g, = z}. In order that Case (c) holds, max{y}, ¢;} = 2}, but then,

ys < z{ which is a contradiction.
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Assume max{y}, ¢i} < 2} holds. We proceed by distinguishing between two cases.

Case 1: ¢, <y, < zj. Since 2, # ¢}, Case (a) does not hold. Case (b) does not hold
either, because otherwise g, = 2. In order that Case (c) holds, max{y}, ¢;} = 2}, but then,
Yy, = z, which is a contradiction.

Case 2: z, <y, < q. Since z; # ¢}, Case (a) does not hold. Case (b) does not hold
either, because otherwise z; = y. In order that Case (c) holds, max{y}, ¢;} = 2}, but then,

yi < 2% which is a contradiction.

Hence, 2' € M B(y',q") as well as z' € M B(a*,¢"). Accordingly, 2* is an upper bound
of 2 and 3.
Step 2 The allotment 2° is the smallest upper bound of ' and y'. Namely, if 2% € L,
then 27 =7 2% (or equivalently, 2 € MB(z',¢')), which is the same that ,for all ¢ € M,
min{z}, ¢;} <z, < max{z},q;}. Fix £ € M. We distinguish among the three cases (a), (b)
or (c), depending under which one of them 2} is defined.

Assume it is case (a). Then, min{z}, ¢;} < ¢/ = 2} < max{z{, ¢;}. First, suppose z} <
yi. Then, z% < ¢i = 2z} < yi. Because, z' € M B(2',q"), min{z}, ¢/} < 2, < max{z},q}},

which means that max{y}, ¢.} = ¢} = z{ > Z, and so
Z < max{z, i} (18)

Because z' € M B(y', ¢'), min{y}, ¢;} <z} < max{y;, ¢;}, which means that min{y}, ¢;} =
q, = 2z, < Z,, and so

min{gi, i} < 3 (19)
By (18) and (19), we have min{z}j,q}} < Z; < max{z},q;}. Suppose now that y; < zi.
Then, y; < ¢, = 2} < x}. Because, 2" € M B(z",¢"), min{z}, ¢;} <z} < max{z}, ¢}}, which

means that min{z’, ¢/} = ¢, = 2} < Z, and so
min{q, 21} < 7. (20)

Because 2 € M B(y', q"), min{y}, ¢;} <z} < max{y}, ¢}, which means that z; < max{y}, ¢/} =
q; = z;, and so

% < max{dl, 2} 1)
By (20) and (21), we have min{z}, q@} <7z
Assume it is case (b). Then ¢. < z, = min{z},y’}. First, suppose =, < yi. Then,

< max{z;, ¢}

¢ < 2z} = 2, < yi. Because, z' € M B(x',¢"), min{z}, ¢}} <7z < max{z), ¢;}, which means
that ¢) <z} < 2, = 2, and so
min{q}, 4} < 3. (22)

Because 2" € M B(z', ¢'), min{z}, ¢}} <z} < max{x}, ¢}}, which means that min{z}, ¢}} =
q; <7z < 2, = 2 and so
2, < max{qy, %} (23)
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By (22) and (23), we have min{z}, ¢;} < Z; < max{z},q;}. Suppose now that yi < zi.
Then, ¢, < z, = y; < x}. Because, z2' € MB(y',¢"), min{y}, ¢;} <z, < max{y},q;}, which

means that min{y}, ¢;} = ¢, < Z; and so

min{z, ¢;} < 7. (24)
Moreover, ¢; < z, < max{y}, q;} =y, = 2}, and so

% < max{z, ;}. (25)

By (24) and (25), we have min{z}, ¢;} <z, < max{z}, ¢} }.

Assume it is case (c). Then max{z},y;} = 2, < ¢,. First, suppose zj < y;. Then,
r, < yb = 2, < q}. Because z' € M B(y',¢"), min{y}, ¢'} <z, < max{y}, ¢/}, which means
that min{y}, ¢;} = v} = 2) <z} and so

min{qj, z;} < 7. (26)
Moreover, z; < max{y}, ¢} = ¢}, and so
2 < max{zj, ¢;}. (27)

By (26) and (27), we have min{zﬁj,q@} < 7, < max{z},q,}. Suppose now that y; < x}.
Then, y, <z} = z{ < ¢i. Because z' € M B(z',¢"), min{z}, ¢!} < Z; < max{z}, ¢/}, which

means that min{z’, ¢/} = 2} = 2z} < Z} and so

min{z;, ¢;} < 7. (28)
Moreover, Z; < max{z}, ¢;} = ¢}, and so

2 < max{zj, q;}. (29)

This shows that 2% =7 2*, and that z° is the smallest upper bound of 2 and y‘. Hence
sup, i {a',y'} = 2°.1° |
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