
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

10-2012

Talk versus work: Characteristics of developer collaboration on Talk versus work: Characteristics of developer collaboration on

the Jazz platform the Jazz platform

Subhajit DATTA
Singapore Management University, subhajitd@smu.edu.sg

Renuka SINDHGATTA

Bikram SENGUPTA

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, Organizational Communication

Commons, and the Software Engineering Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/372715176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/335?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/335?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5587&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Talk versus Work: Characteristics of
Developer Collaboration on the Jazz Platform

Subhajit Datta
IBM Research, Bangalore, India

subhajit.datta@acm.org

Renuka Sindhgatta
IBM Research, Bangalore, India

renuka.sr@in.ibm.com

Bikram Sengupta
IBM Research, Bangalore, India

bsengupt@in.ibm.com

Abstract
IBM’s Jazz initiative offers a state-of-the-art collaborative
development environment (CDE) facilitating developer in-
teractions around interdependent units of work. In this paper,
we analyze development data across two versions of a ma-
jor IBM product developed on the Jazz platform, covering in
total 19 months of development activity, including 17,000+
work items and 61,000+ comments made by more than 190
developers in 35 locations. By examining the relation be-
tween developer talk and work, we find evidence that devel-
opers maintain a reasonably high level of connectivity with
peer developers with whom they share work dependencies,
but the span of a developer’s communication goes much be-
yond the known dependencies of his/her work items. Using
multiple linear regression models, we find that the number
of defects owned by a developer is impacted by the number
of other developers (s)he is connected through talk, his/her
interpersonal influence in the network of work dependen-
cies, the number of work items (s)he comments on, and the
number work items (s)he owns. These effects are maintained
even after controlling for workload, role, work dependency,
and connection related factors. We discuss the implications
of our results for collaborative software development and
project governance.

Categories and Subject Descriptors D.2.9 [Software En-
gineering]: Management—Life cycle; H.5.3 [[Information
Systems]: Group and Organization Interfaces—Collaborative
computing, Computer-supported co- operative work

General Terms Experimentation

Keywords Jazz, collaboration, software teams, social net-
work analysis, defects, models.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

1. Introduction
In a collaborative enterprise, association between the struc-
ture of communication and the structure of the artefacts pro-
duced by the collaboration, has been a rich area of explo-
ration [10]. There is also considerable interest in organiza-
tional theory on the role of communication on the perfor-
mance of teams in knowledge-based work, with the basic
premise that effective communication among project team
members stimulates the performance of development teams
[31]. While new organizational structures have emerged with
time, and work practices have been transformed through the
use of technology, this central quest has continued to inspire
new research. In particular, given the inherently collabora-
tive nature of software development, the domain offers a par-
ticularly relevant setting for such investigations, and of late,
the influence of “socio-technical congruence” on the perfor-
mance of software development teams has been gaining at-
tention [8]. In this paper, we report on a real-world socio-
technical study of two major releases of a key IBM product
developed on the Jazz1 platform.

Our research has been motivated by two broad lines of in-
quiry. First, we seek to understand the relation between the
“talk” (social) and the “work” (technical) aspects of software
development from different perspectives. In our context, the
notion of “talk” builds around the comments exchanged by
developers around units of work – work items – and “work”
points to the dependencies between the work items owned by
the developers. Jazz is a collaborative development environ-
ment that supports the definition and tracking of work items
and their dependencies, as well as recording developer com-
ments on work items of interest. This, along with the fact that
the product development team uses the inherently interac-
tional agile method of development, presented an attractive
setting for our study. We abstracted the work item and com-
ment related information from the project into two forms of
developer networks: Jazz Collaboration Network based on
talk or JCN-talk (the “talk network”), and Jazz Collaboration
Network based on work or JCN-work (the “work network”).
We examine and compare several characteristics of these

1 https://jazz.net/

655

networks at aggregate and individual levels, to gain useful
insights on the socio-technical characteristics of the devel-
opment team. As a framework for our study, we draw on the
network paradigm that has been widely used for studying
collaboration in diverse fields [1], [30], [22].

Our second line of inquiry seeks to investigate how the
characteristics of developer talk and work can be leveraged
towards some practical benefits in project governance. In
particular, we hypothesize that a key attribute of a devel-
oper’s work – the number of defects (s)he owns – will be
influenced by a combination of his/her talk and work re-
lated attributes. From this perspective, we develop a statis-
tical model to estimate the number of defects a developer
owns, based on his/her socio-technical characteristics. Such
a predictive model can notably aid expedient resource allo-
cation, realistic time and cost estimation, and several other
proactive measures to ensure project success.

Our results along these threads of investigation are orga-
nized around two research questions (RQ):

• RQ-(a): How are the developer characteristics of talk
and work related to one another?

• RQ-(b): How is the number of defects owned by a devel-
oper influenced by his/her talk and work characteristics?

The results from our study provide a number of interest-
ing insights. Structurally, we found JCN-talk and JCN-work
at the aggregate levels to be similar in some aspects – shape
of degree distribution, relative size of largest cluster and dis-
tance of average separation. The fact that the development
team – which is large and distributed – is working towards
common project objectives is reflected in some of these sim-
ilarities. Individually, it was observed that more than half of
the developers have a high degree of social connectivity with
peer developers they are technically dependent on. However,
it was also observed that JCN-talk and JCN-work differ no-
tably in aspects such as density and clustering coefficient,
which suggests that a developer’s interaction circle through
talk typically extends beyond what is indicated by known
work dependencies, – in terms of the number of other de-
velopers (s)he is connected through talk, and the number of
work items that (s)he comments on – was found to depend
on a larger span of interest based on his/her team affilia-
tions. We found empirical evidence that a combination of
a developer’s talk and work characteristics seems to signif-
icantly influence the number of defects owned by him/her,
after controlling for factors such as workload, role etc. The
factors considered in our statistical models for defects is able
to account for close to 80% of the variability in the data,
and the relatively low mean absolute errors between actual
and predicted number of defects makes it a useful prediction
mechanism for project governance.

Overall, our study is a valuable addition to the recent and
growing body of empirical work that explores the natures of

technical and social interactions in software development,
and their influence on the performance of individuals.

In the next section we review related literature, followed
by an outline of the study settings. Subsequently, we present
results and discussion and conclude with a summary of the
threats to validity and plans of future work.

2. Related Work
2.1 Talk and Work in Collaborative Software

Development
Conway’s observation, “Any organization that designs a sys-
tem (defined more broadly here than just information sys-
tems) will inevitably produce a design whose structure is a
copy of the organization’s communication structure” [10] –
later canonized as “Conway’s Law” by Brooks [5] – contin-
ues to evoke strong interest in the study of collaborative hu-
man enterprise. A perspective on this idea in the context of
software development is captured by “socio-technical con-
gruence”, which is measured in terms of the difference be-
tween coordination requirements due to technical dependen-
cies, and actual coordination [8]. While introducing socio-
technical congruence, Cataldo et al. demonstrate that when
developers’ coordination patterns are congruent with coordi-
nation needs during the time-window a modification request
(MR) is open, the resolution time of the MR is significantly
reduced [8]. This work is extended by Wagstrom et al. to
distinguish between communication that is aligned with task
dependencies vis-a-vis general communication [33]. They
show that the latter has little benefit, while the former re-
duces bug resolution time. Kwan et al. study the effect of
socio-technical congruence on software build success in the
IBM Rational Team Concert project [29]. The authors ob-
serve that higher congruence actually leads to lower build
success rates in certain situations, a large proportion of zero-
congruence builds are successful, and socio-technical gaps
in successful builds are larger than gaps in failed builds -
results which may imply limits to the applicability of socio-
technical congruence.

There is a rich body of research in organizational theory
that focuses on the impact of collaboration on team perfor-
mance [6]. Geographically distributed product development
continues to be of notable research interest; the significance
of informal intra and inter team communication and coordi-
nation have been established [7], [23], as has been the need
for accumulating a common body of knowledge [12], and for
identifying expertise [18]. In our domain of interest – soft-
ware development – it has long been observed that a team’s
performance is linked to the effectiveness of collaboration
and coordination [28]. The challenges posed by distributed
software development in this regard, have been an active area
of research [23], [19]. The study of how developer interac-
tions align with the structure of the technical work being car-
ried out, has gained considerable attention of late, inspired

656

by the socio-technical design theory from organizational lit-
erature [26].

However, the relation between talk and work, and how it
influences ownership and performance of tasks at the indi-
vidual level is far from a settled question. While increased
communication has been shown to facilitate individuals in
some cases [9], too much communication is also detrimen-
tal to tasks completion [14], [25]). Communication require-
ments at the individual level have been recently found to be
different than at the team or project level [11]. To investigate
these issues in further depth, techniques from social network
analysis are being increasingly used to study large scale col-
laboration [9], [4], [13]. The general direction of such stud-
ies has been to examine performance outcomes at the team
or project level (e.g. [36], [38]); notable exceptions being
[7] and [17]. Bird et al. have studied “socio-technical net-
works” to predict fault-proneness of software components
[3]. In the socio-technical networks of [3], the technical as-
pect is drawn from inter-component dependencies, and the
social aspect is derived from shared contributions to com-
ponents by developers. In our approach, developer contri-
butions to interdependent units of work are captured within
a single work network (JCN-work); while our talk network
(JCN-talk) represents a richer model of social collaboration
based on co-commenting by developers on work-items of
shared interest, which is not considered in [3].

2.2 Studies on Jazz Development Data
Over the past couple of years, several studies have been
conducted on data from the project developing the Ratio-
nal Team Concert product using the Jazz platform. This data
was made available by IBM for academic research purposes.
Some of the initial studies focused on the challenges and op-
portunities of mining the Jazz platform [24]. Wolf et al. have
concluded that distance does not have as strong an effect on
distributed communication delay and task completion as was
seen in past research [35]. In a subsequent paper, the authors
combine a set of communication structure measures into a
predictive model that indicates whether an integration build
is likely to fail [36]. However, the technical aspects such as
interdependencies of the work units are not considered in
this study. As mentioned earlier, [29] highlight limitations of
the idea of socio-technical congruence. McIntosh et al. study
build maintenance efforts of ten projects including Jazz to
conclude that build maintenance yields up to a 27% overhead
on source code development and a 44% overhead on test de-
velopment. In a recent paper analyzing the Jazz data, Ehrlich
and Cataldo investigated whether centrality and closure help
or hinder individual performance [17]. As discussed later,
we have included some of the control variables introduced
in this paper while building our model. While constructing
their “communication networks” the authors of [17] consider
the sequence of comments and connect two developers by
a directed link only if the latter specifically responded to
the former’s query or remark. It is not clear from the dis-

d1 d4

JCN-work

d6

d1 d2

d3 d4

d5

d6

JCN-talk

(c)

(b)

w1

w2

w3

d1 d2

d3

d6

d5d4

Work item owned by
Work item commented on
Work item dependencies

(a)

d1 d4

JCN-work

d6

d1 d4

JCN-work

d6

d1 d2

d3 d4

d5

d6

JCN-talk

d1 d2

d3 d4

d5

d6

JCN-talk

(c)

(b)

w1

w2

w3

d1 d2

d3

d6

d5d4

Work item owned by
Work item commented on
Work item dependencies

(a)

Figure 1. Generation of JCN-talk and JCN-work from de-
veloper comments, work item ownership and dependencies

cussion how comments were matched with responses – any
technique requiring human intervention is likely to be sub-
jective and error prone. The authors conclude that individu-
als who are central within a team’s communication network
performed better but performed worse when they were cen-
tral within the communication network for the whole project
[17].

All the papers studying collaboration on the Jazz plat-
form so far have been based on the aforementioned data set
released for academic research. In contrast, in this paper we
study proprietary data from the development of two versions
of a major IBM product developed using Jazz.

3. Background and Research Setting
We now outline the context of our study in detail.

3.1 Collaboration on the Jazz Platform
The Eclipse Way of collaboration which guides Jazz devel-
opment, defines time bound iteration cycles between two to
six weeks [21]. Each cycle has an iteration plan comprising
of a set of work items, which are assignable and traceable
units of work. Jazz provides predefined types of work items
corresponding to different phases of development. Our defi-
nitions of JCN-talk and JCN-work are based on the follow-
ing attributes of work items:

• Work item ownership: Each work item is assigned a de-
veloper as the owner. The owner is responsible for the
completion of the work item within stipulated time. The

657

vertices of JCN-talk and JCN-work are such developers
who are work item owners.

• Comments around work items: In Jazz development,
“Commenting on the work items is the main task-related
communication channel ... and they provide the context
for communication and collaboration.” (italics ours) [35].
A developer can post comment(s) on a work item based
on his/her interest. Collectively, these comments repre-
sent a conversation in a shared context of developer inter-
est around work items. Examples of such conversations
are available at the Jazz website.

• Work item dependencies: Jazz supports a set of prede-
fined dependency categories, using which developers can
link related work items. This facility has been rigorously
used by the development team under study to keep track
of work item dependencies. We included the following
categories that capture the dependencies most relevant
for our analysis: parent/child – a work item is broken
down into smaller units of tasks; depends/blocks – the
need for the blocking work item to be completed before
the dependent work item can be addressed; related - a
more generic category that subsumes dependencies based
on common features, shared library, code segments etc.
In related studies, a common way to define dependencies
between units of work has been through code level con-
trol/data flow dependencies, or co-changing of the same
file [3], [8]. However, our discussions with some senior
members of the development team revealed that generic
code level dependencies are likely to be too fine grained
in our context, and that unrelated work items frequently
involve updates to the same file. The “related” category
was used to capture relevant code level dependencies
when applicable. To avoid many gratuitous connections
between unrelated developers, we did not include addi-
tional code or co-change based dependency notions in
our analysis.

3.2 JCN-talk and JCN-work
Figure 1 illustrates the construction of the talk and work
networks. Figure 1(a) consists of three work items w1, w2
and w3 with developers owning and posting comments on
them. The work items also have dependencies established
between them.

• JCN-talk is defined as the network of developers who
have commented on work items. With reference to Fig-
ure 1(b), each vertex of JCN-talk is a developer and an
edge (undirected link) exists between two developers if
both of them have commented on at least one common
work item. In the rare instance of the owner of a work
item not having commented on it, (s)he is also connected
by edges to all others who have commented on the work
item. JCN-talk is generated for the set of developers who
own at least one work item. In Figure 1(b) edges exist be-

tween d1, d2, d3 and d4 as d1 is the owner of work item
w1 and d2, d3, and d4 have commented on w1; similarly
for edges between d4 and d5 as well as d5 and d6.

• JCN-work is defined as the network of developers who
own work items which have dependencies between them.
Each vertex of JCN-work is a developer and an edge
exists between two developers if the work items owned
by them have a dependency link between them. In Fig-
ure 1(c) an edge exists between developer d1 and d6
as there is a dependency between work items owned by
them (w1 and w3 respectively); similarly for the edge be-
tween d1 and d4.

3.3 System Description and Experimental Set-up
As mentioned earlier, we study the internal development
data of two consecutive versions of a major IBM product
developed on the Jazz platform. Each version is the result of
a release that consists of several iterations of development.
We refer to this subject of our study as “the product” or “the
system” interchangeably, and the versions are denoted by n
and n + 1. Table 1 presents details of the two versions of
the product we studied. All the analysis reported in this pa-
per were replicated for versions n and n+ 1 of the product.
Developer attention on work items often stretch across iter-
ations. For example, a work item may be dependent on an-
other work item planned for an earlier or different iteration,
or a work item may be created and discussed before the start
of the iteration it is planned for. To capture this natural ex-
panse of work and talk across the development life cycle, we
focused on the entire set of iterations leading to a release as
our unit of analysis, rather than individual iterations.

The development team of the product is distributed across
35 locations and 19 time-zones across North America, Eu-
rope, and Asia. The entire team is divided into smaller sub-
teams or team areas – ranging from 3 to 30 members – that
focus on specific functionalities of the product. In this paper
we are interested in three types of work items – tasks, en-
hancements, and defects – having source code changes asso-
ciated with them as “change-sets”. Other types of work items
that were not associated to source code have not been con-
sidered as our study is focussed on development and defect
resolution activities. Since we seek to understand the factors
influencing the number of defects owned by developers in
RQ-(b), based on characteristics of talk and work, we need
to ensure a separation of cause and effect while building the
models. Thus, only task and enhancement work items are
included in the construction of JCN-talk and JCN-work.

We assume that all necessary information for construct-
ing JCN-talk and JCN-work are available in the repository
of the Jazz platform. Developers’ comments on work items
may sometimes be augmented by telephonic or face-to-
face conversations. Developers of the project we studied in-
formed us that summaries of such conversations are usually
recorded as comments in the Jazz repository. The fact that

658

Table 1. System description
Parameter Version n Version n+ 1
No of developers 107 194
No of work items 6,518 11,161
No of work item dependencies 4,677 8,349
No of comments 20,908 40,246
No of iterations of development 10 16
Duration of development 7 months 12 months

significant amount of developer communication is captured
in the Jazz repository for the system studied was confirmed
by our observation that more than 85% of the developers
commented on work items owned by other developers.

To build JCN-talk and JCN-work, relevant information
around work items was extracted from the Jazz platform us-
ing its client Java APIs. The data was persisted in a specifi-
cally designed MySQL database. A set of Java programs was
developed to query the database and build the JCN-talk and
JCN-work networks in the Pajek2 file format. The networks
were analysed using Pajek, NodeXL3, and JUNG4. Statisti-
cal analysis on the data was done using SPSS Statistics 19.

4. Results and Discussion
4.1 RQ-(a): How are the developer characteristics of

talk and work related to one another?
To explore the nuances of talk and work characteristics in
depth, we discuss two facets of this question separately.

4.1.1 Comparison of the structural characteristics of
JCN-talk and JCN-work

As evident from the first row of Table 2, JCN-talk and JCN-
work have the same number of vertices representing the
same set of developers, for each version. The number of
edges incident on an individual vertex is referred to as its
degree, and across all vertices it is summarized by the de-
gree distribution. As evident from rows 3, 4, 5, and 6, the
degree distributions for JCN-talk and JCN-work across both
versions have positive skews, implying a longer right tail.
This indicates there are relatively few developers connected
to many others through talk and work, while many develop-
ers are connected to few others.

The density of a network is the ratio of the number of
edges actually present and the number of possible edges
between a network’s vertices. From row 7 of Table 2, we
note that JCN-talk is more dense than JCN-work for versions
n and n + 1; their densities vary by more than a factor of
3. This implies that developers’ extents of interest go much
beyond the dependencies of their owned work items.

2 http://pajek.imfm.si/doku.php
3 http://nodexl.codeplex.com
4 http://jung.sourceforge.net/

The largest cluster of a network is the biggest set of ver-
tices all of which are reachable from one another. The rela-
tive size of the largest cluster is defined as the percent of the
total number of vertices in the largest cluster [30]. In the light
of their contrasting densities, it is interesting that sizes of the
largest clusters of JCN-talk and JCN-work for both versions
are significantly less apart (row 8 of Table 2). Notwithstand-
ing the far less number of edges in JCN-work, more than
75% of developers belong to the largest cluster for both net-
works. This indicates that the collaboration channels for talk
and work span widely across the team. Within and across dif-
ferent sub-teams, developers are significantly connected to
their peers as they work towards common project objectives.

A key difference between real-world collaboration net-
works and completely random networks is the phenomenon
of clustering [30]. It is usually observed in networks of hu-
man interaction that two vertices that are linked separately
to a third vertex are more likely to be themselves linked. In-
tuitively, two of one’s friends have a higher probability of
being friends themselves. This is measured by the clustering
coefficient of a vertex, which is defined as the ratio of the
actual number of edges to the maximum number of edges
between the immediate neighbours of the vertex. For the en-
tire network, the clustering coefficient is the average of clus-
tering coefficients across all vertices [1]. The average clus-
tering coefficient is an indication of how likely it is for two
vertices to be connected to each other if they are indepen-
dently connected to a third common vertex. From row 9 of
Table 2 we notice the average clustering coefficients of JCN-
talk in both versions are in the same range (0.533 and 0.510),
and are significantly higher than those for JCN-work (0.249
and 0.189). These values imply that communities of develop-
ers form clusters more readily around discussions on work
items, than may be necessitated by the work item dependen-
cies. This can be explained in the light of a developer’s extent
of interest being wider than the interdependencies of his/her
directly owned work items (as noted earlier and elaborated
in subsequent discussion).

The facility for two vertices i and j to contact one another
depends on the length of the shortest path lij between them.
The average of lij over all pair of vertices is called the
average separation of the network. Average separation is
an indication of the interconnectedness of the network [1].
The oft-encountered “small-world” phenomenon with six or
lesser degrees of separation are indicated by values of the
average separation in networks of human individuals [34].
We note from row 10 of Table 2, that JCN-talk has average
separations of 2.194 and 2.305 across versions n and n+ 1,
and JCN-work has average separation values of 2.984 and
3.414 across these versions. Thus, over the entire set of 107
developers in version n or 194 developers in version n + 1,
any developer is connected to any other developer over 2
to 4 intermediaries, on average. The fact that a large team
of developers is working closely towards common project

659

Table 2. JCN-talk and JCN-work: Structural characteristics for version n and version n+ 1 of the system studied
Criteria JCN-talk(n) JCN-work(n) JCN-talk(n+ 1) JCN-work (n+ 1)

1. Number of vertices (V) 107 107 194 194
2. Number of edges (E) 669 224 1634 455
3. Mean degree (AD) 12.505 4.187 16.845 4.691
4. Median degree (MD) 9.000 4.000 11.000 3.000
5. Standard deviation of degree (SD) 10.698 4.007 17.394 5.029
6. Skewness of degree distribution (SK) 0.959 0.991 1.362 1.596
7. Density (D) 0.118 0.039 0.087 0.024
8. Relative size of largest cluster (L) 91.589% 78.505% 87.629% 77.835%
9. Average clustering coefficient (C) 0.533 0.249 0.510 0.189

10. Average separation (S) 2.194 2.984 2.305 3.414

objectives is also reflected in this observation of a small
number of intermediaries separating any two developers in
JCN-talk and JCN-work, on average.

After examining the aggregate characteristics of JCN-talk
and JCN-work, let us now focus on the individual level.

4.1.2 Examination of the relation between developer
positions in JCN-talk vis-a-vis JCN-work

We next consider a set of measures that reflect on an individ-
ual developer’s position in JCN-talk and JCN-work.

In a network, degree centrality of a vertex is its degree
– the number of edges incident on it [16]. For JCN-talk
and JCN-work, a developer’s degree indicates the number
of other developers (s)he is connected to, over talk and work
respectively.

The notion of “betweenness” captures the extent to which
a vertex is positioned in the shortest path between other ver-
tices. The betweenness centrality of a vertex is defined as the
proportion of all geodesics (that is, shortest paths) between
pairs of other vertices that include this vertex [16]. When
vertices are individuals, betweenness is a measure of inter-
personal influence. In our context, betweenness centrality of
a developer signifies his/her influence on other developers’
channels of collaboration. In this paper, we will use “be-
tweenness centrality” and “betweenness” interchangeably.

The notion of structural holes indicates “missing connec-
tions and connection redundancies” between vertices [35].
The dyadic constraint on a vertex u exercised by a tie be-
tween vertex u and v is given by the “extent to which u
has more and stronger ties with neighbours who are strongly
connected with vertex v” [16]. The aggregate dyadic con-
straint for a vertex – a structural hole measure – is the sum of
all its dyadic constraints. Higher aggregate constraint signi-
fies less freedom to withdraw from existing ties [16]. In our
context, developers with higher constraints are more depen-
dent on their existing connections to remain engaged in col-
laboration. The use of structural hole measures in the study
of communication structures in a collaborative context has
been demonstrated in [35] and [15].

Table 3. Correlation coefficient between developer charac-
teristics (∗p < 0.01, †p < 0.05, ‡p < 0.1)

JCN-talk vs JCN-work V(n) V(n+ 1)
Degree centrality 0.638∗ 0.732∗

Betweenness centrality 0.392∗ 0.667∗

Aggregate dyadic constraint 0.176‡ 0.195∗

Degree centrality, betweenness centrality and aggregate
dyadic constraint capture different dimensions of an indi-
vidual developer’s position in JCN-talk and JCN-work. How
are these positions related between the two networks? Is a
developer with high degree centrality in JCN-talk likely to
have high degree centrality in JCN-work, and similarly for
the other measures?

Table 3 presents the correlation coefficients (along with
the p value for statistical significance) between the respec-
tive measures for the set of developers in JCN-talk and JCN-
work across the two versions. Consistently across versions
n and n + 1, degree centrality has the relatively strongest
positive correlation, and aggregate dyadic constraints has the
relatively weakest positive correlation (all correlations being
significant at the levels indicated) for individual developers
across the networks of JCN-talk and JCN-work.

The fact that the degree of JCN-work is found to be
strongly correlated to the degree of JCN-talk signifies that
developers with many connections to other developers in the
work network also have connections to many collaborators
in the talk network and vice-versa. But is a developer collab-
orating with the same developers via talk as well as work?

To address this question, for each developer we extract
the set of developers (s)he is connected to in JCN-talk
(Stalk) and the set of developers (s)he is connected to in
JCN-work (Swork). We define the Similarity Score (SS) for
each developer as, SS = |Stalk|∩|Swork|

|Swork| . Thus SS = 1 for
a developer means (s)he talks to all the developers (s)he is
working with, whereas SS = 0 indicates the developer has
no common individuals between his/her talk and work col-
laborators.

660

Table 4. Distribution of Similarity Score
Bins Version(n) Version(n+ 1)
0 to 0.25 10.714% 22.086%
0.26 to 0.5 16.667% 11.656%
0.51 to 0.75 11.905% 15.951%
0.76 to 1 60.714% 50.307%

While computing SS, we removed developers who are
connected to no other developers in JCN-work (to avoid di-
viding by zero); there were 23 such developers out of total
107 in version n and 31 out of 194 in version n+ 1. Table 4
gives the frequency distribution of SS as a percentage of
the non-zero degree developers of JCN-work. We notice that
more than half the developers in both versions are connected
to at least 75% (that is, lie in the 0.76 to 1 bin) of their work
collaborators in their talk networks. More than 65% are con-
nected to at least half their work collaborators through talk.
These results suggest that the development team members
display a reasonably high level of connectivity via talk with
those peers they share technical dependencies with. This au-
gurs well for the overall alignment of talk and work.

In summary, the insights from SQ-(a) are:

• The high value of relative size of largest cluster, and the
low value of average separation in the talk and work net-
works suggest that collaboration links span wide across
the distributed team, and the team members are working
towards common project objectives.

• The distribution of Similarity Score reveals that develop-
ers maintain a reasonably high level of connectivity with
peer developers with whom they share work dependen-
cies. At the same time, the marked differences in den-
sity and clustering co-efficient across the talk and work
networks suggest that the span of a developer’s commu-
nication goes much beyond the known dependencies of
his/her work items.

In the light of these results, let us now address the next
research question.

4.2 RQ-(b): How is the number of defects owned by a
developer influenced by his/her talk and work
characteristics?

In the previous research question we examined how the
characteristics of talk and work relate to one another at the
aggregate and individual levels. Understanding how talk and
work characteristics influence a key attribute of individual
developers – the number of defects owned – has practical
implications for project governance, as well as the potential
to enrich the theory of socio-technical congruence.

As with all large scale software projects, significant time
and effort in Jazz development is spent on defect resolution.
Developers come to own defects that arise in the code mod-
ules they were responsible for, and the onus of resolving a

defect rests on the developer who owns it. Thus, number of
defects owned by a developer reflects an important aspect
of their deliverable. Developers owning many defects need
to be supported adequately for their timely resolution. The
loss of these developers also represent critical risks to the
project, so backup plans for knowledge transfer etc need to
be in place. Therefore, being able to estimate how many de-
fects a developer will own is of significant value to project
stakeholders.

In light of our preceding discussion on the relation be-
tween talk and work, we hypothesized that combination of
a developer’s talk and work characteristics influences how
many defects (s)he owns. Based on this hypothesis we de-
velop a model using the following parameters.

4.2.1 Dependent variable
As mentioned earlier, every work item on the Jazz platform
is assigned to an owner. For each developer the number of
defect work items owned by him/her can be determined. We
call this variable NoOfDefects in our subsequent discussion
– this serves as the dependent variable (outcome measure)
of our model. Through our model, we seek to identify the
parameters that influence this independent variable.

4.2.2 Control variables
Past research has identified several factors that influence
individual performance measures in collaborative software
development [20], [23], [38]. Based on these results as well
as the context specific to our study, the following groups of
control variables are used in our model:

• Control for workload related factor: As is widely recog-
nized in software development, those who work more get
more bugs to fix! Thus, the number of defects a developer
owns is impacted by the number of task and enhancement
work items (s)he owned in the first place. The variable
Workload – count of tasks and enhancement work items
owned by each developer – represents the workload re-
lated control factor for our model.

• Controls for role related factors: Although agile develop-
ment encourages a relatively flat hierarchy in the project
team, different individuals fulfill different functions in
the development ecosystem. In our study, each developer
in a team area may have one of the roles – contributor,
component lead, tester or member of the project manage-
ment committee (PMC). A developer may be part of sev-
eral team areas and it is possible for a developer to have
one role in one team area and another role in another team
area. As the number of defects owned by a developer is
influenced by the specific role (s)he plays in that unit of
development, we consider the control variables Contrib-
utorRole, ComponentLeadRole, TesterRole, and PMC-
Role. Few developers who played other roles not cov-
ered by the above – such as release management, build
coordination – were covered under the OtherRoles vari-

661

able. Each of the control variables for role related factors
was calculated as the sum of the number of team areas in
which a particular developer played that role.

• Controls for work dependency related factors: Based on
our earlier discussion, aggregate dyadic constraint for
a vertex in JCN-work (WorkConstraint), measures the
level of dependency of a developer on his/her existing
connections, and is likely to impact the number of defects
(s)he owns. So it is taken as another control factor related
to work dependency. In a recent study on the Jazz plat-
form, Ehrlich and Catldo have used “coordination needs”
as a control variable, defining it as a measure that “... cap-
tures the extent to which an individual needs to commu-
nicate with other members of the project given the set
of task dependencies that the individual has ...” [17]. Us-
ing the method outlined in [17] and [9] we calculated the
CoordinationNeeds control variable for inclusion in the
model.

• Control for connection related factor: Defects may arise
out of connection bottlenecks amongst people who share
dependencies with a particular developer. A developer’s
degree in JCN-work (WorkDegree) measures the number
of people a particular developer is connected through
work dependencies, hence it reflects the extent to which
possibilities for such connection bottlenecks exist for that
developer. Thus WorkDegree represents our connection
related control factor.

4.2.3 Independent variables
We now identify the independent variables in our model –
these are the talk and work related parameters which we
hypothesize will influence the number of defects owned by
a developer, after having controlled for the above factors.

• From our discussion around the first research question,
we gained insights on how characteristics of talk relate
to the characteristics of work. Drawing on those observa-
tions, we posit that for a particular developer, the number
of other developers (s)he is connected through talk – that
is, his/her degree in JCN-talk (TalkDegree) – influences
a key work attribute – the number of defects owned.

• With reference to our earlier discussion, we recall how
betweenness can be construed as a measure of the level
of interpersonal influence. Thus, the betweenness of each
developer in JCN-work (WorkBetweenness) reflects the
extent to which (s)he brokers work related dependen-
cies between other developers. As resolution of defects
in large scale software systems often involve addressing
dependencies across work ownership, we consider Work-
Betweenness as another independent variable.

• As TalkDegree measures the number of other devel-
opers a particular developer is connected through talk,
the number number of work items (s)he comments on
(NoOfWorkItemsCommentedOn) indicates how wide

his/her span of interest is. As we have seen earlier, it
is not unusual for developers to be interested in issues
beyond the immediate circle of work items they own.
Such general awareness about a project ecosystem is of-
ten valuable for defect resolution; thus we take NoOf-
WorkItemsCommentedOn as another independent vari-
able in our model.

• Finally, it is well documented [27] that software defects
arise out of dependencies between units of work. Thus
the number of defects owned by a developer is likely to be
influenced by the number of dependent work items (s)he
owns (NoOfDependentWorkItemsOwned); we identify
this as one more independent variable in our model.

4.2.4 Description of the models
Using the control variables and independent variables de-
scribed above, we built a set of multiple linear regression
models (Table 5). Models I and III are the base models using
only the control variables, for versions n and n + 1 respec-
tively. Models II and IV include the independent variables
in addition to the control variables for versions n and n + 1
respectively.

In the models in Table 5, the coefficient of each con-
trol and independent variable in the regression equation is
mentioned, with its standard error in parentheses below. As
noted in the table caption, superscripts of the coefficients de-
note the range of their respective p values. The p value for
each coefficient is calculated using the t-statistic (ratio of
each coefficient to its standard error) and the Student’s t-
distribution. In the lower portion of the table, N denotes the
number of data points (in our case, the number of develop-
ers in each version), R2 is the coefficient of determination
– given by the ratio of the regression sum of squares to the
total sum of squares, indicating the goodness of fit of the re-
gression model in terms of the proportion of variability in the
data set that is accounted for by the model; df denotes the de-
grees of freedom; F signifies the Fisher F-statistic – the ratio
of the variance in the data explained by the linear model di-
vided by the variance unexplained by the model; and the p
value reflects the overall statistical significance of the model,
it is calculated using the F-statistic and the F-distribution.
For the coefficients as well as the overall regression, if p <
level of significance, we conclude the corresponding result is
statistically significant.

The underlying assumptions of linear regression – lin-
earity, normality, and homoscedasticity of the residuals, and
lack of multicollinearity between the independent variables –
were found to hold within reasonable limits for our analysis
[32]. Histogram, P-P plot, and scatter plots of the standard-
ized residuals were used to establish the residual properties.
Among the independent variables, only the correlation be-
tween DegreeTalk and NoOfWorkItemsCommentedOn was
moderately high (around 0.7) – which is expected, as com-
menting on many work items makes it more likely for a de-

662

veloper to be connected to many other developers in the talk
network. In light of this, to address whether multicollinearity
between variables artificially altered the significance of the
overall regression and the stability of the coefficients in our
model, the variance inflation factor (VIF) was calculated for
each variables. For all the variables, the VIF was found to
be less than than recommended limit of 10 (that is, tolerance
greater than 0.1) [32]; hence it can be concluded that mul-
ticollineraity does not cause significant difficulties for our
model.

As the dependent variable is a count of defects owned by
each developer, Poisson regression was considered as an al-
ternate modeling paradigm. A major threat to the validity of
using Poisson regression is overdispersion, that is, violation
of the strong underlying assumption of equality of variance
and mean of a Poisson distribution [2]. We decided to use
multiple linear regression in our model as its underlying as-
sumptions were satisfied and it provided notably high good-
ness of fit, with close to 80% of the variability in the data set
being accounted for by the models II and IV (Table 5).

4.2.5 Influence of the independent variables
Comparing the columns of Table 5, we note that for both
versions n and n + 1, addition of the independent variables
notably improves the goodness-of-fit over the base models;
the R2 value increases by more than 44% between models
I and II and by 20% between models III and IV. Thus, con-
trolling for factors related to workload, role, connection, and
work dependency, our independent variables TalkDegree,
WorkBetweenness, NumberOfWorkitemsCommentedOn, and
NoOfDependendentWorkitemsOwned significantly influence
the number of defects owned by a particular developer. To
understand the impact of each of the independent variables,
let us look at their coefficients in the regression equations.

From the sign of coefficients we can infer the direction
of the relationship between the independent and dependent
variables. From the columns for model II and IV in Table 5
we note that an increase in TalkDegree as well as Work-
Betweenness for a developer leads to a decrease in num-
ber of defects owned, whereas higher NumberOfWorkitem-
sCommentedOn and NoOfDependendentWorkitemsOwned,
leads to higher number of defects being owned. A lower
TalkDegree implies weaker information sharing channels,
and this can negatively impact the quality of work, leading to
more defect ownership. Developers who are less “between”
other developers in work are likely to find themselves more
isolated and hence owning more defects. Interestingly, our
model reveals that if a developer comments on more work
item (s)he is likely to own more defects. The number of work
items commented on is a proxy of the expanse of a develop-
ers interests. Anecdotal evidence points to the fact that in
large software projects, those who are most knowledgeable
about the development context often get the most number
of bugs to fix. As a developer who is more knowledgeable
about the project will comment on more work items, our em-

0

50

100

150

200

250

0 50 100 150 200 250 300

NoOfDefects: Predicted vs Actual - v(n)

Figure 2. Predicted versus actual number of defects for
version n

0

50

100

150

200

250

300

0 50 100 150 200 250 300

NoOfDefects: Predicted vs Actual - v(n+1)

Figure 3. Predicted versus actual number of defects for
version n+1

pirical findings supports anecdotal evidence. Finally, defects
in large software systems often arise out of mishandled de-
pendencies. Thus as our model indicates, a developer own-
ing a large number of work items with dependencies will
come to own higher number of defects.

4.2.6 Predicting Number of Defects
The models discussed above identifies the factors influenc-
ing the number of defects owned by a developer. They can
also be used to predict the number of defects, which has
strong implications for project governance. In any large scale
software project, predicting the number of defects each de-
veloper will be responsible for with reasonably high accu-
racy can be very helpful in resource allocation and quality
assurance.

Figure 2 and Figure 3 shows the scatter plots of the pre-
dicted versus actual defects for versions n and n+1 respec-
tively. To evaluate the accuracy of prediction of the number
of defects calculated using the regression equations based on
our models, we consider the mean absolute error – the av-
erage of the absolute values of the difference between the
actual number of defects and the predicted number of de-

663

Table 5. Influences of talk and work characteristics on individual performance. Models I & II are for version n and
models III & IV are for version n+ 1 of the product being studied. (∗p < 0.01, †p < 0.05, ‡p < 0.1)

Model I Model II Model III Model IV
Intercept −2.107 2.553 −8.472‡ −1.170

(9.345) (6.669) (5.008) (4.300)
Workload 0.614∗ 0.265∗ 0.762∗ 0.707∗

(0.189) (0.150) (0.091) (0.079)
ContributorRole −0.753 1.921 8.272∗ 6.541∗

(4.060) (2.800) (1.980) (1.610)
ComponentLeadRole −3.392 −5.142 −0.428 −4.499‡

(4.918) (3.493) (2.934) (0.088)
PMCRole −6.006 −4.420 −0.4228‡ 0.840

(3.700) (2.871) (2.376) (2.006)
TesterRole 0.246 3.243 0.693 −3.637

(21.416) (14.709) (6.690) (5.529)
OtherRoles 7.627† 0.776 −2.056‡ −2.074‡

(3.631) (2.571) (1.336) (1.240)
WorkDegree 5.449∗ 3.589‡ 1.385† −0.495

(1.406) (2.188) (0.649) (0.991)
WorkConstraint −4.547 −2.053 −3.214 −3.089

(13.096) (8.962) (6.658) (5.363)
CoordinationNeeds −10.394 −13.028 5.498 3.615

(14.572) (12.067) (9.023) (7.784)
TalkDegree −2.025∗ −0.777†

(0.446) (0.197)
WorkBetweenness −0.055 −0.022‡

(0.051) (0.014)
NoOfWorkItemsCommentedOn 0.643∗ 0.288∗

(0.061) (0.032)
NoOfDependentWorkItemsOwned 0.249‡ 0.241†

(0.161) (0.111)
N 107 107 194 194
R2 0.553 0.801 0.645 0.775
df 97 93 184 180
F 13.348 28.747 37.201 47.756
p < 0.001 < 0.001 < 0.001 < 0.001

fects, across all the developers. For the models presented in
the columns for models II and IV of Table 5, the mean ab-
solute errors are 16.62 and 12.694 respectively for versions
n and n + 1. In light of the fact that defects per developer
range from zero to 263 and from zero to 273 for versions n
and n + 1 respectively, the low values of the mean absolute
errors emphasize the predictive utility of the refined models.
To check the accuracy of predictions further, we randomly
selected 75% of the data points to build the models, and used
the models thus built to calculate the number of defects for
the test set of the remaining 25% developers. The mean ab-
solute errors for the test set were found to be 20.098 and
13.407 for versions n and n + 1 respectively; their low val-
ues further demonstrating the usefulness of the model as a
predictive tool.

4.3 Practical Implications of Our Results
The results from our study have practical implications for
large, globally distributed software development projects. To
begin with, the study underscores the importance of commu-
nication in keeping distributed work in synchronization, and
highlights the usefulness of collaborative development envi-
ronments (CDEs) in facilitating the same. Large clusters of
individuals with low average separation, high alignment be-
tween the talk and work networks of developers, are some of
the indicators project managers can look out for as a way to
reaffirm that a multi-site team is indeed working cohesively
towards common technical objectives. Consequently, devia-
tions from this can act as a red flag that need management
attention. The second important implication relates to the
overhead associated with communication. The cost of talk
is significant in software development, as originally pointed

664

out by Brooks [5], and which assumes increasing importance
in the globally distributed projects of today [37]. While as-
signed work responsibilities and known dependencies im-
pact a developer’s communication overhead, our findings
imply that the overall size of a developer’s sphere of interest
serves as a useful proxy for implicit technical dependencies
that may draw a developer’s attention and impose additional
overload. How effectively relevant information from a de-
veloper’s ecosystem (both direct and implicit) can be sum-
marized, integrated and presented in CDEs, will determine
how well such overload may be managed by development
teams of the future. Finally, our findings suggest that a key
attribute of a developer’s work - as measured by the num-
ber of defects owned by him/her - is strongly influenced by
a combination of the developer’s talk and work characteris-
tics during development. This result is particularly important
in light of the high costs associated with testing large soft-
ware systems. The predictive model we have outlined may
be used to identify developers who may be burdened with
a high number of defect fixes, and may thus need manage-
rial attention and support. This, in turn, can guide proactive
planning and allocation of testing resources.

5. Threats to Validity and Future Work
In the following subsections, we identify the limitations of
our study with respect to construct validity, internal validity,
external validity, and reliability.

5.1 Construct validity
Construct validity denotes that variables are measured cor-
rectly. As discussed in the Related Work section, there is a
body of existing literature on studying collaboration using
the network paradigm, and studies of developer collabora-
tion on the Jazz platform. Almost all the measures used in
this paper have been grounded in past work. We have defined
the Similarity Score metric to examine the level of congru-
ence between a developer’s circle of talk vis-a-vis work. As
argued during the definition of Similarity Score, we believe
this metric succinctly captures the parameter of our inter-
est. In choosing the measures that reflect the control vari-
ables and independent variables for the model developed in
RQ-(b), we have been guided by past precedent and the spe-
cific context of our study. However, we recognize there may
be alternative ways of measuring similar variables. The ex-
plicit dependency links between work items are manually
defined by developers. In few cases there may be implicit
dependencies that were not recorded as links and represent
another threat to validity. This threat is mitigated by con-
sidering other parameters of the developers’ sphere of inter-
est, which are likely to capture such implicit dependencies.
We have made the links between vertices of JCN-talk and
JCN-work non-directional as many of the enduring results of
network theory pertain to this class of networks [30]. How-
ever directionality of links between developers can provide

insights around the nature of information flow in a team. In
our future work, we intend to examine the implications of in-
troducing directionality to links in JCN-talk and JCN-work
and also consider weights of the links. We also plan to study
the effects of assigning different levels of importance to the
different categories of dependencies considered while con-
structing JCN-work.

5.2 Internal validity
Internal validity is established for a study if it is free from
systematic errors and biases. We have accessed develop-
ment data from the Jazz repository for the two versions of the
product studied. As Jazz is the only source of the data we are
interested in, issues that can affect internal validity such as
mortality (that is, subjects withdrawing from a study during
data collection) and maturation (that is, subjects changing
their characteristics during the study outside the parameters
of the research) do not arise in our case. However the extent
to which the development team used Jazz does represent a
threat to validity. As mentioned while describing the exper-
imental set-up, our observations as well discussion with the
development team suggested that significant amount of col-
laboration information was captured in the Jazz repository.
Thus we believe the extent of this threat to validity is lim-
ited. As each developer on the Jazz platform has a unique
identifier, our study is free from errors due to ambiguity of
individual identities – whether “John Doe” and “J Doe” are
the same person or if the same moniker “John C Doe” rep-
resent more than one person – that beset other studies on
collaboration, such as scientific co-authorship.

5.3 External validity
The threat to external validity concerns the generalisabil-
ity of the results of our study. We have studied the associa-
tion of talk and work in two consecutive versions of a sin-
gle product. As demonstrated in [3], [35], [36], [17] useful
insights can be drawn from a single subject of study. The
extent of our data – 19 months of development activity, in-
cluding 17,000+ work items and 61,000+ comments made
by more than 190 developers – is notably larger than many
similar studies. Thus we believe our results consummately
capture the underlying phenomena of interest. But we do
not claim these results can be generalized as yet; we plan
to study other systems in our future work.

5.4 Reliability
Reliability of a study is related to reproducibility of the
results. As described in the study settings, we employ a set
of established techniques to arrive at our results. As there is
no human intervention in extracting, and processing the data,
there is minimal subjectivity in our results, and they can be
reproduced without difficulty.

665

6. Conclusions
In this paper we studied development data from two con-
secutive versions of a major IBM product developed on the
Jazz platform. We analyzed two research questions around
the relationship between talk and work characteristics of de-
velopers, and how these characteristics influence the num-
ber of defect work items owned by a developer. From our
results, we observe that characteristics of talk and work re-
flect the collaboration of a group of developers with indi-
vidual responsibilities but working towards a common ob-
jective, and that the expanse of talk is generally wider than
work related dependencies. We developed statistical models
to understand the influences of a developer’s talk and work
characteristics on the number of defects (s)he owns. Stan-
dard evaluation criteria established significant goodness-of-
fit and high prediction accuracy for the model. Our results
highlight some of the subtle and significant aspects of the
relationship between developer communication and the units
of work around which such communication takes place in a
large scale software project.

References
[1] A. L. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert,

and T. Vicsek. Evolution of the social network of scientific
collaborations. cond-mat/0104162, Apr. 2001.

[2] D. Barron. The analysis of count data: Overdispersion and au-
tocorrelation. Sociological methodology, 22:179–220, 1992.

[3] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy.
Putting it All Together: Using Socio-Technical Networks to
Predict Failures. In Proc. ISSRE 2009.

[4] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu.
Latent social structure in open source projects. In Proceed-
ings of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, SIGSOFT ’08/FSE-16,
page 2435, New York, NY, USA, 2008. ACM. ISBN 978-1-
59593-995-1.

[5] F. P. Brooks. The Mythical Man-Month: Essays on Software
Engineering, 20th Anniversary Edition. Addison-Wesley,
1995.

[6] S. L. Brown and K. M. Eisenhardt. Product development:
Past research, present findings, and future directions. The
Academy of Management Review, 20(2):343–378, Apr. 1995.
ISSN 0363-7425. doi: 10.2307/258850.

[7] M. Cataldo and J. D. Herbsleb. Communication networks
in geographically distributed software development. In Pro-
ceedings of the 2008 ACM conference on Computer supported
cooperative work, CSCW ’08, page 579588, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-007-4.

[8] M. Cataldo, J. D. Herbsleb, and K. M. Carley. Socio-technical
congruence: a framework for assessing the impact of techni-
cal and work dependencies on software development produc-
tivity. In Proc. ESEM 2008, pages 2–11. ISBN 978-1-59593-
971-5.

[9] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Car-
ley. Identification of coordination requirements: implications

for the design of collaboration and awareness tools. In Pro-
ceedings of the 2006 20th anniversary conference on Com-
puter supported cooperative work, CSCW ’06, page 353362,
New York, NY, USA, 2006. ACM. ISBN 1-59593-249-6.

[10] M. Conway. How do committees invent? Datamation Journal,
pages 28–31, April 1968.

[11] J. M. Costa, M. Cataldo, and C. R. de Souza. The scale
and evolution of coordination needs in large-scale distributed
projects: implications for the future generation of collabo-
rative tools. In Proceedings of the 2011 annual confer-
ence on Human factors in computing systems, CHI ’11, page
31513160, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0228-9.

[12] C. D. Cramton. The mutual knowledge problem and its con-
sequences for dispersed collaboration. Organization Science,
12(3):346371, May 2001. ISSN 1526-5455.

[13] K. Crowston and J. Howison. The social structure of free and
open source software development. First Monday, ISSN 1396-
0466, Feb. 2005. The authors examine communication patters
of FLOSS projects, finding that FLOSS development teams
vary widely in centralizing or decentralizing their communi-
cations.

[14] J. N. Cummings. Work groups, structural diversity, and
knowledge sharing in a global organization. Manage. Sci.,
50(3):352364, Mar. 2004. ISSN 0025-1909.

[15] J. N. Cummings and R. Cross. Structural properties of work
groups and their consequences for performance. Social Net-
works, 25(3):197–210, July 2003. ISSN 0378-8733.

[16] W. de Nooy, A. Mrvar, and V. Batagelj. Exploratory Social
Network Analysis with Pajek. Cambridge University Press,
Jan. 2005. ISBN 0521602629.

[17] K. Ehrlich and M. Cataldo. All-for-one and one-for-all?: a
multi-level analysis of communication patterns and individual
performance in geographically distributed software develop-
ment. In Proceedings of the ACM 2012 conference on Com-
puter Supported Cooperative Work, CSCW ’12, pages 945–
954, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1086-4.

[18] K. Ehrlich and K. Chang. Leveraging expertise in global soft-
ware teams: Going outside boundaries. In Proceedings of the
IEEE international conference on Global Software Engineer-
ing, ICGSE ’06, page 149158, Washington, DC, USA, 2006.
IEEE Computer Society. ISBN 0-7695-2663-2.

[19] K. Ehrlich, G. Valetto, and M. Helander. Seeing inside: Using
social network analysis to understand patterns of collaboration
and coordination in global software teams. In Proc. ICGSE
’07, pages 297–298, 2007. ISBN 0-7695-2920-8.

[20] W. Fong Boh, S. A. Slaughter, and J. A. Espinosa. Learn-
ing from experience in software development: A multilevel
analysis. Manage. Sci., 53(8):13151331, Aug. 2007. ISSN
0025-1909.

[21] R. Frost. Jazz and the eclipse way of collaboration. IEEE
Softw., 24(6):114–117, 2007.

[22] R. Guimera, B. Uzzi, J. Spiro, and L. A. N. Amaral. Team
assembly mechanisms determine collaboration network struc-

666

ture and team performance. Science (New York, N.Y.), 308
(5722):697–702, Apr. 2005. ISSN 1095-9203.

[23] J. D. Herbsleb and A. Mockus. An empirical study of speed
and communication in globally distributed software develop-
ment. IEEE Trans. Softw. Eng., 29:481–494, June 2003. ISSN
0098-5589.

[24] K. Herzig and A. Zeller. Mining the jazz repository: Chal-
lenges and opportunities. In Mining Software Repositories,
2009. MSR ’09. 6th IEEE International Working Conference
on, pages 159 –162, May 2009.

[25] P. Hinds and C. McGrath. Structures that work: social struc-
ture, work structure and coordination ease in geographically
distributed teams. In Proc. CSCW 2006, pages 343–352.
ACM, 2006. ISBN 1-59593-249-6.

[26] R. Kling, W. Scacchi, and M. C. Yovits. Computing as social
action: The social dynamics of computing in complex orga-
nizations. volume 19, pages 249–327. Elsevier, 1980. ISBN
0065-2458.

[27] A. G. Koru and H. Liu. Building defect prediction models in
practice. IEEE Softw., 22(6):2329, Nov. 2005. ISSN 0740-
7459.

[28] R. E. Kraut and L. A. Streeter. Coordination in software
development. Comm. of the ACM, 38(3):69–81, Mar. 1995.
ISSN 00010782.

[29] I. Kwan, A. Schroter, and D. Damian. Does Socio-Technical
congruence have an effect on software build success? a study
of coordination in a software project. IEEE Trans. Softw. Eng.,
37(3):307–324, May 2011. ISSN 0098-5589.

[30] M. E. J. Newman. The structure and function of complex
networks. Mar. 2003. SIAM Review 45, 167-256 (2003).

[31] G. L. Stewart and M. R. Barrick. Team structure and perfor-
mance: Assessing the mediating role of intrateam process and
the moderating role of task type. The Academy of Manage-
ment Journal, 43(2):135–148, Apr. 2000. ISSN 0001-4273.

[32] B. Tabachnick and L. Fidell. Using Multivariate Statistics.
Boston: Pearson Education, 2007.

[33] P. Wagstrom, J. Herbsleb, and K. Carley. Communication,
team performance, and the individual: Bridging technical de-
pendencies. Proc. AMC 2010, 2010.

[34] D. Watts. Networks, dynamics, and the Small-World phe-
nomenon. The American Journal of Sociology, 105(2):527,
493, 1999.

[35] T. Wolf, T. Nguyen, and D. Damian. Does distance still
matter? Softw. Process, 13(6):493–510, 2008.

[36] T. Wolf, A. Schroter, D. Damian, and T. Nguyen. Predict-
ing build failures using social network analysis on developer
communication. In Proc. ICSE 2009, pages 1–11, 2009. ISBN
978-1-4244-3453-4.

[37] N. Zhou, Q. Ma, and K. Ratakonda. Quantitative modeling
of communication cost for global service delivery. In Proc.
SCC 2009, SCC ’09, pages 388–395, 2009. ISBN 978-0-
7695-3811-2.

[38] T. Zimmermann and N. Nagappan. Predicting defects with
program dependencies. In Empirical Software Engineering
and Measurement, 2009. ESEM 2009. 3rd International Sym-
posium on, pages 435 –438, Oct. 2009.

667

	Talk versus work: Characteristics of developer collaboration on the Jazz platform
	Citation

	Talk versus work: characteristics of developer collaboration on the jazz platform

