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ABSTRACT
There can be little contention about Stroustrup’s epigram-
matic remark: our civilization runs on software. However a
caveat is increasingly due, much of the software that runs our
civilization, runs on mobile devices today. Mobile operating
systems have come to play a preeminent role in the ubiquity
and utility of such devices. The development ecosystem of
Android - one of the most popular mobile operating sys-
tems - presents an interesting context for studying whether
and how collaboration dynamics in mobile development dif-
fer from conventional software development. In this paper,
we examine factors that influence task ownership in Android
development. Our results can inform project governance de-
cisions at the individual and organizational levels.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Life cycle

General Terms
Experimentation

Keywords
Android, reviews, code changes, merging

1. INTRODUCTION
Background: Deciding who does what in the assignment

of functionality to software components has been recognized
as a “desert island skill” [6]. Similarly, in the delegation of
tasks to members of a software development team there are
many open questions as to what constitutes the most opti-
mal distribution of responsibility. Large scale software sys-
tems are being increasingly built out of interactions between
many members of distributed teams. In such ecosystems,
whether developers should be encouraged to focus closely
on tasks they own, or participate widely in shared responsi-
bilities with peers, needs to be better understood.
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Related work: There have been studies on whether more
eyeballs indeed make a bug shallow [4], and the influences on
resolution times of defects [5] or modification requests [3].
In addition to bug resolution or implementation of modi-
fication requests, another critical activity underpins much
of iterative software development – collective review of code
changes. In this paper, we study how developer involvement
in such review activities relate to the time taken for corre-
sponding code changes to be integrated into the main code
base (i.e. “merged”), using data from Android development.
The wide currency of Android as a popular operating system
for mobile devices makes it imperative that the code base
undergoes frequent refinements [1]. An essential element of
this refinement process is the production and review of new
units of code, and based on their review outcome by devel-
opers, arrival at the decision on whether or not to merge
the code. In the context of the Android review data, we
examine the following hypothesis in this paper:

Hypothesis: Code changes owned by developers who are
involved in more code reviews take higher amount of time to
be merged.

2. METHODOLOGY
To validate this hypotheses, we develop a multiple lin-

ear regression model using data on merged Android reviews
from a publicly accessible repository1. Lack of space pre-
vents a detailed discussion of the data-set; interested readers
may refer to the curation and structure of the data in [7].
In the following discussion, a “review” will be taken to mean
a unit of code change that is scrutinized by multiple devel-
opers (“reviewers”), and based on “approval” scores given by
each of them, a decision is taken whether or not to “merge”
the unit with the main body of code.

As the dependent variable of the model, TimeToMerge
was calculated as the elapsed time between the time-stamp
of review creation and the time-stamp of its last updat-
ing. As the independent variable, we took OwnerRe-
viewCount ; for each review (say x), this is the number of
reviews the owner of x has reviewed and given an approval
score. The OwnerReviewCount is taken to reflect the level
of involvement of a review’s owner in the overall review pro-
cess. To isolate the relation between the dependent and
independent variables, we identified the following control
variables which capture the peripheral effects on the in-
dependent variable: ExtentOfCodeChange - calculated as
the number of patches associated with a review; Quality-
OfChange - the median of the approval scores received by

1https://github.com/mmukadam/gerrit-miner.git
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Table 1: Descriptive statistics of model variables
Mean Stdev Skew Kurt

TimeToMerge 17.61 21.48 2.31 6.25
ExtentOfCodeChange 2.50 2.01 2.98 4.44

QualityOfChange 0.43 0.58 1.13 0.35
DependencyLevel 300.52 192.55 0.65 0.13
NoOfReviewers 4.70 1.79 1.50 3.98

NoOfNnOwnrComnts 2.53 1.19 2.89 6.9
OwnerWorkload 60.63 67.02 1.14 0.13

OwnerReviewCount 190.07 228.18 2.01 5.51

Table 2: Results of regression for the effects on bug
resolution time.(Superscripts ’∗∗∗’, ’∗∗’, ’∗’, ’†’ denote
p ≤ 0.0001, p ≤ 0.001, p ≤ 0.01, p ≤ 0.05, respectively)

I II
Base model Refined model

Intercept −2.86† −1.89
(1.65) (1.65)

Control variables
ExtentOfCodeChange 1.01∗∗∗ 1.12∗∗∗

(0.29) (0.28)
QualityOfChange −4.02∗∗∗ −2.96∗∗∗

(0.763) (0.75)
DependencyLevel 0.005∗ 0.004∗

(0.002) (0.002)
NoOfReviewers 1.235∗∗ 1.086∗∗∗

(0.260) (0.25)
NoOfNnOwnrComnts 4.45∗∗∗ 3.6∗∗∗

(0.53) (0.52)
OwnerWorkload 0.017∗∗∗ 0.054∗∗∗

(0.006) (0.006)
Independent variable
OwnerReviewCount −0.024∗∗∗

(0.002)
N 2243 2243
R2 0.186 0.232
df 2236 2235
F 85.2 96.4
p < 0.001 < 0.001

a review; DependencyLevel - calculated as the degree cen-
trality of review in a network based on review similarity;
NoOfReviewers - the number of different developers partic-
ipating in the review process; NoOfNnOwnrComnts - the
number of comments on a particular review by developers
who do not own it;OwnerWorkload - for each review, the
number of reviews owned by its owner. TimeToMerge and
NoOfNnOwnrComnts are transformed by taking the square
root, to be closer to normal distribution.

Table 1 gives the descriptive statistics of the above model
variables. To understand the relation between the depen-
dent and independent variable, after accounting for the ef-
fects of the control variables, we first build a base model with
only the control variables and the dependent variable, and
then augment it into a refined model by adding the indepen-
dent variable; the corresponding columns of Table 2 gives the
parameters of these models. The underlying assumptions of
multiple linear regression were found to be within reasonable
limits for our analysis.

3. RESULTS AND DISCUSSION
As we observe from Table 2, the refined model represents

a better fit to the data compared to the base model and

both the models are statistically significant. Adding the
independent variable increases the R2 value by 25%. In
both the models, the variables are statistically significant at
α = 0.05.

The threat to construct validity comes from our defini-
tion of similarity between reviews using a Latent Dirichlet
Allocation [2] based approach, as well as the calculation of
some of the model variables based on available data. Since
we use curated data from a single source, there is no notable
threat to internal validity. As we have only studied data
from a single source and the R2 values indicate there are
influences on the independent variable which have not been
captured, we recognize that threats to external validity
are present in the study. Our results establish reliability
as they can be reproduced, given access to the data-set. And
finally, as this is an observational study rather than a con-
trolled experiment, correlation can not be taken to indicate
causation.

From the model parameters, we observe that higher Own-
erReviewCount relates to lower TimeToMerge; thus our hy-
pothesis is not supported by the empirical evidence. This is
a counter-intuitive result, especially as we find that higher
OwnerWorkload does indeed relate to more time being re-
quired for merging code changes. In contrast, higher involve-
ment in reviewing appears to make developers more aware of
the development ecosystem, leading to more effective own-
ership of code changes, which is reflected in quicker merging
of code.
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