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Influence, Information and Team Outcomes in
Large Scale Software Development

Subhajit Datta
School of Information Systems (SIS)

Singapore Management University (SMU)
Singapore 178902

subhajit.datta@acm.org

Abstract—It is widely perceived that the egalitarian ecosystems
of large scale open source software development foster effective
team outcomes. In this study, we question this conventional
wisdom by examining whether and how the centralization of
information and influence in a software development team relate
to the quality of the team’s work products. Analyzing data
from more than a hundred real world projects that include
development activities over close to a decade, involving 2000+
developers, who collectively resolve more than two hundred
thousand defects through discussions covering more than six
hundred thousand comments, we arrive at statistically significant
evidence indicating that concentration of information and influ-
ence in the developer communication networks of the projects
are associated with the quality of a team’s work products, even
after controlling for various factors related to levels of developer
engagement. Our results suggest that merely facilitating easy
interaction between team members may not be sufficient to
enhance team outcomes. The design of efficient collaborative
development environments, and devising tools and processes for
team assembly and governance can be informed by our results.

Index Terms—Influence, interaction, software quality, team
outcomes

I. INTRODUCTION AND MOTIVATION

Raymond’s Cathedral and the Bazaar made the provocative
case for a diverse and interactive developer pool being bene-

ficial to the outcome of large scale software development [1].

Since then, benefits of the so-called network effects are per-

ceived to be widely prevalent in such development ecosystems

[2]. Members of global development teams are encouraged

to leverage collaborative development environments as they

collectively design, develop, and maintain complex software

systems [3], even as the benefits and challenges arising out

of team sizes [4] and the distributed nature of development

are being investigated [5]. Accordingly, project governance

processes are oriented towards facilitating peer level inter-

action. Such tools and processes are meant to decentralize

the flow of information and facilitate localization of influence

in project teams, giving every member a level platform for

shared awareness and decision-making [6]. Unfettered access

to information, and equality of influence are lofty ideals. But

how effective are they in practice? In this paper, we report

results from a multi-project empirical study which investigates

the broader context of this question. We examine 125 product

teams from the Gnome suite of products1.

1https://www.gnome.org/

Given the highly collaborative nature of open source soft-

ware development, networks offer an useful way to abstract

and study developer interaction [2]. A key benefit of the

network paradigm is that it offers intuitive measures of several

aspects of interaction; for example, whether and how one or

few vertices dominate the structure and function of a particular

network. In the software development context, such dominance

has several implications.

While concentration of information indicates the existence

of experts in the project team, concentration of influence

signifies that authority is localized among few. On one hand,

concentrating information and influence may be necessary

to an extent for developing quality software systems within

project constraints. While on the other hand, such concen-

tration has concomitant fragility; for example, removal or

impairment of the highest degree node in a highly centralized

network can lead to collapse of the network’s functions. We

seek to examine this dichotomy through in study reported in

this paper.

The research contributions from this study are:

• Ever since open source software development was popu-
larized with its emphasis on interaction vis-a-vis instruc-

tion, there have been qualms on issues such as distri-

bution of authority [7]. Such qualms can be objectively

addressed in light of the empirical evidence presented

in this paper on the relation between centralization of

influence and information flow, and the quality of a team’s

work products.

• Empirical studies in software engineering are often con-
ducted on one or few projects and the limitations of

such studies are widely recognized [8], [9]. Our cohort

consists of more than a hundred real world projects; hence

conclusions from this study have wider relevance.

• With an increasing trend towards global collaboration,
members of software teams are widely distributed across

geographies and time-zones. Our results offer insights on

effective governance of such teams.

In the next section, we introduce our research question,

followed by an overview of related work. In subsequent

sections we discuss our study setting and methodology, results

with their implications and utility, and threats to validity. The

paper ends with an outline of summary and conclusions from
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this study.

II. RESEARCH QUESTION AND HYPOTHESES

Questions around how structural positions of individuals in

a social network influence collective and individual outcomes

have long interested researchers in a variety of contexts [10],

[11], [12], [13], [14], [9]. In software development ecosystems,

central modules have been found to be more error prone

than peripheral ones [14]; informal hierarchical structures are

seen to facilitate smoother coordination in distributed teams

[13]; and there is evidence that developers who are more

deeply embedded communication clusters of teams, perform

better [9]. While these studies have focused on the individual

level, we look at the role of centralization of information and

influence at the level of entire networks representing intra-team

developer interaction.

With this background, we investigate the research question:

How does the centralization of information and influence
in a software development team relate to the quality of
the team’s work products? Key terms such as “centraliza-
tion”, “information”, and “influence” are formally defined in

Section IV.

We distil the research question into the following alternate
hypotheses, which are statistically validated in this study:

• H1: Higher centralization of information in a software
development team relates to more defects in the team’s
work products. The corresponding null hypothesis is
that there is no relation between higher centralization

of information in a software development team and the

number of defects in the team’s work products.

• H2: Higher centralization of influence in a software
development team relates to more defects in the team’s
work products. The corresponding null hypothesis is that
there is no relation between higher centralization of

influence in a software development team and the number

of defects in the team’s work products.

III. RELATED WORK

We focus our discussion of related work on two areas which

are most relevant to this paper: attempts at understanding the

dynamics of open source software development ecosystems,

and studies on the Gnome suite of products.

A. Understanding open source software development

The popularity of Linux underscored that large scale open

source projects can indeed deliver quality software, within

production constraints. It has been suggested that Linus Tor-

vald’s biggest contribution - even bigger than the conception

of Linux itself - lies in establishing the culture of open source

ecosystems that can support delivery of complex software

systems [1]. Over the past decade and half, there have been

many studies that seek to understand the dynamics of such

ecosystems. Godfrey and Tu studied the growth, evolution,

and structural change in open source software to observe

that several open source systems do not seem to obey some

of the Lehman’s Law of software evolution [15]. Crow-

ston et al. examined data from 7477 open source projects

to understand how they function as virtual organizations,

with its members focusing on competency building [16].

In a subsequent paper, Crowston and Howison investigated

whether the social and communication structures of open

source projects are indeed distinctive; from a study of 125

project teams, they concluded that open source project teams

vary widely in their communication centralization, with some

projects strongly centred on one developer to others which

are significantly decentralized [12]. Muffato takes a multi-

disciplinary approach towards understanding the open source

phenomenon, as well as its applicability beyond software

development [17]. The need to study open source software

development from a multi-disciplinary perspective is further

emphasized by von Krogh and Spaeth, who identify five key

characteristics that distinguish this paradigm - impact, tension,

transparency, communal reflexivity, and proximity [18]. Bird

et al. have studied how latent social structures emerge in open

source communities, using established community detection

techniques; they observe that sub-communities are notably

related to collaboration [8]. Merlo and Slaughter found that

in open source projects, the structure of software reflects the

organizational structure of the development team whereas in

closed source projects, organizational structure also impacts

the structure of social network of team interactions [19].

Robles, Gonzalez-Barahona, and Herraiz studied the evolution

of the core set of developers in open source projects and

suggested a quantitative methodology to identify how this

core evolves over time [20]. In spite of the wide currency of

open source development, Ancuna et al., reported that there

is no globally accepted open source software development

process, on the basis of a systematic study [21]. Hayashi et al.

investigated whether and how developers need to collaborate in

open source projects, and concluded that a committer needs to

be aware of the risk of bugs being re-opened, by collaborators

[22].

B. Studies on the Gnome suite of products

The development ecosystem around the Gnome suite of

products has been studied from various perspectives. Koch

and Schneider used data from the Gnome project to suggest

an approach for effort estimation [23]. German examined the

software development methods and practices used in Gnome,

as well as its organizational structure in the context of its large

and distributed team, and distilled a set of best practices that

can be useful for other teams which try to address the chal-

lenges of global software development [24]. Lungu, Malnati,

and Lanza devised a “small project observatory” to offer a

visualization of the development activities of 900+ developers

over 10 years of Gnome development [25]. Schackmann and

Lichter evaluated the process quality in Gnome based on

change request data, and presented a comparative analysis of

the 25 largest products in Gnome on the basis of a quality

model they develop [26]. Casebolt et al. defined the “author

entropy” metric and used it to characterize author contributions

403



per file [27]. They found evidence that larger files are more

likely to have a dominant author when two authors contribute

to a file. Linstead and Baldi applied latent Dirichlet allocation

based techniques to mine Gnome bug reports and defined a

new information-theoretic measure of coherence to estimate

the quality of bug reports [28]. The presence of code clones is

detected through an automated approach devised by Krinke et

al., and tested on the Gnome code base [29]. The authors find

that 60% of the clone pairs can be separated into original and

copy. Neu et al., presented a Web-based application to support

interactive visualizations for software ecosystem analysis [30].

They used their application to examine the Genome ecosystem

in a bottom-up approach, and to understand how a single

project and contributor can influence the entire ecosystem.

Goeminne et al. presented a data-set compiling historical

data about contributors to Gnome projects to complement the

traditional, source code based analysis of software projects

[31]. Vasilescu et al., studied the Gnome ecosystem to explore

the extent to which projects and contributors specialize in

particular activity types [32].

Our results complement these studies by examining the

relations between centralization of information and influence,

and the quality of the team’s work products in large scale

software development.

IV. STUDY SETTING AND METHODOLOGY

In the following subsections, we describe the context and

method of our study.

A. Accessing and filtering Data

The Gnome data-set used in this study was made available

for a mining challenge in a conference related to mining

software repositories [33]. Gnome (also written as “GNOME”)

is a desktop environment composed entirely of free and open

source software2. The data-set covers 389 Gnome “compo-

nents”, each of which were modules in the Gnome suite,

running as related, but independent projects. In subsequent

discussion, “project” will refer to the development ecosystems

around each of these products, and “team” will denote the

group of developers working on each project. For our analysis,

we selected 125 projects which have one or more developers

owning a resolved bug from the Gnome data-set. In total,

these projects covered development activities over an eight-

year period, involving 2313 developers, resolving 207573

defects through discussions that include 632096 comments.

The projects considered in this study had the number of defects

ranging from 14 to 38513, with a median of 532. We are thus

able to capture a wide range of team sizes who work on these

projects.

B. Generating developer communication network

As developers interact while working together to resolve

bugs, they post comments on those bugs. Such co-commenting

serves as an essential vehicle for disseminating awareness

and directions. From these instances of co-commenting on

2https://en.wikipedia.org/wiki/GNOME

bugs, we extract a developer communication network for each

project (referred to as “network” in subsequent discussion),

in the following way: The vertices (nodes) of the networks

are developers; two developers are connected by an edge

(undirected link) if both the developers have commented on
at least one common bug during the active duration of the

project.

C. Selecting model variables

To validate the hypotheses, we seek to use statistical models

to understand how independent variables relate to the depen-

dent variable, after accounting for the effects of the control

variables. Choices of the dependent and independent variables

are informed by our research question and the context of

the study; control variables are selected on the basis of well

recognized peripheral influences on the dependent variable.

We now describe how each of the variables in our models are

calculated.
1) Dependent variable: As established in literature, bug

count can be taken as a proxy for the quality of a project

team’s work products [34]. Thus our dependent variable is

DefectCount, which is the number of bugs in “resolved” status
for each project. In subsequent discussion, “defect” and “bug”

will be used interchangeably. Figure 1 shows the boxplot of

the defect counts in the projects; expectedly, the distribution of

defects is right skewed, with many projects having few defects,

and few project having many defects.

Fig. 1. Boxplot of dependent variable DefectCount across the projects.

2) Independent variables: These represent factors whose
influence on the dependent variable is of interest to us. Degree

centrality of a vertex in a network is the number of other

vertices that vertex is directly connected to. Degree centrality

is an indication of the extent of information flowing through
the vertex [2]. In our network, developers with higher degrees

participate in more instances of co-commenting on bugs,

which facilitate their enhanced access to project information.

On the other hand, eigenvector centrality indicates the level of
influence of a vertex [2]. Calculating the eigenvector centrality
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involves assigning relative scores to all nodes in the network

on the assumption that connections to high-scoring nodes

contribute more to the score of the node in question. Metrics

such as Google’s PageRank and Katz centrality are types of

eigenvector centrality. For a given graph G := (V,E) with |V |
as the number of vertices and the adjacency matrix A = (av,t)
such that av,t = 1 if vertex v is linked to vertex t and av,t = 0
otherwise, eigenvector centrality xv for the vertex v is given
by the following definition, where λ is a constant3 [2] :

xv =
1

λ

∑

t∈G

av,txt

Intuitively, centralization reflects the process by which the
activities of an organization become concentrated among a

particular group or individual.

Defined formally, if Cx(pi) is any centrality measure of
vertex i, if Cx(p�) is the largest such measure in the network,
and if max

∑N
i=1 Cx(p�) − Cx(pi) is the largest sum of

differences in point centrality Cx for any graph with the same

number of vertices, then the centralization4 [2] of the network

is:

Cx =

∑N
i=1 Cx(p�)− Cx(pi)

max
∑N

i=1 Cx(p�)− Cx(pi)

On the basis of the above definitions, we take the inde-

pendent variables in our models as the degree centralization

(Information) and the eigenvector centralization (Influence)
of the developer co-commenting network defined earlier.

Figure 2 indicates the distribution of the degree centraliza-

tion across the projects to be right skewed, with relatively few

projects having high degree centralization, and many projects

having relatively low degree centralization.

Fig. 2. Boxplot of independent variable Information across the projects.

From the boxplot of the eigenvector centralization in Fig-

ure 3 we observe that the distribution of this variable is left

skewed, with relatively many projects having high eigenvector

3http://en.wikipedia.org/wiki/Centrality#Eigenvector centrality
4http://en.wikipedia.org/wiki/Centrality#Centralization

centralization, and few projects having relatively low eigenvec-

tor centralization.

Fig. 3. Boxplot of independent variable Influence across the projects.

3) Control variables: These are included in the model to
account for peripheral factors - other than those captured by

the independent variables - that may influence the dependent

variable. As the number of resolved bugs in a project is likely

to be related to the number of developers owning resolved

bugs, we take the latter as the Ownership control variable.
Bug resolution is influenced by the extent of developer interest

impinging on bugs in a project [1], thus we take the number of

developers commenting on the resolved bugs as the Interest
control variable. To control for the level of developer attention

on individual bugs, we take the average number of comments

per bug as the Attention control variable. How long developers
remain engaged on resolving a bug is also expected to influ-

ence the number of bugs resolved; the average of the elapsed

time in hours between the first comment by each developer on

any bug and the last comment by the same developer on any

bug in the project is taken as the Span control variable. We
control for the extent of time developers have remained active

in resolving bugs in each project as the Focus control variable,
calculated as the elapsed time between first comment and last

comment on bugs in a project. Other than discussions, it is

important to control for the amount of development activities

going around bug resolution; accordingly, the average number

of activities (as defined in the data-set) around bugs in a project

is taken as the Activity control variable. To control for the age
of the product, we take the elapsed time between the earliest

and latest creation date across all bugs in the project as the

Age control variable. Bugs which are deemed more important
by the developer community get more attention, to control

for this effect we use the variable Priority, calculated as the
average of the priorities of all bugs in the project.

D. Choosing a modelling paradigm

As our dependent variable is a count of resolved bugs in a
project, Poisson regression was first considered as a modelling
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paradigm. A major threat to the validity of using Poisson

regression is overdispersion, which is indicated by a violation
of the strong underlying assumption of equality of variance

and mean of a Poisson distribution [35]. On the other hand,

multiple linear regression has the assumptions of linearity,

normality, and homoscedasticity of the residuals, and lack

of multicollinearity between the independent variables [36].

These were found to hold within reasonable limits in our study.

Histogram, P-P plot, and scatter plots of the standardized

residuals were used to establish the residual properties. We

decided to use multiple linear regression with some of the

variables suitably transformed (as explained later), as its

underlying assumptions were satisfied, and it provided a high

goodness of fit (see Table III).

E. Evaluating the model

TABLE I
DESCRIPTIVE STATISTICS OF THE MODEL VARIABLES

Variable name Mean Standard deviation
DefectCount 1660.58 3998.42
Information 0.807 0.132

Influence 0.856 0.176
Ownership 18.504 21.43

Interest 821.90 1913.79
Attention 3.37 1.05

Span 2633.22 1495.63
Focus 52920.02 15714.83

Activity 6.87 2.72
Age 58285.81 31323.74

Priority 2.16 0.188

In Table I we present the descriptive statistics of the

model variables. The dependent and independent variables

are transformed by taking the square root, for a better fit

to the linear model. Table II shows the correlation matrix

of the model variables. From this table, we observe that the

correlation between the independent variables was notably

low (0.156); addressing one of the underlying assumption for

multiple regression.

Table III gives the details of the models. Column I specifies

the base model showing the effects of the control variables
on the dependent variable and Column II shows the refined
model which additionally includes the independent variables.

The coefficient of each control and independent variable in the

regression equation is mentioned, with its standard error. The

significance of each coefficient is calculated on the basis of

their respective p values. The p value for each coefficient is
calculated from the t-statistic (ratio of each coefficient to its
standard error) and the Student’s t distribution. The R2 values

give the coefficient of determination – calculated as the ratio

of the regression sum of squares to the total sum of squares

- indicating the goodness of fit of the regression model in

terms of the proportion of variability in the data set that is

accounted for by the model. We also report the degrees of

freedom; the Fisher F -statistic — the ratio of the variance in

the data explained by the linear model divided by the variance

unexplained by the model; and the p value reflecting the

overall statistical significance of the model, calculated using

the F-statistic and the F-distribution. For the coefficients as

well as the overall regression, if p < level of significance, we

conclude the corresponding result is statistically significant.

The levels of significance for each of the p values are also
indicated in Table III.

V. RESULTS AND DISCUSSION

After running the regression mode we also checked the

variance inflation factors of the model variables; the levels

of their values indicated that multicollinearity did not present

a threat to the validity of our models. Figure 4 shows the

histogram of the residuals from the regression model; it is

evident that the distribution is reasonably close to a normal

distribution.

Fig. 4. The distribution of the residuals from the regression model.

With reference to Table III, we observe that both the base

and refined models are statistically significant and from the R2

values it is evident that the base model is able to explain 87.9%
of the dependent variable’s variability whereas the refined

model explains 94.3%. Thus, inclusion of the independent
variables over and above the control variables leads to an

increase in the explanatory power of the model by around

7%. The increase in the F-statistic from 113 to 207 from the
base to the refined model also indicates that inclusion of the

independent variables lead to a better fit of the model.

Figure 5 shows the scatter plot between the actual defect

count and that predicted by using the refined model. The Pear-

son correlation coefficient between the actual and predicted

defect counts is 0.92. This strong correlation suggests the
model can be used to predict the number of defects generated

from teams’ work products. To further establish the refined

model’s utility for prediction, we performed 10-fold cross

validation, whose results are shown in Figure 6. Evidently,

the model shows a close fit with the data, with a mean sum of

squares value of 1072. Thus the refined model does not show

notable effects of overfitting, and can be used effectively for

predicting the defect count in other similar contexts.
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TABLE II
CORRELATION MATRIX

DefectCount Ownership Interest Attention Span Focus Activity Age Priority Information Influence
DefectCount 1 0.574 0.977 -0.129 -0.157 0.242 -0.118 0.457 0.368 0.259 0.11
Ownership 1 0.551 0.555 0.158 0.368 0.142 0.448 0.03 0.103 0.299

Interest 1 -0.161 -0.23 0.264 -0.16 0.543 0.395 0.208 0.108
Attention 1 0.514 0.0257 0.548 -0.055 -0.251 0.23 0.06

Span 1 0.338 0.482 0.035 -0.285 0.058 0.09
Focus 1 0.171 0.682 0.036 0.088 0.3

Activity 1 -0.047 -0.184 0.116 0.035
Age 1 0.067 0.12 0.251

Priority 1 -0.043 -0.159
Information 1 0.156

Influence 1

TABLE III
RESULTS OF REGRESSION FOR THE EFFECTS ON BUG RESOLUTION
TIME.(SUPERSCRIPTS ’∗∗∗’, ’∗∗’, ’∗’, ’.’ DENOTE p ≤ 0.0001,

p ≤ 0.001, p ≤ 0.01, p ≤ 0.05 RESPECTIVELY)

I II
Base model Refined model

Intercept −42.7∗∗∗ −35.8∗∗∗
(12.2) (9.28)

Control variables
Ownership 0.303∗∗∗ 0.362∗∗∗

(0.005) (0.036)
Interest −0.009∗∗∗ 0.007∗∗∗

(0.0007) (0.0005)
Attention 0.353 −0.864

(1.04) (0.721)
Span −0.0003 0.0005

(0.0008) (0.0005)
Focus 0.0004 0.0008

(0.0009) (0.0006)
Activity 0.151 −0.115

(0.392) (0.269)
Age 0.0009. 0.0008∗∗

(0.0004) (0.0003)
Priority 24.2∗∗∗ 25.8∗∗∗

(5.15) (3.59)
Independent variables
Information 4.49∗∗∗

(0.391)
Influence −17.4∗∗∗

(3.69)
N 125 125

R2 0.879 0.943
df 116 114
F 113 207
p < 0.001 < 0.001

Focusing on the coefficients of the refined model, we see

that effects of both the independent variables Information and
Influence are statistically significant. From the signs of the

coefficients, it is apparent that higher centralization of infor-

mation relates to more defects, whereas higher centralization

of influence leads to fewer defects. Thus we find empirical

evidence to reject the null hypotheses corresponding to H1 and
H2 in favour of these alternate hypotheses. The directionality
of the effect as supported by the empirical evidence is as

hypothesized in H1, but opposite to what is hypothesized in
H2. Let us discuss the implications of this finding.

Fig. 5. Scatterplot of actual number of defects and those predicted by the
regression model.

The fact that higher centralization of information relates

to more defects is not unexpected. In a project, as informa-

tion increasingly flows through a centralized hub, there are

higher possibilities of that hub becoming a bottleneck. With

information overload, parsing, processing, and disseminating

information become difficult for an individual, and this may

translate to information gaps elsewhere in the network. As

software bugs often arise out of a lack of contextual awareness,

inadequate distribution of information in a team can be seen

to relate to more defects in a team’s work products [34].

However, the fact that our evidence leads us to reject the null

hypothesis corresponding to H2, and the effect of Influence is
opposite to what is hypothesized in H2, is counter-intuitive.
There is a general perception that, as in open societies, in open

source software development too, decentralization of influence

is more effective [17]. Intuitively, it also seems to make more

sense that rather than one highly influential member holding

sway over the entire team, it will be better for the team to have

each member having adequate influence on her immediate

sphere of interest. How then do we explain our result that

higher centralization of influence relates to fewer defects?

407



Fig. 6. Results from 10-fold cross validation.

The contrasting directionality of the associations between

the independent variables and the dependent variable points

to an interesting dichotomy in software development involving

large and diverse teams. As tools and processes increasingly

support easy interaction between team members, there is a pos-

sibility that developers become overwhelmed by the peripheral

noise such interaction essentially entails. Often the develop-

ment ecosystem in such situations can become a “play-pen

for developers” with their collective effort not converging to
desired project outcomes [37]. Such possibilities are especially

strong when the team relies notably on remote collaboration,

as is the case in our study setting [38]. In these situations, a

strong central influence to set the project’s directions, track

and steer progress, and ensure quality constraints are met, is

necessary. Lack of such a centralized influence can relate to a

degradation in the quality of the work product, whose evidence

we see in our study. Recent results from the burgeoning studies

of “team science” are congruent with this finding [39].

Our results can inform the design of collaborative software

development tools and processes in various ways. This study

indicates that it is important to ensure each developer is able to

access relevant project information directly. But concomitantly,

it also points to the need to have a governance mechanism

where influence is clearly defined and concentrated rather than

being loosely diffused in the team. This has several implication

in the assembly and governance of distributed development

teams. With the known overheads of communication in soft-

ware projects it is thus important that teams have resident

experts in each location, so that developers will not need

to reach out far to gain vital project awareness [40]. Also,

influential members of the team need to make a special effort

to reach out other members, so that authority gradient does

not pose a barrier to intra-team communication. Our results

highlight the need to balance concentration of influence with

diffusion of authority in a team. This can be achieved with

planned sensitization and training of team members.

VI. THREATS TO VALIDITY AND FUTURE WORK

Threats to construct validity are concerned with mea-

surement of variables. As mentioned earlier, our independent

variables are calculated as network measures and the control

variables are derived from the Gnome data-set. While the mod-

els may be augmented in different ways, errors are unlikely

to be present in the measurements of the variables currently

included in our model. Internal validity ensures a study is
free from systematic errors and biases. As the Gnome data-set

is our only source of data, our study is relatively free from

this threat. Whether the results from a study are generalizable

is associated with the threat of external validity. Our results
are based on studying many projects from the same Gnome

platform. Thus we do not claim our results to be generalizable

without further investigation. Reliability is concerned with
the reproducibility of results. Given access to the data, our

results are reproducible. In addition to the above threats, we

recognize that this is an observational study rather than a

controlled experiment; thus in the statistical models presented,

correlation does not imply causation. In our future work we

plan to repeat this study across other data-sets so that we

are able to generalize our finding. Additionally, we plan to

complement our quantitative approach with a qualitative one

based on interviews and surveys, which will give us further

insights on the observed effects.

VII. SUMMARY AND CONCLUSIONS

In this paper we presented results from an empirical study

of 125 projects from the Gnome suite. We examined how

centralization of information and influence in project teams

relate to the number of defects in the team’s work prod-

ucts. We found statistically significant evidence that higher

centralization of information relates to more defects, whereas

higher centralization of influence is associated with fewer

defects. Within the scope of this study, we conclude that

decentralization of information flow in a team is beneficial

to a team’s output. However, concentration of influence in the

team - contrary to a widely held perception - helps rather than

hinders the production of quality work products. Our results

can inform project governance and quality assurance initiatives

in large scale software development.
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