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Evolution of Developer Collaboration on the Jazz Platform

A Study of a Large Scale Agile Project

Subhajit Datta
IBM India Research Lab
Embassy Golf Links, Block D
Bangalore 560071

subhajit.datta@in.ibm.com

ABSTRACT

Collaboration is a key aspect of the agile philosophy of soft-
ware development. As a software system matures over it-
erations, trends of developer collaboration can offer valu-
able insights into project dynamics. In this paper, we study
evolution of developer collaboration for a large scale agile
project on the Jazz platform. We construct networks of col-
laboration based on developer affiliations across comments
on work items and file changes; and then compare parame-
ters of such networks with established results from networks
of scientific collaborations. The comparisons illuminate in-
teresting facets of developer collaboration on the Jazz plat-
form. Such perception helps deeper understanding of the
role of interaction in agile projects, as well as more effective
project governance.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—Iife cycle,
programming teams; J.4 [Social and Behavioural Sci-
ences|: Sociology

General Terms

Experimentation

Keywords

Jazz, agile development, collaboration, software teams, so-
cial network analysis

1. INTRODUCTION

Heraclitus’ oft-quoted credo “Nothing endures but change”,
is as relevant for software development, as it is for our lives-
at-large. There is much dynamism in a software project’s
path from conception to completion. This progression is es-
pecially interesting in agile development due its inherently
interactional nature vis-a-vis the more instructional way
of conventional, “non-agile” methodologies. The first credo
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of the Manifesto for Agile Software Development proclaims
“Individuals and interactions over processes and tools”, and
one of the 12 guiding principles is "Business people and de-
velopers must work together daily throughout the project”
[6]. This centrality of interaction in agile development is
manifested in collaborations; developers coordinate and co-
operate across multiple (and often ad hoc) channels of com-
munication.

We posit that to understand the time dynamics of an agile
development project, it is essential to study the variation of
certain collaboration parameters over time. In the context
of this paper, “evolution” will be taken to mean time varia-
tion of such collaboration parameters. Collaboration in ag-
ile software development is evinced in connections between
developers at various levels. Two developers can be con-
nected by their common expression of interest on a particu-
lar task or functional area, or by the incidence of both having
changed the same file. Given that we have concrete evidence
of such connections in project artefacts, a network across
developers can be constructed to serve as a reliable model
for the underlying collaboration. The network paradigm is
widely established for studying collaboration between indi-
viduals in other areas [28] [2] [3] [32].

As a representative system for studying the variation of
collaboration parameters over time, we have chosen a project
on the Jazz platform® using agile development methodology,
as described in detail in a later section. The suitability of our
choice is supported by the observation “The Jazz project ex-
plicitly focuses on distributed collaboration and has adapted
processes and tools to overcome known challenges.” [42]. For
our study, we define two types of Jazz collaboration networks
(JCN). JCN-W denotes the network of developers affiliated
by work items; JCN-F denotes the network of developers
affiliated by files. (“Devleloper”, “work item”, “file”, “affili-
ation”, “JCN” are all explained in a later section.) In the
remainder of the paper, whenever we refer to “Jazz devel-
opment project” it is taken to mean a project on the Jazz
platform, most often the project we are studying (as will
be clear from the context); whenever we refer to “JCN”, it
signifies JCN-W and JCN-F collectively.

As a benchmark for comparing the parameters of JCN as
they vary over time, we have chosen corresponding trends
in the evolution of scientific collaboration networks; two sci-
entists are connected if they have authored at least one pa-
per together [5]. Scientific collaboration networks have been
the subject of detailed scrutiny (see Related Work section),
mainly due to the availability of reliable data in publication

"http://jazz.net



databases, that is essential for constructing the collaboration
networks. We describe the benchmark networks in more de-
tail in a later section.

The paper is organized as follows: After this introduction,
the research question is presented, followed by an overview
of our research contribution. The next section surveys re-
lated work. Subsequently, definitions and assumptions are
presented which segue into a social network based view of
Jazz collaboration. This is followed by description of the sys-
tem being studied and our methodology. The next sections
present results and discussions. We then highlight threats
to validity, plans of future work and conclusions.

2. CONTRIBUTION OF THE RESEARCH

Based on the background discussion, we formally present
the research question as:

Do time wvariations of certain parameters of Jazz collabo-
ration networks for a representative project show different
trends than corresponding parameters of scientific collabora-
tion networks?

The remainder of this paper is focussed on addressing this
question empirically, and offering some explanations for the
results. The “certain parameters” that are used to compare
the tends of JCN with the benchmarks are explained in de-
tail in the Results section.

By addressing the research question, what is the contri-
bution we seek to establish?

Due to the very nature of agile development, time dynam-
ics of its collaboration are of much consequence to a project’s
outcome. As a project progresses, its ecosystem evolves in
terms of the growing number of artefacts as well as the ma-
turing perception of its stakeholders. There is much that is
different between the first and the last releases of a multi-
release project, but is not easy to trace the progression of
this difference over time. A common approach is to measure
how project artefacts, requirements or quality metrics have
changed [10], [22], [38]. While these are important measures,
they are essentially symptomatic. Code, requirements, or
quality measures does not change by themselves, they are a
manifestation of the changed understanding of the project’s
cosmos. As agile development is deeply interactive, it is
reasonable to conjecture that such changed understanding
is reflected in the collaboration characteristics of the most
central category of stakeholders — the developers.

A contribution of this paper is to empirically study the
time dynamics of an agile project in terms of the collabora-
tion characteristics of its developers, rather than the muta-
tion of project artefacts. The significance of the perspective
draws from the centrality of people and their interactions
in agile development — “Agile has put the finger on the fact
that we need highly motivated and competent people to be
successful with software development. ... The focus on peo-
ple is really what makes agile unique, and this is why agile
originally broke through” [19]. To the best of our knowledge
this is the first study of a large scale agile project based on
evolving developer collaborations.

However, the emphasis on “highly motivated and compe-
tent people” provokes its own set of qualms. As early as
2002, in a conversation between DeMarco and Boehm, the
former expressed his misgivings about the latter’s comment
on the need for “premium people” for agile’s success. Evoca-
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tively, DeMarco asks “What are premium people ...7 Are
they Nietzsche’s supermen? Are they the Alphas that Al-
dous Huxley wrote about in Brave New World?” [14]. These
questions have to be addressed at depth if we are to under-
stand the delicate balance between individual latitude and
collective commitment in agile projects. In exploring this
balance lies the greatest possibilities of agile development,
as well as its gravest pitfalls. Collaboration on the Jazz plat-
form provides a valuable opportunity for such exploration,
due to the size and complexity of the system under develop-
ment, as well as the diversity and geographic dispersion of
the developers.

To the best of our knowledge, time dynamics of developer
collaboration on the Jazz platform have not been studied
at depth before; addressing this gap is another contribution
of this paper. (Jazz development using constructs of social
network analysis have been studied in [42] and [43]; however
the objectives of these studies are different from ours.)

The next section places our research in the context of re-
lated work.

3. RELATED WORK

As we mentioned earlier, to compare JCN with other col-
laboration networks, we utilize established criteria of charac-
terizing collaboration networks. The theory of networks has
been explored at depth in [41], [21], [24] etc. The incidence
of power laws in real world networks and the generation and
detection mechanisms for power law behaviour have been
investigated in [30], [12]. Key characteristics of social net-
works are discussed in [31].

The structure of scientific collaborations has been explored
at depth by Newman; it is established that these collabora-
tion networks form “small worlds” where pairs of randomly
selected scientists are typically short distances away from
one another and the networks show significant clustering
[28]. Newman extends his enquiry of scientific collabora-
tion networks in two subsequent papers, where the statis-
tical properties of these networks are studied, along with
the existence and size of a giant component, and other non-
local characteristics such as closeness and betweenness [26],
[27]. Newman’s work illuminates how each discipline of sci-
entific collaboration show subtly different patterns. These
are manifested in the respective network characteristics and
usually correlate well with the distinct mores of research
in each field. Alberich et al. have studied the “Marvel Uni-
verse” collaboration structure (based on a densely populated
cosmos of characters of a popular comics-book series) to un-
derstand whether a fictional network can closely mimic real
world social networks [2].

The theory of networks have been applied in diverse fields.
Repositories of open source data have been mined using so-
cial network analysis [25]. Puppin and Silvestri study the
social network of Java classes and devise a mechanism for
ranking classes based on relevance and acceptance [33]. De-
tection and resolution of bugs have been explored in [11],
[20], [4]. Bird et al. have studied socio-technical networks
to predict failures [7]. Our present work aligns with the
context of socio-technical congruence outlined in this and
other papers. Software team dynamics have been studied
using an affiliation network based on the bug tracker of a
development project in [13].

Interesting real world networks are dynamic — entities and
relationships change with time. FEvolution of social net-



works, such as networks of scientific collaborations are ex-
amined in [5], [29], [18], [44], [17] etc. Ahn et al. study the
topological characteristics of large online social networking
services in terms of their degree distribution, clustering co-
efficients, degree correlation, and evolution over time [1].
Extraction of social networks from academic communities
and analysing their implications have been studied in [39],
[34].

The evolution of agile teams have been studied in [37],
[35], [36]. However, these papers do not focus on the collab-
orative aspect of agile development.

With the background of this related work, we next clarify
the definitions and assumptions for our study.

4. DEFINITIONS

The Eclipse Way of collaboration which guides Jazz de-
velopment, defines time bound iteration cycles [16]. The
iteration plan for each team consists of task descriptions,
which are recorded as work items [42]. Work items can be
of different types, such as plan, user story, task, defect, en-
hancement, test case, etc. Each work item consists of a set of
basic attributes that are useful for tracking it; such as name,
unique identifier, description, iteration it has been planned
for, creator (name of the team member who created the work
item), owner (name of the team member who is responsible
for successfully completing the work item), creation date,
closure date, priority, estimated effort, actual effort and time
spent. The real benefit of a work item based iteration plan,
however, accrues from the links that may be established be-
tween these items and the corresponding development activ-
ity carried out. A work item can be linked to files stored in a
configuration management system through the definition of
one or more change sets. A change set is a collection of files
grouped together by the developer in a manner that is mean-
ingful for the project. The Jazz development platform also
allows developers to post comments linked to work items.
To define the Jazz collaboration networks (JCN), we are in-
terested in details of discussions, comments, developers, and
files around work items. Each of these are explained below:

e In Jazz development, work items are the atomic unit of
tasks which are assignable and traceable. Work items
are classified in different categories such as defects, en-
hancements, stories etc. “Commenting on the work
items is the main task-related communication channel

and they provide the context for communication
and collaboration.” (italics ours) [42]. So each work
item is the epicentre of local collaborations, and a set
of work items is the collective foci for a module of de-
velopment activities. Each work item is owned by a
developer who works on the development task.

e A discussion is associated with a work item, consist-
ing of the fields: work item identifier, creator identifier
and comment (the textual description of the discus-
sion) and the date the comments was posted. Only
one comment can be included in one discussion.

e Each developer is uniquely recognized by an identifier.
For our study, a developer is an individual who either
comments on at least one work item or changes at least
one file. The fact that each developer and each work
item in a Jazz development project is uniquely iden-
tifiable is very helpful for exploring its collaboration
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characteristics. In academic and other collaboration
networks, often the same individual may be identified
by slightly or significantly different names (due to use
of initials or change of surnames etc [28], [2]). Pro-
filing individuals accurately to build a reliable social
network of academic researchers is an area of recent
research [39]. Since there is no scope of such ambigu-
ity in identifying developers and work items in Jazz
development, a common threat to the validity of re-
sults in similar studies is removed in our case.

e A file is a unit of code that is uniquely recognized by
an identifier. Information on which package a partic-
ular file belongs to, which work item(s) include the
file, which developer(s) have modified the file are also
available.

Given the above definitions, a Jazz collaboration net-
work (JCN) is a network where the vertices (nodes) are
developers and edges (undirected links) represent affil-
iations between developers based either on comments
on work items or files changed. Formal definition of
“affiliation”, and specifications of JCN-W and JCN-F
based on it are given in a later section.

e As we are interested in studying the time dynamics
of JCN, we define a time step as a uniquely identi-
fiable iteration of development of a particular release,
for which a JCN can be constructed based on the avail-
able information. We have used ten time steps for our
study, each time step represents one out of 10 iterations
over a period of seven months for the system studied
(the System Description section has more details).

ASSUMPTIONS

The following assumptions underlie our study:

e All details necessary for constructing the Jazz collab-
oration networks are available for access at the data
repository of the Jazz platform. Often developers col-
laborate via telephone or face to face conversations.
Naturally, the data repository will not have record of
such contact. These off-record traces will not strongly
affect the validity of our results as our chosen dataset
has large number of geographically distributed devel-
opers.

e All developers are equal and none is more equal than
others! In short, the hierarchy of the development
team, whether based on skill, seniority, or some other
clout, can be ignored. Although organizational struc-
ture may influence collaboration in agile projects, we
do not attach any special weight to comments or file
changes based on the perpetrator’s position in the team
hierarchy.

e From the previous assumption, it follows that all com-
ments and all file changes are of equal importance.
Some work items commented upon, or some files changed
may be more significant from the project’s point of
view. JCN does not consider any such significance.

e While constructing JCN, no cognizance is taken of the
semantics of developer comments or file changes. If we
are able to parse every comment and every file change



Figure 1: The Bipartite Graph of an Affiliation Net-
work

to extract their “meanings”, we will surely know all
that is interesting about collaboration dynamics. But
the time and effort needed for such an enterprise is
prohibitive for non-trivial projects. Our aim is thus
to derive interesting insights without delving into such
excruciating details.

6. A SOCIAL NETWORK BASED VIEW OF
COLLABORATION

The basic idea behind affiliation networks is that two
types of entities can be perceived in a social context: groups
and members, and the two are related by affiliations. Affili-
ation networks are described through bipartite graphs, also
known as two-mode networks [23]. The vertices of a bipar-
tite graph are divided into two disjoint sets U and V, such
that every edge connects a vertex in U to a vertex in V'
and there are no edges internally between the members of
U and V. From the bipartite graph, a social network can
obtained by substituting paths of length two among vertices
in either set U or V by an edge. This single-mode network
only contains vertices from either of set U or V' and can be
called a social network [13]. (We use “social network” in the
common sense usage of the phrase, signifying connections
between individuals in a social context, which may not fully
conform to the rigorous characterization of social networks
in [31].)

Figure 1 depicts the affiliation network in the form of a
bipartite graph; where vertices on the left (W, X, Y, Z) are
individuals and vertices on the right (1, 2, 3) are affiliations
(such as membership of clubs, or participation in some joint
enterprise etc.) and the links signify memberships. Figure 2
gives the social network arising from the affiliation network
of Figure 1. (The weights of the links signify number of
co-memberships.)

As mentioned, given an affiliation network in the form of
a bipartite graph, we can generate two social networks from
it: one each for the vertices of U and V. From Figure 1
we have chosen to extract the network where the vertices
are individuals (W, X, Y, Z), as depicted in Figure 2. We
could have also extracted a network where the vertices are
the affiliations (1, 2, 3) [13].

Generating a social network from a bipartite “affiliation”
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Figure 2: The Social Network Extracted from Fig-
ure 1

graph is based on the observation that relationships be-
tween entities often develop due to some shared affiliation
or common interest — such as going to the same club, writ-
ing a paper together, being interested in the same sport etc.
The study of affiliation networks goes back several decades;
Breiger had explored the duality of persons and groups in
his eponymous paper in 1974 [8].

With this background, we are now positioned to formally
define affiliations in the JCN context. The online Ozford
Dictionaries define collaboration as “the action of working
with someone to produce something”. In that spirit, we rec-
ognize that collaboration in a Jazz project is manifested by
two developers working together to fulfil the project’s objec-
tives. Indications of shared interest in a work item or mutual
efforts at modifying a file serve as reliable evidence of such
“working together”. When two developers both comment on
a work item or change the same file, their common concern
can be recognized as an an affiliation that connects the two
of them. Such affiliations are defined as:

e Developer affiliation by work items

Let D = {d1,da, ..., dn} denote the set of developers for
the period of a project’s life cycle being studied. For
a developer d;, let W; = {w1,wa,...,ws} denote the
set of work items which have been commented on by
d;. Developers dj, and dg are affiliated if W, "W, # ¢
and the weight of the affiliation Apq, weight(Ayq) =
|[Wp N Wyl

e Developer affiliation by files

Let D = {d1,d2,...,dn} denote the set of developers
for the period of a project’s life cycle being studied.
For a work item d;, let F; = {f1, fa, ..., fy} denote the
set of files changed by developer d;. Developers d, and
dq are affiliated if F,, N Fy # ¢ and the weight of the
affiliation A,q, weight(Apq) = |Fp N Fyl.

The network JCN-W has vertices as developers and its
edges denote affiliations by work items; two developers share
an edge if both of them have commented on at least one



common work item. The network JCN-F has vertices as
developers and its edges denote affiliations by files; two de-
velopers share an edge if both of them have changed at least
one common file. The vertices of JCN-W and JCN-F are
the same set of developers.

7. SYSTEM DESCRIPTION

We briefly describe the system and the project team. The
system we have studied is a product developed on the Jazz
platform using Java and JavaScript programming languages.
The system has been developed over several years following
the Scrum agile development method. Development using
Scrum method progresses through short cycles of releases
or iterations. In this study, we examined the development
data over 10 time steps each representing one iteration, cul-
minating in a major release. The development team was dis-
tributed across multiple countries and exclusively used the
Jazz platform for collaboration. The number of developers,
work items and files (across the whole set of iterations) was
106; 5,575; and 7,991 respectively.

8. METHODOLOGY

The following methodology was adopted for conducting
the study:

1. Use the Jazz platform’s Java client APIs used to con-
nect to the project repository. Extract the attributes
of a work item such as the owner, creator, iteration
it has been planned for, duration, etc. For each work
item, extract the files that are modified and the modi-
fication date. Extract the comments made by develop-
ers for each work item. Persist the data in a specifically
designed MySQL database.

2. Compute affiliations as defined earlier between devel-
opers and generate JCN-W and JCN-F using a spe-
cially developed Java utility for each of the time steps;
the networks are cumulative, that is, the network for
the second time step include data from the first and
second iteration, and so on. (To understand the possi-
ble influence of too frequently changed files — such as
configuration and property files — on the structure of
the network, JCN-F was generated for the entire set of
files in an iteration, for the entire set of files minus the
most frequently changed files, and only for the “func-
tional” files such as Java and Java Server Pages. No
appreciable influence on the general network charac-
teristics was detected.)

3. Record the output of the previous step in a *.net file
format defined by the open source network analysis
tool Pajek 2.

4. For each time step, evaluate JCN parameters of inter-
est (specified in the next section) using Pajek, NodeXL
3 and Gephi 4.

5. Compare time variations of JCN parameters with bench-
marks. As mentioned earlier, benchmarks for compar-
ing JCN time dynamics are taken as the co-authorship

Zhttp://pajek.imfm.si/doku.php
3http://nodexl.codeplex.com
“http://gephi.org
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Figure 3: Variation of Average Separation (s) and
Scaling Factor (f) across Iterations for JCN-W

network of scientists generated from the electronic database

of all relevant journals in mathematics and neuro-science
for the period 1991-1998, as reported in [5]. Among
other discussions, this paper [5] presents the time vari-
ation of the following parameters for the research col-
laboration networks: average separation, clustering co-
efficient, size of giant component, and average degree
[5].

6. Analyse results and suggest plausible explanations for
observed trends, and address the research question.

7. Identify threats to validity and scope of future work.

9. RESULTS

In the following subsections we describe each parameter
for JCN whose variation we are measuring over time and
present corresponding results.

9.1 Average separation

In a network, the facility for two vertices ¢ and j to com-
municate with each other depends on the length of the short-
est path [;; between them. The average of l;; over all pairs of
vertices in the network is expressed as “average separation”,
denoted by s [5].

Figure 3 and Figure 4 present trends of the variation of
average separation for JCN-W and JCN-F respectively.(We
also plot the scaling factor f = log(N)/log(z) for JCN-W
and JCN-F in each of the plots, whose implication is ex-
plained in the Discussions section; N denotes number of
vertices and z denotes average degree, as defined later.) For
these and all following plots, the x-axis is scaled by the du-
ration of each iteration; thus the horizontal distance is pro-
portional to the number of days of the respective iteration.
As is apparent, the later iterations are of shorter durations.
Evidently, for both JCN-W and JCN-F the value of s in-
creases in the first few iterations and then starts coming
down, stabilizing towards the latter iterations. In the bench-
mark networks, the average separation has been reported to
be monotonically decreasing with time [5].

9.2 Clustering coefficient

It is usually observed in social networks that two vertices
that are linked to a third are more likely to be themselves
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Figure 5: Variation of Clustering Coefficient (C)
across Iterations for JCN-W and JCN-F

linked. Intuitively, two of one’s friends have a higher prob-
ability of being friends themselves. This is measured by the
clustering coefficient. For a vertex v with a degree k,, there
are k, neighbours of v. If all of these k, neighbours were
linked, there would be k, choose 2 or ky * (k, — 1)/2 links
between them. Let N, be the actual number of links be-
tween them. Then the clustering coefficient C,, of node v is
defined as the ratio of the actual number of links and the
maximum number of links between k, neighbours of v, and
is given by [2]:
2% N,

o= =) (1)

The clustering coefficient C for the whole network is given
by the mean value of the clustering coefficient of all its ver-
tices. It reflects the probability that two neighbours of an
arbitrary vertex are directly linked [2].

Figure 5 shows how the clustering coefficient for JCN-W
and JCON-F vary with time. It is observed that both for
JCN-W and JCN-F the C), values monotonically increase
with iterations, the rate of increase being damped in the
latter iterations. For benchmark networks C, has been seen
to decay with time.
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Figure 7: Variation of Average Degree (z) across
Iterations for JCN-W and JCN-F

9.3 Size of giant component

In collaboration networks, usually there is evidence of a
giant component — “large group of individuals who are all
connected to one another by paths of intermediate acquain-
tances” [28]. The percent of vertices of such networks in-
side the giant (largest) component, denoted by Pg indicates
whether a majority of the individuals are closely linked with
one another and there are relatively few loosely connected
outliers. The giant component is also referred to as the
largest cluster.

From Figure 6, it is observed that the size of the giant
component increases sharply in the early iterations and then
becomes more or less stable close to the maximum value of
1 (on a relative scale) in the later iterations, both for JCN-
W and JCN-F. In the benchmark networks, size of the giant
component shows a more gradual increase.

9.4 Average degree

The degree of a vertex is the number of edges incident
on it, and is denoted by k. The degree of a vertex in JCN
indicates the number of other developers, a particular de-
veloper (represented by that vertex) has collaborated with.
The average degree z across all vertices of the network thus
indicates the mean number of collaborators per developer.

The variation of the average degree of JCN-W and JCN-



F with time is illustrated in Figure 7. As evident, for both
JCN-W and JCN-F, z increases sharply, flattening out only
during the very late iterations. For the benchmark networks,
the average degree is observed to increase monotonically,
though with a lower gradient.

Now, what are the implications of these time dynamics of
average separation, clustering coefficient, size of giant com-
ponent, and average degree of JCN-W and JCN-F vis-a-vis
the corresponding benchmark characteristics as presented
above? We address them in the next section.

10. DISCUSSIONS

10.1 The small world phenomenon

As observed in Figure 3 and Figure 4, the average sep-
aration for both JCN-W and JCN-F stays approximately
around 2. This indicates the Jazz collaboration networks
over time remain a “small-world”, with roughly two degrees
of separation. To establish this point further, we have plot-
ted the ratios of the logarithm of the number of vertices and
the logarithm of the average degree in Figure 3 and Fig-
ure 4 as the scaling factor (f). With progressive iterations,
the plot for f and that of the average separation comes closer
for both JCN-W and JCN-F. This signifies that the average
degree scales logarithmically with the number of developers
in the network by a factor approximately equal to the aver-
age separation over time, which is taken to be an evidence
that the network is indeed a “growing small world” [18] [28].

Two degrees of separation point to a really small world.
In the benchmark networks, the mathematics collaboration
network starts with an average separation of almost 16,
which comes down to around 9 at the last time period stud-
ied; the corresponding range is from 10 to around 5 for the
neuro-science collaboration network [5]. It is not surpris-
ing that the average separation for JCN-W and JCN-F are
significantly less than these values; the mathematics collab-
oration network was constructed from 70,975 authors across
70,901 papers, while the neuro-science collaboration network
considered 209,293 authors across 210,750 papers. In com-
parison, the numbers of developers, work items and files con-
sidered in our study (as mentioned earlier) are several orders
of magnitude smaller than the number of authors and papers
in the benchmark networks.

10.2 Increasing collaboration

As evident from Figure 7, the average degree for both
JCN-W and JCN-F show a progressively increasing trend,
with the rate of increase diminishing towards the very late
iterations. Increasing average degree, along with a growing
giant component (Figure 6) signifies growing collaboration
both in terms of commenting on work items as well as chang-
ing files. This points to the underlying dynamics of project
progression, as each developer takes on new work, new con-
nections with other developers add to his/her existing corpus
of collaborations. If this explanation for increasing collabo-
ration is valid, do we find a corresponding reflection in the
trend of the clustering coefficient?

10.3 Probability of collaboration

We observe in Figure 5 that the clustering coefficient in-
creases across the iterations both for JCN-W and JCN-F.
With reference to the definition of clustering coefficient pre-
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sented earlier, we notice that increase in its value signi-
fies higher probabilities of collaboration between two de-
velopers — both of whom have separately collaborated with
another particular developer — with progressive iterations.
This seems to complement the explanation for increasing
average degree; with each iteration the probability of devel-
oper collaboration goes up, and indeed developers collabo-
rate more.

The variation of clustering coefficient with time shows a
different trend for JCN vis-a-vis the benchmark networks.
For both the mathematics and neuro-science collaboration
networks, clustering coefficient decreases over time. This
can be explained by the drivers of scientific collaboration.
Scientist have specific areas of expertise and they collabo-
rate with other scientist when there is a match of research
interests. (Match of research interest may not be the only
reason why scientists collaborate, but it is certainly a pri-
mary reason.) Thus it is unlikely that the clustering coeffi-
cient will increase in a growing network of scientific collab-
oration; merely the fact that there are more scientists and
more collaboration does not enhance the probability of two
scientists collaborating, even if both of them have a common
collaborator. Scientific collaboration is ultimately bound by
expertise and interest, both of which are limited at the in-
dividual level. And in the era of specialization, scientific
research fields are increasingly fragmented, with researchers
adhering closely to specific areas. But developers in JCN-W
and JCN-F are not collaborating on abstract problems; all
of them are working to collectively fulfil a related set of func-
tionalities for a common system. As the system matures over
iterations, it becomes more likely that two developers will
themselves collaborate, if they have separately collaborated
with a third developer; after all, every developer is aligned
to the same project’s charter. This basic difference between
the dynamics of scientific collaboration and collaboration on
the Jazz platform, manifests in the distinct time variations
of the clustering coefficients of the respective collaboration
networks.

10.4 Stability after initial iterations

For all the parameters discussed above, it can be observed
from the respective figures that the values appear to stabi-
lize after the fifth or sixth iteration. What is the implica-
tion of this trend? As mentioned earlier, we are studying 10
iterations towards a major release of the system. The func-
tionality of the release becomes clearly defined during the
middle of the release cycle, no new functionality is subse-
quently added, and testing and bug fixing commences from
then onwards. It is thus expected that the rate of variation
of the parameters would also start decreasing around this
time.

10.5 Talk versus work

As defined, JCN-W can be seen as a “talk” network (de-
velopers commenting on work items), and JCN-F as “work”
network (developers changing files). In a project, it is al-
ways interesting to know how the dynamics of talk versus
work plays out. Collectively, do developers collaborate more
via talk or work? At the individual level, does more collab-
oration via talk indicate more collaboration via work, or is
the opposite true (as often suspected)? Analysing JCN-W
and JCN-F across the iterations offers some key insights.

Figure 8 shows the increase in the number of vertices, and
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Figure 9: Pearson Correlation Coefficient between
the Degrees of the Vertices of JCN-W and JCN-F
across Iterations

the edges of of JCN-W and JCN-F across iterations. Be-
tween the first and last time step, the number of vertices
increases by a factor of more than 2 (45 to 106), the edges
of JCN-W increase by a factor of more than 15 (67 to 1029),
the edges of JCN-F increase by a factor of around 17 (32
to 546). Also, on average there is close to twice as many
edges in JCN-W as in JCN-F across the iterations. An edge
in JCN-W denotes collaboration between two developers as
manifested in comment(s) on a common work item; an edge
in JCN-F denotes collaboration between two developers as
manifested in change(s) to a common file. So, developers
collaborate approximately twice as many times through talk
as they do through work. This factor of difference is influ-
enced to some extent by the limited definition of “work” in
this study; we recognize as work only the changing of files.
Given this definition, it is thus not unexpected that devel-
opers will reach out to other developers more through talk
than through work.

In Figure 9 we have plotted the Pearson correlation co-
efficient between the degrees of the vertices of JCN-W and
JCN-F for each iteration. The coefficient varies between
0.619 and 0.479 with an average of 0.569. Thus collabora-
tion via talk and collaboration via work show a moderate
positive correlation.
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10.6 Implications for project governance

How are the trends discussed above significant from a
project governance point of view?

A small-world network with a degree close to 2 implies
that on average all the developers are closely connected to
one another. This is likely to facilitate low communication
overheads, and may in some cases mitigate the influences of
Brooks’ oft-quoted thesis in his Mythical Man Month essay
[9] and its more recent examinations [15]. Increasing collab-
oration amongst developers with progressive iterations is an
indication that as the release deadline comes closer, the de-
velopment team gets more closely aligned to collective objec-
tives of the project. Increasing average degree and clustering
coefficient, and growth of the giant component all point to
growing collaboration as the release cycle moves forward.
Absence of similar trends in some project can be indicative
of special circumstances requiring management attention.
Similarly, if the parameters do not stabilize even after half
the iterations planned for a release have been completed
(unlike JCN-W and JCN-F of the project studied in this
paper), it can be symptomatic of significant oscillations in
the system’s functionality as well as the team’s collaboration
structure. The observations of more collaboration by way of
talk than work, and positive correlations between collabo-
rations by talk and work, may have specific implications for
particular projects. However, these general trends are reflec-
tive of the deeply interactional nature of agile development
and any wide variations in a given project may indicate the
need for corrective action.

11. THREATS TO VALIDITY AND FUTURE

WORK

In our study, we have compared both JCN-W and JCN-F
with benchmark research collaboration networks from math-
ematics and neuro-science. JCN-W and JCN-F, though
both being collaboration networks of same developers for
the same project on the Jazz platform, are subtly different
in their nature. The foundation for JCN-F is doing some-
thing together, and is congruent to the joint authoring of a
research paper. On the author hand, JCN-W is more akin
to the network of participants in an online discussion forum.
Thus a more fair benchmark for comparing JCN-W would
have been with the participant networks of such a group
where individuals are affiliated by their interest in common
topics. To the best of our knowledge, there is no established
study of such a network. While computing the parameters of
comparing networks, weights of edges have not been consid-
ered. (For JCN-F the weight of an edge would be the number
of files the two developers sharing the edge have both worked
on; and correspondingly for JCN-W.) This was motivated by
the point of view that significant insights from networks can
be gleaned by considering undirected, unweighed edges [40].
Consideration of weights are unlikely to change the values
of the parameters we analysed, other than perhaps the giant
component.

In our future work we plan to extend the definition of
JCN-F to address a larger scope of collaboration between
developers through work. With the extended definition, we
expect to be better positioned to compare collaborations
through talk vis-a-vis through work, by comparing the char-
acteristics of the corresponding networks. Additionally, we
are interested in building and validating models for the evo-



lution of JCN-W and JCN-F, which would help establish a
theoretical basis for the empirical results presented in this

paper.

12. CONCLUSIONS

In this paper we have studied the evolution of developer
collaboration for an agile project on the Jazz platform across
10 iterations of development culminating in a major re-
lease. We constructed networks of developers collaborat-
ing by commenting on work items (JCN-W) and developers
collaborating by changing files (JCN-F) and compared pa-
rameters of JCN-W and JCN-F such as average separation,
clustering coefficient, size of giant component, and average
degree with networks of scientific collaborations as studied
in [5]. Based on our results, the research question can be an-
swered as: Jazz collaboration networks are similar in some
parameters while dissimilar in other parameters, when com-
pared to benchmark scientific collaboration networks. The
similarities as well as differences were explained in terms of
the distinct genesis and dynamics of JCN versus the sci-
entific collaboration networks. In summary, Jazz collabo-
ration networks are “small-worlds” with approximately two
degrees of separation, developers are likely to collaborate
more as iterations proceed towards a release, parameters of
collaboration change rapidly in earlier iterations than later
ones, collaboration via talk is nearly twice more frequent
than collaboration via work, and the former collaboration
is positively correlated to the latter. Our study illuminates
interesting aspects of the interactional nature of agile devel-
opment which have notable implications for governance of
software development projects.
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