
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

4-2010

A social network based study of software team dynamics A social network based study of software team dynamics

Subhajit DATTA
Singapore Management University, subhajitd@smu.edu.sg

Vikrant S. KAULGOUD

Vibhu Saujanya SHARMA

Nishant KUMAR

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, Organizational Communication

Commons, and the Software Engineering Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/372715161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/335?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/335?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5572&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A Social Network Based Study of Software Team Dynamics

Subhajit Datta Vikrant Kaulgud Vibhu Saujanya Sharma

Nishant Kumar

Accenture Technology Labs
IBC Knowledge Park, 4/1 Bannerghatta Road, Bangalore 560 029, India

{subhajit.datta, vikrant.kaulgud, vibhu.sharma, nishant.x.kuma}@accenture.com

ABSTRACT
Members of software project teams have specific roles and
responsibilities which are formally defined during project in-
ception or at the start of a life cycle activity. Often, the
team structure undergoes spontaneous changes as delivery
deadlines draw near and critical tasks have to be completed.
Some members – depending on their skill or seniority – need
to take on more responsibilities, while others end up being
peripheral to the project’s execution. We posit that this
kind of ad hoc reorganization of a team’s structure can be
discerned from the project’s bug tracker. In this paper, we
extract a social network from the bug log of a real life soft-
ware system and apply ideas from social network analysis to
understand how the positions of individual team members in
the network relate to their organizational seniority, project
roles, and geographic locations that define the formal team
structure. In addition to providing insights on individual
team members for the system studied, our approach can
serve as a framework for analyzing team dynamics of soft-
ware projects.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—life cycle,
programming teams; J.4 [Social and Behavioral Sciences]:
Sociology

General Terms
Human Factors, Management

Keywords
software teams, social networks, bugs, centrality

1. INTRODUCTION
Professional software development is a team enterprise.

Humphrey has pointed out that collaboration in a team suc-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISEC’10, February 25-27, 2010, Mysore, India.
Copyright 2010 ACM 978-1-60558-922-0/10/02 ...$10.00.

ceeds when each team member has a specific role, the team
collectively has a common goal and reaching the common
goal needs some form of dependency among the team mem-
bers [14]. Thus team dynamics play an important role in
the success of any project.

Software teams consist of individuals at different levels
of organizational seniority, varying skill-sets, and – in this
age of global software development – often spread across geo-
graphic locations. When a project or a phase thereof begins,
individuals are assigned specific roles depending on these
factors. However as deadlines draw near, the team structure
evolves spontaneously to respond to problems or contingen-
cies. Some individuals become more central to the project’s
execution; they tend towards omnipresence – being every-
where in the project’s execution map, and concomitantly,
omniscience – concentration points of project knowledge.
On the lines of Huxley’s alphas [15], we will call these indi-
viduals the omnis. Omnis are critical to a project’s success
as they have as they strongly influence team congruence.

A congruent team is one in which people play roles, par-
ticipate in delivery activities and collaborate as defined in
the project delivery plan. Given a particular project plan, a
congruent team can be thought to represent the most harmo-
nious structure of the team. In a congruent team, individ-
ual team members fulfill responsibilities in perfect harmony
with their skills, organizational seniority and other factors
like location. Degree of team congruence can be thought to
be the extent to which congruence as outlined above exists
in a team. It can then be taken as metric by which to assess
teams and possibly benchmark teams with each other and
across established baselines.

Identification of the omnis with a view to better under-
standing of team congruence is the“team dynamics”we seek
to study in this paper. Towards that end, an experiment is
described to detect the omnis of a real life proprietary soft-
ware system by using a social network extracted from the
project’s bug tracker. We recognize that bug tracker is not
the only artifact that can help identify omnis; code reposi-
tories are among several others which may also be useful.

The following sections discuss motivation, research ques-
tions, outline of our approach, and related work. Subse-
quently, we present the assumptions and methodology of our
study. The experimental results are analyzed next, and the
paper ends with directions of future work and conclusions.

33

2. MOTIVATION
As discussed earlier, identifying the omnis has much im-

portance in understanding and influencing team congruence.
Identifying omnis is a non-trivial task; especially using a
manual processes of sifting through project artifacts, or in-
terviewing project stakeholders.

Everybody in a team likes to be seen as an omni, so asking
around may not always help much in finding the real omnis.
We could inquire some stakeholder of authority – say the
project manager – but his/her opinion may be colored by
preference or prejudice. Some artifact that is created and
maintained in the process of project execution seems to be a
more objective source of insights. Given that we have such
an artifact, how can we automatically analyze it to find the
omnis?

From Humphrey’s observations mentioned earlier, we no-
tice that inter-dependence between team members is an im-
portant aspect of successful collaboration [14]. In a team
context, dependence is manifested in interaction. Team mem-
bers build relationships amongst themselves around tasks
and targets. Individuals may have specific attributes – de-
pending on their skills, hierarchical positions etc – but when
working together in a team, the relationships they form with
other team members are of great consequence. Social net-
work analysis perceives group dynamics through the lens of
relationships, rather than attributes [13]. The thinking be-
hind our study is that if social network(s) can be extracted
from project artifact(s), the network characteristics can help
us identify the omnis for that project. The particular kind of
social networks of interest to us are the affiliation networks
(discussed in detail in a later section).

3. RESEARCH QUESTIONS
Based on the preceding discussion, we state our hypothesis

as: Given the bug tracker of a real life software system, it
is possible to identify the omnis – individuals who are most
central to the bug resolution activity – using social network
analysis, thereby providing insights on team congruence.

Taking validation of the hypothesis as the goal, the fol-
lowing questions need to be addressed:

• How do we recognize relationships – manifested in com-
mon affiliations – between team members from the in-
formation available in the bug tracker?

• From the social network generated from the bug tracker,
how do we objectively identify the omnis?

• How do the omnis identified from the social network
relate to the actual position of the individuals in the
team structure in terms of their organizational senior-
ity, official role, and geographic location?

We next outline our approach towards answering these
questions.

4. OUTLINE OF THE APPROACH
The basic idea behind affiliation networks is that two types

of entities may be perceived in a social context: groups and
members, and the two are related by affiliations. These rela-
tionships can be described through bipartite graphs, which
are called affiliation networks [19]. (The vertices of a bipar-
tite graph are divided into two disjoint sets U and V, such

Figure 1: The Bipartite Graph of an Affiliation Net-
work

that every edge connects a vertex in U to a vertex in V.)
From the bipartite graph, a social network can be derived
by substituting paths of length two among vertices in either
one of the sets – U or V – by an edge.

Figure 1 depicts the affiliation network in the form of a
bipartite graph; where vertices on the left (W, X, Y, Z) are
individuals and vertices on the right (1, 2, 3) are affiliations
(clubs, places of work etc. – anything individuals may be
attached to), and the links signify memberships. W is a
member of (say) club 1 and 2, X is a member of 1 and 3,
and so on. Figure 2 gives the social network arising from the
affiliation network of Figure 1. There is an edge between W
and X since both are members of 1. The weights of the links
in Figure 1 signify the number of co-memberships; edge XZ
has weight of 2 since both X and Z are members of the same
two clubs, namely 1 and 3.

It may be noted that given an affiliation network in the
form of a bipartite graph, we can generate two social net-
works from it: one each for the vertices of U and V. From
Figure 1 we have extracted the network where the vertices
are the individuals (W, X, Y, Z), as shown in Figure 2. We
could have also extracted a network where the vertices are
the clubs (1, 2, 3). In the context of this paper, a network
of individuals is of primary interest to us.

As apparent from the preceding discussion, generating a
social network from a bipartite “affiliation” graph is based
on the observation that relationships between people are of-
ten developed due to some common affiliation – going to
the same club, taking the same train to work, writing a pa-
per together, and in our case, working on the same bug.
The study of affiliation networks goes back several decades;
Breiger had explored the duality of persons and groups in
his eponymous paper in 1974 [7].

By parsing the bug tracker, our objective is to detect the
social network that comes out of the affiliations between in-
dividual team members working together on a bug. In this
context an affiliation between two individuals is recognized
if both of them have worked on at least one particular bug.
Thus in the bipartite graph of the affiliation network, the
vertices in set U are all the individual team members en-
gaged in the bug resolution activity, and the vertices in set V
represent the bugs. Given this bipartite graph, we generate
the corresponding social network between individual team

34

Figure 2: The Social Network Extracted from Fig-
ure 1

members based on the bugs they have worked on. A social
network between the bugs could also have been generated
from the same affiliation network, recognizing a different af-
filiation – two bugs being related if at least one individual
worked on both of them. But this network would not have
been useful in identifying the omnis.

The vertices of our social network thus represent individ-
uals, and the undirected links – edges – represent the affili-
ations. Each edge has a weight, which indicates the number
of affiliations shared by the vertices connected by that edge.
For example, if A and B have both worked on one bug, the
edge between A and B will have the weight of 1, whereas if
there are six bugs which A and B have both worked on, the
edge between A and B will have the weight of 6.

Our objective is to find the omnis - individuals represent-
ing significant concentration of project knowledge. It is rea-
sonable to assume such individuals will also be in position
of considerable power, as measured by their ability to in-
fluence the team’s success in the activity it is engaged in
(bug resolution, in our case). In social network analysis, it
is an established viewpoint that “central positions tend to
be more powerful positions” [13]. Thus, in our hunt for the
omnis, we first measure the centrality of each vertex of the
network.

Centrality may be measured in several ways:

• Degree: By far the simplest measure of centrality, de-
gree is the number of links a particular vertex has to
other vertices in the network. If a vertex has a high
degree, it implies it is well connected to other vertices,
and vice versa. For our study we will consider the Rel-
ative Degree Centrality CD(x) of the vertex x, as given
by [11]:

CD(x) =
cD(x)

n− 1
(1)

where, cD(x) is the degree centrality of x, that is the
degree of x, and n − 1 is the highest degree of the

network of n vertices. In this case, the degree of a
vertex is the number of edges incident on the vertex.

• Closeness: A common criticism of degree centrality is
that it accounts for only the immediate links of a ver-
tex. A vertex may be closely connected to its neighbors
– thus having a high degree – but the neighbors them-
selves may be isolated from the network as a whole.
Thus considering degree centrality, our vertex of inter-
est will be central, but in a very local sense. The idea
of closeness centrality tries to address this inadequacy
by considering the distance from the vertex of inter-
est to all other vertices in the network, instead of just
its neighbors [13]. Closeness centrality thus considers
not only direct connections between vertices, but also
indirect connections. In our context we will consider
the Relative Closeness Centrality CC(x) of the vertex
x, as given by [25], [11]:

CC(x) = (n− 1) ∗ cC(x) (2)

where, cC(x) is the closeness centrality of x. cC(x) =
1∑

y∈U d(x,y)
; d(x, y) being the graph theoretic distance

– the length of the shortest path – between vertices x
and y, and U is the set of all vertices.

• Betweenness: In addition to degree and closeness, an-
other dimension of centrality may have to be consid-
ered. Power often comes from being in a position to
serve as an intermediary or a connector between two
entities who can not otherwise be in contact [13]. If
the vertex of interest lies on the shortest path between
pair(s) of other vertices, it will be in a position to influ-
ence the information flow in the network. The notion
of betweenness recognizes a vertex to be central if it lies
on several shortest paths between pairs of vertices in
the network. We will use the metric for Relative Be-
tweenness Centrality CB(x) for undirected networks,
given by [12], [11]:

CB(x) =
cB(x)

(n− 1) ∗ (n− 2)
(3)

where, cB(x) is the betweenness centrality of vertex x,

defined as cB(x) =
∑ f(x,y,z)

g(y,z)
where, f(x, y, z) gives

the number of shortest paths between the vertices y
and z that go through the vertex x and g(y, z) gives
the number of shortest paths between y and z (y < z).

Additionally, from the bug tracker we can extract the in-
formation on how many times a particular individual has
created (that is detected or raised) a bug, been assigned a
bug, and have contributed to the bug’s resolution without
having created or assigned it. We will then try to correlate
this information with the measures of centrality discussed
earlier; how do the omnis relate to those who raise, get as-
signed, or work on a bug?

As mentioned earlier, the team members of the system
we studied have different levels of organizational seniority,
official roles in the project, and geographic locations (see

35

Table 1). While trying to find the omnis amongst them, it
is also interesting to know whether and how individuals of
the same seniority level, same role, or same location relate to
each other within the team. Do they form cores, or teams
within teams? (A k-core is a maximal group of vertices,
all of which are connected to some number – k – of other
members of the group [11], [13]) As in the social network
we derive from the bug tracker edges also have weights, it
implies that two team members who are joined by a link of
higher weight are closer than two who are connected by a
lower weighted link. To understand the implications, we also
calculate valued cores, which take into account the values
of edges between vertices instead of just counting the links
between them [11], [13].

The values of the above metrics and their interpretation
will set us up to confront the question: Are the omnis those
individuals who are expected to have central position in the
bug resolution activity in terms of their organizational se-
niority, official role and geographic location?

In the next section, we give an overview of related work.

5. RELATED WORK
The theory and characteristics of social and affiliation net-

works have been explored by a number of researchers. Watts
and Strogatz investigate the collective dynamics of small
world networks [26]. Kleinberg has studied navigation in a
small world [18], and algorithmically analyzed the long rec-
ognized small world phenomenon [17]. Lattanzi and Sivaku-
mar discuss affiliation networks and their features at great
depth [19]. The evolving characteristics of social network
graphs over time have been studied by Leskovec et al. [20].

Ideas from social network analysis have been applied in
diverse contexts. Pinzger et al. use developer-module net-
works to investigate the relationship between the fragmen-
tation of developer contributions and the number of post-
release failures [23]. CVS repository information related to
source code has been studied using social network analysis
in [21]. A case study on the penetration of social network
analysis within the enterprise has been conducted by the
Burton Group [1]. Bird et al. study the extraction of social
networks from emails in [6]. Social networks of Java classes
have been shown to obey the power-law distribution in [24].
The topology of the so-called “dark networks” – terrorist
groups and individuals connecting with one another across
the world – has been analyzed using social networking ideas
in [27]. Dietrich et al. explore knowledge sharing within the
software engineering community based on social networking
in [10]. The idea of social capital as a motivating factor in
open source projects has been studied in [22].

Social networking has been found to be useful for ana-
lyzing the occurrence, location, as well as handling of bugs.
Chen et al. propose a social network based model for pre-
dicting and tracking the location of faults [9]. In [16], bug
triage “with bug-tossing” graphs is explored. Arand et al.,
track the life cycle of bugs from a social and organizational
perspective [3]. A seminal paper on the social perspective of
software development suggests a set of organizational pat-
terns reflecting on the productivity of organizations [8]. The
authors take the position that software development is pre-
dominantly a social activity and hence a sociological view
of the software process is required [8]. The use of affiliation
networks to understand aspects of software development has
been posited in [2].

Our study is inspired by many of these important contri-
butions. Using the framework of social network analysis, we
seek to understand one aspect of the functioning of teams,
vis-a-vis their formal structure.

There are several tools, both proprietary and open source,
for analyzing social networks. In this paper, we have used
Pajek : Analysis and Visualization of Large Networks [4], [5]
for creating the network and calculating the metrics.

6. ASSUMPTIONS AND METHODOLOGY
For conducting the experiment, we selected the bug tracker

of a proprietary software system. The tracker was used for
recording information related to bugs identified through in-
ternal testing by the development team.

Our experiment was based on the following assumptions:

• Each bug and each individual team member is uniquely
identifiable in the bug tracker.

• The entry for a particular bug in the bug tracker serves
as the single point of reference for all the information of
interest relating to that bug; that is, no other project
artifact needs to be referred to for deriving the social
network.

• The entry for a particular bug in the bug tracker cap-
tures the names of all the individuals who have worked
on the bug; from identification to resolution and post-
resolution verification.

• Necessary information related to organizational senior-
ity, official roles, and geographic locations of individ-
ual team members can be reliably obtained from other
project artifacts.

The following methodology was followed in conducting the
experiment:

From the bug tracker, the affiliations between each pair
of individuals was extracted using a set of Java programs.
The affiliation information was converted into an adjacency
matrix [13] describing the corresponding social network in a
Pajek compatible input format. Pajek was used to generate
the social network from the this input file, and subsequently
calculate the measures of centrality and the memberships of
the k-core and valued cores mentioned earlier.

Additionally, the number of times an individual has raised
a bug, been assigned a bug, or has worked on a bug with-
out either having raised it or been assigned to it was also
calculated. Further information was gathered specifying the
organizational seniority of each individual on a scale of 1 to
3 (1 being the highest), the formal role of the individual in
the project (developer, architect etc.), and the geographic
location of the individual.

The above information was interpreted in the light of our
quest for the omnis.

In the next section, we discuss the experimental results in
detail.

7. EXPERIMENTAL RESULTS

7.1 Description of the System Studied
We studied a proprietary software system whose function-

ality centered around automatically parsing requirement de-
scriptions for detecting omissions and inconsistencies. The

36

Table 1: Team Member Data
Member Role Seniority Location

A Quality Assurance 3 X
B Architect 2 X
C Quality Assurance 3 X
D Developer 3 X
E Developer 3 X
F Developer 3 X
G Developer 3 Y
H Developer 2 X
I Developer 3 X
J Developer 3 X
K Project Manager 1 X
L Researcher 1 Y

system matured over six versions and the project team con-
sisted of 12 members across two geographic locations, five
different roles, and three levels of seniority. The role, senior-
ity, and geographic locations of the team members, whom
we will call A through L are presented in the Table 1. (Note:
1 denotes highest organizational seniority; and X and Y are
locations in two different continents, in India and the United
States of America respectively).

Some of the relevant columns of the bug tracker were:
Issue ID, Assigned To, Issue Status, Priority, Due Date,
System Version No., Creation Time, Created By, Modifi-
cation Time, Modified By, Category, Comments, Content
Type, Description, Related Issues, Title, Item Type, Path.
There were 323 rows of data.

Out of these, for a particular bug (Issue ID), informa-
tion in the fields Assigned To, Created By, Modified By and
Comments uniquely identified all the individuals who relate
to a particular bug across the entire system. As mentioned
earlier, this affiliation information was parsed out of the bug
tracker using a set of Java programs and presented in a Pa-
jek compatible input format (*.net file). The resulting net-
work generated by Pajek has 12 vertices and 47 edges; it is
depicted in Figure 3.

7.2 Presentation of the Measurements
Table 2 presents the measures of centrality for each vertex

(x) in the metrics discussed earlier – relative degree central-
ity, CD(x); relative closeness centrality, CC(x); and relative
betweenness centrality, CB(x). Figure 4 gives the graphical
representation of these measures.

Table 3 shows for each team member, the number of bugs
created by (RB), assigned to (AT), and contributed-to by
(NB).

Table 4 presents the measures of sub-groupings in the net-
work, core (C) and valued core (VC), the latter taking into
account the weights of the lines. While calculating the val-
ued core, the threshold of 25 and steps of 10 were considered
for the weights of the lines.

Out of the total 323 instances of bugs being created (RB)
and assigned to (AT), and 738 instances of team members
contributing to bug resolution (NB), Figures 5, 6, and 7
respectively give the percentages in each category for each
team member based on the information of Table 3.

Table 2: Measures of Centrality
Member CD(x) CC(x) CB(x)

A 0.55 0.69 0.00
B 1.00 1.00 0.09
C 0.64 0.73 0.01
D 1.00 1.00 0.09
E 0.55 0.69 0.01
F 0.91 0.92 0.05
G 0.55 0.69 0.00
H 0.64 0.73 0.00
I 0.55 0.69 0.00
J 0.82 0.85 0.02
K 1.00 1.00 0.09
L 0.36 0.61 0.00

Table 3: Involvement of Team Members in Bug Res-
olution Activities

Member RB AT NB
A 163 21 171
B 8 69 162
C 80 0 88
D 2 56 72
E 0 11 10
F 0 15 16
G 27 2 27
H 6 34 52
I 7 1 7
J 2 102 74
K 22 12 53
L 6 0 6

Table 4: Measures of Sub-Groupings: Core (C) and
Valued Core (VC)

Member C VC
A 6 7
B 6 7
C 6 6
D 6 5
E 5 0
F 6 1
G 6 1
H 6 3
I 6 0
J 6 7
K 6 3
L 4 0

37

Figure 3: The Social Network Generated from the Bug Tracker

Figure 4: Centrality Measures

38

Figure 5: Percentage of Bugs Created By Team
Members

Figure 6: Percentage of Bugs Assigned To Team
Members

Figure 7: Percentage of Bugs Contributed-to by
Team Members

7.3 Discussion
Interpretation of the above metrics values in light of team

member data presented in Table 1 leads to the following
observations:

• By all the measures of centrality, B, D, K – the tallest
bars in Figure 4 – are the most central nodes. These
are our omnis!

B has the official role of architect and is at organiza-
tional seniority of level 2; D is a developer at level 3;
and K is the project manager at level 1. All of them
are at the same location. B and K expectedly play a
central role. But D is an unexpected omni; officially
(s)he is just a junior developer, yet the individual has
a level of centrality similar to the project manager and
the architect in the bug resolution activity.

• A, C, G have raised the most bug reports – 50%, 25%,
and 8% respectively (Figure 5) – indicating they were
most deeply involved in testing the system.

A, C are officially in charge of quality assurance (both
of them are at level 3 and at the same location) and
their enhanced involvement in testing is expected. How-
ever, G is a developer at level 3 at a different location.
His/her relatively high involvement in testing may in-
dicate a deliberate decision to have the system tested
by someone not co-located with the bulk of the team’s
developers.

• J, B, D have been assigned the most bugs – 32%, 21%,
and 17% respectively (Figure 6).

J and D are at the same level (3); both developers,
and both at the same location(X). B being the ar-
chitect was in overall charge of the design and it is
expected that bugs will be assigned to them when ini-
tially raised. But it is surprising J and D has been
assigned a considerable number of bugs, given their
junior role. It is likely each of them was owning the
development of a major part of functionality. As noted
earlier, D also appeared as an unexpectedly central
team member.

• A, B, C have participated most in bug resolution ac-
tivities other than raising a bug or being assigned a
bug – 23%, 22%, and 12% respectively (Figure 7).

It is usual for initial assignees of bugs to reassign them
– usually to developers – for the actual implementation
of the “fixes” [16], [3]. A and C were in charge quality
assurance, and B was the architect. So it is expected
they will reassign the bugs to those more closely asso-
ciated with development activities. But instead they
seem to have worked on the bug resolution most them-
selves. This is an anomaly which can not be explained
with the available data.

• Without considering weights of edges, everyone other
than E and L are part of the largest 6-core; this implies
these individuals were most loosely connected with the
rest of the network.

E is developer at level 3 and L is a researcher at level
1; the two are at different locations. E belongs to a
5-core, whereas L belongs to the smallest 4-core. This
seems quite plausible as L was most likely not closely
involved with the core activities of the bug resolution.

39

• Considering weights of edges, A, B, J form the largest
valued core.

This seems to indicate these individuals form the most
close knit group within the team. All three are at
the same location, two of them are at the same level
(A, J at 3 and B at 2) and all three have different
roles (quality assurance, architect, and developer re-
spectively). While it is not unexpected that architect
and quality assurance will be in close contact during
the bug resolution activity, the presence of J in this
group is surprising.

In summary, considering the entire network, we find that
centrality measures reflect B and K to be omnis which pos-
itively correlate to their formal project roles and organiza-
tional seniority. Centrality measures as well as percentage
of bug assignments indicate D is also an omni, which is sur-
prising, given D’s role and seniority. J’s role and seniority
also does not suggest (s)he is likely to be deeply involved
in the bug resolution activity; yet J is, as indicated by
his/her membership in the most important valued core as
well as well as significant percentage of bugs being assigned
to him/her.

So there is surely one team member (D) and probably
another (J) whose level of involvement within the team as
indicated by the social network analysis of the bug tracker
information can not be reconciled with their official posi-
tions suggested by the project team member data. This is
an instance of the lack of team congruence that has been
revealed through automated social network analysis. This
points to several open questions that need to be addressed
in future work.

8. OPEN QUESTIONS & FUTURE WORK
We will first recognize the open questions and then discuss

planned future work.
What if, there is a subject matter expert who has facil-

itated several bug resolutions by informally advising devel-
opers (may be going physically from desk to desk, as it often
happens amongst co-located project team members)? Such
an individual’s references in the bug tracker data will not
fully reflect his/her actual contribution. Our current anal-
ysis does not take into account such a commonly occurring
situation.

Moreover, it is well established that larger the network,
the more insightful is the social network analysis [13]. How
well will our method and observations scale when we take a
bug tracker with many more rows of data than the one we
have studied?

Currently we have only considered edges (undirected links).
In a real life project, the flow of information (as well as au-
thority) is often directed. So, how does our approach need
to be adjusted when the edges are replaced by arcs (directed
links)? In such case do we also need to consider measures of
prestige [13] in addition to measures of power for identifying
the omnis?

In our future work we plan to address these questions by
studying large scale open source systems and other project
artifacts in addition to bug trackers. We also intend to ex-
plore whether and how team dynamics in general vary be-
tween open source systems and proprietary ones.

Additionally, correlation of the degree of team congru-
ence to project outcome metrics (e.g. delivered defect rate,

cost and schedule variance, cost of quality activities etc.)
are planned. Within a single project, we would like to
create team congruence scores from different dimensions –
such as groups, events, artifacts – to get deeper insights
on how some individuals may be consistently aligned differ-
ently than other team members. We also plan to expand the
scope of this study to explore whether similar trends man-
ifest across similar groups and events in dissimilar project
situations, and whether correlations between identification
of the omnis, degree of team congruence, and project out-
comes hold. This will facilitate better planning of future
releases and/or in-process optimization of the team.

9. CONCLUSIONS
In this paper, we have studied the bug tracker of a real life

proprietary software system to understand its team dynam-
ics. We extracted a individual-versus-bug affiliation network
from the bug tracker data, converted it into a social network
of the team’s members, and used measures of centrality, sub-
grouping, and other topical information to identify the omnis
– individuals who tended to be omnipresent and omniscient
in the bug resolution initiative, and thus emerge as con-
centration points of the project’s execution know-how. Our
interest in the omnis was inspired by a quest to better un-
derstand team congruence – whether each team member’s
contribution is commensurate with his/her role, organiza-
tional seniority, and location, as recognized in the formal
project plan.

By analyzing the social network derived from the bug
tracker, we found that while some individuals played ex-
pectedly central roles – such as the project manager, and
the architect – there were other team members (junior de-
velopers) whose involvement was significantly larger than
what their formal roles and organizational seniority seemed
to suggest. Thus in the system studied, automated social
network analysis pointed to some aspects of the lack of team
congruence. Our approach also provides a general mecha-
nism to identify individuals who serve as knowledge centers
in a project’s execution map; this can be useful for planning
knowledge transition activities and knowledge management
tasks.

In our future work, we plan to address some of the open
questions surrounding the current work and correlate the de-
gree of team congruence with project outcome metrics (such
as defect rate) to gauge the effectiveness of a team’s current
structuring and guide future reorganization.

10. REFERENCES
[1] Burton group field research study: Social networking

within the enterprise, 2009.

[2] Amrit, C., Hillegersberg, J., and Kumar, K. A
social network perspective of conway’s law. In
Proceedings of the CSCW Workshop on Social
Networks, Chicago, IL, USA, November 2004, 2004.

[3] Aranda, J., and Venolia, G. The secret life of
bugs: Going past the errors and omissions in software
repositories. In Proceedings of the 2009 IEEE 31st
International Conference on Software Engineering
(2009), IEEE Computer Society, pp. 298–308.

[4] Batagelj, V., and Mrvar, A. Pajek: Analysis and
visualization of large networks. In Graph Drawing.
2002, pp. 8–11.

40

[5] Batagelj, V., and Mrvar, A. Introduction to social
network methods.
http://vlado.fmf.uni-lj.si/pub/networks/pajek/,
2009.

[6] Bird, C., Gourley, A., Devanbu, P., Gertz, M.,

and Swaminathan, A. Mining email social networks.
In Proceedings of the 2006 international workshop on
Mining software repositories (Shanghai, China, 2006),
ACM, pp. 137–143.

[7] Breiger, R. The duality of persons and groups.
Social Forces 53, 2 (1974), 190, 181.

[8] Cain, B., Coplien, J., and Harrison, N. Social
patterns in productive software development
organizations. Annals of Software Engineering 2, 1
(Dec. 1996), 286, 259.

[9] Chen, I., Yang, C., Lu, T., and Jaygarl, H.

Implicit social network model for predicting and
tracking the location of faults. In Proceedings of the
2008 32nd Annual IEEE International Computer
Software and Applications Conference (2008), IEEE
Computer Society, pp. 136–143.

[10] Dietrich, J., and Jones, N. Using social networking
and semantic web technology in software
Engineering–Use cases, patterns, and a case study. In
Software Engineering Conference, 2007. ASWEC
2007. 18th Australian (2007), pp. 129–136.

[11] Ferligoj, A., and Mrvar, A. Analysis and
visualization of social networks. http:
//mrvar.fdv.unilj.si/sola/info4/programe.htm,
2005.

[12] Freeman, L. A set of measures of centrality based on
betweenness. Sociometry 40, 1 (Mar. 1977), 41, 35.

[13] Hanneman, R. A., and Riddle, M. Introduction to
social network methods.
http://www.faculty.ucr.edu/~hanneman/nettext/,
2005.

[14] Humphrey, W. S. TSP: Leading a Development
Team. Addison-Wesley, 2006.

[15] Huxley, A. Brave New World, reprint ed. Harper
Perennial Modern Classics, Sept. 1998.

[16] Jeong, G., Kim, S., and Zimmermann, T.

Improving bug triage with bug tossing graphs. In
Proceedings of the 7th joint meeting of the European
software engineering conference and the ACM
SIGSOFT symposium on The foundations of software
engineering on European software engineering
conference and foundations of software engineering
symposium (Amsterdam, The Netherlands, 2009),
ACM, pp. 111–120.

[17] Kleinberg, J. The Small-World phenomenon: An
algorithmic perspective. IN PROCEEDINGS OF THE
32ND ACM SYMPOSIUM ON THEORY OF
COMPUTING (2000), 163—170.

[18] Kleinberg, J. M. Navigation in a small world.
Nature 406, 6798 (2000), 845.

[19] Lattanzi, S., and Sivakumar, D. Affiliation
networks. In Proceedings of the 41st annual ACM
symposium on Theory of computing (Bethesda, MD,
USA, 2009), ACM, pp. 427–434.

[20] Leskovec, J., Kleinberg, J., and Faloutsos, C.

Graphs over time: densification laws, shrinking
diameters and possible explanations. In Proceedings of
the eleventh ACM SIGKDD international conference
on Knowledge discovery in data mining (Chicago,
Illinois, USA, 2005), ACM, pp. 177–187.

[21] Lopez-Fernandez, L., Robles, G.,

Gonzalez-Barahona, J. M., and Carlos, J.

Applying social network analysis to the information in
cvs repositories.

[22] Okoli, C., and Oh, W. Investigating
recognition-based performance in an open content
community: A social capital perspective. Inf. Manage.
44, 3 (2007), 240–252.

[23] Pinzger, M., Nagappan, N., and Murphy, B. Can
developer-module networks predict failures? In
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering
(Atlanta, Georgia, 2008), ACM, pp. 2–12.

[24] Puppin, D., and Silvestri, F. The social network of
java classes. In Proceedings of the 2006 ACM
symposium on Applied computing (Dijon, France,
2006), ACM, pp. 1409–1413.

[25] Sabidussi, G. The centrality index of a graph.
Psychometrika 31, 4 (Dec. 1966), 581–603.

[26] Watts, D. J., and Strogatz, S. H. Collective
dynamics of /‘small-world/’ networks. Nature 393,
6684 (June 1998), 440–442.

[27] Xu, J., and Chen, H. The topology of dark
networks. Commun. ACM 51, 10 (2008), 58–65.

41

	A social network based study of software team dynamics
	Citation

	A social network based study of software team dynamics

