
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

12-2020

Nearest Centroid: A bridge between statistics and machine Nearest Centroid: A bridge between statistics and machine

learning learning

M. THULASIDAS
Singapore Management University, manojt@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
M. THULASIDAS. Nearest Centroid: A bridge between statistics and machine learning. (2020). An
International Conference on Engineering, Technology and Education, Virtual Conference, 2020 December
8-11. Research Collection School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5555

This Conference Paper is brought to you for free and open access by the School of Information Systems at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at Singapore
Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5555&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5555&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Nearest Centroid: A Bridge between Statistics and
Machine Learning

Manoj Thulasidas
School of Information Systems

Singapore Management University
Singapore

manojt@smu.edu.sg

Abstract—In order to guide our students of machine learning
in their statistical thinking, we need conceptually simple and
mathematically defensible algorithms. In this paper, we present
the Nearest Centroid algorithm (NC) algorithm as a pedagogical
tool, combining the key concepts behind two foundational
algorithms: K-Means clustering and K Nearest Neighbors (k-
NN). In NC, we use the centroid (as defined in the K-Means
algorithm) of the observations belonging to each class in our
training data set and its distance from a new observation
(similar to k-NN) for class prediction. Using this obvious
extension, we will illustrate how the concepts of probability and
statistics are applied in machine learning algorithms.
Furthermore, we will describe how the practical aspects of
validation and performance measurements are carried out. The
algorithm and the work presented here can be easily converted
to labs and reading assignments to cement the students'
understanding of applied statistics and its connection to
machine learning algorithms, as described toward the end of
this paper.

Keywords—statistical thinking, applied statistics, machine
learning, nearest centroid, k-means clustering, k nearest neighbor

I. INTRODUCTION
In teaching the foundations of data analytics, we usually

introduce K-Means clustering [1] as the first unsupervised
algorithm and K Nearest Neighbors (k-NN) [2] as the
introductory supervised one because they are both
conceptually simple, and easy to explain and understand.
However, while teaching it, we do not get to illustrate the
interconnections between them and the statistical reasoning
underpinning it. For instance, K-means clustering is usually
taught in terms of the simplified heuristic approach [3], which
makes it much more computationally efficient, but hides its
mathematical foundations.

In K Nearest Neighbor (k-NN) classification [2], the class
prediction of a new observation is performed based on how
close it is to the existing observations, using a majority voting
scheme. In the regression mode, k-NN is used to predict a
numeric value as a simple (or a distance-weighted [4]) average
of a predefined number of existing observations. This simple
and intuitively obvious voting scheme as taught in the
classrooms again masks the statistical concepts that we could
be reinforcing. The importance of highlighting the statistical
thinking aspects with real-world experience [5] and of taking
a wholistic approach [6] has been underscored in recent
studies.

If the assumptions behind K-Means clustering hold true,
the centroids the observations belonging to a class can be
viewed as a representative proxy for them. We can therefore
use the centroids instead of the nearest neighbors for the
purpose of classification [7]. Such an approach was reported
[8] for a specific text-mining application, as well as for the

diagnosis of cancer types [9]. The nearest centroid approach
also figures in the vector space models in text analytics
classification, where it is referred to as the Rocchio classifier.

In this article, we treat the Nearest Centroid (NC)
algorithm as a pedagogical tool, going into a theoretical
exploration of the nature of the underlying probability
distributions, and considering the correlations between the
variables to compute the expected probabilities of
classification. Such an exploration brings into focus a variety
of concepts from probability and statistics [10], perfectly
illustrating how they influence and shape the algorithm. For
completeness, we also describe our implementation of the NC
algorithm and study its performance on several data sets. We
then establish that the probability estimate is accurate and
reproducible, providing an alternative explanation of
Quantile-Quantile plots and their verification.

Targeted at computer science and information systems
students, we believe this topic will reinforce their
understanding and kindle their interest in connecting the
concepts in applied statistics to practical algorithms in
machine learning and real-world data analysis [11]. Therefore,
after a comparative study with k-NN, we will list the statistical
and analytics concepts covered in this pedagogical topic.
These concepts will translate directly to the teaching
objectives of the courses incorporating the NC algorithm as a
topic. We will also highlight some formative assessment ideas
for such courses.

II. BACKGROUND AND NOTATIONS
In describing the NC algorithm, we will use notations

similar to that of K-Means and k-NN algorithms. For this
reason and to provide a sound basis for further discussion, we
formally describe both these algorithms in some detail.

A. K-Means Clustering
In K-Means clustering, we start with 𝑛 observations along

𝑝 variables, 𝒙!$$$⃗ ∈ ℝ". We would like to make 𝐾 clusters such
that each observation belongs to one and only one cluster. We
denote the Euclidean distance between two observations 𝒙!$$$⃗ ,

𝒙#$$$⃗ as 𝐷*𝒙!$$$⃗ , 𝒙#$$$⃗ , = .(𝒙!$$$⃗ − 𝒙!$$$⃗)$*𝒙#$$$⃗ − 𝒙#$$$⃗ ,.

Each observation is assigned to one of 𝐾 clusters.
Therefore, in principle, all possible combinations (of
observations to cluster assignments) should be considered,
and the centroids and distances recomputed. Because of this
combinatorial explosion, finding the global minimum in K-
Means clustering algorithm is an NP-Hard problem [12], and
slow even when optimized [13]. There have been some
attempts in simplifying the algorithm by balancing efficiency
vs. interpretability [14], which is further mathematically
expanded in [15]. The simplified heuristic approach [3] makes
it much more computationally efficient, albeit with the

978-1-7281-6942-2/20/$31.00 ©2020 IEEE December 8–11, 2020, Online
IEEE TALE2020 – An International Conference on Engineering, Technology and Education

Page 51

limitation that it may not converge to the global minimum. For
our purposes in this work, what is more important than the
actual workings of K-Means algorithm are the notions of
centroids and their errors, as described below.

Centroids and Error: After forming the 𝐾 clusters, we can
define the 𝑗th component of the 𝑘%& centroid as the mean of
the 𝑗th component of all the data points in the 𝑘%& cluster:
𝜇'! = Mean5𝑥() ∶ 	 𝑔!: = 𝑘; , where 𝑔!: represents the cluster
membership of the 𝑖th observation. Similarly, we can define
the standard deviations for each cluster centroid for each
variable: 	𝜎'! = StdDev5𝑥() ∶ 	 𝑔!: = 𝑘; . The summations in
the definitions (of 𝝁'$$$$⃗ , 𝝈'$$$$⃗ 	 ∈ ℝ") are over the 𝑛'members of
each cluster. We will be using these basic concepts of
centroids and their standard deviations (or, more generally,
their covariance matrices) in order to develop the NC
algorithm.

B. K Nearest Neighbors
We will follow notations similar to the one we used for K-

Means clustering to formally state the k-NN algorithm. We
have 𝑛 data points (or observations) along 𝑝 variables for the
training set (𝒙!$$$⃗ ∈ ℝ"). For the 𝑛 observations, we also have
the labels, or their true class memberships, 𝑔(. The training
phase of the k-NN algorithm merely stores the 𝑛 points and
their labels in memory. Only when it is asked to classify a new
observation, does k-NN perform the necessary computations.
In other words, it is a lazy algorithm.

To classify a new observation 𝒙$$⃗ ′ , the original k-NN
algorithm [2] computes its Euclidean distances between 𝒙$$⃗ ′
and each of the 𝑛 training observations. The algorithm then
sorts these 𝑛 values and considers the smallest 𝜅 distances and
the associated training vectors and labels. The estimated class
membership of 𝒙$$⃗ ′ is the most frequent label among the 𝜅
observations with the smallest distances 𝛿(

(+) ∶ 𝑔C- =
Mode*𝑔.

(+), 𝑔/
(+), … , 𝑔0

(+), where the superscript (𝑠) indicates
sorted entities. 𝜅 is usually chosen as an odd number, typically
small. (We are using the symbol 𝜅 instead of the traditional 𝑘
or 𝐾 , which we already used in this article to describe K-
Means clustering.)

Modified versions of the algorithm may use other distance
measures [16], or distance-weighted count [4], [17], [18].
Changing the weightage essentially counts the training
observations that are close to 𝒙$$⃗ ′ more than the ones that are
farther away. The k-NN algorithm does not assume any
boundary or even separation among the training data points,
while K-Means algorithm implicitly assumes that the
observations are cleanly separated into spherical clusters in
the data space and the separation boundaries are perpendicular
bisectors, which are subspaces of dimension 𝑝 − 1.

III. NEAREST CENTROID ALGORITHM
In k-NN, as the number of rows in the training data (𝑛)

increases, all those rows will have to be stored in memory
during the training phase because the k-NN model is the
aggregate of the training data set. During the testing or
production phase, k-NN has to compute 𝑛 distances, and sort
them to get the top 𝜅 candidates with the smallest distances.

In the Nearest Centroid (NC) algorithm for classification
described in this paper, instead of storing all 𝑛 rows of the
training data, we will store only as many rows as there are

distinct classes (𝐾) in the data. The 𝐾 rows stored are the
centroids of the observations belonging to each class.

During the classification phase, we will only need to
compute the distances for 𝐾 (a much smaller number
compared to 𝑛) and find the smallest among them, thereby
tremendously improving the memory requirement and
performance of the classifier. In addition, the “regression” part
of the NC algorithm computes the probability of the right
classification.

A. Training Phase
In our training data set, we have 𝑛 observations (𝒙!$$$⃗ ∈ ℝ")

and their labels, or their true class memberships, 𝑔(. Training
the NC classifier involves going through the 𝑛 rows of the
training data set and computing the centroids grouped by the
class. Exactly as in K-Means clustering, we have the class
centroid 𝜇'! = Mean5𝑥() ∶ 	 𝑔(= 𝑘; and their standard
deviations 𝜎'! = StdDev5𝑥() 	 ∶ 	 𝑔(= 𝑘;. The only difference
is that in NC, we are using the true class label 𝑔(rather than
the cluster affiliation 𝑔!: and that the implied summations in
the definitions of Mean and StdDev run over the 𝑛'
observations with the true class label 𝑘.

In addition, we also compute and store the full covariance
matrix 𝚺' (again, on a per-class basis). For the observations
with the class label 𝑘, the covariance between the variables 𝑥)
and 𝑥1 is

which defines the 𝑝 × 𝑝 covariance matrix 𝚺'.

To summarize, the training phase involves computing and
storing three entities per class. With 𝐾 classes in the data set
of 𝑛 observations along 𝑝 variables, these entities are:

1. 𝐾 means of the 𝑝 variables, 𝝁'$$$$⃗ 	 ∈ ℝ",
2. 𝐾 standard deviations of the 𝑝 variables, 	𝝈'$$$$⃗ 	 ∈ ℝ",
3. 𝐾 covariance matrices, 𝚺' ∈ ℝ"×" as defined in Eq. (1)

B. Testing/Production Phase
Using the 3𝐾 entities defined in the previous section (and

stored during the training phase of the NC classifier), we can
classify a new observations based on how distant they are
from the class centroids.

1) Euclidean Distance: The simplest approach would be
to assign a new observation 𝒙$$⃗ ′ to the class of the nearest
centroid. For this, the NC algorithm computes the 𝐾
Euclidean distances between 𝒙$$⃗ ′ and 𝝁'$$$$⃗ , 𝛿' 	= 	𝐷(𝒙$$⃗ ′, 𝝁'$$$$⃗)	
(instead of the 𝑛 computations that would be necessary in the
k-NN algorithm).

It then finds the class corresponding the smallest of the 𝐾
distances, and assigns it to the new observation.

which says that the estimated class membership of the new
observation is the value of 𝑘 associated with the shortest
distance. This naive approach works reasonably well, but it

978-1-7281-6942-2/20/$31.00 ©2020 IEEE December 8–11, 2020, Online
IEEE TALE2020 – An International Conference on Engineering, Technology and Education

Page 52

suffers from its sensitivity to the scale of the variables, as well
as the differences in their spreads.

2) Standard Distance: In order to address the scale and
spread issues, we can consider standard distances (z-scores)
between 𝒙$$⃗ ′ and 𝝁'$$$$⃗ , as defined in the equations below.

The classification will then proceed as in the case of

Euclidean distance, by finding the smallest standard distance.

While using the standard distance is a definite

improvement, it still doesn't fare well when the variables used
for classification are highly correlated with each other.

3) Mahalanobis Distance: The generalized version of the
distance to be used in the presence of correlations is the
Mahalanobis Distance[19], which is defined using the inverse
of the covariance matrix 𝜮' as defined in Eq. (1). The
Mahalanobis Distance 𝐷3(𝒙$$⃗ ′, 𝝁'$$$$⃗) between 𝒙$$⃗ ′ and 𝝁'$$$$⃗ can be
written as

 Here, 𝚺'4. is the inverse of the covariance matrix,
encapsulating the correlations among the clustering variables
belonging to the 𝑘th cluster. (In our implementation, in the
rare cases where the covariance matrix was singular, we used
the Moore-Penrose [20] pseudoinverse.)

Under the reasonable assumption that the variables are
multivariate normal, 𝐷3/ is a random variable which follows a
𝜒/ distribution with a parameter (or degrees of freedom, DoF)
𝑝, the number of variables in the data set.

Note that if the covariance matrix 𝚺' is diagonal (implying

no correlation among the variables), 𝜒'/ defined in Eq. (6)
reduces to the square of 𝑧' defined in Eq. (3). We have 𝐾
measures 𝜒'/ corresponding to the 𝐾 class centroids. As
before, the classification is performed by locating the
minimum among the 𝐾 Mahalanobis distances for 𝒙!$$$⃗ and
assigning its class as the estimated classification.

C. NC Classification and Regression

In the rest of this paper, we will be using the minimum
Mahalanobis distance for classification. In other words, the
class label of a new observation is that of the nearest centroid
in terms of (the square of) the Mahalanobis distance, as
defined in Eq. (7). We will propose this method as the Nearest
Centroid classification algorithm and study its performance on
four data sets using certain metrics, such as accuracy and
Cohen's Kappa [21].

As mentioned earlier, the square of the Mahalanobis
distance of an observation from the centroid of all the
observations belonging to the same class has a 𝜒'/ distribution
of degrees of freedom 𝐃𝐨𝐅 = 𝑝, the number of variables used
for classification. Knowing that 𝜒'/ has a well-defined
probability distribution, we can compute the probability of the
right classification. We propose the Nearest Centroid
“regression” algorithm as the estimate of this probability. If
we classify new observations based on this regressed
probability, the accuracy of the classifier can be readily
predicted. Note, however, that both the probability
distribution and indeed the definition of the Mahalanobis
distance itself are contingent on the underlying variables
following a multivariate normal distribution. From our
studies, this assumption seems to be well-supported, as we
might expect from the Central Limit theorem.

IV. EXPERIMENTS
Now that we have defined our NC algorithm and hinted at

the methods to verify the validity of the underlying
mathematical assumptions, we proceed to see how they
perform in four data sets. We will study the classification
accuracy (and other quality metrics) of the algorithm as well
as the validity of the assumption of the 𝜒'/ probability
distribution in the regression mode.

We will pay particular attention to the statistical error on
our accuracy measurements and the distribution comparisons.
In all the plots that follow, we will consistently display the
error bars or bands corresponding to one standard deviation
(or, equivalently, a more conservative 68% confidence level)
as opposed to the 95% CL commonly found in the literature.

A. Data Set
We will use four data sets as described below. For each

data set, we will show a plot of the accuracy and other metrics
like Cohen's Kappa [21] as we vary the training/testing split.
In all the data sets, we have selected the “best” subset of
variables to use by directly computing the purity when using
various combinations of variables in K-Means clustering.

1) Iris Data Set: The famous Iris data set [22] contains
150 flower measurements along four variables (Sepal
Length, Sepal Width, Petal Length and Petal Width) from
three different iris species (Setosa, Versicolor and
Virgnica). There are 50 data points for each species.
Although the data set has four variables, we use only two of
them (Petal Length and Petal Width) for the studies here
because we have identified them as the ones contributing
most in separating the three species in terms of purity when
clustering using the K-Means algorithm. This historically
significant data set is known to be easy to classify, and our
NC also algorithm works very well on it, with near perfect
accuracy.

2) Young Adults Data Set: This data set is from the
anonymous data collected from our students, and contains
with 127 observations along four numeric variables (Height,
Weight, Age and HairLength) and a label (M or F for male
or female). Note that in Singapore, male university students
are expected to be about two to three years older than their
female classmates because of their military service
obligation. Therefore, we may expect the Age variable to
have some differentiating power while clustering the data.

978-1-7281-6942-2/20/$31.00 ©2020 IEEE December 8–11, 2020, Online
IEEE TALE2020 – An International Conference on Engineering, Technology and Education

Page 53

Again, from our studies, we have identified Weight and
HairLength as the only two variables contributing to the
differentiation between the two classes, and used them for the
rest of this study.

3) Wine Data Set: The Wine data set [23], from the UCI
Machine Learning Repository [24] is publicly available and
has 12 attributes in three classes. We select four of them
(Alcohol, Ash, Flavanoids and OD280_OD315) as the best
combination to use in our studies. Note that the number of
variables 𝑝 = 4, which also is the DoF for the 𝜒/ distribution
as defined in Eq. (6). Later on, we will intentionally introduce
an error by specifying 𝑫𝒐𝑭 = 3 and 5 in order to
demonstrate that our theoretical treatment is sound using a
negative test.

4) Seeds Data Set: Another publicly available resource
from the UCI Machine Learning Repository, the Seeds data
set [25] contains three classes of wheat seeds with 70
observations each and has seven attributes, of which we select
Area, Perimeter, Compactness and Asymmetry for our
studies.

B. Accuracy and Other Metrics
As discussed earlier, during the training phase, the NC

algorithm computes the means, standard deviations and the
covariance matrices of the variables, grouped by the classes.
We do the training using a fraction of the data, and compute
the accuracy by testing on the rest of the data. We redo the
training-testing cycle using different splits, varying the
training fraction from 10% to 90% in steps of 10% as shown

in Fig. 1, where we have plotted the accuracy and Cohen's
Kappa. In order to reduce the statistical error in the reported
numbers, we repeat the measurement 32 times for each split
and take the average.

As is well-known [26], accuracy is an incomplete measure
of the performance of a classifier. Cohen's Kappa has been
shown [27] to be as complete a metric as the area under the
curve (AUC) of the Receiver Operating Characteristic (ROC)
for binary classifiers, and generalizes well for multi-class
problems. The concepts of sensitivity and specificity cannot
be consistently defined for multi-class classifiers, but need to
be generalized [28] from a binary classifier as one-vs-all. We
have included the one-vs-all sensitivity and specificity as well
in Fig. 1 for the sake of completeness, while reiterating that
Cohen's Kappa is probably a better metric to use. We note,
however, that it is not universally accepted [29] as a perfect
measure, especially when a class imbalance is expected,
which is not the case in our experiments. Both by Cohen's
Kappa and by one-vs-all metrics, NC classification gives
remarkably high and stable quality metrics even with very
small training fractions.

In order to estimate the error in the accuracy
measurements, we consider the classification process to be a
Bernoulli trial (with the single trial probability equal to the
classification accuracy 𝑎 , and number of trials 𝑁). The
standard error on the estimate of the accuracy 𝑎C is

Fig. 1. Accuracy (solid line with error bars) and Cohen’s Kappa (green dots) of the NC classifier when running on the various data sets, with hold-out
data. The x-axis is the fraction of the data used for training. Also shown are the one-vs-all sensitivity (red dashed line) and specificity (blue dotted line).

978-1-7281-6942-2/20/$31.00 ©2020 IEEE December 8–11, 2020, Online
IEEE TALE2020 – An International Conference on Engineering, Technology and Education

Page 54

For each point in the accuracy curves in Fig. 1, the number
of trials 𝑁 would be equal to the fraction of the data used for
testing times the data set size multiplied by the number of
folds, which is 32. Note that Eq. (8) holds true only when 𝑎C is
away from 0 or 1. Since our estimated accuracies are close to
1, we have verified that the error estimates are correct by
repeating the process multiple times and studying the spread
of each point in the plots.

C. Mathematical Verifications
The square of the Mahalanobis distance, as defined in Eq.

(6), being the sum of squares of multivariate normal variables,
should follow a 𝜒/ probability distribution. We verify this
assertion on our data sets directly, as described below.

1. For each class in each data set, compute the centroids
(𝝁'$$$$⃗) and covariance matrix 𝚺' (as specified in Eq. (1)).
This calculation needs to be performed only once.

2. For each observation in the data set, compute its
Mahalanobis distance from the class centroid, as shown
in Eq. (5).

3. Compare the distribution of 𝜒'/ with the theoretically
predicted one using a quantile-quantile plot.

Although quantile-quantile plot is the standard way of
comparing two distributions, we also use a “probability
histogram” method to redo the comparison as described
below.

4. Compute the probability of the Mahalanobis distance
(based on a 𝜒/ distribution of 𝐃𝐨𝐅 = 𝑝).

5. Plot the distribution of the probability for the right
classification as a histogram.

6. If the assumed theoretical distribution is correct, the
probability histogram should be flat between 0 and 1.

Statement (6) above is trivially true because the frequency
distribution of any random variable is expected to have the
same shape as its probability density function (PDF). For
example, if we generate 𝑛 samples of a normally distributed
random variable (𝑍) , 𝑗 = 1… 	𝑛) with a PDF: 𝑁(7,9)	(𝑧), then
compute the 𝑛 probability values (𝑝) 	= 	𝑁(7,9)(𝑍))), the 𝑝)s
are expected to have a flat distribution from 0 to 1.

We use this “probability histogram” method also to ensure
the rightness of our assumption about the normality of the
variables, because we can calculate the statistical errors in the
bin count assuming that it comes from a Poisson distribution,
where the variance equals the mean. Considering the bin
counts to be unbiased estimates of the means, their standard
deviations are merely the square-root of the frequency (when
non-zero) in the bin. In the probability histograms, we will
also overlay a linear regression line, again with a 68%
confidence level (or one-𝜎) error band.

As shown in Fig. 2, the distributional behavior of the
Mahalanobis distance (leading to the 𝜒/ distribution of 𝑝
degrees of freedom) is very well-supported in all the data sets
we study. For the Seeds data set (Fig. 2(d)), there seems to be
a disagreement in the quantile-quantile plot (and lack of
flatness in the probability histogram), but the difference is
statistically insignificant. The flatness in the probability
histogram, for instance, is within the one-𝜎 error bar for seven
out of ten bins, and well within two-𝜎 for all ten.

D. Monte Carlo Simulation
In addition to establishing the validity of the distributional

assumptions in the data, we can also use Monte Carlo
simulation techniques to verify it. Although there is no extra
value in using the simulation (compared to direct
mathematical verification), we do it so that we can run through

Fig. 2. Verifying the distributional assumption (𝜒2 of DoF = 𝑝) in various data sets. The left pane in each subfigure shows the agreement between the
theoretical quantiles and the observed ones, showing remarkable agreement. The right pane shows the “probability histogram” (with one-𝜎 error bars),
which is expected to be flat. The horizontal dashed line is the flat (average) line expected. The solid line with the error band (one-𝜎) is the best fitted line.
The flatness is well within the expected limits.

978-1-7281-6942-2/20/$31.00 ©2020 IEEE December 8–11, 2020, Online
IEEE TALE2020 – An International Conference on Engineering, Technology and Education

Page 55

the whole chain of training and testing, as we describe below.
Moreover, using simulation, it is possible to predict the (one-
vs-all) sensitivity and specificity when using the classifier
with a specified p-value criterion.

Starting from 𝑝 independent standard normal variables,
we can generate 𝑝 multivariate normal random variables with
a specified means 𝝁'$$$$⃗ and covariance matrix 𝚺' . It involves
Cholesky or eigenvalue decomposition of the covariance
matrix and a few matrix operations, which are all encapsulated
in a straightforward function call in most statistical tools. In
this study, we use the mvrnorm from the MASS package [30]
in R. We generate 3000 rows of data for all four data sets we
study, ensuring that we have the same proportion of
observations in each class in the Monte Carlo as we have in
the real data. We will simulate the data and use it for further
verifications as described in the steps below.

1. For each class in the data set, compute the centroids (𝝁'$$$$⃗)
and covariance matrix 𝚺' (as specified in Eq. (1)).

2. Generate simulated observations distributed according to
the means 𝝁'$$$$⃗ and covariance matrices 𝚺' (multivariate
normal distributions) with class labels in the same
proportion as found in the data set.

3. Train and build the Nearest Centroid (NC) model on the
simulated data set, which involves storing the centroids
and covariance matrices of all 𝐾 classes as described in
Training Phase (Section III-A). Note that the centroids
and covariance matrices are expected to be the same as
the ones computed in step 1, but subject to statistical
fluctuations.

4. Test the NC model on the data set, which involves
computing the Mahalanobis distance (𝜒'/) as defined in
Eq. (6) for each observation in the simulated data, from
the centroid of all the observations with its true class
label.

5. Compare the distribution of 𝜒'/ with the theoretically
predicted one using a quantile-quantile plot, and as
probability histogram.

We have created such plots and compared to the ones in
Fig. 2 and found them to be consistent. This verification is left
as a suggested assignment when the NC algorithm is used as
a pedagogical topic in a course.

E. Verification by Negative Test
Since our results in all four data sets look exceptionally

good (in the quantile-quantile plots and probability histograms
in Fig. 2), one might be justified in suspecting that there is
some systematic or method-related reason for the positive
findings. To show that the results are not an accident, we
perform a negative test with an intentional error. In the Wine
data set, where the number of variables used, 𝑝 = 4, the DoF
for the 𝜒/ distribution is expected to be 4 . We redo our
quantile-quantile plots and probability histograms with
𝐃𝐨𝐅	 = 	3 and 5.

As can be seen in Fig. 3, both these plots show the
characteristic skewing expected of a wrong assumption of the
underlying probability distribution. When compared to the
“right” plots (Fig. 2), we can conclude that our theoretical
foundation in assuming that the probability distribution is a 𝜒/
of degrees of freedom 𝐃𝐨𝐅 = 𝑝 = 4 is sound.

F. Accuracy: Measured vs. Predicted
The knowledge of the probability distribution of the

classifying distance gives as a direct handle on the accuracy
of the NC classifier. We can, for instance, apply a 95%
confidence level criterion on the probability and be certain of
obtaining 95% of the new observations correctly classified. In
this section, we verify this assertion by measuring the
accuracy and comparing it against the prediction as shown in
Table I.

TABLE I. ACCURACY VS. PROBABILITY

p-value
Data Set

Iris YA Wine Seeds

0.1 0.08 0.8 0.9 0.9

0.2 0.19 0.18 0.20 0.18

0.3 0.27 0.26 0.31 0.29

0.4 0.46 0.61 0.59 0.59

0.5 0.46 0.49 0.50 0.47

0.6 0.53 0.61 0.59 0.59

0.7 0.67 0.68 0.68 0.67

0.8 0.78 0.77 0.76 0.75

0.9 0.88 0.87 0.87 0.87

Predicted vs. measured accuracy of the NC classifier in the four data sets
when using classifying criterion 𝑝 <	 p-value, showing good agreement
between the prediction and the measurement.

We define our NC classifier as giving a positive result
when the computed probability is less than the p-value
specified. The predicted accuracy is therefore the p-value, and
the table shows that the measured ones closely track the
prediction, although we can detect a weak trend that the
measurement is slightly lower than the prediction. The
statistical error on the accuracy as defined in Eq. (8) is about
0.01 for each measurement. This agreement between the
predicted (p-value) accuracy and the measured one is not a
surprise, given the flatness of the probability histograms in
Fig. 2.

G. Nearest Cetroid vs. k-NN
One of the main motivations behind the NC algorithm for

classification is the promise of performance improvement in
terms of computing time and memory usage. In this section,
we present the results using the Iris data set for the timing
studies, with the number of observations replicated to increase
the load. We compare the training and classifying times taken
by NC and k-NN for 300, 3000 and 6000 observations in the
data set, and report them in Table II.

TABLE II. TIMING COMPARISON

𝒏
Nearest Centroid k-NN

Train Classify Train Classify

300 4.9 3.1 1.2 4.0

3000 7.0 21.2 1.5 87.7

6000 8.9 43.2 1.9 312.2

Median training and classifying computing time usage (in milliseconds) by
the NC algorithm and k-NN for various 𝑛.

978-1-7281-6942-2/20/$31.00 ©2020 IEEE December 8–11, 2020, Online
IEEE TALE2020 – An International Conference on Engineering, Technology and Education

Page 56

As expected, k-NN classification time explodes as 𝑛
increases, while NC shows more moderate increase. However,
it takes longer to build an NC model because of the extra
calculations needed. We do not report the improvements in the
amount of memory used, which seem trivially obvious, but
hard to measure accurately.

We also compare the quality of the classification for NC
and k-NN in Table III. We can see that in data sets where the
classes are not well-separated such as Wine or Seeds, k-NN
will give better results than the NC algorithm. Our focus in
this work is on the viability of the NC algorithm as a
pedagogical tool on data sets that cluster well under the K-
Means algorithm, not its supremacy in all possible data sets or
over other classification algorithms.

TABLE III. COMPARISON OF ACCURACY AND COHEN’S KAPPA

Data
Nearest Centroid k-NN

Accuracy Kappa Accuracy Kappa

Iris 100% 1.000 100% 1.000

YA 98.8% 0.976 98.1% 0.961

Wine 96.9% 0.953 99.8% 0.996

Seeds 91.2% 0.868 98.2% 0.972

Comparison of the accuracy and Cohen’s Kappa of NC and the four data
sets for 70:30 split.

Although the NC classifier does not outperform k-NN in
terms of accuracy, its conceptual simplicity is likely to inspire
the students to explore and develop the ideas further.

V. CONCEPTS AND ASSIGNMENTS

A. Key Concepts
In addition to the formal descriptions of K-Means and k-

NN algorithms, the NC algorithm presented in this article
brings a host of concepts and practices that can be taught in
classrooms in an experiential learning framework.

Distance Measures: In defining the NC algorithm, we move
from the Euclidean distance to Standard (z-scores) and then to
Mohalanobis (using the data covariance matrix) distance
measures.

Quantification of Classifier Performance: We use multiple
measures (accuracy, Cohen's Kappa, one-vs-all sensitivity and

specificity) in assessing the NC classifier. Although we do not
describe the underlying confusion matrix, it may be discussed
before or while teaching this subtopic.

n-Fold Cross Validation: In quantifying the performance of
the NC classifier (Fig. 1 and Table I), we use multiple folds
and training fractions. The understanding of this crucial
technique of improving the accuracy of validation using
multiple folds can be further reinforced by class exercises and
assignments.

Standard Error Estimates: We describe how the standard
errors on the accuracy are estimated (based on Binomial
distribution) in Fig. 1 and on the bin frequencies (based on
Poisson distribution) in the “probability histograms” in Fig. 2.

Probability Distributions: In addition to the Binomial and
Poisson distributions for error estimates, we touch upon the
𝜒/ distribution for the Mohalanobis distance.

Quantile-Quantile Plots: We use QQ plots to compare the
theoretical and observed distributions in Fig. 2.

Verifying Distributional Assumptions: A new “probability
histogram” approach is developed in Section IV-C, which
further reinforces the concept of probability distributions and
error estimation.

Monte Carlo Simulation: In Section IV-D, we provide step-
by-step instructions on how to generate and use synthetic data
from a multivariate normal distribution with a specified
covariance matrix and means.

Degree of Freedom: In Section IV-E, Fig. 3 shows what
happens to the QQ plots and the probability histograms when
we make an intentional error in the degrees of freedom of the
underlying 𝜒/ distribution, illustrating its importance and
estimation.

p-value: Table II illustrates the foundational notion of p-value
by comparing it to the relative frequency in the data for
various values.

Performance Comparisons: Tables II and II are tools to
teach how two algorithms can be compared.

All these concepts have their origins in applied statistics
and are common to a vast array of machine learning
algorithms, making the Nearest Neighbor algorithm an ideal
starting topic for introductory courses in these two subjects.

Fig. 3. Verifying the distributional assumption (𝜒2 with DoF = 	4) using a negative test, with an intentional error in DoF in the Wine data set. (a) DoF
= 	3, instead of 4. (b) DoF = 	5, instead of 4. Left pane: quantile-quantile plot. Right pane: “probability histogram.” The agreement in the q-q plot and
the flatness in the probably histogram are gone, as expected.

978-1-7281-6942-2/20/$31.00 ©2020 IEEE December 8–11, 2020, Online
IEEE TALE2020 – An International Conference on Engineering, Technology and Education

Page 57

B. Assignment Ideas
Based on the key concepts and the discussions in this

article, heare are some ideas for formative assessments when
the NC algorithm is used as a topic in a course.

• Perform a Monte Carlo simulation to generate synthetic
data and reproduce the plots given in Figs. 1 and 2.

• Use the same simulated synthetic data (from the previous
item) to verify the error estimates of classification
accuracies as defined in Eq. (8).

• What are the assumptions in the NC algorithm? As an
amalgamation of K-Means and k-NN algorithms, we
expect the NC algorithm to have a superset of the
underlying assumptions. How do the assumptions affect
its efficiency and applicability?

• What are the limitations of the NC algorithm? These
limitations may originate from its assumptions, or from
the deviations from the algorithms on which it is based.

• Compare the NC algorithm with other classifiers, such as
Decision Trees, Naïve Bayes etc. This assignment may
provide a chance for the students to either learn or review
other foundational algorithms in an experiential way.

VI. CONCLUSION
In this paper, we have described a classification technique

termed the Nearest Centroid algorithm, which combines the
centroid concept from K-Means clustering and the instance-
based, non-parametric learning from the k-NN classifier. It
also synthesizes and applies several statistical and theoretical
ideas in a theoretically rigorous manner to deepen the students'
understanding and appreciation of the mathematical
underpinnings of machine learning algorithms.

Developed as a pedagogical topic, appropriate for an
advanced undergraduate course on the foundations of machine
learning, this algorithm has mathematical properties that are
extremely useful in assessing its accuracy, one-vs-all
sensitivity, and specificity. Despite its origin in pedagogical
reason, the Nearest Centroid algorithm has impressive
accuracies as a multi-class classifier, which remain stable even
with very small training fractions. These properties may
further heighten the students' interest in the algorithm as a
viable alternative to more established ones, provided the
underlying assumptions hold true in the dataset under study.
In the near future, we plan to explore the inclusion of the NC
algorithm in our introductory machine learning course as an
assignment or lab.

The R code and the datasets described in this article are
available from the authors, along with instructions on how to
use it. The solutions to the suggested assignments and
discussions of the underlying ideas also can be obtained from
the authors upon request.

REFERENCES
[1] J. A. Hartigan, Clustering algorithms. Wiley, 1975.
[2] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE

Trans. Inform. Theory, vol. 13, pp. 21–27, 1967.
[3] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inform.

Theory, vol. 28, pp. 129–137, 2006.
[4] S. A. Dudani, “The distance-weighted k-nearest-neighbor rule,” IEEE

Trans. Syst. Man, Cybern., vol. SMC-6, pp. 325–327, 1976.

[5] S. C. Hicks and R. A. Irizarry, “A guide to teaching data science,” The
Amer. Statistician, vol. 72, no. 4, pp. 382–391, 2018.

[6] R. J. Brunner and E. J. Kim, “Teaching datas science,” Procedia
Comput. Sci., vol. 80, pp. 1947–1956, 2016.

[7] C. Manning, P. Raghavan, and H. Schu ̈tze, An Introduction to
Information Retrieval. Cambridge University Press, 2008.

[8] P. W. Buana, S. D. R. M. Jannet, and K. J. D. Putra, “Combination of
k-nearest neighbor and k-means based on term re-weighting for
classify indonesian news,” Int. J. Comput. Appl., vol. 50, pp. 37–42,
2012.

[9] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, “Diagnosis of
multiple cancer types by shrunken centroids of gene expression,” Proc.
Natl. Acad. Sci. United States Amer., vol. 99, pp. 6567–6572, 2002.

[10] B. Chance, “Components of statistical thinking and implications for
instruction and assessment,” J. Stat. Educ., vol. 10, 11 2002.

[11] J. Singer and J. Willett, “Improving the teaching of applied statistics:
Putting the data back into data analysis,” Amer. Statistician, vol. 44,
pp. 223–230, 08 1990.

[12] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “NP-hardness of
Euclidean sum-of-squares clustering,” Mach. Learning, vol. 75, pp.
245– 248, 2009.

[13] J. A. Hartigan and M. A. Wong, “A k-means clustering algorithm,” J.
Royal Stat. Soc. Series C (Applied Stat.), vol. 28, pp. 100–108, 1979.

[14] E. Forgy, “Cluster analysis of multivariate data: Efficiency versus
interpretability of classification,” Biometrics, vol. 21, pp. 768–769,
1965.

[15] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Volume 1: Statistics, pp.
281– 297, 1967.

[16] L. Hu, M. Huang, S. Ke, and C. Tsai, “The distance function effect on
k-nearest neighbor classification for medical datasets,” SpringerPlus,
vol. 5, 2016.

[17] T. Bailey and A. K. Jain, “A note on distance-weighted k-nearest
neighbor rules,” IEEE Trans. Syst. Man, Cybern., vol. 8, pp. 311–313,
1978.

[18] J. Gou, L. Du, Y. Zhang, and T. Xiong, “A new distance-weighted k-
nearest neighbor classifier,” J. Inform. Comput. Sci., vol. 9, 2011.

[19] P. C. Mahalanobis, “On the generalized distance in statistics,” Proc.
Natl. Inst. Sci. India, vol. 2, pp. 49–55, 1936.

[20] R. Penrose, “On best approximate solutions of linear matrix equations,”
Math. Proc. Camb. Philosph. Soc., vol. 52, pp. 17–19, 1956.

[21] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Meas., vol. 20, pp. 37–46, 1960.

[22] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Ann. Eugenics, vol. 7, pp. 179–188, 1936.

[23] S. Aeberhard, D. Coomans, and O. de Vel, “Comparison of classifiers
in high dimensional settings,” Tech. Rep. 92-02, Dept. Comput. Sci.
and Dept. Math. and Stat., James Cook Univ. North Queensland, 1992.

[24] D. Dheeru and E. K. Taniskidou, “UCI machine learning repository,”
Univ. California, Irvine, School Inform. Comput. Sci., 2017.

[25] M. Charytanowicz, J. Niewczas, P. Kulczycki, P. A. Kowalski, S.
Łukasik, and S. Zak, “Complete gradient clustering algorithm for
features analysis of x-ray images,” Inform. Technol. Biomedicine, vol.
69, pp. 15–24, 2010.

[26] M. Sokolova and G. Lapalme, “A systematic analysis of performance
measures for classification tasks,” Inform. Process. Manage., vol. 45,
pp. 427–437, 2009.

[27] A. Ben-David,“About the relationship between ROC curves and
Cohen’s kappa.,” Eng. Appl. AI, vol. 21, pp. 874–882, 2008.

[28] P. Machart and L. Ralaivola, “Confusion matrix stability bounds for
multiclass classification,” CoRR, 2012.

[29] R. Delgado and X. A. Tibau, “Why Cohen’s kappa should be avoided
as performance measure in classification,” PLOS ONE, vol. 14, pp. 1–
26, 09 2019.

[30] B. D. Ripley, Stochastic Simulation. Wiley, 1987.

978-1-7281-6942-2/20/$31.00 ©2020 IEEE December 8–11, 2020, Online
IEEE TALE2020 – An International Conference on Engineering, Technology and Education

Page 58

	Nearest Centroid: A bridge between statistics and machine learning
	Citation

	tmp.1610029067.pdf.reS32

