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Abstract—In order to guide our students of machine learning 
in their statistical thinking, we need conceptually simple and 
mathematically defensible algorithms. In this paper, we present 
the Nearest Centroid algorithm (NC) algorithm as a pedagogical 
tool, combining the key concepts behind two foundational 
algorithms: K-Means clustering and K Nearest Neighbors (k-
NN). In NC, we use the centroid (as defined in the K-Means 
algorithm) of the observations belonging to each class in our 
training data set and its distance from a new observation 
(similar to k-NN) for class prediction. Using this obvious 
extension, we will illustrate how the concepts of probability and 
statistics are applied in machine learning algorithms. 
Furthermore, we will describe how the practical aspects of 
validation and performance measurements are carried out. The 
algorithm and the work presented here can be easily converted 
to labs and reading assignments to cement the students' 
understanding of applied statistics and its connection to 
machine learning algorithms, as described toward the end of 
this paper. 

Keywords—statistical thinking, applied statistics, machine 
learning, nearest centroid, k-means clustering, k nearest neighbor 

I. INTRODUCTION 
In teaching the foundations of data analytics, we usually 

introduce K-Means clustering [1] as the first unsupervised 
algorithm and K Nearest Neighbors (k-NN) [2] as the 
introductory supervised one because they are both 
conceptually simple, and easy to explain and understand. 
However, while teaching it, we do not get to illustrate the 
interconnections between them and the statistical reasoning 
underpinning it. For instance, K-means clustering is usually 
taught in terms of the simplified heuristic approach [3], which 
makes it much more computationally efficient, but hides its 
mathematical foundations.  

In K Nearest Neighbor (k-NN) classification [2], the class 
prediction of a new observation is performed based on how 
close it is to the existing observations, using a majority voting 
scheme. In the regression mode, k-NN is used to predict a 
numeric value as a simple (or a distance-weighted [4]) average 
of a predefined number of existing observations. This simple 
and intuitively obvious voting scheme as taught in the 
classrooms again masks the statistical concepts that we could 
be reinforcing. The importance of highlighting the statistical 
thinking aspects with real-world experience [5] and of taking 
a wholistic approach [6] has been underscored in recent 
studies. 

If the assumptions behind K-Means clustering hold true, 
the centroids the observations belonging to a class can be 
viewed as a representative proxy for them. We can therefore 
use the centroids instead of the nearest neighbors for the 
purpose of classification [7]. Such an approach was reported 
[8] for a specific text-mining application, as well as for the 

diagnosis of cancer types [9]. The nearest centroid approach 
also figures in the vector space models in text analytics 
classification, where it is referred to as the Rocchio classifier.  

In this article, we treat the Nearest Centroid (NC) 
algorithm  as a pedagogical tool, going into a theoretical 
exploration of the nature of the underlying probability 
distributions, and considering the correlations between the 
variables to compute the expected probabilities of 
classification. Such an exploration brings into focus a variety 
of concepts from probability and statistics [10], perfectly 
illustrating how they influence and shape the algorithm. For 
completeness, we also describe our implementation of the NC 
algorithm and study its performance  on several data sets. We 
then establish that the probability estimate is accurate and 
reproducible, providing an alternative explanation of 
Quantile-Quantile plots and their verification.  

Targeted at computer science and information systems 
students, we believe this topic will reinforce their 
understanding and kindle their interest in connecting the 
concepts in applied statistics to practical algorithms in 
machine learning and real-world data analysis [11]. Therefore, 
after a comparative study with k-NN, we will list the statistical 
and analytics concepts covered in this pedagogical topic. 
These concepts will translate directly to the teaching 
objectives of the courses incorporating the NC algorithm as a 
topic. We will also highlight some formative assessment ideas 
for such courses. 

II. BACKGROUND AND NOTATIONS 
In describing the NC algorithm, we will use notations 

similar to that of K-Means and k-NN algorithms. For this 
reason and to provide a sound basis for further discussion, we 
formally describe both these algorithms in some detail. 

A. K-Means Clustering 
In K-Means clustering, we start with 𝑛 observations along 

𝑝 variables,  𝒙!$$$⃗ ∈ ℝ". We would like to make 𝐾 clusters such 
that each observation belongs to one and only one cluster. We 
denote the Euclidean distance between two observations 𝒙!$$$⃗ , 

𝒙#$$$⃗  as 𝐷*𝒙!$$$⃗ , 𝒙#$$$⃗ , = .(𝒙!$$$⃗ − 𝒙!$$$⃗ )$*𝒙#$$$⃗ − 𝒙#$$$⃗ ,. 

Each observation is assigned to one of 𝐾  clusters. 
Therefore, in principle, all possible combinations (of 
observations to cluster assignments) should be considered, 
and the centroids and distances recomputed. Because of this 
combinatorial explosion, finding the global minimum in K-
Means clustering algorithm is an NP-Hard problem [12], and 
slow even when optimized [13].  There have been some 
attempts in simplifying the algorithm by balancing efficiency 
vs. interpretability [14], which is further mathematically 
expanded in [15]. The simplified heuristic approach [3] makes 
it much more computationally efficient, albeit with the 
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limitation that it may not converge to the global minimum. For 
our purposes in this work, what is more important than the 
actual workings of K-Means algorithm are the notions of 
centroids and their errors, as described below. 

Centroids and Error: After forming the 𝐾 clusters, we can 
define the 𝑗th component of the 𝑘%& centroid as the mean of 
the 𝑗th  component of all the data points  in the 𝑘%&  cluster: 
𝜇'! = Mean5𝑥() ∶ 	 𝑔!: = 𝑘; , where 𝑔!: represents the cluster 
membership of the 𝑖th observation. Similarly, we can define 
the standard deviations for each cluster centroid for each 
variable: 	𝜎'! = StdDev5𝑥() ∶ 	 𝑔!: = 𝑘; . The summations in 
the definitions (of 𝝁'$$$$⃗ , 𝝈'$$$$⃗ 	 ∈ ℝ") are over the 𝑛'members of 
each cluster. We will be using these basic concepts of 
centroids and their standard deviations (or, more generally, 
their covariance matrices) in order to develop the NC 
algorithm. 

B. K Nearest Neighbors 
We will follow notations similar to the one we used for K-

Means clustering to formally state the k-NN algorithm. We 
have 𝑛 data points (or observations) along 𝑝 variables for the 
training set (𝒙!$$$⃗ ∈ ℝ"). For the 𝑛 observations, we also have 
the labels, or their true class memberships, 𝑔(.  The training 
phase of the k-NN algorithm merely stores the 𝑛 points and 
their labels in memory. Only when it is asked to classify a new 
observation, does k-NN perform the necessary computations. 
In other words, it is a lazy algorithm. 

To classify a new observation 𝒙$$⃗ ′ , the original k-NN 
algorithm [2] computes its Euclidean distances between 𝒙$$⃗ ′ 
and each of the 𝑛 training observations. The algorithm then 
sorts these 𝑛 values and considers the smallest 𝜅 distances and 
the associated training vectors and labels. The estimated class 
membership of 𝒙$$⃗ ′  is the most frequent label among the 𝜅 
observations with the smallest distances 𝛿(

(+) ∶ 𝑔C- =
Mode*𝑔.

(+), 𝑔/
(+), … , 𝑔0

(+), where the superscript (𝑠) indicates 
sorted entities. 𝜅 is usually chosen as an odd number, typically 
small. (We are using the symbol 𝜅 instead of the traditional 𝑘 
or 𝐾 , which we already used in this article to describe K-
Means clustering.) 

Modified versions of the algorithm may use other distance 
measures [16], or distance-weighted count [4], [17], [18]. 
Changing the weightage essentially counts the training 
observations that are close to 𝒙$$⃗ ′ more than the ones that are 
farther away. The k-NN algorithm does not assume any 
boundary or even separation among the training data points, 
while K-Means algorithm implicitly assumes that the 
observations are cleanly separated into spherical clusters in 
the data space and the separation boundaries are perpendicular 
bisectors, which are subspaces of dimension 𝑝 − 1. 

III. NEAREST CENTROID ALGORITHM 
In k-NN, as the number of rows in the training data (𝑛) 

increases, all those rows will have to be stored in memory 
during the training phase because the k-NN model is the 
aggregate of the training data set. During the testing or 
production phase, k-NN has to compute 𝑛 distances, and sort 
them to get the top 𝜅 candidates with the smallest distances.  

In the Nearest Centroid (NC) algorithm for classification 
described in this paper, instead of storing all 𝑛 rows of the 
training data, we will store only as many rows as there are 

distinct classes (𝐾) in the data. The 𝐾  rows stored are the 
centroids of the observations belonging to each class.  

During the classification phase, we will only need to 
compute the distances for 𝐾  (a much smaller number 
compared to 𝑛) and find the smallest among them, thereby 
tremendously improving the memory requirement and 
performance of the classifier. In addition, the “regression” part 
of the NC algorithm computes the probability of the right 
classification. 

A. Training Phase 
In our training data set, we have 𝑛 observations (𝒙!$$$⃗ ∈ ℝ") 

and their labels, or their true class memberships, 𝑔(. Training 
the NC classifier involves going through the 𝑛 rows of the 
training data set and computing the centroids grouped by the 
class. Exactly as in K-Means clustering, we have the class 
centroid 𝜇'! = Mean5𝑥() ∶ 	 𝑔( = 𝑘;  and their standard 
deviations 𝜎'! = StdDev5𝑥() 	 ∶ 	 𝑔( = 𝑘;. The only difference 
is that in NC, we are using the true class label 𝑔( rather than 
the cluster affiliation  𝑔!:  and that the implied summations in 
the definitions of Mean and StdDev run over the 𝑛' 
observations with the true class label 𝑘. 

In addition, we also compute and store the full covariance 
matrix 𝚺' (again, on a per-class basis). For the observations 
with the class label 𝑘, the covariance between the variables 𝑥) 
and 𝑥1 is 

which defines the 𝑝 × 𝑝 covariance matrix  𝚺'. 

To summarize, the training phase involves computing and 
storing three entities per class. With 𝐾 classes in the data set 
of 𝑛 observations along 𝑝 variables, these entities are: 

1. 𝐾 means of the 𝑝 variables, 𝝁'$$$$⃗ 	 ∈ ℝ",  
2. 𝐾 standard deviations of the 𝑝 variables, 	𝝈'$$$$⃗ 	 ∈ ℝ",  
3. 𝐾 covariance matrices, 𝚺' ∈ ℝ"×" as defined in Eq. (1) 

B. Testing/Production Phase 
Using the 3𝐾 entities defined in the previous section (and 

stored during the training phase of the NC classifier), we can 
classify a new observations based on how distant they are 
from the class centroids. 

1) Euclidean Distance: The simplest approach would be 
to assign a new observation 𝒙$$⃗ ′ to the class of the nearest 
centroid. For this, the NC algorithm computes the 𝐾 
Euclidean distances between 𝒙$$⃗ ′ and 𝝁'$$$$⃗ , 𝛿' 	= 	𝐷(𝒙$$⃗ ′, 𝝁'$$$$⃗ )	 
(instead of the 𝑛 computations that would be necessary in the 
k-NN algorithm).  

It then finds the class corresponding the smallest of the 𝐾 
distances, and assigns it to the new observation. 

 
which says that the estimated class membership of the new 
observation is the value of 𝑘  associated with the shortest 
distance. This naive approach works reasonably well, but it 
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suffers from its sensitivity to the scale of the variables, as well 
as the differences in their spreads. 

2) Standard Distance: In order to address the scale and 
spread issues, we can consider standard distances (z-scores) 
between 𝒙$$⃗ ′ and 𝝁'$$$$⃗ , as defined in the equations below.  

 
The classification will then proceed as in the case of 

Euclidean distance, by finding the smallest standard distance.  

 
While using the standard distance is a definite 

improvement, it still doesn't fare well when the variables used 
for classification are highly correlated with each other. 

3) Mahalanobis Distance: The generalized version of the 
distance to be used in the presence of correlations is the 
Mahalanobis Distance[19], which is defined using the inverse 
of the covariance matrix 𝜮'  as defined in Eq. (1). The 
Mahalanobis Distance 𝐷3(𝒙$$⃗ ′, 𝝁'$$$$⃗ ) between 𝒙$$⃗ ′ and 𝝁'$$$$⃗  can be 
written as 

 
 Here, 𝚺'4.  is the inverse of the covariance matrix, 
encapsulating the correlations among the clustering variables 
belonging to the 𝑘th  cluster. (In our implementation, in the 
rare cases where the covariance matrix was singular, we used 
the Moore-Penrose [20] pseudoinverse.)  

Under the reasonable assumption that the variables are 
multivariate normal, 𝐷3/  is a random variable which follows a 
𝜒/ distribution with a parameter (or degrees of freedom, DoF) 
𝑝, the number of variables in the data set. 

 
Note that if the covariance matrix 𝚺' is diagonal (implying 

no correlation among the  variables), 𝜒'/  defined in Eq. (6) 
reduces to the square of 𝑧'  defined in Eq. (3). We have 𝐾 
measures 𝜒'/  corresponding to the 𝐾  class centroids. As 
before, the classification is performed by locating the 
minimum among the 𝐾  Mahalanobis distances for 𝒙!$$$⃗  and 
assigning its class as the estimated classification. 

 
C. NC Classification and Regression 

In the rest of this paper, we will be using the minimum 
Mahalanobis distance for classification. In other words, the 
class label of a new observation is that of the nearest centroid 
in terms of (the square of) the Mahalanobis distance, as 
defined in Eq. (7). We will propose this method as the Nearest 
Centroid classification algorithm and study its performance on 
four data sets using certain metrics, such as accuracy and 
Cohen's Kappa [21].  

As mentioned earlier, the square of the Mahalanobis 
distance of an observation from the centroid of all the 
observations belonging to the same class has a 𝜒'/ distribution 
of degrees of freedom 𝐃𝐨𝐅 = 𝑝, the number of variables used 
for classification. Knowing that 𝜒'/  has a well-defined 
probability distribution, we can compute the probability of the 
right classification. We propose the Nearest Centroid 
“regression” algorithm as the estimate of this probability. If 
we classify new observations based on this regressed 
probability, the accuracy of the classifier can be readily 
predicted. Note, however, that both the probability 
distribution and indeed the definition of the Mahalanobis 
distance itself are contingent on the underlying variables 
following a multivariate normal distribution. From our 
studies, this assumption seems to be well-supported, as we 
might expect from the Central Limit theorem. 

IV. EXPERIMENTS 
Now that we have defined our NC algorithm and hinted at 

the methods to verify the validity of the underlying 
mathematical assumptions, we proceed to see how they 
perform in four data sets. We will study the classification 
accuracy (and other quality metrics) of the algorithm as well 
as the validity of the assumption of the 𝜒'/  probability 
distribution in the regression mode. 

We will pay particular attention to the statistical error on 
our accuracy measurements and the distribution comparisons. 
In all the plots that follow, we will consistently display the 
error bars or bands corresponding to one standard deviation 
(or, equivalently, a more conservative 68% confidence level) 
as opposed to the 95% CL commonly found in the literature. 

A. Data Set 
We will use four data sets as described below. For each 

data set, we will show a plot of the accuracy and other metrics 
like Cohen's Kappa [21] as we vary the training/testing split. 
In all the data sets, we have selected the “best” subset of 
variables to use by directly computing the purity when using 
various combinations of variables in K-Means clustering. 

1) Iris Data Set: The famous Iris data set [22] contains 
150 flower measurements along four variables (Sepal 
Length, Sepal Width, Petal Length and Petal Width) from 
three different iris species (Setosa, Versicolor and 
Virgnica). There are 50 data points for each species. 
Although the data set has four variables, we use only two of 
them (Petal Length and Petal Width) for the studies here 
because we have identified them as the ones contributing 
most in separating the three species in terms of purity when 
clustering using the K-Means algorithm. This historically 
significant data set is known to be easy to classify, and our 
NC also algorithm works very well on it, with near perfect 
accuracy. 

2) Young Adults Data Set: This data set is from the 
anonymous data collected from our students, and contains 
with 127 observations along four numeric variables (Height, 
Weight, Age and HairLength) and a label (M or F for male 
or female). Note that in Singapore, male university students 
are expected to be about two to three years older than their 
female classmates because of their military service 
obligation. Therefore, we may expect the Age variable to 
have some differentiating power while clustering the data. 
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Again, from our studies, we have identified Weight and 
HairLength as the only two variables contributing to the 
differentiation between the two classes, and used them for the 
rest of this study. 

3) Wine Data Set: The Wine data set [23],  from the UCI 
Machine Learning Repository [24] is publicly available and  
has 12 attributes in three classes. We select four of them 
(Alcohol, Ash, Flavanoids and OD280_OD315) as the best 
combination to use in our studies. Note that the number of 
variables 𝑝 = 4, which also is the DoF for the 𝜒/ distribution 
as defined in Eq. (6). Later on, we will intentionally introduce 
an error by specifying 𝑫𝒐𝑭 = 3  and 5  in order to 
demonstrate that our theoretical treatment is sound using a 
negative test. 

4) Seeds Data Set: Another publicly available resource 
from the UCI Machine Learning Repository, the Seeds data 
set [25] contains three classes of wheat seeds with 70 
observations each and has seven attributes, of which we select 
Area, Perimeter, Compactness and Asymmetry for our 
studies. 

B. Accuracy and Other Metrics 
As discussed earlier, during the training phase, the NC 

algorithm computes the means, standard deviations and the 
covariance matrices of the variables, grouped by the classes. 
We do the training using a fraction of the data, and compute 
the accuracy by testing on the rest of the data. We redo the 
training-testing cycle using different splits, varying the 
training fraction from 10% to 90% in steps of 10% as shown 

in Fig. 1, where we have plotted the accuracy and Cohen's 
Kappa. In order to reduce the statistical error in the reported 
numbers, we repeat the measurement 32 times for each split 
and take the average. 

As is well-known [26], accuracy is an incomplete measure 
of the performance of a classifier. Cohen's Kappa has been 
shown [27] to be as complete a metric as the area under the 
curve (AUC) of the Receiver Operating Characteristic (ROC) 
for binary classifiers, and generalizes well for multi-class 
problems. The concepts of sensitivity and specificity cannot 
be consistently defined for multi-class classifiers, but need to 
be generalized [28] from a binary classifier as one-vs-all. We 
have included the one-vs-all sensitivity and specificity as well 
in Fig. 1 for the sake of completeness, while reiterating that 
Cohen's Kappa is probably a better metric to use. We note, 
however, that it is not universally accepted [29] as a perfect 
measure, especially when a class imbalance is expected, 
which is not the case in our experiments. Both by Cohen's 
Kappa and by one-vs-all metrics, NC classification gives 
remarkably high and stable quality metrics even with very 
small training fractions. 

In order to estimate the error in the accuracy 
measurements, we consider the classification process to be a 
Bernoulli trial (with the single trial probability equal to the 
classification accuracy 𝑎 , and number of trials 𝑁 ). The 
standard error on the estimate of the accuracy 𝑎C is  

 

 
Fig. 1. Accuracy (solid line with error bars) and Cohen’s Kappa (green dots) of the NC classifier when running on the various data sets, with hold-out 
data. The x-axis is the fraction of the data used for training. Also shown are the one-vs-all sensitivity (red dashed line) and specificity (blue dotted line). 
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For each point in the accuracy curves in Fig. 1, the number 
of trials 𝑁 would be equal to the fraction of the data used for 
testing times the data set size multiplied by the number of 
folds, which is 32. Note that Eq. (8) holds true only when 𝑎C is 
away from 0 or 1. Since our estimated accuracies are close to 
1, we have verified that the error estimates are correct by 
repeating the process multiple times and studying the spread 
of each point in the plots. 

C. Mathematical Verifications 
The square of the Mahalanobis distance, as defined in Eq. 

(6), being the sum of squares of multivariate normal variables, 
should follow a 𝜒/  probability distribution. We verify this 
assertion on  our data sets directly, as described below.  

1. For each class in each data set, compute the centroids 
(𝝁'$$$$⃗ ) and covariance matrix 𝚺' (as specified in Eq. (1)). 
This calculation needs to be performed only once. 

2. For each observation in the data set, compute its 
Mahalanobis distance from the class centroid, as shown 
in Eq. (5). 

3. Compare the distribution of 𝜒'/  with the theoretically 
predicted one using a quantile-quantile plot.  

Although quantile-quantile plot is the standard way of 
comparing two distributions, we also use a “probability 
histogram” method to redo the comparison as described 
below. 

4. Compute the probability of the Mahalanobis distance 
(based on a 𝜒/ distribution of 𝐃𝐨𝐅 = 𝑝). 

5. Plot the distribution of the probability for the right 
classification as a histogram. 

6. If the assumed theoretical distribution is correct, the 
probability histogram should be flat between 0 and 1. 

Statement (6) above is trivially true because the frequency 
distribution of any random variable is expected to have the 
same shape as its probability density function (PDF). For 
example, if we generate 𝑛 samples of a normally distributed 
random variable (𝑍) , 𝑗 = 1… 	𝑛) with a PDF: 𝑁(7,9)	(𝑧), then 
compute the 𝑛 probability values (𝑝) 	= 	𝑁(7,9)(𝑍))), the 𝑝)s 
are expected to have a flat distribution from 0 to 1. 

We use this “probability histogram” method also to ensure 
the rightness of our assumption about the normality of the 
variables, because we can calculate the statistical errors in the 
bin count assuming that it comes from a Poisson distribution, 
where the variance equals the mean. Considering the bin 
counts to be unbiased estimates of the means, their standard 
deviations are merely the square-root of the frequency (when 
non-zero) in the bin. In the probability histograms, we will 
also overlay a linear regression line, again with a 68% 
confidence level (or one-𝜎) error band.  

As shown in Fig. 2, the distributional behavior of the 
Mahalanobis distance (leading to the 𝜒/ distribution of 𝑝 
degrees of freedom) is very well-supported in all the data sets 
we study. For the Seeds data set (Fig. 2(d)), there seems to be 
a disagreement in the quantile-quantile plot (and lack of 
flatness in the probability histogram), but the difference is 
statistically insignificant. The flatness in the probability 
histogram, for instance, is within the one-𝜎 error bar for seven 
out of ten bins, and well within two-𝜎 for all ten. 

D. Monte Carlo Simulation 
In addition to establishing the validity of the distributional 

assumptions in the data, we can also use Monte Carlo 
simulation techniques to verify it. Although there is no extra 
value in using the simulation (compared to direct 
mathematical verification), we do it so that we can run through 

 
Fig. 2. Verifying the distributional assumption (𝜒2 of DoF = 𝑝) in various data sets. The left pane in each subfigure shows the agreement between the 
theoretical quantiles and the observed ones, showing remarkable agreement. The right pane shows the “probability histogram” (with one-𝜎 error bars), 
which is expected to be flat. The horizontal dashed line is the flat (average) line expected. The solid line with the error band (one-𝜎) is the best fitted line. 
The flatness is well within the expected limits.   
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the whole chain of training and testing, as we describe below. 
Moreover, using simulation, it is possible to predict the (one-
vs-all) sensitivity and specificity when using the classifier 
with a specified p-value criterion.  

Starting from 𝑝  independent standard normal variables, 
we can generate 𝑝 multivariate normal random variables with 
a specified means  𝝁'$$$$⃗ and covariance matrix 𝚺' . It involves 
Cholesky or eigenvalue decomposition of the covariance 
matrix and a few matrix operations, which are all encapsulated 
in a straightforward function call in most statistical tools. In 
this study, we use the mvrnorm from the MASS package [30] 
in R. We generate 3000 rows of data for all four data sets we 
study, ensuring that we have the same proportion of 
observations in each class in the Monte Carlo as we have in 
the real data. We will simulate the data and use it for further 
verifications as described in the steps below. 

1. For each class in the data set, compute the centroids (𝝁'$$$$⃗ ) 
and covariance matrix 𝚺' (as specified in Eq. (1)). 

2. Generate simulated observations distributed according to 
the means 𝝁'$$$$⃗  and covariance matrices 𝚺'  (multivariate 
normal distributions) with class labels in the same 
proportion as found in the data set. 

3. Train and build the Nearest Centroid (NC) model on the 
simulated data set, which involves storing the centroids 
and covariance matrices of all 𝐾 classes as described in 
Training Phase (Section III-A). Note that the centroids 
and covariance matrices are expected to be the same as 
the ones computed in step 1, but subject to statistical 
fluctuations. 

4. Test the NC model on the data set, which involves 
computing the Mahalanobis distance (𝜒'/) as defined in 
Eq. (6) for each observation in the simulated data, from 
the centroid of all the observations with its true class 
label. 

5. Compare the distribution of 𝜒'/  with the theoretically 
predicted one using a quantile-quantile plot, and as 
probability histogram.  

We have created such plots and compared to the ones in 
Fig. 2 and found them to be consistent. This verification is left 
as a suggested assignment when the NC algorithm is used as 
a pedagogical topic in a course. 

E. Verification by Negative Test 
Since our results in all four data sets look exceptionally 

good (in the quantile-quantile plots and probability histograms 
in Fig. 2), one might be justified in suspecting that there is 
some systematic or method-related reason for the positive 
findings. To show that the results are not an accident, we 
perform a negative test with an intentional error. In the Wine 
data set, where the number of variables used, 𝑝 = 4, the DoF 
for the 𝜒/  distribution is expected to be 4 . We redo our 
quantile-quantile plots and probability histograms with 
𝐃𝐨𝐅	 = 	3 and 5.  

As can be seen in Fig. 3, both these plots show the 
characteristic skewing expected of a wrong assumption of the 
underlying probability distribution. When compared to the 
“right” plots (Fig. 2), we can conclude that our theoretical 
foundation in assuming that the probability distribution is a 𝜒/ 
of degrees of freedom 𝐃𝐨𝐅 = 𝑝 = 4 is sound. 

F. Accuracy: Measured vs. Predicted 
The knowledge of the probability distribution of the 

classifying distance gives as a direct handle on the accuracy 
of the NC classifier. We can, for instance, apply a 95% 
confidence level criterion on the probability and be certain of 
obtaining 95% of the new observations correctly classified. In 
this section, we verify this assertion by measuring the 
accuracy and comparing it against the prediction as shown in 
Table I.  

TABLE I.  ACCURACY VS. PROBABILITY 

p-value 
Data Set 

Iris YA Wine Seeds 

0.1 0.08 0.8 0.9 0.9 

0.2 0.19 0.18 0.20 0.18 

0.3 0.27 0.26 0.31 0.29 

0.4 0.46 0.61 0.59 0.59 

0.5 0.46 0.49 0.50 0.47 

0.6 0.53 0.61 0.59 0.59 

0.7 0.67 0.68 0.68 0.67 

0.8 0.78 0.77 0.76 0.75 

0.9 0.88 0.87 0.87 0.87 

Predicted vs. measured accuracy of the NC classifier in the four data sets 
when using classifying criterion 𝑝 <	 p-value, showing good agreement 
between the prediction and the measurement. 

We define our NC classifier as giving a positive result 
when the computed probability is less than the p-value 
specified. The predicted accuracy is therefore the p-value, and 
the table shows that the measured ones closely track the 
prediction, although we can detect a weak trend that the 
measurement is slightly lower than the prediction. The 
statistical error on the accuracy as defined in Eq. (8) is about 
0.01 for each measurement.  This agreement between the 
predicted (p-value) accuracy and the measured one is not a 
surprise, given the flatness of the probability histograms in 
Fig. 2. 

G. Nearest Cetroid vs. k-NN 
One of the main motivations behind the NC algorithm for 

classification is the promise of performance improvement in 
terms of computing time and memory usage. In this section, 
we present the results using the Iris data set for the timing 
studies, with the number of observations replicated to increase 
the load. We compare the training and classifying times taken 
by NC and k-NN for 300, 3000 and 6000 observations in the 
data set, and report them in Table II.  

TABLE II.  TIMING COMPARISON 

𝒏 
Nearest Centroid k-NN 

Train Classify Train Classify 

300 4.9 3.1 1.2 4.0 

3000 7.0 21.2 1.5 87.7 

6000 8.9 43.2 1.9 312.2 

Median training and classifying computing time usage (in milliseconds) by 
the NC algorithm and k-NN for various 𝑛. 
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As expected, k-NN classification time explodes as 𝑛 
increases, while NC shows more moderate increase. However, 
it takes longer to build an NC model because of the extra 
calculations needed. We do not report the improvements in the 
amount of memory used, which seem trivially obvious, but 
hard to measure accurately. 

We also compare the quality of the classification for NC 
and k-NN in Table III. We can see that in data sets where the 
classes are not well-separated such as Wine or Seeds, k-NN 
will give better results than the NC algorithm. Our focus in 
this work is on the viability of the NC algorithm as a 
pedagogical tool on data sets that cluster well under the K-
Means algorithm, not its supremacy in all possible data sets or 
over other classification algorithms.  

TABLE III.  COMPARISON OF ACCURACY AND COHEN’S KAPPA 

Data 
Nearest Centroid k-NN 

Accuracy Kappa Accuracy Kappa 

Iris 100% 1.000 100% 1.000 

YA 98.8% 0.976 98.1% 0.961 

Wine 96.9% 0.953 99.8% 0.996 

Seeds 91.2% 0.868 98.2% 0.972 

Comparison of the accuracy and Cohen’s Kappa of NC and the four data 
sets for 70:30 split. 

Although the NC classifier does not outperform k-NN in 
terms of accuracy, its  conceptual simplicity is likely to inspire 
the students to explore and develop the ideas further. 

V. CONCEPTS AND ASSIGNMENTS 

A. Key Concepts 
In addition to the formal descriptions of K-Means and k-

NN algorithms, the NC algorithm presented in this article 
brings a host of concepts and practices that can be taught in 
classrooms in an experiential learning framework.   

Distance Measures: In defining the NC algorithm, we move 
from the Euclidean distance to Standard (z-scores) and then to 
Mohalanobis (using the data covariance matrix) distance 
measures.  

Quantification of Classifier Performance: We use multiple 
measures (accuracy, Cohen's Kappa, one-vs-all sensitivity and 

specificity) in assessing the NC classifier. Although we do not 
describe the underlying confusion matrix, it may be discussed 
before or while teaching this subtopic.  

n-Fold Cross Validation: In quantifying the performance of 
the NC classifier (Fig. 1 and Table I), we use multiple folds 
and training fractions. The understanding of this crucial 
technique of improving the accuracy of validation using 
multiple folds can be further reinforced by class exercises and 
assignments. 

Standard Error Estimates: We describe how the standard 
errors on the accuracy are estimated (based on Binomial 
distribution) in Fig. 1 and on the bin frequencies (based on 
Poisson distribution) in the “probability histograms” in Fig. 2. 

Probability Distributions: In addition to the Binomial and 
Poisson distributions for error estimates, we touch upon the 
𝜒/ distribution for the Mohalanobis distance. 

Quantile-Quantile Plots: We use QQ plots to compare the 
theoretical and observed distributions in Fig. 2. 

Verifying Distributional Assumptions: A new “probability 
histogram” approach is developed in Section IV-C, which 
further reinforces the concept of probability distributions and 
error estimation. 

Monte Carlo Simulation: In Section IV-D, we provide step-
by-step instructions on how to generate and use synthetic data 
from a multivariate normal distribution with a specified 
covariance matrix and means. 

Degree of Freedom: In Section IV-E, Fig. 3 shows what 
happens to the QQ plots and the probability histograms when 
we make an intentional error in the degrees of freedom of the 
underlying 𝜒/  distribution, illustrating its importance and 
estimation. 

p-value: Table II illustrates the foundational notion of p-value 
by comparing it to the relative frequency in the data for 
various values. 

Performance Comparisons: Tables II and II are tools to 
teach how two algorithms can be compared. 

All these concepts have their origins in applied statistics 
and are common to a vast array of machine learning 
algorithms, making the Nearest Neighbor algorithm an ideal 
starting topic for introductory courses in these two subjects. 

 
Fig. 3. Verifying the distributional assumption (𝜒2 with DoF = 	4) using a negative test, with an intentional error in DoF in the Wine data set. (a) DoF 
= 	3, instead of 4. (b) DoF = 	5, instead of 4. Left pane: quantile-quantile plot. Right pane: “probability histogram.” The agreement in the q-q plot and 
the flatness in the probably histogram are gone, as expected.  

 

978-1-7281-6942-2/20/$31.00 ©2020 IEEE December 8–11, 2020, Online
IEEE TALE2020 – An International Conference on Engineering, Technology and Education

Page 57



B. Assignment Ideas 
Based on the key concepts and the discussions in this 

article, heare are some ideas for formative assessments when 
the NC algorithm is used as a topic in a course. 

• Perform a Monte Carlo simulation to generate synthetic 
data and reproduce the plots given in Figs. 1 and 2. 

• Use the same simulated synthetic data (from the previous 
item) to verify the error estimates of classification 
accuracies as defined in Eq. (8). 

• What are the assumptions in the NC algorithm? As an 
amalgamation of K-Means and k-NN algorithms, we 
expect the NC algorithm to have a superset of the 
underlying assumptions. How do the assumptions affect 
its efficiency and applicability? 

• What are the limitations of the NC algorithm? These 
limitations may originate from its assumptions, or from 
the deviations from the algorithms on which it is based. 

• Compare the NC algorithm with other classifiers, such as 
Decision Trees, Naïve Bayes etc. This assignment may 
provide a chance for the students to either learn or review 
other foundational algorithms in an experiential way. 

VI. CONCLUSION 
In this paper, we have described a classification technique 

termed the Nearest Centroid algorithm, which combines the 
centroid concept from K-Means clustering and the instance-
based, non-parametric learning from the k-NN classifier. It 
also synthesizes and applies several statistical and theoretical 
ideas in a theoretically rigorous manner to deepen the students' 
understanding and appreciation of the mathematical 
underpinnings of machine learning algorithms. 

Developed as a pedagogical topic, appropriate for an 
advanced undergraduate course on the foundations of machine 
learning, this algorithm has mathematical properties that are 
extremely useful in assessing its accuracy, one-vs-all 
sensitivity, and specificity. Despite its origin in pedagogical 
reason, the Nearest Centroid algorithm has impressive 
accuracies as a multi-class classifier, which remain stable even 
with very small training fractions. These properties may 
further heighten the students' interest in the algorithm as a 
viable alternative to more established ones, provided the 
underlying assumptions hold true in the dataset under study. 
In the near future, we plan to explore the inclusion of the NC 
algorithm in our introductory machine learning course as an 
assignment or lab.  

The R code and the datasets described in this article are 
available from the authors, along with instructions on how to 
use it. The solutions to the suggested assignments and 
discussions of the underlying ideas also can be obtained from 
the authors upon request. 
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