
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

10-2020

Sentiment analysis for software engineering: How far can pre-Sentiment analysis for software engineering: How far can pre-

trained transformer models go? trained transformer models go?

Ting ZHANG
Singapore Management University, tingzhang.2019@phdcs.smu.edu.sg

Bowen XU
Singapore Management University, bowenxu.2017@phdis.smu.edu.sg

Thung Ferdian
Singapore Management University, ferdianthung@smu.edu.sg

Stefanus AGUS HARYONO
Singapore Management University, stefanusah@smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/372715126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5535&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5535&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Ting ZHANG, Bowen XU, Thung Ferdian, Stefanus AGUS HARYONO, David LO, and Lingxiao JIANG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5535

https://ink.library.smu.edu.sg/sis_research/5535

Sentiment Analysis for Software Engineering:
How Far Can Pre-trained Transformer Models Go?

Ting Zhang, Bowen Xu∗, Ferdian Thung, Stefanus Agus Haryono, David Lo, Lingxiao Jiang
School of Information Systems, Singapore Management University

Email: {tingzhang.2019, bowenxu.2017}@phdcs.smu.edu.sg, {ferdianthung, stefanusah, davidlo, lxjiang}@smu.edu.sg

Abstract—Extensive research has been conducted on senti-
ment analysis for software engineering (SA4SE). Researchers
have invested much effort in developing customized tools (e.g.,
SentiStrength-SE, SentiCR) to classify the sentiment polarity for
Software Engineering (SE) specific contents (e.g., discussions in
Stack Overflow and code review comments). Even so, there is still
much room for improvement. Recently, pre-trained Transformer-
based models (e.g., BERT, XLNet) have brought considerable
breakthroughs in the field of natural language processing (NLP).
In this work, we conducted a systematic evaluation of five existing
SA4SE tools and variants of four state-of-the-art pre-trained
Transformer-based models on six SE datasets. Our work is the
first to fine-tune pre-trained Transformer-based models for the
SA4SE task. Empirically, across all six datasets, our fine-tuned
pre-trained Transformer-based models outperform the existing
SA4SE tools by 6.5-35.6% in terms of macro/micro-averaged F1
scores.

Index Terms—Sentiment Analysis, Software Mining, Natural
Language Processing, Pre-trained Models

I. INTRODUCTION

Sentiment analysis is a computational study of people’s
opinions, attitudes, and emotions toward an entity, which can
be an individual, an event, or a topic [1]. Sentiment analysis
for software engineering (SA4SE) has drawn much attention
in recent years [2]–[10]. Most research considers sentiment
analysis as a sentiment polarity classification task. For a given
text unit, the goal is to determine its sentiment orientation,
i.e., negative, neutral, or positive.

To understand the performance of SA4SE tools, three
benchmarking studies have been conducted: Lin et al. [9] com-
pared five sentiment analysis tools, i.e., SentiStrength, NLTK,
Stanford CoreNLP, SentiStrength-SE, and Stanford CoreNLP
SO on three datasets – mobile app reviews, Stack Overflow
posts, and Jira issue comments. In terms of the number of
correct predictions, SentiStrength-SE, Stanford CoreNLP, and
SentiStrength perform the best for one of the datasets. Islam
et al. [7] compared three SA4SE tools, i.e., SentiStrength-
SE, Senti4SD, and EmoTxt, on three datasets – Jira issue
comments, Stack Overflow posts, and code review comments.
They found that SentiStrength-SE achieved the highest macro-
averaged F1-score for Jira issue comment and code review
comment datasets. At the same time, Senti4SD performed
the best for the Stack Overflow post dataset. Novielli et al.
[8] compared four tools, i.e., Senti4SD, SentiStrength-SE,
SentiCR, and SentiStrength, on four datasets – Stack Overflow

∗Bowen Xu is the corresponding author.

posts, Jira issue comments, code reviews comments, and Stack
Overflow posts related to Java libraries.1 They found that
Senti4SD achieved the highest macro-averaged F1-score for
the Stack Overflow dataset, while SentiCR was the highest
for the other three datasets.

Inspired by these three studies, we raise the main research
question that drives this study: How well can pre-trained
Transformer models perform for SA4SE task? Transformer is a
deep neural network architecture based solely on the attention
mechanism. It replaces the most commonly used recurrent
layers in the encoder-decoder architecture with multi-head
self-attention [11]. Currently, Transformer has become the
mainstream architecture of pre-trained models [12]. These pre-
trained models are trained on large corpora to learn universal
language representations and can further be beneficial to
downstream natural language processing (NLP) tasks without
the need to train new models from scratch.

To answer the aforementioned question, we conduct a
large-scale exploratory study. Specifically, we (1) consider a
diverse collection of six datasets (instead of three or four
considered in prior work), (2) compare the effectiveness of
the best performers in prior work [7]–[9] with state-of-the-art
pre-trained Transformer models. This study investigates the
following specific research questions:

• RQ1: How accurate are Transformer models as com-
pared to existing SA4SE tools?

• RQ2: How efficient are Transformer models as compared
to existing SA4SE tools?

To answer the above questions, we compare the accuracy
and efficiency of the best performing SA4SE approaches in
prior studies, against four pre-trained Transformer models.
Prior studies [7]–[9] have highlighted that Stanford CoreNLP,
SentiStrength, SentiStrength-SE, SentiCR, and SentiSD are
the best performers on at least one dataset. For pre-trained
Transformer models, we consider BERT [13], RoBERTa [14],
XLNet [15], and ALBERT [16]. We fine-tune these models
with labeled Software Engineering (SE) specific data for
SA4SE tasks.2 We evaluate the approaches on six datasets: API
reviews (API), Stack Overflow posts (SO), Mobile app reviews
(App), GitHub pull-request and commit comments (GitHub),

1They referred to the dataset as ’Java Libraries’ and it is the Stack Overflow
dataset from Lin et al.’s work [9].

2For brevity, unless otherwise stated, we refer to these fine-tuned pre-trained
models as Transformer models.

Jira issue comments (Jira), and Gerrit code review comments
(CR).

The experimental results demonstrate that in all the six
datasets, Transformer models, i.e., BERT, RoBERTa, XLNet,
and ALBERT, can achieve better performance than the best
performing SA4SE tools identified in prior studies [7]–[9].
Across these datasets, Transformer models consistently out-
perform previous SA4SE tools by 6.5% to 35.6% in terms of
macro/micro-averaged F1-scores. This accuracy boost comes
with some runtime costs: Transformer models are less effi-
cient than existing SA4SE approaches (except Senti4SD and
Stanford CoreNLP). Still, its runtime cost is not prohibitively
high; it requires 15 seconds to 10 minutes to fine-tune, while
it can predict sentiments of hundreds of text units (documents)
in seconds.

The main contributions of this work are as follows:
1) We are the first to leverage various pre-trained

Transformer-based models for the SA4SE task.
2) We provide a large-scale comparative analysis between

five existing SA4SE tools and four Transformer models
on six SE datasets and demonstrate that Transformer
models perform better than prior specialized SA4SE
tools.

The remainder of this paper is organized as follows. Sec-
tion II introduces related work. Sections III and IV describe
the best performing SA4SE tools identified in prior studies
[7]–[9] and pre-trained Transformer-based models used in this
paper, respectively. Section V elaborates on our methodology
to answer the research questions. We present the results of our
experiments for the two RQs in Section VI. Then we analyze
the threats to validity in Section VII. Finally, we conclude and
present future work in Section VIII.

II. RELATED WORK

In this section, we introduce related work: the first group is
about sentiment analysis for software engineering; the second
group is on pre-trained models for NLP.

Sentiment Analysis for Software Engineering. Previous
research has shown that emotions influence work outcomes
and dynamics, such as task quality, productivity, creativity,
group rapport, user focus, and job satisfaction (c.f. [17]).
On the other side of the coin, work processes and outcomes
influence developer emotions (c.f. [18]). Much research has
been done to investigate aspects of this two-way relationship
between developers’ work and their emotions.

One line of work that has attracted much research interest
is the sentiment analysis of software artifacts, such as bug
reports and commit comments. For example, Guzman et al. [2]
studied sentiments in commit comments in GitHub to analyze
the social factors affecting software development. Villarroel et
al. [4] mined emotional information from mobile apps reviews
to support the release planning activity. To further analyze the
impact of negative code review comments, Ahmed et al. [6]
developed a code-review specific sentiment analysis tool. Fine-
grained emotions have also been studied. Gachechiladze et al.

TABLE I: Sentiment Analysis for Software Engineering Tools

Tool Technique Original Training/Test dataset

NLTK/VADER [25] Lexicon and rule-based Social media texts
Stanford CoreNLP [22] Recursive neural tensor network Movie reviews
SentiStrength [22] Lexicon and rule-based MySpace informal short texts
SentiStrength-SE [5] Lexicon and rule-based Jira issues comments
SentiCR [6] Supervised learning Code review comments
Senti4SD [26] Supervised learning Stack Overflow
Emotxt [23] Supervised learning Stack Overflow and Jira
DEVA [24] Lexical approach Jira issue comments

[19] focus on automatic identification of anger direction (anger
towards self, others, and object) in a collaborative software
development environment. They found that all of the anger
directions are present within the comments from Apache issue
reports [19].

The progress of sentiment analysis research in SE has
promoted the development of corresponding tools. In the
early stage, researchers mainly use NLTK [20], SentiStrength
[21], Alchemy3, and Stanford CoreNLP sentiment analyser
[22] for sentiment polarity classification. By comparing the
performance of general-purpose sentiment analysis tools in the
SE field, Jongeling et al. [3] found that these tools produced
inconsistent annotated labels, and they may not necessarily
agree with each other. Therefore, they claim a need for SE
domain-orientated sentiment analysis tools. Due to the non-
optimal performances of these off-the-shelf sentiment analysis
tools built from the general text, more SE domain-specific
sentiment analysis tools have been introduced. Most of them
focus on the classification of sentiment polarity. Senti4SD
and SentiCR are two examples, and they are supervised
learning-based sentiment analysis tools. The construction of
emotion recognition toolkits for SE text has also drawn much
attention. Emotxt [23], which is an open-source toolkit for
detecting emotions, i.e., love, joy, surprise, anger, sadness,
fear, is trained specifically on the datasets extracted from
Stack Overflow and Jira. DEVA [24], which is specially built
for SE text, is a dictionary-based approach to detect valence
and arousal in text. It can capture individual emotional states
(e.g., excitement, stress, depression, relaxation, and neutrality).
Table I shows the current publicly available SA4SE tools.

Some exploratory studies [7]–[9] are similar to our work,
and they compare the performance of general-purpose and SE-
specific sentiment analysis tools in different datasets. We have
discussed them in Section I. In this work, we want to extend
these studies by comparing the best performing tools identified
in their work against Transformer models.
Pre-trained Models for Natural Language Processing. We
follow Qiu et al. [12] to categorize pre-trained models into two
generations. The first generation of pre-trained models aims to
learn word embeddings [12]. Typical examples are word2vec
[27] and GloVe (Global Vectors for Word Representation) [28].
Many prior SE works, e.g., detection of incoherent comments
[29] and identification of SE-relevant tweets [30], have utilized
word embeddings. One apparent limitation of this kind of word

3This service from IBM was retired in 2017.

embeddings is that they are context-independent. Regardless
of the context, the same word has the same embedding. As a
consequence, these non-contextual embeddings fail to model
polysemous words [12].

Recently, pre-trained models that learn contextual word
representations and can be fine-tuned for downstream tasks
have become popular [12]. They are the second-generation
pre-trained models. One family is LSTM [31]-based. Among
them, ULMFiT (Universal Language Model Fine-tuning) [32]
and ELMo (Embeddings from Language Models) [33] are two
front-runners. Since the introduction of Transformer architec-
ture [11], a number of pre-trained Transformer-based models
have been proposed (e.g., [13]–[16], [34]); these form another
family, and many of its members have achieved state-of-the-art
performance for a number of downstream NLP tasks.

III. PRIOR SA4SE TOOLS

In this section, we briefly describe details about the
best performing approaches identified by the prior bench-
marking works [7]–[9]: Stanford CoreNLP, SentiStrength,
SentiStrength-SE, SentiCR, and Senti4SD. We refer to them
collectively as the PRIOR group.

Stanford CoreNLP, proposed by Socher et al. [35], is
designed for single-sentence sentiment classification; it can
return a sentiment value and polarity for a sentence. Socher
et al. introduced the Stanford Sentiment Treebank, which
includes fine-grained sentiment labels for 215,154 phrases in
the parse trees. The parse trees consist of 11,855 sentences
extracted from the movie review dataset, initially constructed
by Pang and Lee [36]. Socher et al. also proposed a new
model called Recursive Neural Tensor Network to capture the
compositional effects with higher accuracy. Stanford CoreNLP
is trained with this Recursive Neural Tensor Network on the
Stanford Sentiment Treebank.

SentiStrength is a lexicon-based approach developed by Thel-
wall et al. [21]. As a lexicon-based approach, SentiStrength has
several dictionaries, including both formal terms and informal
texts (such as emoticon, idiom, slang). In these dictionaries,
each term is labeled with a sentiment strength. Based on
these dictionaries and linguistic analysis, given a sentence,
SentiStrength will output two integers: one is for positive
emotion, and the other is for negative emotion. It not only
categorizes the emotional polarity but also gives the strength
of the polarity. The scale for positive emotion is from 1 to 5,
representing not positive to very strong positive; the range for
negative emotion is from -1 to -5, representing not negative
to very strong negative.

SentiStrength-SE, proposed by Islam and Zibran, is a cus-
tomized version of SentiStrength, implemented by adding a
domain-specific dictionary [5]. SentiStrength-SE is also the
first sentiment analysis tool considering SE-specific context,
and it is designed based on in-depth qualitative research.
Specifically, Islam and Zibran first used SentiStrength to detect
sentiment in Jira issue comments. They analyzed 151 Jira issue
comments for which SentiStrength produced wrong outputs.

This analysis was performed to identify the reasons/difficul-
ties that affect the accuracy of SentiStrength. Finally, they
identified 12 such difficulties. They also found that out of all
the difficulties, the domain-specific meanings of words were
the most prevalent. To build a domain dictionary, they first
collected a large dataset of commit messages drawn from 50
open-source projects from GitHub provided by their earlier
work [37]. Then they extracted the lemmatizations of all words
in the dataset. Next, they kept the overlap between these word
lemmatizations and the SentiStrength dictionary of sentiment
words. A total of 716 words remain. Through manual as-
sessments, they further eliminated words that carry neutral
sentiments. Finally, the final word dictionary of SentiStrength-
SE consists of 500 words, of which 167 are positive, and
293 are negative. They also extended the dictionary by adding
new sentiment words and negations. Additionally, contextual
information is considered in SentiStrength-SE.

SentiCR [6] is designed by Ahmed et al., particularly for
code review comments. Based on the characteristics of code
review comments, SentiCR has a suite of data preprocessing
steps, including URL removal and code snippet removal. Sen-
tiCR includes a two-stage negation preprocessing approach.
Ahmed et al. first build a chunk grammar (i.e., a set of
rules indicating how sentences should be chunked) for NLTK
RegexpChunkParser to identify negation phrases. Second, they
modify all the verbs, adjectives, and adverbs in a negation
phrase identified by the chunker by prepending not to it
[6]. After generating feature vectors using TF-IDF, eight
supervised classifiers are evaluated. They also use 10-fold
cross-validation to validate each algorithm. GBT (Gradient
Boosting Tree) [38] demonstrates the highest precision, recall,
and accuracy among all the eight used algorithms. Thus, by
default, the supervised classifier in SentiCR is GBT. The
original SentiCR is trained to classify a code review comment
as either negative or non-negative.

Senti4SD is another supervised learning-based tool. The
largest difference between Senti4SD and previous SE-specific
tools is how it generates feature vectors. Senti4SD [26] uti-
lizes three different features based on (1) Generic sentiment
lexicons. It uses SentiStrength lexicons; (2) Keywords (n-
gram extracted from the dataset). It primarily uses uni-gram
and bi-gram. The value of each keyword feature corresponds
to its number of occurrences. In addition to uni-gram and
bi-gram, it also includes other keyword features, e.g., total
occurrences of uppercase words, and slang expressions for
laughter; (3) Word representation in a distributional semantic
model (DSM) specifically trained on Stack Overflow data.
DSM uses the CBOW architecture implemented by word2vec
[27]. Each Stack Overflow document (i.e., answers, questions,
and comments) is represented as the vector sum of all the
vectors of words in the document. Besides, it calculates four
prototype vectors, namely, p pos, p neg, p neu, and p subj,
respectively. p pos is the sum of all the word vectors in each
document, which have positive polarity in the SentiStrength
lexicon dictionary. Similarly, by summing up all the nega-

tive/neutral word vectors in the document, we have p neg and
p neu. p subj is the sum of p pos and p neg. Using these
four objective vectors for a document, Senti4SD calculates
the similarity scores between document vectors to get the
semantic features. Finally, based on the features mentioned
above, Senti4SD is trained to distinguish sentiment polarities
of text units by using Support Vector Machines (SVM).

IV. PRE-TRAINED TRANSFORMER-BASED MODELS

In this section, we briefly introduce the four pre-trained
Transformer-based models, i.e., BERT, RoBERTa, XLNet, and
ALBERT. We refer to these models collectively as the PTM
(Pre-trained Transformer Model) group.

BERT has been designed to learn pre-trained contextual word
representations from unlabeled texts [13]. Its architecture is
a multi-layer bidirectional Transformer encoder. It learns the
contextual word representations by optimizing for two tasks.
The first task is masked language model (MLM); MLM ran-
domly masks some words from the input text, and the task is to
predict the masked words based on their contexts (i.e., words
appearing before and after each of the masked words). The
second task is next sentence prediction (NSP); NSP predicts
if one sentence follows another. The original paper provides
two implementation versions: basic-size (BERTBASE) and
large-size (BERTLARGE). BERTBASE has 12 layers, a
hidden layer size of 768, 12 self-attention heads, and 110M
parameters. In comparison, BERTLARGE has 24 layers, a
hidden layer size of 1,024, 16 self-attention heads, and 340M
parameters. Given the large number of parameters, fine-tuning
BERTLARGE needs more time and consumes more memory
than BERTBASE . Thus, in this work, we use BERTBASE .
Based on the experimental results reported in the original
paper, BERTLARGE usually outperforms BERTBASE .

RoBERTa (Robustly optimized BERT approach) is reported
to achieve state-of-the-art results on the benchmarks GLUE,
RACE, and SQuAD when Liu et al. [14] released it. In
their paper, Liu et al. presented a replication study of BERT
pre-training, which measures the impact of critical hyper-
parameters and training data sizes. By modifying the pre-
training steps of BERT, RoBERTa can achieve substantially
better performance than BERT. Regarding the modifications,
firstly, RoBERTa uses larger mini-batch sizes to train the
model for a longer time over more data. Secondly, RoBERTa
removes the NSP loss in BERT, and it trains on longer
sequences. Moreover, RoBERTa is trained with dynamic mask-
ing: the masking pattern will be generated every time a
sequence is fed to the model.

XLNet [15] combines the strengths of autoregressive (AR)
language modeling and autoencoding (AE) to deal with their
individual limitations. XLNet is capable of learning contextual
information by maximizing the expected log-likelihood of a
sequence of words considering all permutations. By integrating
the segment recurrence mechanism and relative encoding
scheme of Transformer-XL [34], XLNet can produce a better
performance, especially for long texts. It achieves the lowest

TABLE II: Datasets

dataset # doc # (%) positive # (%) neutral # (%) negative

API 4,522 890 (19.7) 3,136 (69.3) 496 (11)
SO 1,500 131 (8.7) 1,191 (79.4) 178 (11.9)
App 341 186 (54.5) 25 (7.3) 130 (38.1)
GitHub 7,122 2,013 (28.3) 3,022 (42.4) 2,087 (29.3)
Jira 926 290 (31.3) - 636 (68.7)

doc # (%) non-negative # (%) negative

CR 1,600 1,202 (75.1) 398 (24.9)

error rates for the IMDB dataset, and it outperforms BERT on
20 tasks, including sentiment analysis.
ALBERT [16] is a lite version of BERT, and it is proposed
to address the GPU/TPU memory limit and long training time
issues of BERT. It applies two parameter-reduction techniques,
i.e., a factorized embedding parameterization, and cross-layer
parameter sharing. The application of these two techniques can
improve efficiency by decreasing the number of BERT param-
eters to a great extent without seriously affecting performance.
One thing worth mentioning is that although ALBERT has
fewer parameters than BERT, it has a larger architecture; thus,
it is computationally more expensive than BERTLARGE .
ALBERT has been shown to outperform BERTLARGE on
the GLUE, RACE, and SQuAD benchmarks.

V. METHODOLOGY

This section first describes the six datasets used in this
work, and defines the sentiment analysis task based on the
polarity labels in the datasets. Then, we elaborate on the
implementations of all the considered approaches. Lastly, we
describe the relevant evaluation metrics and settings.

A. Datasets

In this comparative study, we make use of six publicly
available datasets with annotated sentiment polarities. Table II
shows the detailed statistics of the six datasets, including the
total number of documents in a dataset (# doc) and the number
(and percentage) of documents with one of the sentiment
polarities (e.g., # (%) positive, # (%) neutral, # (%) negative).
• API reviews (API) [39]. It includes 4,522 sentences from

1,338 Stack Overflow posts. This dataset contains both API
aspects and the polarities of provided opinions, i.e., positive,
negative, and neutral), curated by Uddin and Khomh.

• Stack Overflow posts (SO) [9]. It consists of 1,500
sentences. Lin et al. [9] obtained this dataset from the
Stack Overflow dump dated July 2017. They pick discussion
threads that (i) are tagged with Java, and (ii) contain one of
the following words: library, libraries, or API(s). Then, they
randomly selected 1,500 sentences and manually labeled
their sentiment polarities. This dataset is similar to the
API dataset. However, they are significantly different on
sentiment polarity distribution: SO dataset has similar dis-
tribution about the positive and negative polarity. However,
in the API dataset, the sentences with a positive sentiment
are nearly twice those with a negative sentiment.

• Mobile app review dataset (App) [9]. This dataset has 341
reviews randomly chosen by Lin et al. from the dataset of
3k reviews formerly provided by Villarroel et al. [4]. Con-
sidering a 95% confidence level and 5% confidence interval,
these 341 reviews is a statistically significant sample of the
3k reviews. When performing random selection, the propor-
tions of reviews belonging to these four categories, namely
bug reporting, a suggestion for new features, request for
improving non-functional requirements (e.g., performance of
the app), and other, have been retained in the new dataset.

• GitHub pull-request and commit comments (GitHub)
[10]. It consists of 7,122 sentences from GitHub pull-request
and commit comments. Novielli et al. conducted an iterative
extraction to obtain the annotated text units from the dataset
provided by Pletea et al. [40].

• Jira issue comments (Jira) [9]. This dataset has been
used in several prior studies (e.g., [23], [41]) and it is
previously provided by Ortu et al. [42] with four emotions
labelled: love, joy, anger, and sadness. Lin et al. [9] assign
a positive polarity to the sentences labelled with love and
joy, a negative polarity to the sentences labelled with anger
and sadness. It does not contain any neutral polarity and is
a binary-class dataset.

• Code review comments (CR) [6]. It is released with
SentiCR and is a binary-class dataset, including negative
and non-negative comments. The comments are collected
from 20 popular open-source projects that practice tool-
based code reviews supported by the same tool (i.e., Gerrit)
[6]. Unlike the other datasets, the unit of text in this dataset
is not a sentence, but rather a document (whereas each
document can include multiple sentences). Therefore, for
SentiStrength, SentiStrength-SE, and Senti4SD, we concate-
nate these sentences into one long sentence to be able to use
these tools.

We considered all the three datasets used in Lin et al.’s
benchmarking work [9] – mobile app reviews (App), Stack
Overflow posts (SO), and Jira issue comments (Jira). We
include another three datasets (i.e., GitHub, API, and CR)
which have diverse characteristics in at least four aspects. First,
the added three datasets were constructed from various repos-
itories: pull-request and issue comments from GitHub [10];
API reviews from Stack Overflow [39]; and Gerrit code review
comments from open-source projects [6]. Second, the sizes of
the three datasets differ significantly. For example, the GitHub
dataset is more than 20 times larger than the mobile app
reviews. Third, among the three datasets, the GitHub dataset is
balanced in the number of positive, neutral, and negative text
units, while the other two are imbalanced. Fourth, different
from the other two, the code review comment dataset only
has two sentiment polarities: non-negative and negative.

For a given text unit, each approach will predict its sen-
timent polarity label. According to the number of sentiment
polarities in a dataset, we formulate the problem as a binary or
ternary text classification task. Specifically, the classification
tasks for the datasets Jira and CR correspond to binary

classification tasks. Both datasets have two polarity labels:
positive and negative for Jira; negative and non-negative for
CR. For the other four datasets, the classification problems are
formulated as ternary-class classification tasks as they have
three polarity labels, i.e., positive, neutral, and negative.

B. Implementations

SA4SE Tools: For Stanford CoreNLP4, we used its Python
wrapper5. Given a sentence, Stanford CoreNLP returns the
sentiment polarity with its corresponding sentiment value
(Very negative=0, Negative=1, Neutral=2, Positive=3, Very
positive=4). As Stanford CoreNLP gives a sentiment value
and polarity to individual sentences, when a text unit in some
datasets has more than one sentence, we calculate the average
sentiment value of all sentences for the text unit. If the average
sentiment value of a text unit is greater than 2, we assign it
a positive polarity; if the value is less than 2, we assign it
a negative polarity; otherwise, we assign it a neutral polarity
(c.f. [9]).

For SentiStrength6 and SentiStrength-SE7, following Lin et
al., we sum up the two sentiment strength scores returned by
the tool to get the overall polarity for a sentence. If the total
score is greater than 0, we assign a positive polarity to the
whole text unit; if the total score is less than 0, we assign a
negative polarity, and a neutral polarity is for the text unit that
has a total score of 0. For the code review comment dataset,
we need to distinguish between non-negative and negative;
hence, if the overall score is less than 0, we assign negative
to the text unit; otherwise, we assign non-negative to it.

SentiCR8 only classifies two polarities, i.e., negative and
non-negative. We re-train it on each dataset to classify three
polarities, i.e., positive, neutral, and negative. We only changed
the training dataset and kept all the parameters as default.

For Senti4SD, we use the classifier pre-trained on Stack
Overflow dataset9. Senti4SD can classify three polarities, i.e.,
positive, neutral, and negative. As the code review comment
dataset only has negative and non-negative polarities, we
assign both the positive and neutral as non-negative.

Transformer Models. Many existing Transformer models are
pre-trained for general domains. For instance, a combination
of BooksCorpus [43] and English Wikipedia is used as all or
part of the BERT and XLNet pre-training corpus. To build a
sentiment classification model, we add a feed-forward dense
layer and softmax activation function on top of each model.
A certain pre-trained model’s parameters have been reused
as a starting point. We feed our SE training data to a pre-
trained Transformer model’s tokenizer and get the required
formatted data; Then, we use the formatted data to train the
pre-trained model further to get a fine-tuned model. Finally, we
test it on the held-out test data. As found in BERT paper [13],

4http://stanfordnlp.github.io/CoreNLP/
5https://github.com/smilli/py-corenlp/
6http://sentistrength.wlv.ac.uk/download.html
7https://laser.cs.uno.edu/Projects/Projects.html
8https://github.com/senticr/SentiCR
9https://github.com/collab-uniba/Senti4SD

TABLE III: Models

Architecture Used Model Parameters Layers Hidden Heads

BERT bert-base-cased 110M 12 768 12
RoBERTa roberta-base 125M 12 768 12
XLNet xlnet-base-cased 110M 12 768 12
ALBERT albert-base-v1 11M 12 768 12

the following values of hyper-parameter for BERT fine-tuning
procedure work well across all tasks: (1) Batch size: 16, 32;
(2) Number of epochs: 2, 3, 4; (3) Learning rate (Adam): 5e-
5, 3e-5, 2e-5. For all these models, we run them in 4 epochs
with a batch size of 16. Moreover, we set the learning rate to
2e-5. We used AdamW optimizer.

Table III lists the models with their names in the Hugging-
face Transformers library [44] and default configurations.

C. Evaluation Metrics

Following the previous work [8], we report the precision, re-
call, and F1-score of each approach for each polarity. We also
report the macro- and micro-averaged metrics to show overall
multi-classification performances. The formula to calculate
P (precision), R (recall) and F1 (F1-score) are as follows:
P = TP

TP+FP ,R = TP
TP+FN , and F1 = 2 · P ·R

P+R . TP refers
to the number of true positives (text units correctly classified
as positive), FP refers to the number of false positives (text
units mistakenly classified as positive), and FN refers to false
negatives (text units mistakenly classified as negative).

The macro-averaged metric regards the measurement of
each sentiment class equally. It takes precision, recall, and
F1-score of each class and then averages them. The micro-
averaged metric calculates measurement over all data points
in all classes, and tends to be mainly influenced by the
performance of the majority class [8]. The formulas for macro-
and micro-averaged precision (P) are shown below:

Pmacro =

∑k
i=1 Pi

k
(1)

Pmicro =

∑k
i=1 TPi∑k

i=1 TPi +
∑k

i=1 FPi

(2)

Pmacro and Pmicro represent macro- and micro-averaged
precision respectively. Pi, TPi and FPi represent the preci-
sion, number of true positives, number of false positives for
the ith class respectively. k denotes the number of sentiment
polarity classes. We can calculate macro- and micro-averaged
recall and F1, denoted as Rmacro, Rmicro, F1macro, F1micro,
similarly. We consider a model is better than another only
when it achieves higher values of both F1macro and F1micro.

D. Experimental Setting

Following Novielli et al. [8], we split each dataset into
a training set (70%) and a test set (30%). Since SentiCR
is originally designed for binary classification, we re-train
it using the training set and test it on the test set for three
classes. For Senti4SD, SentiStrength, and SentiStrength-SE,
they do not need re-training. Concerning the four pre-trained

Transformer models, we fine-tune them with the training set
and then evaluate them on the test set.

VI. EVALUATION

In this section, we report the performance of the nine
sentiment analysis approaches on the six datasets described
in Section V-A. For each dataset, we highlight the best
performance in terms of the two main metrics (i.e., macro- and
micro-averaged F1-scores) in bold. We answer the research
questions based on the experimental results as follows.

A. RQ1: How accurate are Transformer models as compared
to existing SA4SE tools?

To answer RQ1, we compare all the nine approaches in
both the PRIOR and PTM groups. Tables IV and V present
the performance of the nine approaches on the six datasets.
API and SO Datasets: Similar to the SO dataset, the API
dataset is constructed from Stack Overflow posts. Thus, we
look at the results of both datasets together. In terms of
both macro- and micro-averaged F1, the approaches in PTM
group outperform those in the PRIOR group. For the API
dataset, The best performing PTM approach (ALBERT) can
achieve macro- and micro-averaged F1-scores of 0.82 and
0.89, respectively. On the other hand, the best performing
PRIOR approach (SentiCR) can only achieve macro- and
micro-averaged F1-scores of 0.66 and 0.82, respectively. We
observe a similar finding for the SO dataset.
App Dataset: We find that all the approaches perform rela-
tively poorly on the App dataset. One potential reason is that
this dataset is highly imbalanced and quite small; there are
only a few text units with a neutral sentiment. Due to this
limited number of text units for training, the approaches that
have been trained on this dataset (i.e., all PTM approaches
and SentiCR) have worse performance than the lexicon-based
approaches (i.e., SentiStrength and SentiStrength-SE) for the
neutral sentiment. Still, overall, we observe that approaches in
the PTM group outperform those in the PRIOR group.
GitHub Dataset: Among all the six datasets, GitHub is the
largest and most balanced one. The four approaches from the
PTM group achieved similar performance: BERT, RoBERTa,
and XLNet produce the same macro- and micro-averaged F1-
scores; ALBERT performs slightly worse, 0.03 lower than
the other three approaches. Their performance is better than
that for approaches in the PRIOR group. In the PRIOR
group, SentiCR is the best performer, with SentiStrength-SE
being a close second. The other three approaches produce
substantially lower macro- and micro-averaged F1-scores.
Stanford CoreNLP has the worst performance, which shows
that Stanford CoreNLP has poor generalization of SE data
across different repositories.
Jira Dataset: For the Jira dataset, we found that all the PTM
approaches perform well with high macro- and micro-averaged
F1-scores (≥ 0.96). However, in the PRIOR group, only Sen-
tiCR achieves macro- and micro-averaged F1-scores greater
than 0.90. The other approaches in the PRIOR group have

TABLE IV: Results for API, SO, App, and GitHub Datasets

Dataset Approach Positive Neutral Negative Macro-avg Micro-avg

P R F1 P R F1 P R F1 P R F1 P R F1

API

Stanford CoreNLP 0.47 0.41 0.44 0.85 0.60 0.71 0.22 0.66 0.33 0.51 0.56 0.49 0.57 0.57 0.57
SentiStrength 0.44 0.45 0.45 0.81 0.77 0.79 0.44 0.45 0.45 0.55 0.57 0.56 0.68 0.68 0.68
SentiStrength-SE 0.59 0.33 0.42 0.77 0.91 0.83 0.47 0.26 0.33 0.61 0.50 0.53 0.73 0.73 0.73
SentiCR 0.85 0.52 0.65 0.82 0.98 0.89 0.81 0.31 0.45 0.83 0.61 0.66 0.82 0.82 0.82
Senti4SD 0.56 0.33 0.41 0.76 0.93 0.84 0.44 0.10 0.17 0.59 0.45 0.47 0.73 0.73 0.73

BERT 0.85 0.72 0.78 0.92 0.95 0.93 0.73 0.73 0.73 0.83 0.80 0.81 0.89 0.89 0.89
RoBERTa 0.78 0.79 0.78 0.93 0.93 0.93 0.72 0.70 0.71 0.81 0.81 0.81 0.88 0.88 0.88
XLNet 0.75 0.75 0.75 0.91 0.91 0.91 0.63 0.59 0.61 0.76 0.75 0.76 0.85 0.85 0.85
ALBERT 0.88 0.77 0.82 0.92 0.96 0.94 0.71 0.68 0.70 0.84 0.80 0.82 0.89 0.89 0.89

SO

Stanford CoreNLP 0.23 0.42 0.30 0.92 0.69 0.79 0.34 0.82 0.48 0.50 0.64 0.52 0.68 0.68 0.68
SentiStrength 0.25 0.42 0.32 0.89 0.80 0.84 0.40 0.52 0.46 0.52 0.58 0.54 0.74 0.74 0.74
SentiStrength-SE 0.31 0.13 0.19 0.83 0.94 0.89 0.44 0.18 0.26 0.53 0.42 0.44 0.80 0.80 0.80
SentiCR 0.48 0.32 0.38 0.90 0.90 0.90 0.45 0.55 0.49 0.61 0.59 0.59 0.82 0.82 0.82
Senti4SD 0.50 0.34 0.41 0.85 0.96 0.90 0.75 0.14 0.23 0.70 0.48 0.51 0.83 0.83 0.83

BERT 0.65 0.63 0.64 0.94 0.95 0.94 0.73 0.68 0.71 0.77 0.75 0.76 0.90 0.90 0.90
RoBERTa 0.57 0.76 0.65 0.96 0.92 0.94 0.78 0.82 0.80 0.77 0.83 0.80 0.90 0.90 0.90
XLNet 0.50 0.76 0.60 0.96 0.90 0.93 0.74 0.84 0.79 0.73 0.83 0.77 0.88 0.88 0.88
ALBERT 0.71 0.32 0.44 0.90 0.95 0.92 0.61 0.61 0.61 0.74 0.63 0.66 0.86 0.86 0.86

App

Stanford CoreNLP 0.77 0.68 0.72 0.14 0.43 0.21 0.69 0.54 0.61 0.53 0.55 0.51 0.61 0.61 0.61
SentiStrength 0.75 0.90 0.82 0.12 0.29 0.17 0.73 0.30 0.42 0.53 0.49 0.47 0.64 0.64 0.64
SentiStrength-SE 0.73 0.81 0.77 0.15 0.57 0.24 0.91 0.27 0.42 0.60 0.55 0.48 0.60 0.60 0.60
SentiCR 0.86 0.83 0.84 0.00 0.00 0.00 0.68 0.81 0.74 0.51 0.55 0.53 0.77 0.77 0.77
Senti4SD 0.72 0.85 0.78 0.12 0.29 0.17 0.65 0.30 0.41 0.50 0.48 0.45 0.61 0.61 0.61

BERT 0.86 0.95 0.90 0.00 0.00 0.00 0.87 0.89 0.88 0.58 0.61 0.59 0.86 0.86 0.86
RoBERTa 0.95 0.92 0.93 0.00 0.00 0.00 0.84 1.00 0.91 0.60 0.64 0.61 0.88 0.88 0.88
XLNet 0.87 0.98 0.92 0.00 0.00 0.00 0.86 0.81 0.83 0.57 0.60 0.58 0.85 0.85 0.85
ALBERT 0.91 0.86 0.89 0.00 0.00 0.00 0.72 0.92 0.81 0.54 0.59 0.57 0.83 0.83 0.83

GitHub

Stanford CoreNLP 0.61 0.36 0.45 0.44 0.40 0.42 0.40 0.61 0.48 0.48 0.46 0.45 0.45 0.45 0.45
SentiStrength 0.65 0.66 0.66 0.60 0.58 0.59 0.63 0.66 0.65 0.63 0.63 0.63 0.63 0.63 0.63
SentiStrength-SE 0.87 0.85 0.86 0.77 0.86 0.81 0.82 0.71 0.76 0.82 0.81 0.81 0.81 0.81 0.81
SentiCR 0.88 0.86 0.87 0.78 0.91 0.84 0.86 0.68 0.76 0.84 0.82 0.82 0.83 0.83 0.83
Senti4SD 0.79 0.84 0.82 0.69 0.86 0.76 0.82 0.47 0.60 0.77 0.73 0.73 0.74 0.74 0.74

BERT 0.92 0.95 0.93 0.90 0.92 0.91 0.93 0.87 0.90 0.92 0.91 0.92 0.92 0.92 0.92
RoBERTa 0.93 0.96 0.94 0.91 0.92 0.92 0.93 0.89 0.91 0.93 0.92 0.92 0.92 0.92 0.92
XLNet 0.90 0.97 0.94 0.94 0.89 0.91 0.91 0.92 0.91 0.92 0.93 0.92 0.92 0.92 0.92
ALBERT 0.91 0.93 0.92 0.85 0.94 0.89 0.94 0.78 0.85 0.90 0.88 0.89 0.89 0.89 0.89

macro-averaged F1-scores lower than 0.6, and micro-averaged
F1-scores lower than 0.79. Two noteworthy facts are that
SentiStrength outperforms SentiStrength-SE by 20% in terms
of the micro-averaged F1-score. Also, Stanford CoreNLP
outperforms Senti4SD by 31.8%. This shows that SE-specific
sentiment analysis tools do not always outperform general-
purpose ones in SE datasets. The performance of different
approaches from the PRIOR group gives us another insight:
SentiStrength and SentiStrength-SE are both lexicon-based and
do not need training. They outperform Stanford CoreNLP and
Senti4SD, which have been trained in other datasets. SentiCR,
which has been re-trained in this Jira dataset, achieves the best
result in the PRIOR group. This highlights that the lexicon-
based approaches may be better than supervised ones (if
training is not done on a suitable dataset).
CR Dataset: For the dataset CR, all the approaches per-
form better in detecting non-negative polarity than negative

polarity, with each PTM approach outperforming all PRIOR
approaches. Also, all the approaches trained on the CR dataset,
including all PTM approaches and SentiCR outperforms the
other four non-CR specific tools (i.e., their training and
construction did not involve CR-datasets).
Overall: We found that the best and worst-performing ap-
proaches differ for different datasets. Also, no approach can
achieve the best performance on all datasets. For example,
RoBERTa achieves the highest micro-averaged F1-score while
SentiStrength-SE has the lowest score on the App dataset.
On API dataset, BERT and ALBERT achieve the highest
micro-averaged F1-score, while Stanford CoreNLP has the
lowest score. Also, the performance gap between the best and
worst performance on different datasets varies. The difference
between micro-averaged F1-scores ranges from 32.4% (on
SO) to 122.7% (on Jira). For macro-averaged F1-scores, the
difference is from 35.6% (on App) to 139% (on Jira).

TABLE V: Results for Jira and CR Datasets

Dataset Approach Positive Negative Macro-avg Micro-avg

P R F1 P R F1 P R F1 P R F1

Jira

Stanford CoreNLP 0.83 0.50 0.62 0.96 0.63 0.76 0.60 0.38 0.46 0.58 0.58 0.58
SentiStrength 0.95 0.91 0.93 0.99 0.72 0.83 0.65 0.54 0.59 0.78 0.78 0.78
SentiStrength-SE 0.98 0.85 0.91 0.99 0.54 0.70 0.66 0.46 0.54 0.65 0.65 0.65
SentiCR 0.96 0.81 0.88 0.90 0.98 0.94 0.93 0.89 0.91 0.92 0.92 0.92
Senti4SD 0.90 0.86 0.88 1.00 0.21 0.34 0.63 0.35 0.41 0.44 0.44 0.44

BERT 0.99 0.96 0.97 0.98 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98
RoBERTa 0.98 0.96 0.97 0.98 0.99 0.98 0.98 0.97 0.98 0.97 0.97 0.97
XLNet 0.98 0.96 0.97 0.98 0.99 0.98 0.98 0.97 0.98 0.98 0.98 0.98
ALBERT 0.97 0.94 0.95 0.97 0.98 0.98 0.97 0.96 0.96 0.97 0.97 0.97

Dataset Approach Non-negative Negative Macro-avg Micro-avg

P R F1 P R F1 P R F1 P R F1

CR

Stanford CoreNLP 0.91 0.55 0.69 0.37 0.83 0.51 0.64 0.69 0.60 0.62 0.62 0.62
SentiStrength 0.81 0.82 0.82 0.41 0.40 0.41 0.61 0.61 0.61 0.72 0.72 0.72
SentiStrength-SE 0.80 0.94 0.86 0.57 0.25 0.35 0.68 0.59 0.60 0.77 0.77 0.77
SentiCR 0.87 0.83 0.85 0.54 0.62 0.58 0.71 0.73 0.72 0.78 0.78 0.78
Senti4SD 0.78 0.97 0.86 0.60 0.16 0.25 0.69 0.56 0.56 0.77 0.77 0.77

BERT 0.94 0.87 0.90 0.67 0.83 0.74 0.80 0.85 0.82 0.86 0.86 0.86
RoBERTa 0.92 0.93 0.92 0.76 0.74 0.75 0.84 0.83 0.84 0.88 0.88 0.88
XLNet 0.87 0.95 0.91 0.78 0.54 0.64 0.82 0.75 0.77 0.85 0.85 0.85
ALBERT 0.90 0.84 0.87 0.59 0.72 0.65 0.75 0.78 0.76 0.81 0.81 0.81

TABLE VI: Comparison between the Best Performers in the PRIOR and PTM Groups

Metric Group API SO App GitHub Jira CR

Macro-avg F1
Best PRIOR 0.66 0.59 0.53 0.82 0.91 0.72
Best PTM 0.82 0.80 0.61 0.92 0.98 0.84
Improvement 24.2% 35.6% 15.1% 12.2% 7.7% 16.7%

Micro-avg F1
Best PRIOR 0.82 0.83 0.77 0.83 0.92 0.78
Best PTM 0.89 0.90 0.88 0.92 0.98 0.88
Improvement 8.5% 8.4% 14.3% 10.8% 6.5% 12.8%

Among all the approaches in the PRIOR group, we found
that SentiCR achieves the best performance on five out of
six datasets except SO. Also, Stanford CoreNLP performs
the worst on five out of six datasets except on Jira. Among
the approaches in the PTM group, we found that RoBERTa
achieves the best performance on four datasets, i.e., App,
GitHub, SO, and CR. ALBERT performs the worst on App,
GitHub, SO, and CR, but it is the best performer on API.

We also observed that all the PTM approaches outperform
PRIOR approaches up to 35.6% in terms of macro- and micro-
averaged F1-scores (see Table VI). This demonstrates the
effectiveness of the PTM approaches.

RQ1 Main Findings: The Transformer models outper-
form the prior SA4SE tools consistently across the six
datasets, although the best performing model differs
across different datasets. The improvements achieved
by the Transformer models range from 6.5% to 35.6%
in terms of macro- and micro-averaged F1-scores.

B. RQ2: How efficient are Transformer models as compared
to existing SA4SE tools?

The time efficiency of SA4SE approaches can be a concern
in practice. Thus, we report the training (fine-tuning, for
PTM approaches) and prediction time of all the approaches.
Prediction time covers the time from processing the data
to output the predicted label. Here, we provide a manual
estimation of the exact prediction time of SentiStrength and
SentiStrength-SE as they use a graphical user interface.

We run all the approaches on a desktop computer with
Nvidia GeForce RTX 2080 Ti and Intel(R) Core(TM) i7-
9700K CPU @ 3.60GHz. The PTM group runs with both
GPU and CPU, which the PRIOR group only uses CPU.
All approaches, except for SentiStrength, are running with
Ubuntu 18.04.4 LTS. SentiStrength runs on a Windows 10
virtual machine on the Ubuntu system, because only its .exe
is available online.

In Table VII, we report: the training (fine-tuning) time (in
seconds) for each training set; and the prediction time (in
seconds) on each test set. For approaches in the PTM group,
in terms of both fine-tuning and prediction time, XLNet takes

TABLE VII: Training (or fine-tuning) and prediction time (seconds)

Approach API SO App GitHub Jira CR

Train Pred Train Pred Train Pred Train Pred Train Pred Train Pred

BERT 212.61 8.17 68.18 2.69 15.80 0.63 328.79 13.01 43.39 1.64 73.65 3.06
RoBERTa 215.02 7.87 71.77 2.62 15.91 0.59 338.64 12.42 43.78 1.61 76.35 2.91
XLNet 375.28 18.40 126.15 6.14 28.01 1.39 590.44 29.04 26.82 3.77 154.89 9.22
ALBERT 199.76 7.95 66.74 2.64 14.91 0.61 315.45 12.55 40.81 1.62 72.10 2.91

SentiCR 74.85 1.79 5.31 0.51 0.96 0.17 137.32 3.44 0.72 0.33 3.80 0.86
Senti4SD - 48.81 - 31.11 - 23.59 - 63.95 - 27.88 - 31.62
Stanford CoreNLP - 283.39 - 28.63 - 11.29 - 418.65 - 11.89 - 280.59
SentiStrength - <1 - <1 - <1 - <1 - <1 - <1
SentiStrength-SE - 1.69 - <1 - <1 - 3.22 - <1 - <1

the most time (approximately double the time used by the
other three approaches). For the approaches in the PRIOR
group, in terms of prediction time, Stanford CoreNLP is the
most expensive and SentiCR runs the fastest. Generally, the
prediction time used by Transformer models is two times more
than that of SentiStrength, SentiStrength-SE, and SentiCR.
However, it is less than 50% of the time used by Senti4SD
and Stanford CoreNLP.

RQ2 Main Findings: In general, training (fine tuning)
is more expensive than prediction. The time cost for
fine-tuning the Transformer models ranges from 15
seconds to 10 minutes, depending on the datasets used.
In terms of prediction time, all approaches make pre-
dictions for up to hundreds of text units (documents)
within seconds. The Transformer models cost less than
50% of Senti4SD and Stanford CoreNLP to make
predictions, but cost two times more than the time
needed by SentiCR, SentiStrength and SentiStrength-
SE.

VII. DISCUSSION

This section presents the lessons learned from our experi-
ments and discusses threats to validity.

A. Lessons Learned

Fine-tuning pre-trained Transformer-based models is
promising for SA4SE. Lin et al. [9] mentioned that no prior
SA4SE tool is ready for real usage of identifying sentiment
expressed in SE data yet. We get similar results when applying
the same approach (i.e., Stanford CoreNLP) to Stack Overflow
posts (i.e., SO dataset). On the other hand, we found that
even the worst-performing Transformer model (i.e., ALBERT)
achieves 0.66 in terms of macro-averaged F1-score, which
outperforms Stanford CoreNLP by 27%. The micro-averaged
F1-scores produced by the Transformer models range from
0.86 to 0.90. The promising effectiveness of Transformer-
based approaches has also been observed on the other five
datasets. Although there is no gold standard or concrete
thresholds of various evaluation metrics to decide whether
a SA4SE tool can be put into real use, our experiment

results show that the Transformer-based approach is more
ready than the existing techniques for sentiment analysis in
SE. Thus, we encourage researchers to consider the simply
fine-tuning pre-trained Transformer-based approaches as the
baseline in future work. Moreover, we advocate inventing
more advanced Transformer-based models to make SE-specific
sentiment analysis tools more practical.

Specific training (or fine-tuning) can boost performance.
The approaches can be divided into two groups based on
whether they are trained (or fine-tuned) on specific datasets
or not. We fine-tuned all the pre-trained Transformer models
and trained SentiCR for each dataset. Based on our results,
we found that all the approaches that have been trained (or
fine-tuned) on SE datasets outperform those that have not been
trained (or fine-tuned) across all the six datasets. Moreover, we
find that Senti4SD, which is designed based on Stack Overflow
data [26], performs the best for API and SO datasets. These
indicate that a tool trained on the same data source can perform
better for the same or similar data sources.

Challenges in assigning sentiment labels. Previous work [9]
shows that even human raters have more than 18% disagree-
ments on the same sentences as sentiment identification may
be subjective. We also observed that it is hard to determine the
sentiment labels of some sentences. For example, the sentence
“It’s always sad to see a reference like that go, but it was
probably a good move.” is labeled as negative. However, part
of it (i.e., “it was probably a good move”) should be considered
as positive. Thus, there may be a need to introduce additional
labels, e.g., mixed sentiment, or to go more fine-grained (i.e.,
attaching sentiment labels to phrases instead of sentences).
Customized solutions may boost performance further. We
also found that no approach can always achieve the best
performance on all six datasets. It indicates that customization
of the technical design is also required in future work. It would
be interesting to extend the current Transformer-based models
to consider the specific properties of the SE datasets that we
have.

Composition of different solutions may boost performance
further. We find that some sentences can only be assigned
correct sentiment labels by the (generally) under-performing
SA4SE solution. To illustrate this, we conducted a brief error

XLNet Correct Predictions

85286 1681

SentiCR Correct Predictions

Fig. 1: Venn Diagram

TABLE VIII: Prediction Examples

Sentence Label XLNet SentiCR

Yes, it would be really cool if you could
update the wiki. But don’t forget to say it
will only work from version 1.4.0 forward!”

Positive Positive Negative

Thanks for your comments and tests! (Ap-
tana is driving me nuts, I’m currently
searching for another IDE)

Positive Negative Positive

Looks good. Mind if I add a CityHash
implementation in here?

Neutral Positive Neutral

Strange indentation here Neutral Negative Neutral

Pretty simple script for a TBC boss I say. I
wonder who did it originally...

Negative Neutral Negative

If you mean #any instance, you were better
off not knowing. It’s a nasty code smell.

Negative Negative Neutral

analysis on the largest GitHub dataset to help understand the
different performances of different approaches. In total, we
have 2,137 sentences in the test set. We focus on comparing the
best performing approaches from the PRIOR and PTM groups,
i.e., SentiCR and XLNet. Figure 1 depicts the number of the
correct predictions produced by the two approaches. Among
all the 2,137 sentences, XLNet and SentiCR correctly predict
1,967 (92%) and 1,766 (82%) sentences; among them, 1,681
(78%) are in common. From the Venn diagram, we find that
although SentiCR performs worse (in general) than XLNet, for
85 sentences, it outperforms SentiCR. Table VIII shows some
examples where one of the approaches fails, but the other is
successful. Thus, by composing many different tools, we can
boost the performance further. As future work, we want to
explore the possibility of combining all the existing solutions
for a higher accuracy. Table VIII shows some examples of
sentences from the GitHub dataset with the prediction results
produced by XLNet and SentiCR. For each example, one of
the two approaches makes a wrong prediction.

B. Threats to Validity

One potential threat to internal validity relates to errors that
we may have made in our experiments. We have also released
a replication package10 for others to check and extend.

10https://github.com/soarsmu/SA4SE

Threats to external validity are related to the generalizability
of our research and experiments. We consider six sentiment
classification datasets, larger than the datasets considered in a
closely related work [9]. These six datasets are diverse from
several aspects, e.g., scale, type of software artifacts, class
distribution, etc. Our experimental setting follows Novielli et
al. [8], for each dataset, uses 70% for training (or fine-tuning)
and 30% for testing. In the future, we plan to employ k-fold
cross validation, which is a more rigorous evaluation method.

Threats to construct validity are related to the suitability of
our evaluation metrics and quality of manually-labeled datasets
that we use. Precision, recall, and F1-score are widely used to
evaluate SA4SE solutions [8], [10], [39]. As we make use of
the publicly available datasets used in prior works, we inherit
the latter threat from the prior studies.

VIII. CONCLUSION AND FUTURE WORK

In this work, we have conducted an extensive comparative
study on the performance of prior SA4SE tools and pre-
trained Transformer models. We are the first to investigate
the effectiveness of various pre-trained Transformer-based
models for the SA4SE task. Our comparative study includes
six datasets: GitHub pull-request and commit comments, API
reviews from Stack Overflow, mobile app reviews, Stack Over-
flow posts, Jira issue comments, and code review comments.
Our experimental results reveal that the best performing fine-
tuned Transformer model outperforms the best performing
prior SA4SE tool by 6.5% to 35.6% in terms of the macro-
and micro-averaged F1-scores.

Overall, Transformer-based approaches are more ready to be
applied in the real world for sentiment analysis of SE data than
the existing SA4SE tools. In the future, we are interested in a
few directions: (1) applying Transformer-based SA4SE models
for further downstream tasks (e.g., API recommendation),
and (2) investigating the effectiveness of Transformer-based
models for other SE tasks.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments. This research is supported by the Ministry of
Education, Singapore, under its Academic Research Fund Tier
2 (Award No.: MOE2019-T2-1-193).

REFERENCES

[1] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algorithms
and applications: A survey,” Ain Shams engineering journal, vol. 5,
no. 4, pp. 1093–1113, 2014.

[2] E. Guzman, D. Azócar, and Y. Li, “Sentiment analysis of commit
comments in github: an empirical study,” in the 11th Working Conference
on Mining Software Repositories (MSR), 2014, pp. 352–355.

[3] R. Jongeling, S. Datta, and A. Serebrenik, “Choosing your weapons:
On sentiment analysis tools for software engineering research,” in 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2015, pp. 531–535.

[4] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta, “Release
planning of mobile apps based on user reviews,” in 38th International
Conference on Software Engineering (ICSE), 2016, pp. 14–24.

[5] M. R. Islam and M. F. Zibran, “Leveraging automated sentiment analysis
in software engineering,” in 14th International Conference on Mining
Software Repositories (MSR), 2017, pp. 203–214.

[6] T. Ahmed, A. Bosu, A. Iqbal, and S. Rahimi, “Senticr: a customized
sentiment analysis tool for code review interactions,” in 2017 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2017, pp. 106–111.

[7] M. R. Islam and M. F. Zibran, “A comparison of software engineering
domain specific sentiment analysis tools,” in 2018 IEEE 25th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2018, pp. 487–491.

[8] N. Novielli, D. Girardi, and F. Lanubile, “A benchmark study on sen-
timent analysis for software engineering research,” in 2018 IEEE/ACM
15th International Conference on Mining Software Repositories (MSR).
IEEE, 2018, pp. 364–375.

[9] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oliveto,
“Sentiment analysis for software engineering: How far can we go?” in
Proceedings of the 40th International Conference on Software Engineer-
ing, 2018, pp. 94–104.

[10] N. Novielli, F. Calefato, D. Dongiovanni, D. Girardi, and F. Lanubile,
“Can we use se-specific sentiment analysis tools in a cross-platform
setting?” arXiv preprint arXiv:2004.00300, 2020.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[12] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, “Pre-trained
models for natural language processing: A survey,” arXiv preprint
arXiv:2003.08271, 2020.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[14] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[15] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language
understanding,” in Advances in neural information processing systems,
2019, pp. 5753–5763.

[16] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Sori-
cut, “ALBERT: A lite BERT for self-supervised learning of language
representations,” arXiv preprint arXiv:1909.11942, 2019.

[17] M. De Choudhury and S. Counts, “Understanding affect in the workplace
via social media,” in Proceedings of the 2013 conference on Computer
supported cooperative work, 2013, pp. 303–316.

[18] S. Romano, D. Fucci, M. T. Baldassarre, D. Caivano, and G. Scanniello,
“An empirical assessment on affective reactions of novice developers
when applying test-driven development,” in International Conference
on Product-Focused Software Process Improvement. Springer, 2019,
pp. 3–19.

[19] D. Gachechiladze, F. Lanubile, N. Novielli, and A. Serebrenik, “Anger
and its direction in collaborative software development,” in 2017
IEEE/ACM 39th International Conference on Software Engineering:
New Ideas and Emerging Technologies Results Track (ICSE-NIER).
IEEE, 2017, pp. 11–14.

[20] E. Loper and S. Bird, “Nltk: the natural language toolkit,” arXiv preprint
cs/0205028, 2002.

[21] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas, “Senti-
ment strength detection in short informal text,” Journal of the American
society for information science and technology, vol. 61, no. 12, pp.
2544–2558, 2010.

[22] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,
and D. McClosky, “The stanford corenlp natural language processing
toolkit,” in Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations, 2014, pp. 55–60.

[23] F. Calefato, F. Lanubile, and N. Novielli, “Emotxt: a toolkit for emotion
recognition from text,” in 2017 seventh international conference on
Affective Computing and Intelligent Interaction Workshops and Demos
(ACIIW). IEEE, 2017, pp. 79–80.

[24] M. R. Islam and M. F. Zibran, “Deva: sensing emotions in the valence

arousal space in software engineering text,” in Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, 2018, pp. 1536–1543.

[25] C. J. Hutto and E. Gilbert, “Vader: A parsimonious rule-based model for
sentiment analysis of social media text,” in Eighth international AAAI
conference on weblogs and social media, 2014.

[26] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment
polarity detection for software development,” Empirical Software En-
gineering, vol. 23, no. 3, pp. 1352–1382, 2018.

[27] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[28] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in empirical methods in natural language
processing (EMNLP), 2014, pp. 1532–1543.

[29] A. Cimasa, A. Corazza, C. Coviello, and c, “Word embeddings for
comment coherence,” in 2019 45th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE, 2019, pp. 244–
251.

[30] A. Sulistya, G. A. A. Prana, A. Sharma, D. Lo, and C. Treude, “Sieve:
Helping developers sift wheat from chaff via cross-platform analysis,”
Empirical Software Engineering, vol. 25, no. 1, pp. 996–1030, 2020.

[31] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[32] J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” arXiv preprint arXiv:1801.06146, 2018.

[33] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” arXiv
preprint arXiv:1802.05365, 2018.

[34] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdi-
nov, “Transformer-xl: Attentive language models beyond a fixed-length
context,” arXiv preprint arXiv:1901.02860, 2019.

[35] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proceedings of the 2013 conference on empirical
methods in natural language processing, 2013, pp. 1631–1642.

[36] R. K. Bakshi, N. Kaur, R. Kaur, and G. Kaur, “Opinion mining and
sentiment analysis,” in 3rd International Conference on Computing for
Sustainable Global Development (INDIACom), 2016, pp. 452–455.

[37] M. R. Islam and M. F. Zibran, “Towards understanding and exploiting
developers’ emotional variations in software engineering,” in 2016
IEEE 14th International Conference on Software Engineering Research,
Management and Applications (SERA). IEEE, 2016, pp. 185–192.

[38] M. Pennacchiotti and A.-M. Popescu, “Democrats, republicans and
starbucks afficionados: user classification in twitter,” in Proceedings
of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2011, pp. 430–438.

[39] G. Uddin and F. Khomh, “Automatic mining of opinions expressed about
apis in stack overflow,” IEEE TSE, 2019.

[40] D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and emotion:
sentiment analysis of security discussions on github,” in the 11th working
conference on mining software repositories (MSR), 2014, pp. 348–351.

[41] R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik, “On negative results
when using sentiment analysis tools for software engineering research,”
Empirical Software Engineering, vol. 22, no. 5, pp. 2543–2584, 2017.

[42] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, and
R. Tonelli, “Are bullies more productive? empirical study of affective-
ness vs. issue fixing time,” in 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories. IEEE, 2015, pp. 303–313.

[43] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba,
and S. Fidler, “Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books,” in Proceedings of
the IEEE international conference on computer vision, 2015, pp. 19–27.

[44] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, and J. Brew, “Huggingface’s
transformers: State-of-the-art natural language processing,” ArXiv, vol.
abs/1910.03771, 2019.

	Sentiment analysis for software engineering: How far can pre-trained transformer models go?
	Citation
	Author

	tmp.1610030320.pdf.MUYbh

