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Abstract

As organizations collect petabytes of data, analysts spend most of their time trying to extract
insights. Although data analytic systems have become extremely efficient and sophisticated,
the data exploration phase is still a laborious task with high productivity, monetary and men-
tal costs. This dissertation presents the Query-Driven learning methodology in which mul-
tiple systems/frameworks are introduced to address the need of more efficient methods to
analyze large data sets. Countless queries are executed daily, in large deployments, and are
often left unexploited but we believe they are of immense value. This work describes how
Machine Learning can be used to expedite the data exploration process by (a) estimating the
results of aggregate queries (b) explaining data spaces through interpretable Machine Learn-
ing models (c) identifying data space regions that could be of interest to the data analyst.
Compared to related work in all the associated domains, the proposed solutions do not uti-
lize any of the underlying data. Because of that, they are extremely efficient, decoupled from
underlying infrastructure and can easily be adapted. This dissertation is a first account of
how the Query-Driven methodology can be effectively used to expedite the data exploration
process focusing solely on extracting knowledge from queries and not from data.
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Chapter 1

Introduction

1.1 Overview & Contributions

1.1.1 Motivation

As data storage capacity has become cheaper and larger, organizations have switched to
data-driven decision making. By having a much larger capacity to store data, such as fi-
nancial transactions, machine logs and unstructured data like images/audio, decisions taken
by large organizations have become more informed. However, a number of challenges have
to be addressed before being able to reach decisions based on vast amounts of data. First,
data have to be ingested through a collection process and initially stored in a (possibly dis-
tributed) filesystem. Then, through a process that is commonly abbreviated as ETL (Extract-
Transform-Load), the data are pre-processed and loaded into a Data Warehouse. A Data
Warehouse can be any kind of database system that executes queries issued by data analysts
and perform data analysis. The complete process is shown in Figure 1.1.

Each step of the process is time-consuming, but the most time-consuming part is generating
insights and performing data analysis. This process is indicated by the red arrow in Figure
1.1. The processes that take part, before data analysis can even begin (like data collection
an ingestion), are tasks that have to be performed a single time. On the other hand, data
analysis is a long iterative process. It requires the presence of a data analyst sitting on the
other end, issuing queries to the Data Warehouse, waiting for responses and then based on
those responses, moving on to generate business decisions.

Hence, developing methods that would help expedite this last part of the process could be
of tremendous benefit. The crux of our methods that will be described later lie in the use of
Machine Learning (ML) to automate a number of processes. This is inline with recent devel-
opments in self-tuning databases [133]. In this thesis we similarly exploit recent advances
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Figure 1.1: The process of collecting heteregeneous data and loading them into a Data Ware-
house. Data Analysis is conducted by repetitively querying the Data Warehouse.

in ML and show how traditional relational database systems can be augmented and provide
advanced features. The approaches described in this thesis are not focused on auto-tuning
database systems with ML, like in [133]. Instead, we show how complex ML models can be
deployed to help any kind of data analytic system during the data exploration phase with a
focus on data analysts. This thesis is one of the first of its kind in describing such techniques
which seem to be the future as we are seeing more and more works fusing together ML and
DBMSs [14, 15]. Over the next few sections and chapters we discuss how we were able to
achieve this, the numerous challenges that we had to address along the way and the lessons
that we have learned.

1.1.2 Solution Overview

We focus on developing methods/systems that can expedite the data analysis process. The
solutions proposed in this thesis are focused on three pilars, which we abbreviate as the three
‘E’s and are divided into three core chapters. The three pillars are Estimation, Exploration
and Exploitation. An overview of all the solutions is shown in Figure 1.2.

The first part of the proposed solution is shown in the left-most part of Figure 1.2. In this case,
an analyst issues a query to a Data Warehouse and receives the response 140. A common
example of such a query could be ”How many restaurants are within a given radius ?”1.
The response, computed by the Data Warehouse, could be returned to the user in seconds
or minutes, depending on the current load that the system is experiencing and the amount
of data. What we propose is an alternative mechanism that can provide an estimate of the
response at a much faster rate. Our mechanism would have nothing to do with the Data
Warehouse or any data stored in it. So, it will be able to compute an approximate answer,

1Typically data analysts will issue more complex queries, but we provide a simple example for clarity.
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Estimation Exploration Exploitation

Figure 1.2: The three ‘E’s : (Left) Estimation: An alternative mechanism that can estimate
the answer of a query much faster. (Middle) Exploration: An estimate, is depicted as a
point in a much larger landscape, which can be mapped and used for exploration (Right)
Exploitation: The task is to pinpoint regions in the mapped landscape.

130, that is close to the true answer, 140, at a fraction of the time required by the actual
system. In an iterative process, such as data analysis, receiving approximate answers at a
much faster rate can help analysts explore data more efficiently.

The second part of our proposal, shown in the middle of Figure 1.2, has to do with Exploration.
Imagine that Figure 1.2(middle) shows the landscape of all possible responses, that the query
”How many restaurants are within a given radius ?” could yield, given that we change the
query parameters ie location and radius which are the two dimensions shown in the figure.
The previous response, 140, is shown as a single point in this figure. Now, given a method,
that can inform, how these responses shift, depending on the variation in the query parame-
ters, data analysts can choose better queries to issue. To put it simply, the Exploration pillar,
is about providing a map that shows the query parameters which yield a higher number of
restaurants. This way, the analyst can more easily navigate towards this location.

The third and last part of the proposed solution is depicted as the right-most part of Figure
1.2. It is associated with the Exploitation pillar. Given the first two pillars, Estimation and
Exploration, and the example we have used so far, it is natural to ask ”Show me the regions

with the most restaurants.”. In Figure 1.2(right), the result of the first pillar, is shown as a
single estimated response to the question ”How many restaurants are within a given radius

?”. This is visualised within the landscape of all possible values that we were able to map
by addressing Exploration. For Exploitation we have developed an algorithm that is able to
pinpoint regions within this landscape that satisfy a user constraint. The region circled in red,
shown in Figure 1.2(right), informs the analyst which query parameters would generate an
interesting result. By using this method, the analyst can concentrate their focus on smaller
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regions (focusing on less tuples in the database), without even issuing a query. This can
potentially reduce the time spent in the iterative process of data analysis, as it might reduce
the number of iterations needed, to reach a possible outcome or insight.

1.1.3 Academic Contributions to the Research Community

The work presented in this thesis is largely based on published work by the author and other
collaborators. The chapters and the associated papers to which the chapters are based on are
listed below.

1. Chapter 2: Query-Driven Learning for Estimation of Aggregate Answers

• Savva, Fotis, Christos Anagnostopoulos, and Peter Triantafillou. ”ML-AQP:

Query-Driven Approximate Query Processing based on Machine Learning.” arXiv
preprint arXiv:2003.06613 (2020). [116]

• Savva, Fotis, Christos Anagnostopoulos, and Peter Triantafillou. ”Adaptive

learning of aggregate analytics under dynamic workloads.” Future Generation
Computer Systems (2020). [115]

• Savva, Fotis. ”Query-Driven Learning for Next Generation Predictive Modeling

& Analytics.” Proceedings of the 2019 International Conference on Management
of Data. (SIGMOD SRC) 2019. Recipient of 2nd place. [112]

• Savva, Fotis, Christos Anagnostopoulos, and Peter Triantafillou. ”Aggregate

query prediction under dynamic workloads.” 2019 IEEE International Confer-
ence on Big Data (Big Data). IEEE, 2019. [114]

2. Chapter 3: Query-Driven Explanations for Exploratory Analytics

• Savva, Fotis, Christos Anagnostopoulos, Peter Triantafillou, and Kostas Kolom-
vatsos. ”Large-scale data exploration using explanatory regression functions.”

ACM Transactions on Knowledge Discovery from Data (2020). [118]

• Savva, Fotis, Christos Anagnostopoulos, and Peter Triantafillou. ”Explaining

aggregates for exploratory analytics.” 2018 IEEE International Conference on
Big Data (Big Data). IEEE, 2018. [113]

3. Chapter 4: Identifying interesting subspaces with Query-Driven Surrogate Models

• Savva, Fotis, Christos Anagnostopoulos, and Peter Triantafillou. ”SuRF: iden-

tification of interesting data regions with surrogate models.” 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 2020. [117]
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4. Chapter 5: Dynamic Data & Query Workloads Adaptation

• Savva, Fotis, Christos Anagnostopoulos, and Peter Triantafillou. ”ML-AQP:

Query-Driven Approximate Query Processing based on Machine Learning.” arXiv
preprint arXiv:2003.06613 (2020). [116]

• Savva, Fotis, Christos Anagnostopoulos, and Peter Triantafillou. ”Adaptive

learning of aggregate analytics under dynamic workloads.” Future Generation
Computer Systems (2020). [115]

• Savva, Fotis, Christos Anagnostopoulos, and Peter Triantafillou. ”Aggregate

query prediction under dynamic workloads.” 2019 IEEE International Confer-
ence on Big Data (Big Data). IEEE, 2019. [114]

The author of this thesis was extensively involved in the publication of all of the aforemen-
tioned works which included tasks such as : idea conceptualization, preliminary evaluations,
code development, paper writing, literature review, design/development of proposed algo-
rithms and models, review rebuttals and addressing of reviewer comments, data analysis etc.

1.1.4 Thesis Structure

The thesis is divided into five large parts. The Introduction, provides an overview of the
topic discussed in the rest of the chapters and also summarises some of the key contributions
made to the research community. The second part of the Introduction, introduces some of the
concepts that are used in later chapters. Chapters 2,3,4 are the core chapters of this thesis.
Specifically, Chapter 2, is devoted to the first ‘E’ which is Estimation, Chapter 3 to the
second ‘E’, Exploration and Chapter 4 to Exploitation. In Chapter 5, we discuss approaches
that could be used in cases where the models, described in the core chapters, need to be
adapted in cases where data and workloads change. Chapter 6, provides some concluding
remarks and limitations, which also serve as ground for future work.

1.2 Background

This section is dedicated to introducing some of the concepts that might be unfamiliar to the
reader. The aim is to provide a brief overview of techniques used and referred to throughout
this thesis. Consequently, it will be much easier to understand the contexts to which they
are applied to. Firstly, a quick overview of ML is given, and then we contrast this with the
methodology of Query-Driven Learning (QDL). Finally, we provide an overview of the Ana-

lytics landscape encompassing some of the proposed systems to be used as well as common
exploration techniques.
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1.2.1 Machine Learning

ML is a generic term, that includes a plethora of methods/algorithms that teach machines
how to learn from data. These methods are grouped into different categories such as Super-

vised learning or Unsupervised learning which are generally distinguished by the associated
learning task. In this thesis, we make use of both Supervised and Unsupervised learning.
Specifically, we use Supervised Regression algorithms and Unsupervised Clustering algo-
rithms. Clustering and Regression refer to specific tasks that are accomplished by Unsuper-

vised and Supervised learning respectively.

Supervised Regression

In a Supervised Regression task, the objective is to predict a real value y ∈ R given a vector
of inputs x ∈ Rd. Normally, we have input vector x = (x1, . . . , xd)

>, where the different
dimensions of vector x denote different features. Given a collection of input vectors x and
response variables y, X ∈ RN×d,y ∈ RN , Supervised Regression algorithms learn a function
f : Rd → R, using a training procedure. The training procedure usually varies by the type
of algorithm but generally the aim is to minimize a variant of the Expected Prediction Error
(EPE). So the objective is to derive a model that sufficiently minimizes EPE which is defined
in (1.1).

M∗ = arg min
M∗

N∑

i

(yi − yi,M∗)2 (1.1)

Where yi,M∗, is a prediction given by the model. A typical model, to make things more
intuitive, is a simple Linear Regression model. The structural form of Linear Regression is
given in (1.2):

y = w>x + ε (1.2)

Where, ε ∈ N (0, 1) is an irreducible error and w ∈ Rd is a vector of coefficients that are
estimated using a training procedure and EPE. Multiple training procedures exist that also
vary by the variant of EPE that is being minimized and on whether there exists a closed-form
solution with respect to the model. In the end of the training procedure vector w holds the
coefficients that minimize EPE. So redefining (1.1), we obtain w by (1.3)

w∗ = arg min
w∗

N∑

i

(yi −w>xi)
2 (1.3)

The coefficients, w, or any other parameter that a model might have are estimated using a
subset of the dataset (X,y). The dataset is separated into two subsets, where (Xtrain,Ytrain)

is the training dataset and (Xtest,Ytest) is the testing dataset. With |Xtrain| > |Xtest| and sub-
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sequently |Ytrain| > |Ytest| and where | · | indicates the size of a set. Any ML algorithm,
goes through a training procedure in which the training subset is used to estimate the values
associated with all parameters of the model.

Once, the training procedure is over, the model’s performance is measured against the testing

dataset. Any subsequent prediction, that we wish to perform to infer an unknown label y, is
obtained using the model that was estimated by the training procedure. Hence, in the case
where we can obtain a vector of features x but we do not know its associated label y we can
predict it using the estimated model. This is shown in (1.4), where the estimated coefficients,
w∗, for Linear Regression, are used to predict the output label ynew of a new vector of inputs
xnew.

ynew = w>∗ xnew (1.4)

Unsupervised Clustering

An Unsupervised algorithm differs from a Supervised, in that no labels y exist for the given
dataset. Thus, Unsupervised algorithms extract patterns solely based on a dataset X. In an
Unsupervised Clustering task the objective is to identify clusters within the dataset. These
clusters will contain vectors x that are more ‘similar’ with each other than with vectors
belonging to another cluster. Formally, similarity in this setting can be defined as the squared
euclidean distance ||xi − xj||22 between two vectors. Squared Euclidean distance between
two vectors is obtained by (1.5).

||xi − xj||22 = (x1,i − x1,j)2 + (x2,i − x2,j)2 . . .+ (xd,i − xd,j)2 (1.5)

The identified clusters are disjoint, in that clusters do not overlap i.e two clusters cannot
contain the same vectors. The clusters are identified by generally minimizing the criterion in
(1.6):

n∑

i

min
µj∈C

(||xi − µj||22) (1.6)

Where C contains cluster-representatives, with each µj being the cluster-represenative for
the j th cluster. In K-means, the cluster-representatives µj are the mean vectors computed by
the vectors x belonging to a certain cluster.

1.2.2 Query-Driven Learning

QDL is a methodology similar to Supervised Regression. Using QDL, models can learn to
predict the results of queries by leveraging previously executed queries. Queries, issued over
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any Database Management System (DBMS) or raw data, instruct the underlying system to
fetch particular data points. In the case of an Aggregate Query (AQ), the data points are
manipulated to produce a response. Common AQs include operators such as COUNT, SUM,
AVG etc. Hence, we can think of AQs as queries that use Aggregate Function (AF)s, which
map data points a ∈ Rd to results y. Hence, each AF, is a function g : A → R. An example
is shown in Figure 1.3, where an AQ, first defines which data points are going to be retrieved
and then through an AF maps those data points to a result.

Data

AQ

AF 𝑦

Figure 1.3: An AQ selecting a subset of the complete dataset A and then through an AF
mapping those data points to a scalar result y.

Whenever, an AQ is executed, it can be logged and stored for monitoring purposes. Al-
though, the logged queries cannot provide the individual data points accessed, we can ob-
serve the parameters that were used. Under a relational schema, these parameters would be :
(i) predicates that were used (ii) tables that were used (iii) the AFs that were used etc. Hence,
in QDL we make use of these parameters, available for many queries, to identify a function
that is analogous to an AF. The only difference, is that the identified function f , maps query
parameters q to results y,.

Having a set of queries and their responses, Q = (q, y), QDL uses ML to identify models
that can sufficiently reproduce the responses that would have been produced, given that the
query was executed. By using QDL, we hope to alleviate some of the inherent computational
complexity in computing the responses of AQs. This fact, introduces many opportunities, to
expedite several data exploration tasks. Over the next few chapters we show how QDL can
be used to :

1. Provide an inexpensive backend analytics systems that can compute approximate an-
swers to any AQ

2. Explain data spaces by interpretable ML models that can help navigate data analysts
during data exploration
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3. Identify regions of interest within data spaces in polynomial time. A task that is other-
wise of exponential complexity.

Each one of the aforementioned contributions, comes with its own challenges addressed in
the individual chapters.

1.2.3 Analytics & Data Exploration

The contributions made in this thesis fall under the wide umbrella of Data Analytics & Data

Exploration. Multiple systems were invented to assist large scale data analysis [23, 38, 144,
57] as organizations have rapidly shifted into data-driven decision making. Hence, Data

Analytics covers a wide spectrum of operations that are tightly coupled with data-driven
decision making. From operations such as data cleaning, data ingesting, data storing, data
manipulation to operations that facilitate the analysis of data like visualisations, predictive
modelling etc.

A core part of the Data Analytics landscape is Data Exploration. It is at this part in the data
analytics pipeline that analysts gain an understanding of the data. Data Exploration includes
the repetition and refinement of queries [66] until some conlusions can be drawn about the
data. During Data Exploration, multiple AQs could be issued which make the process long
and unproductive. In the following chapters of this thesis we show how this part of the
process could benefit from approximate answers [51, 99, 12, 70].

In addition, during Data Exploration, analysts might stumble upon results that may need
further explanation. Prior work [43, 108, 91, 27, 140] showed how such explanations can
be given to analysts. But generating explanations is a time-consuming process. In addition,
explanations in prior work were given in a one-off basis, in that no additional benefit was
clear, by an explanation that explained the output of a given query. The work described in
this thesis elaborates on an approach that can efficiently provide explanations that explain
AQs with the goal of assisting exploration by generating insights.

Finally, an important objective during Data Exploration is to rapidly identify data regions
that could be interesting [50, 120, 25, 24]. This is an extremely laborious task, which often
includes a tight coupling of repetitive visualisation and use of exhaustive algorithms that
repeatedly issue queries at a data analytics backend system. In Chapter 4, we describe an
automated mechanism, based on QDL, that expedites the process of identifying interesting
regions and Data Exploration in general.
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Chapter 2

Query-Driven Learning for
Estimation of Aggregate Answers

2.1 Introduction
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Figure 2.1: Costs associated with using cloud-managed databases (BigQuery). The x-axis
is the amount of data used per query and the y-axis is the associated costs with the average
number of queries daily.

Due to an increase in data volume and the adoption of data-driven decision making, organi-
zations have been struggling to process and store data efficiently. Hence, organizations have
been turning to popular Cloud providers that have created large-scale Data Warehouse solu-
tions [38, 111, 57] able to store and process large quantities of data. However, the problem
still remains, as multiple queries are issued by multiple analysts which can often overburden
a cluster and carry a monetary cost. For instance, looking at Figure 2.1, we can observe
the increasing costs associated with an increasing data size. The associated cost (in y-axis)
is obtained after multiplying the cost of scanning certain amount of data (in x-axis) with a
varying number of queries shown as colored bars 1. This might be a prohibitive cost for or-
ganizations which are looking to accumulate petabytes of data in the near future. In addition,

1Data For this graph were obtained from : https://cloud.google.com/bigquery/pricing
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data analysts want to extract information without significant delays. It has been shown that
data analysts’ productivity can be affected by long response times. This effect is described
as the interactivity constraint[85] which is a limit (around 500ms) on the maximum response
time that can be experienced before productivity is negatively affected. Thus, there is a dire
need for systems that could mitigate the costs while offering interactive response times.

In this chapter we introduce ML-AQP, an abbreviation of Machine Learning for Approx-
imate Query Processing, a system that leverages QDL to save computational and mone-
tary resources whilst offering interactive response times. In short, ML-AQP uses previous
queries, executed at a Data Warehouse, to train ML models that predict the responses of
future queries. Hence, cost is mitigated as queries no longer have to be executed by Data
Warehouses. Instead, analysts can issue queries to ML-AQP, which uses the trained models
to predict their answers. This operation carries little to no cost, as the sole operation is the
prediction performed by a model. The prediction is generated at a fraction of the time re-
quired by the Data Warehouse to produce an exact result, guaranteeing interactive response
times.

Concretely, this chapter can be summarized into the following points:

• ML-AQP makes use of a flexible vectorized representation for (SQL) queries. This is
a crucial step before training and using ML models.

• ML-AQP is a light-weight mechanism offering aggregate query result estimation with
low storage, computational, monetary overhead.

• Query-Driven AQP engines are on average 3× faster than sampling-based AQP en-
gines, with 116× less memory footprint and 100× less preprocessing (model training)
time.

• Probabilistic error guarantees, based on Quantile Regression, complement the approx-
imate answers given by ML-AQP.

• All AFs (including AFs like MIN/MAX which have been difficult to estimate by tra-
ditional sampling methods) are supported by ML-AQP.

• A comprehensive performance evaluation using synthetic and several real-world datasets
and workloads which substantiate performance claims are presented at the end of this
chapter.

All of the aforementioned points are discussed in the following sections of this chapter.
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2.2 Background & Related Work

In this section we introduce some prior work that inspired the creation of ML-AQP along
with recent developments of applying ML to Data Management problems. We highlight the
core differences, of existing techniques and ML-AQP and how they complement each other.

To meet the needs of interactive query processing in large analytic environments various
big data engines [23, 38, 144] and columnar databases [57] have been developed. These
works have given the ability to efficiently process large quantities of data over distributed
environments. However, the goal of truly interactive analysis still remains elusive, as such
engines still have to examine large amounts of data, often resulting in moving data over the
network, spilling partial results to disk and performing complex computations.

Interactive response times are needed within the context of exploratory analysis. This is
a task performed by data analysts [66] to better understand various data sets and includes
visualising different variables in a dataset, executing aggregate queries, comparing cohorts,
building predictive models and more. It is an invariable step in the process of further con-
structing hypotheses or training predictive and inferential models to answer business ques-
tions.

During exploratory analysis, interactive responses are crucial, as long waiting times might
block an analyst’s train of thought. An interesting observation, is that an approximate answer
to exploratory queries, is often enough to the analyst. For instance, when comparing the
number of records, within multiple groups, approximate results that return the same boolean
value for a condition are adequate. Formally, let y1 ≤ y2 ≤ . . . yg, be the ordered results of
multiple groups, with each yi signifying the number of records contained in the ith group. If
we can obtain approximate results ŷ1 ≤ ŷ2 ≤ . . . ŷg, adhering to the same order, then the
analyst can reach to the same conclusions. An approximate answer, can be retrieved much
faster than an exact answer, thus allowing the exploration process to continue without any
mental blocks.

Various techniques have been developed over the years, to produce approximate answers to
queries, requiring only a fraction of the time needed by actual systems. Such systems are
commonly called Approximate Query Processing (AQP) systems [51, 99, 12, 70]. By trading
off some of the accuracy they allow for order of magnitude speed-ups in execution.

Research in AQP has been strong the last decades [145, 104, 95, 10, 99, 98, 12, 70, 69, 63,
34, 26, 86, 51, 64] and still the list is not exhaustive. Most of the proposed solutions require
large samples [12, 98, 95, 99, 70]. We can abbreviate these solutions as sampling-based AQP
engines. Sampling based AQP engines create samples over some (or all) of the columns in
tables and produce answers with error guarantees based on samples.

Other approaches, such as [145, 63] perform online aggregation. These systems, produce
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an initial result by processing a small amount of data. The answer is then further refined as
more and more data are processed, online, until the user halts query execution.

However, a main drawback of both sampling-based and online aggregation AQP engines is
that they have to reside in the same Cloud system as the data warehouse which makes them
costly to maintain, as every operation carries a cost. Hence, what we propose in this chapter
is a complementary system to that of existing AQP engines, that relies only on small ML
models, that can be trained using Cloud services and later deployed centrally as a service or
locally at analysts’ machines.

More recently, we see the application of ML models for tackling various data management
problems such as : (a) selectivity estimation [40, 75, 21, 19, 96, 74, 127, 143, 138], (b) query
optimization [88], in which ML is used to decide on a query plan, (c) or to create indexes
[77], for expediting visualisation [136] and (d) to AQP [86, 64, 130, 81]. We believe that
this approach can be fruitful, if used with care. This is why we are not aiming to replace
already existing AQP engines or data analytic systems and instead provide an addition to the
stack. We believe the user needs to have a choice considering the trade-offs between speed
and accuracy. Therefore, our approach is similar to the recent trend of applying ML over
data management problems, in that we employ ML models for AQP. Approaches such as
[96, 75, 74, 127, 143, 138] make use of ML to estimate cardinalities for their use in a query
optimization setting. In ML-AQP, a similar methodology to the above works is followed.
Specifically, features are extracted either from data or from queries and subsequently used as
training examples for ML models. This is a standardised procedure, as any relevant work that
makes use of supervised ML needs to follow this process. However, all of the aforementioned
works focus on cardinality estimation and not on AQP. In addition they follow different
modelling/vectorization for the queries, use different ML models and none of the works
explicitly address data/workload updates 2 and error guarantees.

Compared to other approaches focusing on ML for AQP such as [86, 64, 130, 81] ML-AQP
neither learns from data nor uses data to construct samples or models. ML-AQP employs
a novel query-driven method, based on vectorized representations of previously executed
queries and their results and is oblivious to the underlying data distribution. In addition, ML-
AQP’s focus is not solely in COUNT/SUM/AVG as most works [64, 130, 81], but also offers
support for any kind of AF through its AF agnostic methodology. These type of aggregates
are commonly divided into three categories : (a) distributive: MIN, MAX, SUM, COUNT,
(b) algrebraic: AVG, and (c) holistic : MEDIAN [54]. Using our methodology all three
categories can be supported. Nevertheless, data-driven approaches are surely a promising
avenue and we believe all of these approaches could complement each other. In cases where:
(i) data sets are massive, (ii) no models or samples can be built and stored efficiently, and

2Chapter 5 is dedicated to data/workload updates.
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(iii) there is a low cost requirement, ML-AQP is more favorable.

2.3 Preliminaries and Supported Queries

A foremost obstacle in this endeavor is a valid representation for queries such that an ML
model can associate the representation with the results obtained. If we consider every Cloud
analytics system (both relational and non-relational) as a black box then, essentially, queries
are executed over sets of multi-dimensional points. A single row, with multiple attributes
in a table can be considered as a multi-dimensional point, to which a number of operations
are performed to return a result. Both non-relational and relational database systems can
be considered as large collections of attributes either grouped in a collection of normalized
tables or being part of a single de-normalized dataset. We can store our data in either of the
two settings and the result of a query will still be the same wherever it is processed. Figure
2.2 shows an example of this, in which data are stored under different formats. If queries
were to be executed against any of the shown formats, the results would not differ. Only
the way of performing data manipulation and aggregation differs. In the remainder of this
section, we demonstrate how common operations in a relational schema can be performed
using our proposed representation. This is without loss of generality to any kind of data-
storage & processing system and it is merely used as it is widely popular and should be
familiar to the reader.

{"humdity : 0.49,
"temperature" : 27,
"voltage" : 240,
"spatial" : {
    "Location"
:Seattle,
     "Lat" : 47.6062,
     "Lon" : 122.3321
.....          }
} 

Humidity Temperature Voltage SensorId 

0.49 27 240 1 

0.62 29 120 2 

Location Latitude Longitude SensorId 

Seattle 47.6062 122.3321 1 

New York 40.7128 74.0060 2 

Relational Document Stores

Humidity Temperature Voltage SensorId Location Latitude Longitude 

0.49 27 240 1 Seattle 47.6062 122.3321

0.62 29 120 2 New York 40.7128 74.0060

Spreadsheet

Figure 2.2: Data stored in different formats have no effect on the result returned by a query.

We first outline some definitions that will prove useful as we proceed to explain our proposed
solution.

Definition 2.3.1. (Data & Attributes) As we are unaware of the underlying data storage
format, we adopt a generic assumption of all data being collections of attributes, where a
dataset B is a collection of real-valued d-dimensional vectors a = (a1, . . . , ad), such that
B = {a}ni=1. A vector a holds values for d attributes.
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Definition 2.3.2. (Aggregate Functions) AFs are applied to the returned result-set and map
a set of values to a scalar result y ∈ R. An AF can be applied to a specific attribute; AFs
commonly include functions such as COUNT, AVG, SUM. They are typically used in an SQL-
style query along with various predicates and joins. Formally, an aggregate function g is a
mapping from a sub-set of data set B, B ⊆ B, g : B → R and in turn g(B) = y.

Definition 2.3.3. (Predicates) Predicates are used to restrict the number of rows (data vec-
tors) returned by a query. Predicates can be considered as a sequence of negations, conjunc-
tions, and disjunctions (¬,∨,∧) over attributes with equality and/or inequality constraints
(≤,≥,=). A well known predicate is the range-predicate. A range-predicate effectively
restricts an attribute ai to be within a given range [lb, ub] with ai ≥ lb ∧ ai ≤ ub. To ef-
fectively model a sequence of predicates, we assign two meta-attributes for each attribute ai
and consider every predicate as a range-predicate. In the case of a range predicate the two
meta-attributes are equal to the [lb, ub] of a range-predicate. For instance, without loss of
generality, assume the three following predicates applied on a dataset with a single attribute
a1: (1) a1 ≥ lb, (2) a1 = c, where c is a numerical value, and (3) a1 ≥ lb ∧ a1 ≤ ub. We
construct two meta-attributes for each case as follows: (1) (a1,lb,−), where− could be set to
NULL and a1,lb is the supplied lb value, (2) (a1,c, a1,c), where a1,c = c, and (3) (a1,lb, a1,ub).

Given these definitions we now explore how we can create vector representations for a variety
of queries expressed in a relational setting.

2.3.1 Transforming Aggregate Queries to Vectors

SPA Queries

We first consider Selection-Projection-Aggregate (SPA) queries, in which a single aggregate
is the result of a query. An SPA query operates on a single relation and might have multiple
predicates. Given our definition of predicates, we obtain a meta-vector which encapsulates
all the constraints m = (a1,lb, a1,ub, . . . , ad,lb, ad,ub) across all attributes. Hence, each SPA
query can be represented by a meta-vector m ∈ R2d in the 2d-dimensional real space. For
all attributes that are part of the data set but not part of the query we leave the values of their
associated meta-attributes as NULL. For instance, a simple SPA aggregate query applied over
a dataset B with attributes a = (a1, a2, a3), is the following:

SELECT AF(ai)

FROM B
WHERE a1 ≥ x1 ∧ a2 ≤ x2

The resulting meta-vector in the case of the query shown above would be m = (x1, ∅, ∅, x2, ∅, ∅).
Where the symbol for an empty-set, ∅ could be replaced with value NULL.
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SPJA Queries

An SPJA query is similar to an SPA query, with the sole difference being the inclusion of a
JOIN in an SPJA query. The previous SPA query is used to present an example of an SPJA
query:

SELECT AF(ai)

FROM B, A
WHERE B.aj = A.aj AND a1 ≥ x1 ∧ a2 ≤ x2

In this example, a new setA is introduced and joined with set B using a common attribute aj .
To effectively model Selection-Projection-Join-Aggregate (SPJA) queries we first redefine
what it means to join two or more tables together from a query representation perspective.
We assume an architecture in schema design where, if multiple tables exist, then these tables
are made up of a large fact table along with much smaller dimension tables. This is widely
accepted in the literature [99, 12, 59]. Specifically in a designed AQP system by Google
[59], it is explicitly mentioned that all queried relations are pre-joined so that JOINs are not
performed at query runtime. As a result, a data analyst simply queries the large fact table
using equi-joins whenever they wish to project more attributes to the result set. Therefore,
SPJA queries, simply increase the dimensionality of the initial row (data vector) obtained
from the fact table. Formally, let a sub-set B, be the obtained sub-set of B, after applying the
predicates p included in an SPA query. If we were to re-issue an SPJA query with predicates
p, joining a number of dimension tables, then the obtained sub-set H, has the same cardi-
nality as the sub-set of the original SPA query |H| = |B|. This is because they would still
contain the same number of vectors a, with the dimensionality of vectors belonging to setH
being larger. However, it is evident that the result set is still only affected by the predicates
in the selection. Assuming, equi-joins and that the number of rows is not affected by the
resulting join our initial representation is able to operate without any changes.

GROUP-BY Queries

Supporting GROUP-BY queries is crucial for data analytics, as analysts often issue queries
to explore differences between cohorts via grouping. GROUP-BY queries, group vectors a

that have the same value for a specific attribute ai. A GROUP-BY query is an application
of the same AF onto different sub-groups defined by that specific attribute. Hence, for an
attribute ai, we use a DISTINCT operator to identify the different groups (as the unique
values for ai denote different groups) and subsequently use the vectorization process of an
SPA query on the individual groups. The result of the DISTINCT operator would be a set
of group values G = (G1, . . . , Gk), which can be used with an equality predicate to con-
struct k different queries. An example of this is shown in Figure 2.3. An SQL query with a
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GROUP-BY clause is issued and the colored parts of this query are extracted. Suppose that
the group-by attribute used is a3,where a3 = g1. The predicate values (x1, x2, x3, x4) and the
extracted group values (G1, . . . , Gk) are used to construct k meta-vectors in which the val-
ues for (a1,lb, a1,ub, a2,lb, a2,ub) contain the same values for all rows as the filter-predicates are
applied to each group value Gi. The last two columns a3,lb, a3,ub are used to store the group
values. Each one of those meta-vectors will become associated with the output of the corre-
sponding AF for the specific group. This is similar to the formulation of Database Learning

SELECT  g1, AF1(α3)

FROM B 

WHERE α1>= x1 AND α1<=x2

AND α2>=x3 AND α2<=x4

GROUP BY g1

α1,lb α1,lb α2,lb α2,ub α3,lb α3,ub

x1 x2 x3 x4 g1,1 g1,1

x1 x2 x3 x4 g1,1 g1,1

…. …. …. …. …. ….

x1 x2 x3 x4 g1,k g1,k

AF1(α3)

y1

y2

….

yk

Figure 2.3: How to vectorize GROUP-BY queries.

[99]. However, in [99], the number of distinct groups is limited to 1000, as the individual
AFs are executed on-the-fly. In ML-AQP there is no restriction, hence, an arbitrarily large
number of groups can be supported by the formulation.

2.3.2 Handling Categorical Attributes

Some attributes might hold categorical values instead of numerical. An accepted approach
is to restrict the length of the categorical attributes to the currently longest of each categori-
cal attribute [77]. Subsequently, ASCII codes can be obtained for the remaining characters,
which are concatenated to represent the value of Gi as in [77]. One other option is to con-
struct various dummy columns each one denoting a value included in the categorical attribute
ai[80]. Suppose N distinct values for a1 = (A1, . . . , AN), then N dummy columns are cre-
ated, with its rows having a value of {0, 1}, thus producing the mapping Ai → {0, 1}N .
However, an inherent problem with this option is the dimensiolity increase of query vector
m as its dimensionalty becomes 2d + N . Especially for large number of distinct values, N ,
this approach becomes extremely inefficient. To this end, an effective encoding scheme can
be an injective function, such as various hash functions, that provide an effective mapping
from a categorical attribute to a real number, i.e.,A 7→ R. In the implementation of ML-AQP
we use a combination of both. The first technique is used for attributes with low cardinality
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< 1000. For tree-based ML algorithms, this has been shown to work best [80]. The latter
technique is used for attributes with high cardinality > 1000.

Empirically, we have found both of these approaches to work well. However, we also employ
an additional optimization to increase accuracy for GROUP-BY queries with large number
of distinct categorical values of the grouping attribute. We make use of an encoding scheme
which effectively maps each categorical value to a real number as its the default behavior of
ML-AQP. However, we also incorporate information in the encoding such that it becomes
correlated with the output and can assist in increasing the accuracy of ML models. Let N
distinct values for grouping attribute a1 = (A1, . . . , AN), then l(·) is an encoding function,
mapping categorical values to natural numbers l : Ai → N. Now suppose that we have a
number of previously executed queries that include a GROUP-BY clause with the grouping
attribute a1. We can obtain the mean response of each one of those groups (y1, . . . , yN),
where the responses for n queries per group y1 = 1

n

∑n
i y1,i, are used to obtain the mean

responses. Then we incorporate this information into our encoding scheme as shown by
(2.1) :

h(Ai) = log(l(Ai)) + yi (2.1)

Eq. (2.1), maps categorical values to numerical values that are largely determined by the
mean response of their associated group while also incorporating a small offset to account
for groups with similar mean response values but different categorical values.

2.3.3 Overall Support for Queries & Limitations

Overall, with the proposed representation we are able to support a large fraction of the a-
ggregate queries commonly in an Online Analytical Processing (OLAP) setting. However,
we can also support more modern types of analytics queries that are commonly found in
deployments processing different data types, such as Internet of Things (IoT) or Spatial
Data and Maps. These data types include spatial/temporal components which the users re-
strict, to focus their attention on particular areas. These type of queries can be modeled as
range queries, restricting the temporal/spatial dimensions and extracting statistics using AFs.
Therefore, ML-AQP is not restricted to a basic OLAP setting, on the contrary, it can provide
support for a wide range of deployments. We also empirically verify this in the Experimental
Section of this chapter in section 2.6.5. We can support simple multi-predicate aggregation
queries to queries that include JOINs and GROUP-BYs. We can provide support for foreign-
key joins as this is the case for multiple AQP engines [99]. Specifically, our solution does not
make any assumptions as to what type of AFs are used. To ML-AQP, the response variable
is a scalar y, associated with a meta-vector m. Subsequently, it tries to identify patterns in
m that would allow it to predict a future ynew when given an mnew. Therefore, it is agnostic
to the AFs used. This is in contrast to most sampling-based AQP engines [12] which restrict

23



the number of supported AFs to COUNT,SUM and AVG. In addition, in the presence of textual
filters,(LIKE ’%product’), ML-AQP leverages the approach outlined in section 2.3.2.

For JOINs which do not simply extend the dimensionality, but instead introduce less/more
tuples in the result, we do not explicitly represent them in the current meta-vector. As we
described, usually such schema designs are avoided when conducting analyses over large
amounts of data [59]. In addition, derived attributes for GROUP-BYs cannot be supported
with our current formulation and instead such queries have to be partially executed to obtain
the derived attributes.

A key limitation is that we do not explicitly account for different logic operators (¬,∨,∧).
We discuss a possible approach to address this problem even though we do not currently
incorporate it in the implementation of ML-AQP. Given meta-vector m ∈ R2d this vector
can be augmented with d more elements o ∈ {−1, 0, 1, ∅}d which denote the existence of
different logic operators. Hence, differentiating on cases where predicate values are the same
but joined by different logic operators.

In addition, when handling GROUP-BY queries we rely on a DISTINCT operator to ex-
tract the different groups for the corresponding attributes. However, this approach does not
account for a grouping attribute that is included in the WHERE clause. This could result in fil-
tering out some of the groups a-priori. This is mitigated by applying the filter after retrieving
the values of the grouping attribute.

2.3.4 Restricting Dimensionality of the Query Representation

As the number of columns (attributes, dimensions) gets larger, the representation will be
moving towards a high-dimensional space causing problems to underlying ML models. One
way to tackle this is to use unsupervised dimensionality reduction techniques [107], which
will reduce the dimensionality of the given query vectors. Another, more straightforward
way to tackle high-dimensional meta-vectors, is to restrict the number of columns that are
used. Prior work has examined multiple query workloads [12, 137] and has shown that
these queries usually focus on a subset of the original column set. This suggests that the
meta-vector could be significantly smaller and only use the columns that appear frequently
in the query logs. Especially, in the case of spatio-temporal datasets the focus is usually
on the spatial and temporal columns to which an analyst applies filters and then examines
descriptive statistics over other columns. Hence, meta-vectors can be constructed that only
include these columns.
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2.3.5 Aggregate Estimation and ML Models

Once a vectorized representation for queries is constructed, supervised regression algorithms
are used to associate the meta-vectors with their results. An aggregate result is a scalar value
y ∈ R, thus, a dataset C = (mi, yi)

n
i=1 is derived from past query executions and their results.

The goal of any statistical learning algorithm will then be to minimize the expected loss
(difference or discrepancy) between the true query result of y and an estimated value of it, ŷ,
derived from the trained ML model. In other words, the task is to approximate the conditional
distribution p(y|m) to minimize this loss. As each AF has a different underlying conditional
distribution, different ML models are trained for each AF. Concretely, AFs such as COUNT,
SUM, AVG will each be associated with specific ML model(s). Additional ML models are
created for those AFs that refer to specific attributes. Although the number of ML models
seems to be increasing, their storage footprint, as is examined in the experimental section, is
minimal compared to the storage requirements of a sampling-based approach. It is important
to note that models are not constructed a-priori, for each possible AF or combination of
AF-attribute. Instead, a model is trained for an AF, if and only if there are queries in the
query log referring to this specific AF. Implicitly, ML-AQP builds models over AFs that are
frequently used. This significantly reduces the number of models that have to be built.

2.4 System Architecture

Sampling
-AQP

Data Warehouse

𝑀𝐿 − 𝐴𝑄𝑃

Accuracy

Speed

Figure 2.4: The ML-AQP within the complete data analytics stack. Starting from ML-AQP,
analysts can choose a system going from left to right, if they require more accuracy. If speed
is essential, they can choose from right to left.

Figure 2.4 shows holistically how ML-AQP complements the data analytics stack. Our sys-
tem sits between cloud-based data warehouses and sampling-based AQP engines. Common
cloud-based data warehouses, include Google’s BigQuery and Amazon Redshift [57]. Using
all three components (ML-AQP, sampling-based AQP engines, data warehouses), the ana-
lyst can choose which one to use, based on their needs of efficiency and accuracy. A system
could also make this choice based on the resources available. Hence, if a Cloud system is
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experiencing heavy loads, it could direct queries to either the sampling-based AQP (S-AQP)
engine or ML-AQP. A useful analogy is to think of each of the three components as the
cache, RAM and Disk components of a computer. Caches and RAMs, often, cannot hold the
data required resulting in cache misses (hence the lack of accuracy), but the disk will always
have the complete data set (will always have the true answer). However, fetching data from
disk comes at a cost in efficiency. Therefore in our case, ML-AQP can act as the cache of
the data analytics stack, sampling-based AQP engines as the RAM and finally cloud-based
engines as the disk.

Parser Model Catalogue

Model Generator

Query Meta-

Vector

ML-AQP

GROUP-BY

Catalogue

Model 

Wrapper

Figure 2.5: ML-AQP system architecture

To better explain the overall architecture followed in ML-AQP, we explain the role of each
component within two distinct modes: (a) Training mode and (b) Prediction mode. During
Training mode, queries are either executed at the Data Warehouse or the S-AQP and become
associated with their results. We can also utilise pre-computed queries stored in log files.
ML-AQP leverages those queries to build training sets of query-result pairs for the ML mod-
els. Training ML models transitions ML-AQP to the Prediction mode in which queries are
transformed into the described vectorial representation m and their results are estimated by
ML models.

All individual components that make ML-AQP are shown in Figure 2.5. The complete flow
and interaction of the components, is shown in Figure 2.6. Initially, at Training mode, each
query is parsed, through the Parser, and the projected AFs are extracted f1, . . . , fn, along
with the included predicates p1, . . . , pm and any GROUP-BY attributes g1, . . . , gk.

In the example in Figure 2.6, the extracted AF is f1 = AF1(a3), the resulting predicates are
p1 = (a1 ≥ x1) and p2 = (a1 ≤ x2) and the GROUP-BY attribute is g1. For the predicates,
we construct an m ∈ R2d meta-vector, where d is the total number of attributes in the data
set. Each meta-vector is associated with a number of results y1, . . . , yn, obtained from the
executed AFs. In this example the meta-vectors are associated with a single result y because
a single AF is used.
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SELECT  g1, AF1(α3)

FROM B 

WHERE α1>= x1

AND α1<=x2

GROUP BY g1
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yk

Data Warehouse

𝑸 ∈ ℝ(𝑘,4)

Model 

Generator

𝐴𝐹1(𝑎3) → ℳ1

Model 

Catalogue

Answer

Figure 2.6: ML-AQP during Training

If no GROUP-BY clause is used, then we call this a single query q = (m,y),q ∈ R2d+n.
For any GROUP-BY attribute gi, a SELECT-DISTINCT query is executed, for attribute
gi, and its result is cached in the GROUP-BY catalogue D. The catalogue D is a map-
ping from the GROUP-BY attribute gi to its set of distinct values D : gi → Ggi . Caching
its result allows their reuse during Prediction mode. Given the values returned for gi,
Ggi = {Ggi,1, . . . , Ggi,|Ggi |}, we construct multiple single-queries which have different re-
sults, y1, . . . , yk as they correspond to different groups. Hence, in the case of GROUP-BY
queries, a single query has a matrix representation holding its meta-vectors and their associ-
ated results Q = (M,Y),Q ∈ R(|Gg(i) |)×(2d+n), also depicted visually in Figure 2.6.

The same procedure occurs for every executed query. This results in the collection of pos-
sibly sparse vectors, as in a typical query, not all attributes in a schema are included in its
predicates. Because of this, we store all of the processed queries in a sparse matrix to reduce
storage overhead. Once we finish parsing and constructing the representation for each query
in our training set, we use the Model Generator to construct/train modelsMi, . . . ,Mn and
associate each model with a specific AF. The models are then serialized and stored in the
Model Catalogue.

A similar process occurs in Prediction mode when a new (SQL) query is issued to ML-AQP.
The complete flow of interactions between the components is shown in Figure 2.7. During
initialization of ML-AQP, both the GROUP-BY catalogue and Model Catalogue are loaded
in memory. Consider the same example query shown in Figure 2.6. But, at this point the
query is not executed, instead, ML-AQP predicts its answer. Specifically, the Parser is used
to extract the same elements (predicates, AFs, GROUP-BY attributes). A vectorized repre-
sentation of the query is constructed using Query Meta-Vector. If a GROUP-BY statement
exists, the resulting meta-vector is a matrix M and the values for gi, . . . , gk are obtained from
the GROUP-BY catalogue storing different Ggi . Next, all necessary AFs, to be estimated, are
identified and their models are fetched from Model Catalogue. The Model Wrapper is used
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Figure 2.7: ML-AQP in Prediction mode

to query the model and estimate results given meta-vector m. The result(s) are then re-
turned to the user in an efficient manner as no data are accessed and the only overhead is the
inference time of a model.

2.5 Machine Learning Specifics

Each query result y from training pairs (m, y), is derived from an unknown truth function
f(·). Such function produces answers with respect to an unknown conditional distribution
p(y|m). Our aim, is to approximate the true function f for each aggregate function e.g.,
COUNT, AVG, MIN, MAX, SUM, etc. Supervised regression models are suitable for this task.

Initially, a set of queries and their responses C = {(m,y)},m ∈ R2d,y ∈ Rn is obtained.
Queries that have a matrix representation Q, are treated as collections of single queries.
Essentially, each row in Q corresponds to a single query as the GROUP-BY attribute can be
reconstructed into a single predicate restricting attribute gi to a single value. The task is to
train ML models Mi, . . . ,Mn that produce regression functions f̂i, . . . , f̂n that minimize
EPE. Multiple such regression algorithms exist and to make the right choice we have to
consider some of the properties of the problem at hand.

2.5.1 Choice of Machine Learning Models

A primary concern is that the produced training set C, is inherently sparse as both the pa-
rameter vector m and response vector y contain NULLs (which can be represented as zeroes
in linear algebra). This happens in cases where: (a) attributes do not have any predicates
imposed on them and, hence, ai,lb, ai,ub would be NULL or zero3 (b) different queries might

3A special construct nan is placed instead of 0 as 0’s are perfectly acceptable values.
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use different AFs. If a query does not use all encountered AFs in set C, then the response for
the excluded AFs is set to NULL. For instance, in a dense matrix representation consider two
queries calling different AFs; AF1 and AF2. To represent those queries in a matrix we have to
set up two columns, AF1 and AF2 with the first row (for the first query) having a NULL value
for AF2 and the second row having NULL for AF1. However, NULL response values is prob-
lematic as they are considered as undefined and are subsequently dropped during training of
the ML models. To alleviate this problem, we partition the dataset per AF, such that queries
that refer to the same AF are grouped together. This ensures that the response column does
not have undefined values. However, the input matrix Q is still sparse as we have addressed
case (b) but not case (a). Hence, we need algorithms that are able to handle sparse input.

In addition, we might have to deal with a large number of training queries, so we need
algorithms that are scalable. For instance, we exclude the use of Support Vector Regression
[125] as we have found that they cannot handle a large number of training examples if the
implementation solves the dual problem in its closed form.

Linear models can often be trained in an online manner using SGD [30], which makes them
very efficient. However, they result in simple models which cannot adequately model non-
linear relationships without introducing more terms. Models such as Ridge and Lasso [46]
regression are interesting variants that include regularization to handle the increased dimen-
sionality of our input. However, we have found that these algorithms do not perform well
to our problem. We have also considered the use of Deep Learning, however the models
become unnecessarily complex, expensive to train, difficult to tune and have high inference
times [77] which could increase the latency of estimating the response of an issued query.

In light of all these, we have made the choice of using Gradient Boosting Machines (GBM)
[49] using efficient-parallel implementations called XGBoost[35] and LightGBM[71]. A
GBM iteratively fits decision trees at first trying to approximate the response variable and
then making this approximation more fine grained by combining decision trees trained on the
negative gradient of the response variable and the produced predictions by the last decision
tree. In addition, the highly scalable implementation of GBM by XGBoost and LightGBM
allows handling large, high dimensional and sparse input.

2.5.2 Error Guarantees

A necessary feature of any AQP engine, is its ability to provide probabilistic error guaran-
tees, for each predicted response. If an AQP engine provides an estimate, ŷ, for an AF, then
the user has to know whether the true value y would be within an interval. This interval is as-
sociated with a certain probabilistic guarantee. Most AQP engines provide these guarantees
by constructing confidence intervals [98, 70, 12, 95].
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However, as ML-AQP is not sampling-based and, instead, relies on ML models, no confi-
dence intervals can be built on its estimates/predictions. Confidence intervals are produced
because it is assumed that the produced ŷ (from sampling-based AQP engines) is an estimator
of a population parameter. However, in ML-AQP, ŷ is a prediction given some information
on query vector m. In this section, a naive solution of offering some kind of error estimation

for aggregate answers is initially presented. However, more promising approaches are then
discussed with the method of choice analysed in the end of this section.

All ML models try to minimize the EPE which was initially defined in (1.1). During Training

mode, EPE is an over-optimistic estimate of the generalizability error that a specific ML
model is associated with. The generalizability error is an estimate of the error associated
with any future estimations. However, because ML models are trained on the set used for
measuring EPE, they tend to produce inaccurate estimates for EPE. Hence, the use of cross-
validation [46] is often employed. Cross-validation, measures the EPE on out-of-sample

examples that the model did not use during training. Although, techniques such as Leave-
One-Out (LOO) and K-Fold [46] produce good estimates for the EPE, the estimate is not
probabilistically guaranteed. In addition, the EPE is static across the input space. Meaning
that, even though an ML model might have learned to predict the answers of certain queries
with error ε1 and some others with error ε2, and ε1 � ε2, both sets of queries will have
the same EPE. We find the assumption of a static EPE across input space to be invalid and
explore other suitable methods.

Instead of the estimate for EPE, we can use Prediction Intervals: Unlike confidence intervals,
which are used to provide an interval for a population parameter, prediction intervals are
used to provide intervals that contain the true (not predicted) value of an aggregate result
yn+1 of a future query (vector mn+1)). If we knew that the distribution of y is Normal and
that any y is independent, prediction intervals could be produced similarly to confidence
intervals. Using the sample of y given from the training examples (y1, . . . , yn), we compute
the interval: y ± tasn

√
1 + 1

n
, where ta is the 100(1 − a

2
)th percentile of the t-distribution,

with α ∈ (0, 1) and commonly set to α = 0.01 or α = 0.05, sn is the sample variance of
the response variable y and 1− α is the coverage of the prediction interval. However, we do
not wish to make any parametric assumption about the distribution of y. Hence, we resort to
other methods outlined below.

A prominent method is bootstrap [42], which makes no parametric assumption as to the
distribution of y. This is a common approach encountered in sampling-based AQP engines
[146, 11]. In sampling-based AQP engines, the bootstrap method is used and the underlying
dataset is re-sampled b times (where b is usually over > 100) to produce a distribution of
estimates for y, ŷi,1, . . . , ŷi,b. Let yi,0 be the original estimate, with the estimates provided
by the bootstrap samples, the residuals yi,0 − ŷi,1, . . . , yi,0 − ŷi,b are computed. Using the
empirical distribution of residuals, quantiles can be computed. The quantiles can be used
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to produce a confidence interval [ŷi,0 − t1−a/2, ŷi,0 + ta/2]. Theoretically, ML-AQP could
also use the bootstrap method, re-sampling the training dataset b times and constructing b
ML models Mi, . . . ,Mb. This would yield b estimates for y, {ŷ}bi=1 = {f̂i(m)}bi=1 and can
similarly produce confidence intervals. However, this methodology would incur the costs of
training, maintaining, and predicting the estimates from b + 1 (if we count the initial model
providing the prediction) different ML models. Multiply that by the number of different AFs
that need to be learned and the overhead cost of this approach quickly becomes huge.

More recent developments in ML literature focus on building predictive intervals by using
conformal inference [122, 82, 97]. This technique relies on building a non-conformity mea-
sure which estimates the difference of two examples i.e., mi and mj . This could be defined
as the Lp norm (i.e p = 2) of the examples ‖mi−mj‖22. But finding the right non-conformity
measure in our case is non-trivial as the input vectors are high-dimensional and sparse. Dis-
tance in this case becomes meaningless [13] and the choice of a valid p-norm is beyond the
scope of this work. In addition, these techniques scan the complete set of previous training
examples to find similar and dissimilar examples. Meaning that all previous queries have to
remain stored. This is not ideal, as the set of all queries would have to be deployed to every
location that ML-AQP is served.

Therefore, the most favourable choice, when designing ML-AQP, was Quantile Regression
(QR) [76]. QR offers an alternative method of providing prediction intervals to estimates
that: (a) does not require the storage of training examples (b) does not have the overhead of
training/maintaining a large number of additional models and (c) does not make parametric
assumptions to the distribution of the response variable y.

Typical regression models minimize the EPE and focus on estimating the conditional ex-
pected value of y, E[y|m]. QR estimates the tth conditional quantile Qy|m(t). Multiple ML
algorithms have been proposed to estimate conditional quantiles [126, 90, 129]. Formally,
given a conditional distribution function for y,

Fy|m = P{Y ≤ y|m}, (2.2)

we define the tth conditional quantile function as:

qt(m) = inf{y ∈ R : Fy|m > t} (2.3)

Where inf is the infimum, which points to y that is less than or equal to all the elements in the
defined set. Given the conditional quantile function defined in (2.3), we construct prediction
intervals using [qt/2, q1−t/2]. This defines the lower and upper bounds of the estimated value
for y with coverage probability of 100(1 − t)%. As stated earlier regression algorithms
estimate the conditional expectation of y, E[y|m] by minimizing EPE. In the same manner,
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quantile regression algorithms estimate the conditional tth quantile Qy|m(t) by minimizing
what is known as ”pinball loss”[76] :

ρt(y, ŷ) =




t(y − ŷ), if y − ŷ > 0

(1− t)(ŷ − y), otherwise
(2.4)

Supposing we have trained two different quantile regression functions q̂t/2 : m ∈ R2d →
Qy|m(t/2) ∈ R and q̂1−t/2 : m ∈ R2d → Qy|m(1 − t/2) ∈ R. Then, a prediction interval
for each new query is estimated as: [q̂t/2(mnew), q̂1−t/2(mnew)] with coverage probability
100(1− t)%.

Therefore, ML-AQP provides error guarantees using QR and the statistical tools of prediction
intervals and coverage. Specifically, ML-AQP produces a prediction interval [low, high] and
a coverage level l% and guarantees that the true answer to a future query will fall within
[low, high] with probability l%. LightGBM [71] offers support for QR and we are also
looking into incorporating [106] to support stricter guarantees.

2.6 Evaluation

2.6.1 Experimental Setup

Datasets & Workloads. For our experiments we used the following data sets and work-
loads4:

1. TPC-H[5]: This is the standard TPC-H benchmark.

2. Instacart[2]: This is a data set of an online store. A database was created using
the csv files which follows the setup of VerdictDB. [98].

3. Crimes[6]: This is a real data set of crimes reported in the city of Chicago. A work-
load for this data set was obtained from [1] which models a number of range-queries
with multiple AFs. Their predicates are sampled from a number of random distribu-
tions to simulate various analysts executing queries at different subspaces of the data
set.

4. Sensors[8]: Is a data set comprised of a number of sensor readings including volt-
age, humidity temperature etc with a temporal dimension. A synthetic workload was
created restricting the temporal dimension and extracting the MIN(temperature)
and MAX(humidity).

4All experiments can be found at : https://github.com/Skeftical/modelbasedaqp
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5. synthetic: A synthetic workload was constructed to stress test our chosen repre-
sentation. The set of workloads include up to 100 attributes (stretching our meta-vector
to 200, m ∈ R200) with the number of set predicates up to 50.

Training ML-AQP. ML-AQP has a Training phase, much like sampling-based AQP engines
that need to create samples before being able to operate. For all workloads, we generate
queries and train the models on 70% of the complete workload. We then conduct the experi-
ments and take measurements on the rest 30%. This is standard practise in the ML literature.
It is a cross-validation strategy, much like the well-known K-Fold validation, where the gen-
eralizability error of the model is estimated by a single test-set. This strategy can be a good
approximation to the true generalizability error in cases where the number of training sam-
ples is large [46]. For Instacart, we use a similar format of queries as VerdictDB [3].
However, to facilitate learning we vary the predicate values. For all queries containing predi-
cate values, we generate queries from the same template with values sampled from a Normal
distribution N (µ, σ), where (µ, σ) is the average and standard deviation of the correspond-
ing attribute, respectively. If the attribute contains a categorical value, the generated queries
contain a value selected uniformly at random. The total number of training queries generated
were 104 and 3.3 · 103 for testing. Some queries contained no predicates, in these cases no
additional queries were generated. The number of queries obtained is not large as typically
there are millions of queries being executed on a daily basis in production environments [70].

For TPC-H, we use a subset of the queries contained in the benchmark as we are still making
progress on our Parser. We generate 100 queries for each of the queries used. A model is
trained for each distinct AF. For Instacart, three different models are generated as three
distinct AFs are used in this workload. For TPC-H, 12 different models were generated. For
Crimes and Sensors. we generate a model per AF tested.

2.6.2 Efficiency

We first examine the efficiency of ML-AQP and demonstrate the speedup gains over a pop-
ular database, PostgreSQL. We compare the results using a sampling based AQP engine,
VerdictDB [98]. Let tb be the response time for PostgreSQL and tm, tv the response times
for ML-AQP and VerdictDB, speedup is measured by tb

tm
and tb

tv
, respectively. For this experi-

ment, we use TPC-Hwith 1GB and Instacartwith its main fact tables (order products,
orders) containing 3M and 30M rows. For TPC-H, we use a subset of all the template
queries and for Instacart, we use the same format of queries as used in the evaluation of
VerdictDB[3]. For VerdictDB, uniform samples were created for large fact tables at 1%/10%

ratio. This experiment ran on a single machine with an Intel(R) Core(TM) i7-6700 CPU
@3.40GHz, 16GB RAM and 1TB HDD.
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Figure 2.8: Speedups offered by ML-AQP compared to VerdictDB

System Time (sec) 95th percentile (sec)

PostgreSQL 1.62± 1.21 4.01
VerdictDB (10%) 0.28± 0.41 0.79
VerdictDB (1%) 0.14± 0.3 0.43
ML-AQP 0.05± 0.16 0.12

Table 2.1: Performance over all queries across systems

The results are shown in Figure 2.8. This figure demonstrates how much faster VerdictDB
and ML-AQP are in terms of the response times given by PostgreSQL. We can instantly
notice that the speedup differences are huge (notice the log-scale on y-axis)5. Even though
we are using relatively small datasets, VerdictDB, understandably, cannot offer the same
speedup as ML-AQP. The minimum/maximum speedup gained by ML-AQP is at 7×/7200×,for
VerdictDB 1% 0.59×/43× (as we suspect that some of the computation is offloaded to the
main engine) and for VerdictDB 10% 3×/11×. This stems from the fact that ML-AQP is
only performing inferences at Prediction mode using trained models. It does not need to
scan any of the data at any time. To be more specific, Table 2.1 shows the mean response
time along with the standard deviation and 95th percentile for all queries across the four dif-
ferent systems. As it is evident, even at the 95th percentile the response times for ML-AQP
are no greater than 120 milliseconds, satisfying the interactivity constraint set at 500ms [85].

Even for queries with relatively large GROUP-BYs the speedup is at 20x. By default GROUP-BYs
are a bottleneck in our case as multiple queries have to be executed for each distinct value
of the attribute used in the GROUP-BY clause. For instance, query 14-ic has approximately
50K distinct values. In this experiment its values were cached as this would have been the
default behavior. This is due to similar queries with the same GROUP-BY attributes being
executed during Training mode. When caching the values, query 14− ic takes 0.67 seconds
to execute and 0.7 seconds when it does not cache the GROUP-BY values. We can see minor

5For 4-tpch we could not get VerdictDB to execute this query.
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impact, with an overhead attributed to the execution of the SELECT DISTINCT query at
0.3 seconds. We can still get 7× better response times than PostgreSQL, where as VerdictDB
(1%/10%) is at 24 × /3× for this particular query. Although a larger speed-up is observed,
for VerdictDB(1%) we will notice that accuracy using 1% sampling ratio deteriorates with
large errors in the individual groups.
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Figure 2.9: VerdictDB speedup for an increasing sampling ratio.

In Figure 2.9 we examine how the speed-up offered by sampling-based, and in general data-
driven AQP, solutions diminishes as the sampling ratio is increased. For point of reference,
we also provide the average speedup offered by ML-AQP which is not constrained by a
sampling ratio as it uses no data.

2.6.3 Efficiency in the Cloud

Our solution is designed to alleviate the monetary, computational, storage costs in large
deployments usually in the Cloud. We first examine how the computational cost can be
mediated using our solution. For this experiment, we use AWS Redshift, with 2 dc2.large
compute nodes and 1 master node each at 16GB memory with 160GB SSD. We use a 100×
scaled version of the Instacart dataset. The total storage footprint of this data set is
100GB with the main fact tables (order products, orders) containing 4.2 billion and
0.5 billion rows respectively. We execute the same Instacart queries [3] and we set a
timeout value at 5(mins). After this timeout period, we abort the execution of the query.
In this experiment, we aim to show how data-driven methods are strictly coupled with data.
An increase in data size unavoidably increases response times. This effect is not evident in
ML-AQP. For VerdictDB we uniformly sample the same fact tables at 10% ratio. In this
experiment, we expect the results for VerdictDB to deteriorate. On the other hand ML-AQP
is constant in its performance as it is unaffected by data size. It is important to recall that the
deployment of ML-AQP can happen in two ways: (i) All the models and required modules
for ML-AQP can be distributed to all the analysts’ machines and be loaded in memory during
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ML-AQP (local) ML-AQP (network) VerdictDB

443-105 24-195 0.16-28

Table 2.2: Minimum-Maximum speedups at the Cloud

analysis (later experiments will showcase that the small storage footprint of ML-AQP permits
this solution); (ii) All models can be deployed at a server and be used as a service. This would
have significantly lower costs than executing queries using Redshift. However, it might have
more overhead as the predictions have to be transferred to the analysts machine over the
network. We further examine the performance benefits of both solutions.

The results of this experiment are shown in Figure 2.10. There are two different deployments
for ML-AQP: (a) ML-AQP (network), (b) ML-AQP (local). For ML-AQP (network) deploy-
ment, we set up a small server serving predictions over the network. It accepts HTTP POST
requests with the extracted parameter values of the SQL query and returns a prediction of
its answer. The results shown in Figure 2.10 are in log-scale. As expected, the benefits of
a local deployment are far greater, although we would have to consider problems in main-
taining the models as in this case ML-AQP are in each analysts machine. In addition, for
some queries VerdictDB offers no speedups as Redshift is able to process those queries in an
efficient manner.
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Figure 2.10: Speedups in large deployments

To be more concise, the min/max speedup benefits of the compared systems are shown at Ta-
ble 2.2. As evident, the local deployment is orders of magnitude faster than both VerdictDB
and an over the network deployment. We also report on average response times and the re-
sponse times at the 95th percentile for all systems. The results are shown in Table 2.3. The
first thing we notice, is that although VerdictDB has less mean response time than Redshift,
at the 95th percentile it is slower, possibly due to overheads of VerdictDB in deciding which
samples to process. In addition, both the network and local deployments for ML-AQP offer
mean sub-second latencies and only 2.68 seconds at the 95th for network.
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System Time (sec) 95th percentile (sec)

Redshift 55± 75 142
VerdictDB 49± 120 300
ML-AQP (network) 0.78± 1.82 2.68
ML-AQP (local) 0.02± 0.08 0.25

Table 2.3: Performance in the Cloud

2.6.4 Training Overhead

As stated earlier, ML-AQP has to go through Training mode initially. At this stage, previ-
ously executed queries are used to train a variety of models and learn to predict the answers
of future aggregate queries. Ideally, training the models would happen locally at Data Scien-
tist’s machines so as not to incur additional costs of repeatedly training and fine tuning the
models in the Cloud. Therefore, in this experiment we measure the Training Time required
to build a model with varying number of queries. We run this experiment locally on a single
machine with an Intel(R) Core(TM) i7-6700 CPU @3.40GHz, 16GB RAM and 1TB HDD
to demonstrate this capability. We compare this to the sample building time of VerdictDB
with an increasing sample ratio. We use the TPC-H data set at 1GB. At each iteration 3

samples are built on the main fact tables. Figure 2.11 shows the result of this experiment.
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Figure 2.11: (Left) Training overhead for an increasing number of queries (x-axis) (Right)
Sample preparation time for VerdictDB

The sample preparation time for VerdictDB, Figure 2.11(right), increases linearly and even
for 1% ratio at 1GB, takes longer than training ML-AQP on 4 million queries. At 6+ million
queries, this overhead is still less than the sample preparation time for VerdictDB at 60%

ratio. To put this in context, ML-AQP took 1.1 seconds, to train on 4, 000 queries generated
for Instacart. For TPC-H, ML-AQP required less than a second to train each model.
The only exception was for COUNT queries, executed over Instacart, as its associated
queries included a relatively large number of groups (> 50, 000) and took 326 seconds to
train on around 5 million training examples in total.

It is also important to note that sampling-based AQP engines are susceptible to the size of
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the data set. In this experiment, we are only using 1GB of data, as the size increases, sample
preparation time is expected to increase, too. This would not be a problem for ML-AQP as
it is only affected by the number of queries and it is not, at any point, affected by the size
of the underlying data set. In conclusion, both approaches, sampling-based AQP engines
and QDL-based AQP engines will have ”training” overheads. Their overheads are largely
determined by different dimensions and as these solutions are designed to expedite query
processing in petabyte scale storage engines we expect ML-AQPs overhead to be much less.

2.6.5 Accuracy

To assess the accuracy of ML-AQP we measure the Relative Error[98, 99, 12, 70] across all
the query templates of both Instacart and TPC-H. ML-AQP was trained on past queries
generated as described in Section 2.6.1. Three models were trained using LightGBM to an-
swer Instacart queries, one for each AF involved. For TPC-H, 11 models were trained
using XGBoost as the queries were largely referring to AFs on different attributes. The num-
ber of rounds were set to 104 with early stopping when no more improvement was shown.
Objective was set to squared error. We compare our results with VerdictDB, which
created samples over the large fact tables at ratios of 1%/10%. An initial set of results is
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Figure 2.12: Relative Errors for each query in TPC-H & Instacart

shown in Figure 2.12. A first impression is that both systems perform really well over a large
range of queries. Please note that the results show the average relative error over each query
template. Where for each query template multiple, > 50, queries were executed with ran-
dom predicate values as described in (2.6.1). ML-AQP is able to accurately answer 80% of
queries for Instacart and 100% of the selected TPC-H queries with relative error below
10%. We can also visually discern that ML-AQP outperforms VerdictDB for many queries.
VerdictDB at 1% was not able to answer accurately queries that have a large number of
groups, such as 14-ic and in some cases the groups returned by VerdictDB did not match the
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ones returned by the engine (3-tpch, 5-tpch)6. For ML-AQP, queries 1-ic and 5-ic produce
large relative errors. This is understandable as these queries include no predicates and are
simply the results over a full scan of the table (ie are simple SELECT AF FROM T). The
results of such queries can easily be cached. ML-AQP is not expected to answer such queries
as the meta-vector m is filled with nan values, to which the model simply ignores as there
are no patterns to be learned.
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Figure 2.13: (Left) CDFs of relative error per group in a GROUP-BY query (right) Relative
error for an increasing sampling ratio with the mean relative error for ML-AQP as a horizon-
tal line.

We also measure the relative error on a per-group basis. Especially, for query 14-ic where
a large number of groups are present we notice high relative error. Figure 2.13(left), shows
the Cumulative Distribution Function (CDF) of the relative error across groups for all three
systems. ML-AQP outperforms VerdictDB at both sampling ratios (1%, 10%), which shows
that it can accurately estimate the aggregates across groups. Given the prior discussion we do
not mean to say that sampling based engines have less accuracy. Instead, at a small sampling
ratio the benefits are not great and the large trade-off between accuracy and speed makes
their use inappropriate. Hence, sampling based engines can be used in parallel to ML-AQP,
when the analyst needs more accurate answers and they are willing to sacrifice some of the
efficiency for it, as also suggested by Figure 2.4. So, the systems can co-exist if we use
sampling-based engines with a higher sampling ratio as the expected error over all queries
decreases as is shown in Figure 2.13(right).

Accuracy on range queries over spatio-temporal data

We have also measured the accuracy of ML-AQP in predicting the responses of range-queries
over spatio-temporal data sets. Specifically, multiple synthetic queries are executed over
Crimes restricting its spatial dimensions and returning a response COUNT, MEAN or SUM
over other attributes included in the data set. COUNT, returns the number of recorded inci-
dents within the defined area, MEAN is the average Beat number which is a police defined

6We were not able to run query 4-tpch as an uknown error was thrown at runtime.
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Figure 2.14: Accuracy over Sensors and Crimes for an increasing number of training
queries and over different AFs. (Top) Relative/Normalized Error (Bottom) Median Absolute
Error. (Right Column) For Crimes the accuracy of VerdictDB is plotted as horizontal lines.

number describing the area, and SUM of the arrests over the specified area. For Sensors
we restricted the temporal dimensions and extract the MIN(temperature) and MAX(humidity).
All of the results in Figure 2.14(top) show that the relative error is below the targeted 10%

for this kind of data sets and conntinues dropping as more queries are being used for train-
ing the models. We also plot the accuracy for VerdictDB (1%) as horizontal lines only for
the Crimes data set as VerdictDB does not support MIN/MAX aggregates. Note that for
Sensors, we report on the Normalized Error |y−ŷ

y
|, which computes the absolute differ-

ence divided by the mean response. The reason is that for this workload, the values are
really small (µ = 9) and the measured relative error is not robust as it might report a 50%

error even if y = 2 and ŷ = 1. This is also encountered in [69] and similar technique is
employed. To provide more context as to how close the predictions are in relation to the true
response, we also provide results on the Median Absolute Error (MAE) in Figure 2.14(bot-
tom). It is a well known metric in the ML community that is robust to outliers indicating the
median of the absolute error between y and ŷ. As evidenced, the absolute difference is small
for all aggregates and data sets and continues to drop as more queries are used for training.
The accuracy obtained is similar to VerdictDB’s with ML-AQP having lower relative error
for COUNT. In addition, we stress the fact that we are able to predict the responses for MIN
and MAX that to our knowledge are not supported by most AQP systems. In addition, as the
number of queries increase, we see a drop in relative error suggesting that more accurate
predictions can be obtained. Overall, the results of this experiment show that ML-AQP is
able to support a wide variety of aggregates over a diverse set of data sets.
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Accuracy on error estimation

We study the effectiveness of the prediction intervals constructed using QR. For this experi-
ment we train two LightGBMmodels on quantile loss, with parameters n estimators=

1500 and l rate= 0.001. We set t = 0.95 and train the two models using alpha= 1 − t
and alpha= t. This effectively creates a prediction interval that would ideally provide a
coverage rate of 90%. Coverage rate is used in other work to assess prediction intervals
[82, 45] and is essentially an empirical estimate of the predictions that will fall within the
proposed interval. It is computed using a held-out set of queries. Specifically, the two mod-
els generate responses for ŷ5th and ŷ95th . We test each true value y on ŷ5th ≤ y ≤ ŷ95th and
report the ratio of queries where the condition is true. We used the queries of Instacart
and conduct this experiment on three different AFs COUNT, SUM, AVG.
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Figure 2.15: Coverage Ratio for different AFs. Horizontal line drawn at 90%

The results in Figure 2.15 confirm, that empirically a value lies within the interval, provided
by QR estimates, by an estimated probability > 0.9. In short, using QR, ML-AQP is able
to provide good probabilistic intervals for the true answer. Using this interval the user can
choose whether they trust the prediction or they wish to get a more accurate estimate using
an S-AQP or the data warehouse engine.

2.6.6 Storage

For this experiment, we measure the Storage overhead of ML-AQP. At the end of the Training
phase we deploy ML models at analysts devices or a central device. Measuring the storage
overhead and ensuring that this is adequately small is of great importance. We expect orders
of magnitude smaller storage footprint than sampling based AQP engines as we neither store
any of the data nor any of the queries used for training. We initially examine how much
memory is required by a model with increased complexity. The main factor contributing to
the size of the selected ML models (GBMs) is the number of trees and their depth.
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Figure 2.16 shows an increase in the total storage required by an increasing number of trees.
For conducting the experiments over Instacart and TPC-H the number of trees never
exceeded 1700 with some AFs requiring as little as 100 trees. ML-AQP requires additional
storage for encoding categorical values and for caching values obtained from queries with
GROUP-BY clauses. For instance for Instacart, there are 50, 000 categorical values and
ML-AQP requires an extra 4MB (on top of the storage required by the models). This cost
increases linearly as the number of labels increase. Accounting for all of this and even any
required modules by the implementation of ML-AQP still does not match the storage over-
head required by sampling-based AQP. To put this in context, Instacart requires 2.4GB
of storage for its tables. To sample its main fact tables orders and order products

at 1%, VerdictDB required 1.8GB in total. On the other hand, ML-AQP requires a mere
15.5MB to cover the aggregate queries issued against Instacart, this includes all mod-
els and catalogues. Given this information, we can safely assert that ML-AQP is extremely
light-weight and can easily reside in main memory during analysis.

2.6.7 Sensitivity Analysis

In this section of our experimental analysis, we study a variety of variables contributing to the
accuracy of our solution. For these experiments, we use the synthetic dataset to control
the number of attributes and predicates set. Queries with meta-vectors up to 200, m ∈ R200,
are executed over uniform spaces with the number of set predicates up to 50. All predicates
are numerical and each query vector is associated with a response. The predicates essentially
define range queries over the respective columns. To put this in perspective, real workloads
expect a median number of columns selected in a query around 8 [70] with a more recent
estimate reporting that 90% of queries use around 1 − 6 [69] columns with a maximum
reaching 12. We increase the number of predicates and columns to study the effects on
accuracy. We initially train the models on a constant number of queries 10, 000 and vary
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Figure 2.17: Relative Error (y-axis) measured across different aggregates with an increasing
number of columns/attributes (x-axis) and a varying number of predicates set randomly.

the number of predicates and columns/attributes. In addition, we test different aggregates,
COUNT, SUM, MEAN/AVG and MAX, to examine their predictability. In essence, ML-AQP is
agnostic to what kind of aggregate is being predicted, to ML-AQP an AF applied over an
attribute is a response variable to which it tries to identify patterns that can help it minimize
the loss L(y, ŷ).

As can be seen in Figure 2.17, the relative error increases with respect to the number of
columns and predicates. Although there is not a notable increase (2%), we can attribute this
to the fact that more queries might be needed to learn a more complex space. As the dimen-
sionality of the space (number of columns) increases, the number of predicates increasingly
restricts the sub-spaces defined by the queries. In addition, For MEAN and MAX, we do not
observe large differences in relative error. Closely, examining the workloads we notice that
the Coefficient of Variation (CoV), defined by the standard deviation to the mean ration: σ

µ

is 0.08 for the response y of MEAN and 0.01 for the response MAX. Where the CoV shows
the extent of the variability in relation to the mean. A CoV value closer to 1 indicates high
variability. Therefore, ML-AQP might be able to learn their distributions with less queries.

Figure 2.18 shows how relative error decreases as the number of queries that a model is
trained on increases. For all aggregates, we notice that the benefit of a larger number of
queries, diminishes and nothing more can be learned. This provides an approximation to
the number of queries needed to model the specific aggregates under this workload. It also
denotes that after exceeding a certain number of queries, we should then focus on the com-
plexity of our model to further decrease the relative error. In addition, for MEAN and MAX,
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Figure 2.18: Relative Error (y-axis) measured across different aggregates with an increasing
number of queries (x-axis) used for training.

we see high standard deviation for relative error across settings, especially when the number
of queries is small. This advises us that as the number of queries is small, relative error is
largely determined by the complexity of the workload (dimensionality, sparsity). However,
as more and more queries are being used to train the models this effect fades away.

2.7 Conclusions

In this chapter we described ML-AQP, a QDL based, AQP system. ML-AQP offers a comple-
mentary approach to that of sampling-based AQP engines. The salient feature of ML-AQP is
that it learns ML models over a set of previously executed queries instead of developing mod-
els or samples over (the potentially) massive base tables. The models are extremely compact
and can predict the answers of future queries with small relative errors. Specifically, queries
are transformed into a custom vectorized representation. Representing the queries and their
answers as vectors allows training ML models that learn patterns to help them predict the
response of future unseen queries. ML-AQP can offer orders of magnitude speedups in large
deployments and he provided answers can be bounded by prediction intervals with high prob-
ability constructed by QR models. Moreover, a large fraction of aggregate queries, including
MIN,MAX (which most AQP systems have struggled to address) can be supported along with
GROUP-BYs. In general, there is no restriction to the aggregate function used. Our results
show that ML-AQP can ensure low errors while introducing large efficiency gains with small
memory/storage footprints, and supporting all aggregate functions. Finally, this shows how
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QDL and ML in general can be incorporated into AQP without utilising any of the data.
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Chapter 3

Query-Driven Explanations for
Exploratory Analytics

3.1 Introduction

In this chapter we depart from the notion of incorporating QDL for AQP and show how this
technique can be utilised to offer other kinds of functionality. In the era of big data, analysts
wish to explore and understand data in an efficient and effective manner. The typical explo-
ration procedure followed by analysts is rather ad-hoc and domain specific, but invariantly
includes the fundamental step of exploratory analysis [66]. Exploring data spaces/regions is
central for testing hypotheses, building predictive models, modeling data trends, etc.

To this end, AQs, e.g. queries that include aggregate functions such as COUNT, SUM, AVG,
play a key role in exploratory analysis, as they summarize data regions of interest. The
regions are often defined using query range operators. A range operator limits the number of
returned rows (tuples/data items) by restricting the result set to rows within a given region.
Using such summaries, analysts decide whether a data region is of high importance and
whether they should continue exploring in this direction. In addition, the importance of AQs
in data exploration is obvious as almost any operation can be described as a collection and/or
combination of AQs. For instance, histogram construction can be achieved by executing
a number of AQs using range queries. Extracting descriptive statistics for sub-spaces in a
dataset, such as various moments (mean, variance, skewness, kurtosis) can also be described
by such AQs.

However, AQs return scalars (single statistics/single values) conveying little information for
further explaining the underlying data subspace defined by the retrieved tuples/data items.
For instance, imagine determining whether a particular geographical region is of interest,
depending on the number of persons, within this region, having relatively ‘high’ income. If
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this number for a particular subspace is e.g., 273, then what does this value mean and/or

what other information one could extract by this statistic? If the selected region, was less or
more selective, then how would this statistic change? In addition, if the analyst wanted to
identify the regions with the maximum/minimum statistic then a number of additional AQs
would have to be executed. To answer such exploratory questions and enhance analysts’
understanding of the queried subspace, one needs to issue more queries to further explore
nearby regions.

In the beginning of the exploration process, the analyst has no holistic understanding of the
data space, that would steer them in the right direction with respect to which and how many
queries to issue next. Therefore, further exploration becomes ad-hoc, wandering, unsystem-
atic, and uninformed. This might reflect additional cost (e.g., database access, additional
computation and extra query processing cost) due to the execution of possibly redundant
queries since no systematic guidance is provided to the analysts.

Our goal is to explain how an AQ result over a data subspace is derived. This will help
analysts infer the potential impact of a change in the query parameters that defines the
queried subspace. The parameters defining a subspace are essentially the predicates in an
AQ. A convenient way to represent how a statistic is derived (in terms of compactly and
succinctly conveying rich information) is by adopting a statistical regression function. A
regression function describes how an output depends upon independent variables (input) and
shows the contribution of each one of those variables to the output. Let y be the output
and x ∈ Rd be the independent variables. Then, using linear regression we can obtain the
function y = wTx + b, where w ∈ Rd are the coefficients which dictate how the output
y changes with respect to the input x and b ∈ R is the intercept. It should be noted here
that in the model definition of the regression function, we add the inherent Gaussian noise
which is independent on the independent variables; which we deliberately omit for reasons
of simplicity in light of introducing the concept of Query-Driven explanations.

For example, we can derive a regression function that explains how the average (mean)
household income for each region is generated, based on the size of the region. Thus, the
resulting function can inform the data scientists as to how influential the size of a region
is and how different results are generated across different subregions. This functionality is
expected to allow the discovery of interesting patterns during exploratory analytics. How-
ever, deriving such regression functions is non-trivial. In this chapter, we propose a novel
framework based on QDL, which explains how AQ results are derived.
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Figure 3.1: The range predicates in an AQ represent the input parameters of a black-box
function that generates its result.

3.2 Problem Defintion & Motivating Examples

Consider that every result of an AQ is obtained by a black-box aggregate function (also
called the true function) as shown in Figure 3.1. An initial SQL query (AQ) is issued and is
processed by the DBMS. This AQ defines a region bounding dimensions/attributes (x1, x2).
The contained rows residing in that region are used to compute an aggregate/statistic on
dimension x3. In this particular example we attempt to explain how the aggregation function
over x3 varies with the x1 and x2. Each aggregate function in an AQ can be represented by a
different black-box function that accepts a set of input parameters and maps to a result. The
structural form of this black-box function is unknown. We can only observe the result given
a set of inputs as shown in Figure 3.1. In this case, the inputs are query parameters defining
an AQ. Given a number of such observations (indicated by green vertical lines in Figure
3.1), we can adopt QDL to approximate the structural form of an aggregate function, using
models that are highly interpretable (such as linear regression). However, the challenges are
manyfold :

1. Identifying valid, accurate and interpretable models; The models need to have a valid
structural form, they have to accurately mimic the true function in their responses and
lastly they need to have an interpretable structure that an analyst can understand.

2. Placing models over the right subspaces to maximize accuracy; Over the next sections,
we will describe how global models aiming to explain a complete data space fall short,
and how we mitigated this problem by building local models over smaller regions.

3. As new queries are processed we need to continue updating the models to reflect
changes in aggregate responses.
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Figure 3.2: A number of AQs represented as rectangles in the 2D space. Each coordinate is
given as a sum of the corresponding dimension and its length.

4. Identifying the right metrics to holistically evaluate the suggested approach.

The challenges mentioned above and additional obstacles that we encountered, while ad-
dressing these challenges, are discussed in the following sections. However, to make our case
more concrete, we present some motivating examples that should help the reader throughout
this chapter.

3.2.1 Motivating Examples

We focus on AQs with a range selection operator because of their wide-applicability in
analytics tasks. A range operator is defined by a hyper-rectangle in multi-dimensional space.
An example of a series of AQs is shown in Figure 3.2. The range predicates of an AQ are used
to represent rectangles. Such operator is evident in many applications including: location-
based search, e.g searching for spatially-close objects, such as astronomical objects, objects
within a geographical region etc.

Example 1: Crimes Data. Consider analyzing a dataset, containing recorded incidents with
attributes such as their location and the type of incident (homicide, burglary, etc.). One such
example dataset is the Chicago Crimes Dataset [6]. A typical exploration query is to issue
an AQ with a range operator:

SELECT COUNT(*) AS y FROM Crimes AS C

WHERE C.X > $X − $Θ1 AND C.X < $X + $Θ1 AND

C.Y > $Y − $Θ2 AND C.Y < $Y + $Θ2;

This query can be represented by a rectangle with a 2D center and two variables representing
the length of the first and second dimension. The 2D center of the rectangle is defined by the
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point ($X, $Y) and length by $Θ1, $Θ2 in both dimensions. Such AQ returns the number
of incidents in a specific area of interest corresponding to an arbitrary neighborhood; see
Figure 3.2. Using several such AQs, we can build regression functions with input variables
the AQ parameters: ($X, $Y, $Θ1, $Θ2) and output y, i.e., the count statistic. The estimated
regression coefficients would then provide a way for the analysts to infer the potential impact
query parameters will have on the outcome. Therefore, the analysts have an understanding of
which AQs will provide answers tailored to their interests. For instance, if they are interested
in high crime index (increased output y), then the regression coefficients can inform them as
to which query to execute next by changing the corresponding query parameters.

Example 2: Telecommunication Calls Data. Consider a data scientist tasked with identi-
fying time-frames having high average call times. They need to issue AQs of varying-sized
ranges over time, such as the following range-AQ:

SELECT AVG(Call_Time) AS y FROM TCD AS C

WHERE C.Time BETWEEN

$X − $Θ AND $X + $Θ

Discovering the aforementioned time-frames, without our proposed explanations, can be a
daunting task as multiple queries have to be issued, overflowing the system with a number
of AQs. The queries, could take minutes or hours to execute depending on the data size and
throughput of the system. By using our proposed explanation function, the analyst could
carry out their task with highly accurate answers. This is achieved by plugging in different
query parameters to the given explanation function. Beyond that, analysts could formulate
an optimization problem that could be solved using our methodology. Given a differentiable
aggregation function, the maxima and minima points can also be estimated, thus, the analysts
can easily discover the query parameters at which the AQ result is maximized or minimized.
Again, such functionality is very much lacking and is crucial for exploratory analytics.

3.3 Background & Related Work

Our overarching aim is to provide explanations for AQs, whose efficient computation has
been a major research interest [63, 33, 37, 142, 65, 20, 19, 137, 12, 99], with methods ap-
plying sampling, synopses and ML models to compute such queries. Compared to our work,
the above works are largely complementary. One distinguishing feature is that our primary
task is to explain the AQ results and do so efficiently, accurately, and scalably with respect
to increasing data sizes.

Explanations for AQs can be linked with the well-known topic of tracking provenance in
query results. Cheney et al. [36] describe the notion of Data Provenance. Specifically, they
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mention three kinds of definitions under the umbrella of Data Provenance:

1. Why Provenance : Why a result is what it is.

2. Where Provenance : Where did the result come from ? With the answer often being
the location of rows in a dataset, either on disk or the row number.

3. How Provenance : How was the result generated ?

To answer such questions, researchers usually track the underlying data contributing to the
result. Thus, by creating a summary of the underlying data contributing to the result, they
are able to construct an answer to the various provenance questions. A number of authors
have extended this and introduced the concept of explanations. Their aim is to construct
explanations on a variety of domains to help users gain insight for various tasks. To this end,
the main objective of this chapter is to explore ways to assist analysts in understanding and
analyzing subspaces by explaining AQs as efficiently and effectively as possible by utilizing
QDL.

Explanation techniques have emerged in multiple contexts within the Data Management and
ML communities. One of such contexts is to provide explanations, represented as predicates,
for simple query answers as in [43, 108, 91]. Similarly, other authors have extended this to
probabilistic and scientific databases [68], [141]. Explanations have also been used for in-
terpreting outliers in both in-situ data [140] and in streaming data [27]. The authors first
detect outliers, either manually or automatically, and then generate predicates or attribute-
value combinations that explain the outliers set. In [94], the authors built a system to provide
interpretations for service errors and present the explanations visually to assist debugging
large scale systems. In addition, the authors of PerfXPlain [73] created a tool to assist users
while debugging performance issues in Map-Reduce jobs. Other frameworks, provide expla-
nations utilized by users, to locate any discrepancies found in their data [134], [31], [135]. A
recent trend, is in explaining ML models for debugging purposes [78] or to understand how
a model makes predictions [105] and conveys trust to users using these predictions.

Given the above, one can detect three central pillars emerging around the concept of explana-
tions. When working with explanations, one has to determine the (i) domain, (ii) the scalabil-
ity and efficiency of the approach in generating explanations, and (iii) how the explanation is
represented. For instance, in [27] the domain is in outliers analysis, the explanations are rep-
resented using attribute-value combinations, and the approach is to use statistical structures

(heavy hitter sketches [37]) that allow the analysis of streaming values.

For the work described in this chapter, we focused on explanations for AQs because of the
AQs’ wide use in exploratory analytics [137]. Hence the domain is AQ explanation within the
context of exploratory data analysis. Both [140] and [16] focused on explaining aggregate
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Figure 3.3: Real workload cluster analysis (Source SDSS [128]); x1 and x2 are parameters of
a range query. The range queries form clusters meaning that intra-cluster queries are similar,
thus can be explained by similar explanation functions.

queries. However, the former focused on explaining the existence of outliers in aggregate
queries and the latter on tracking the ‘how?’ provenance of AQs using semi-ring formalism.
Our major difference is that AQs are explained solely based on the query input parameters
and query results of previously issued and incoming queries. Thus, there is no direct data
access, which both works do [140, 16]. Direct data access, makes generating explanations
slow and inefficient for large-scale datasets. In addition, using the formalisms from [16] is
impossible, within our defined context, as these formalisms, would be incomprehensible and
in need of a provenance query language, as explicitly stated in [16].

Furthermore, scalability and efficiency are particularly important. Computing explanations
is proved to be an NP-Hard problem [134] and proposed methods can take a long time
[140, 108, 43] even with modest datasets. An exponential increase in data size implies a
dramatic increase in the time to generate explanations. The framework proposed in this
chapter does not suffer from these limitations and is able to construct explanations in mil-
liseconds even with massive data volumes. This is achieved due to two principles: First,
on workload characteristics. Workloads contain a large number of overlapping queried data
subspaces, which has been acknowledged and exploited by recent research e.g., [137],[99],
STRAT[32], and SciBORQ [123] and has been found to hold in real-world workloads in-
volving exploratory/statistical analysis, such as in the Sloan Digital Sky Survey and in the
workload of SQLShare [67]. This fact is shown in Figure 3.3. Using the Sloan Digital Sky
Survey we extracted a number of range queries and their query parameters. In Figure 3.3, we
have plotted the values found in the range queries and denote the existence of clusters around
certain values. This fact leads us to believe the existence of overlapping ranges in queries
and the existence of disjoint sets of queries that might share similar underlying black-box
functions.

Based on this fact our second key principle is that, we rely on a novel framework that ex-
ploits the workload characteristics to optimally identify valid AQ explanation functions in an
efficient and accurate manner.
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The adopted explanation representation is in the form of regression functions. Recent works
[92, 113] use this representation as it is highly parsimonious and can pinpoint the source of
anomalies in aggregate results. In [92] this is used to explain data records and not AQs. In
addition, past AQs are not considered for building regression functions. Therefore our work
is applied within a different domain.

3.4 Explanation Representation

In this section we present the overall idea leading to the creation of the proposed framework.
This acts as an introduction to the concept of explanations and brief overview of the sug-
gested ML models that are used to produce explanations for aggregate queries. We start off
by describing the queries and their answers, which we seek to explain. Then we move on
to discuss about potential representations of the resulting explanations. Finally, we describe
the process of finding an explanation for the query result and discuss different approaches.

3.4.1 Query Vectorial Representation

Let a = [a1, . . . , ad] ∈ Rd denote a random row vector (data point) in the d-dimensional data
space D ⊂ Rd. A dataset B contains N random row data vectors B = {a}Ni=1; |B| = N

indicates the cardinality of the set B.

Definition 3.4.1. (Range Query) A range query is defined as the vector: q = (x,θ), x ∈
Rd,θ ∈ Rd

+. This vector q defines a hyper-rectangle in multi-dimensional space as a series
of conjunctions of predicates, i.e

∧d
i=1(xi − θi ≤ ai ≤ xi + θi).

Definition 3.4.2. (Data Subspace) Given a range query, a data subspace D(x,θ) is the convex
subspace of Rd, which includes data vectors D(x,θ) = {a ∈ Rd|∧d

i=1(xi − θi ≤ ai ≤
xi + θi)}.

Definition 3.4.3. (Query Similarity) The p-norm (Lp) distance between two query vectors
q and q′ from R2d for 1 ≤ p < ∞, is ‖q − q′‖p = (

∑d
i=1 |qi − q′i|p)

1
p and for p = ∞, is

‖q− q′‖∞ = maxi=1,...,d{|qi − q′i|}.

Definition 3.4.4. (Aggregate Query) Given a data subspace D(x,θ) an AQ q = (x,θ) with
input center x and vectorial length θ, an aggregate function, is represented via a regression
function f : Rd×Rd

+ → R over D(x,θ), that produces a query response variable y = f(x,θ)

which is the result of an AQ. We notate with Q ⊂ R2d the query vectorial space.
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Figure 3.4: Different Types of Explanation Functions.

3.4.2 Functional Representation of Explanations

The defined AQ returns a single scalar value y = f(x,θ) to the analysts. We seek to explain
how such values are generated by finding a function f : Rd×Rd → R that can describe how
y is produced given an ad-hoc query q. We first discuss possible forms of the said function.

An approximate explanation function can be linear or high-order polynomial to approximate
non-linear functions. When using high-order polynomial functions for our explanations, the
analyst can no longer interpret the structural form of the model because of all the added
terms. In addition, by using high-order polynomials we make the assumption that the order
of the polynomial is known. On the other hand, adopting a single linear regression function
will be an inaccurate representation of f . A linear regression function, increases/decreases
infinitely as the input increases/decreases. Therefore, it is impossible to accurately represent
non-linear functions with this choice.

Therefore, choosing the right family of functions is non-trivial. We choose to employ multi-
ple locally-linear functions to capture the possible inherent non-linearity of f as we vary the
input query parameters, i.e., x and θ vectors.

We use a particular family of locally-linear functions, called Piecewise-Linear Regression
(PLR). The approximation of f , using PLR, addresses the above shortcomings by finding
the best, locally-linear regression functions. Using PLR, we can approximate true functions
which are linear or non-linear in a coarse grained manner that is more interpretable than a
high-order polynomial. The analyst is simply exposed to the different locally-linear function
under a given segment. Examples of all three families of functions considered, are shown in
Figure 3.4. As witnessed from Figure 3.4, PLR is essentially composed of multiple linear
functions.
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Definition 3.4.5. (Explanation Function) Given an AQ q = (x,θ), an explanation function
f(x,θ) is defined as the fusion of local piecewise linear regression functions f ≈∑ f̂(x,θ)

derived by the fitting of the local functions f̂ over similar previously executed AQ queries
q′ = (x′,θ′) to the AQ q.

Although we make the choice of using PLR functions because of their high interpretability
and flexibility to fit both linear and non-linear functions, our framework can also use other
ML models that can provide a method of estimating the importance of the input parameters.
The optimization problems, to be defined in the upcoming sections, can be adapted to work
with such models. However, as we will elaborate later, the importance of the query param-
eters only show the relative importance at a particular subspace and not necessarily how the
output will change with respect to a change in the input query parameters.

3.5 Explanation Approximation Fundamentals

The challenge in approximating the underlying function f over the data subspaces defined
by an AQ, lies in seeking local regression functions. These functions should explain the way
query result y varies as query vector q changes without access to the underlying data, as
this would harm efficiency. We build explanation functions by only leveraging previously
executed and incoming AQs. In this section, we describe the methodology followed, for
accurately identifying such PLR functions.

3.5.1 Explanation Approximation

We utilize AQs to train statistical learning models that are able to accurately approximate the
true explanation function f for any possible query.

Formally, given a well defined explanation loss L(f, f̂) between the true function f and its
approximation f̂ , we seek the optimal approximation function f̂ ∗ that minimizes the Ex-
pected Explanation Loss (EEL) for all possible queries:

f̂ ∗ = arg min
f̂∈F

∫

x∈Rd

∫

θ∈Rd
+

L(f(x,θ), f̂(x,θ))p(θ,x)dθdx, (3.1)

where θ is strictly positive as it defines the data subspace covered by the query’s hyper-
rectangle and p(x,θ) is the probability density function of the query vectors q ∈ Q. Eq(3.1)
is an optimization problem, where its solution gives us the optimal approximation of the true
underlying function.
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However, as stated earlier, accuracy will be problematic as it seems intuitively wrong that a
single function, f̂ ∗, can explain all queries at an arbitrary location x with an arbitrary length
θ. Such function is innaccurate because analysts issue queries over different subspaces of
interest. Consider the Crimes Data example, data analysts might issue AQs with a different
length and a fixed center, to compare whether a statistic over a small neighbourhood increases
as the neighbourhood size varies. The result of these AQs, might vary abruptly. In addition,
having a fixed length and a varying center x will almost surely produce different output as
the analysts are essentially querying different fixed size areas. Even with the use of PLRs,
we found that variance in the output was still large enough that the produced explanations
were not accurate enough. Therefore, having a single function acting as a global explanation
for all possible queries is not an ideal approach.

Hence, we introduce local approximation functions f̂1, . . . , f̂K that collectively minimize the
objective in (3.1). Thus, the objective is no longer to find a global approximation to the true

function for all possible queries. Instead, we fit a number of locally optimal functions, where
each of them can explain a subset of possible queries. We refer to those models as Local
PLR Model (LPM)s.

LPMs, are fitted using AQs forming a cluster of similar query parameters. For each uncov-
ered cluster of AQs, we fit (at least) an LPM. Therefore, if K clusters are obtained from
clustering the query vectorial space Q, then K LPMs are fitted. Intuitively, this approach
utilizes queries that are similar to each other within the same cluster. It relies on the hy-
pothesis that these queries will tend to have similar results. So in turn, the underlying true

function generating their outputs will have similar statistical structure. It will be shown that
the resulting fused explanation is more accurate, as the reduced variance in the input query
parameters effectively reduces the variance in the result y. This was empirically shown from
our experimental workload.

Formally, to minimize the EEL, we seek K local approximation functions f̂k ∈ F , k ∈ [K]

from a family of linear regression functions F , such that for each query q belonging to the
partition/cluster k of the query space, notated as Qk, the summation of the local EEL is
minimized:

J0({f̂k}) =
∑

f̂k∈F

∫

q∈Qk⊂R2d

L(f(q), f̂k(q))pk(q)dq (3.2)

where pk(q) is the probability density function of the query vectors belonging to a query
subspace Qk. Thus, J0 forms a generic optimization problem. Note: The explanation loss

L(f, f̂) represents the discrepancy of the actual explanation function f due to the approxi-
mation of explanation f̂ . For evaluating the loss L, we propose two different aspects: (1) the

statistical aspect, where the goodness of fit of the explanation function is measured, and (2)
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Figure 3.5: The three different modes of the proposed framework. Each resulting output
from each mode is pipelined into the next.

the predictive accuracy denoting how well the results from the true explanation function can
be approximated using the explanation function; refer to Section 3.9 for these metrics.

3.5.2 Framework Overview

The proposed methodology for computing explanations is split into three modes (Figure 3.5).
The Pre-Processing Mode identifies the optimal number of LPMs and an initial approxima-
tion of their parameters using previously executed queries. The additonal, elements sug-
gested by Figure 3.5 are explained in the following sections. The purpose of Pre-Processing

Mode is to jump-start our framework. In Training Mode, the LPMs’ parameters are incre-
mentally optimized to minimize the objective function (3.2) as incoming queries are pro-
cessed in an on-line manner. In Explanation Mode, the framework is ready to explain AQ
results via the obtained LPMs.

Pre-Processing Mode

A training set T = {(q, y)1, . . . , (q, y)m} of |T | = m previously executed queries q and
their corresponding results, y, is used as input to the Pre-Processing Mode. The central
task, is to cluster/partition the query space Q based on the observed previous queries q ∈ T
into K clusters, also referred to as subspaces Qk. Within each cluster, queries with similar
centers x are grouped together. Each cluster is then further partitioned into L sub-clusters,
as queries with similar centers x are separated by their θ parameter values. Therefore, the
approach followed, is a hierarchical query space partitioning, with the first level partition,
with respect to center x and second level partition with respect to parameter θ. Where each
Level-1 (L1) cluster Qk, k = 1, . . . , K is associated with a number of Level-2 (L2) sub-
clusters Ukl, l = 1, . . . , L.

For each L1 cluster Qk and L2 sub-cluster Ukl, we assign an L1 representative, hereinafter
referred to as Location Representative (LR) and an L2 representative, hereinafter referred to
as Region Representative (RR). The LR converges to the mean vector of the centers of all
queries belonging to L1 cluster Qk, while the associated RR converges to the mean length
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Figure 3.6: The hierarchical quantization scheme provides levels of partitioning for the
multi-dimensional center x and region lengths θ. Each LPM is associated and trained with
the data points included in a cluster in L2.

value of the lengths of all queries, whose lengths values belong to Ukl. After the hierarchical
partitioning of the query space, the task is to associate an LPM f̂kl(q) with each L2 sub-
cluster Ukl. This process is nicely summarized in Figure 3.6. At L1 we have the partitioned
Query Space Q = Q1 ∪ Q2, . . . ,Qk−1 ∪ Qk. Each one of the partitions is associated with a
sub-cluster at L2 which are also associated with an LPM.

Training Mode

This mode optimally adapts the parameters of LRs and RRs, obtained from the Pre-Processing

mode, in order to minimize the objective function in (3.2). This optimization process is
achieved incrementally by processing each new pair (qi, yi) in an on-line manner. Con-
sulting Figure 3.7, in Training mode, each incoming query qi is mapped to the closest LR
corresponding to an L1 cluster. Since, the closest LR is associated with a number of RRs, the
query is assigned to one of those RRs, and the associated representatives are adapted. After
a pre-specified number of processed queries, the corresponding LPM f̂kl(q) is re-adjusted to
account for newly associated queries.

Explanation Mode

In this mode, no more modifications to LRs, RRs, and the associated LPMs are made. Based
on the L1/L2 representatives and their associated LPMs, the model can explain AQs. Figure
3.7 sums up the result of all three modes and how an explanation is given to the user. For a
given query q, the closest LR;wk is initially obtained and then, based on a combination of
the RRs;(uk,1, . . . ,uk,3) and their associated LPMs;(f̂k,1 . . . , f̂k,3), returns an explanation as
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a fusion of diverse LPMs functions derived by the L2 level. We elaborate on this fusion of
L2 LPMs in Section 3.8.

3.6 Optimization Problems Deconstruction

In this section, we deconstruct the generic optimization problem described in Eq. 3.2 into two
distinct phases which can be optimized individually. We then explain how all phases fit back
together. In addition, all three introduced modes, Pre-Processing, Training, Explanation, are
discussed in more detail and we elaborate on the specific algorithms used for each task.

3.6.1 Optimization Problem 1: Query Space Clustering

The first part of the deconstructed generic problem solves the need to find optimal LRs and
RRs, as such optimal parameters guarantee better grouping of queries thus better approxima-
tion of true function, during the Pre-Processing mode. The LRs are initially random location
vectors wk ∈ Rd, k = 1, . . . , K, and are iteratively refined by a clustering algorithm until
they converge to the mean vector of the associated query space Qk. Formally, this method
converges to the optimal mean vectors W = {wk}Kk=1, which minimize the L1 Expected
Quantization Error (L1-EQE):

J1({wk}) = E[‖x−w∗‖2;w∗ = arg min
k=1,...,K

‖x−wk‖2] (3.3)

where x is the location of query q ∈ T and wk is the mean center vector of all queries q ∈ Qk

associated with wk. We adopt the K-Means [61] clustering algorithm to identify the LRs
based on the queries’ centers x. The choice of K-Means is mainly due to its scalability to
many training examples and its simplicity. A limitation of theK-Means algorithm is the need
to specify parameter K, which is the number of LR representatives. Therefore, we devised
a simple strategy to find a near-optimal K. By running the clustering algorithm iteratively,
each time increasing the input parameter K for the K-Means algorithm, we are able to find
a K that is near-optimal. In this case, an optimal K would sufficiently minimize the Sum of
Squared Quantization Errors (SSQE), which is equal to the summation of distances, of all
queries from their respective LRs. The strategy is elaborated in Algorithm 1.

SSQE =
n∑

i

min
wk∈W

(||xi −wk||22) (3.4)

The algorithm is fairly straight-forward and is in-line with the ”Elbow Method” in approx-
imating an optimal K for K-means. It essentially performs several passes over the data,
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applying the algorithm and obtaining an SSQE. It stops when a pre-defined threshold ε > 0

has been reached. We note that there are multiple such algorithms available in the literature
[60]. However, this is not part of our focused work thus a simple solution was preferred to
alleviate this problem.

Algorithm 1 Estimating a near-optimal K
Input: ε; K . initial K; predefined improvement threshold.
W = ∅; X = {xi}mi=1 : x ∈ T . set of LRs; query centers T
while TRUE do
W ← KMeans(K ,X ) . call K-Means algorithm with K LRs
SSQE←∑m

i=1 min
wk∈W

(‖xi −wk‖2) . Calculate SSQE

if ∆|SSQE| > ε then . improvement
K ← K + 1 . increase K

else
break . no more improvement; exit

end if
end while
Return: W . set of K LRs

We also utilizeK-Means over each L2 cluster of queries created by the L1 query partitioning
phase. Formally, the objective is to minimize the conditional L2 Expected Quantization Error
(L2-EQE):

J1.1({uk,l}) = E[‖θ − u∗‖2;u∗ = arg min
l=1,...,L

‖θ − ul‖2], (3.5)

Therefore, for each LR w1, . . . ,wK , we locally run the K-Means algorithm with L number
of RRs, where a near optimal value for L is obtained following the same near-optimal strat-
egy outlined in Algorithm 1. With SSQE being computed using u and θ instead of (w,x).
Specifically, we identify the L2 RRs over the lengths of those queries from T whose closest
LR is wi. Then, by executing the L-Means over the length values from those queries we
derive the corresponding set of region representatives Ui = {ui1, . . . ,uiL}, where each uil

is the mean vector of lengths in the l-th L2 sub-cluster of the i-th L1 cluster. Thus the first
part of the deconstructed optimization problem can be considered as two-fold, as we wish to
find optimal parameters for both LRs and RRs that minimize (3.3) and (3.5).

3.6.2 Optimization Problem 2: Fitting LPMs per Query Cluster

The second part of the deconstructed generic optimization problem has to do with fitting op-

timal functions such that the local EEL is minimized given the optimal parameters obtained
from the first part of the deconstructed problem. We fit PLR functions f̂kl(q) for each L2
sub-cluster Ukl. The fitted PLR, captures the local statistical dependency of the input param-
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eters, given that x is a member of the L1 cluster represented by wk and θ of L2 represented
by ukl. Given the objective in (3.2), for each local L2 sub-cluster, the approximate function
f̂kl minimizes the conditional Local EEL:

J2({βkl, λkl}) = Eθ,x[L(fkl(q), f̂kl(q))] (3.6)

s.t. wk = arg min
j∈[K]
‖x−wj‖22,

ukl = arg min
j∈[L]
||θ − ukl||22

conditioned on the closeness of the query’s x and θ to the L1 and L2 partioned query space
Qk and Ukl, respectively. Where {βkl, λkl} are the parameters of the PLR function f̂kl defined
in (3.7).

Remark 1: Minimizing objective J2 in (3.6) is not trivial due to the double conditional
expectation over each query center and length. To initially minimize this local objective,
we adopt Multivariate Adaptive Regression Splines (MARS) [48] as the approximate model
explanation function f̂kl. Thus, f̂kl has the following form:

f̂kl(q) = β0 +
M∑

i=1

βihi(q), (3.7)

where hi(q) are basis functions identified by a forward stepwise procedure. Essentially, this
creates M regression functions. The number M of linear regression functions is automati-
cally derived by MARS using a threshold for convergence with respect to R2(coefficient-of-

determination, later defined); which optimize fitting. Thus, guaranteeing an optimal number
of M linear regression functions. In total, K × L MARS functions, are used, for providing
explanations for the whole query space. Figure 3.7 illustrates the two levels L1 and L2 of
our explanation methodology, where each LR and RR are associated with a MARS model.

Using alternatives to LPMs

As described, we use MARS, which empirically performs really well and also has desirable
properties. We can derive the importance of features by their use in basis functions and their
coefficients. Because of its building procedure it can also eliminate terms that do not increase
predictive power. Thus the analyst can infer which parameters are not crucial in producing
the output of aggregate functions. However, the model choice should not be restrictive. Al-
ternative models that provide similar functionality can be used as well. Regression trees [83]
can also provide similar functionality as the importance of each parameter can be inferred by
its use in branches. In addition, simple Linear Regression models and their variants Ridge
[62], Lasso [47] are also good candidates as their coefficients provide intuitive explanations.
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Although in this case increased partitioning might be needed as the obtained clusters might
be non-linear with respect to the input parameters and output, as described earlier.

3.6.3 Optimization Problem 3: Putting it All Together

The optimization objective functions in (3.3), (3.5) and (3.6) are combined to establish a
generic optimization objective J0, which includes the estimation of optimal parameters that
minimize the L1-EQE and L2-EQE in J1 (L1) and J1.1 (L2), and the conditional optimiza-
tion of parameters in J2. In this context, we need to estimate the values of parameters in
W = {wk} and U = {ukl} that minimize the EEL given that our explanation comprises a
set of regression functions f̂kl. The generic optimization objective is to identify all parame-
ters from J1, J1.1, and J2 from Problems 1 and 2:

J3(W ,U ,M) = J1(W) + J1.1(U) + J2(M) (3.8)

with parameters:

W = {wk},U = {ukl},M = {(βi, λi)kl} (3.9)

with k ∈ [K], l ∈ [L], i ∈ [M ], which can be adapted online (as explained later) and will be
used for explaining AQ.

Remark 2: The optimization function J3 approximates the generic objective function J0

in (3.2) via L1 and L2 query partitioning (referring to the integral part of (3.2)) and via the
estimation of the local PLR functions referring to the family of function space F . Hence,
we hereinafter contribute to an algorithmic solution to the optimization function J3 approx-
imating the theoretical objective function J0.

3.7 Statistical Learning Methodology

In this section, a new statistical learning model is proposed, that associates the (hierarchi-
cally) partitioned query space with PLR-based explanation functions. Given the hierarchical
query space partitioning and LPM fitting, the Training Mode fine-tunes parameters in (3.9)
to optimize both J1, J1.1 in (3.3), (3.5) and J2 in (3.6). The three main sets of parameters
W , U , andM of the framework are incrementally fine-tuned in parallel using queries issued
to the underlying DBMS. These queries are issued online and the incremental process is as
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Figure 3.8: The Training Mode : A query-result pair is initially associated with an LR, RR
and LPM. The LR, RR parameters are adjusted online as each query is processed. An offline
adjustment step is triggered based on a threshold.

follows : (1) the analyst issues an AQ q = (x,θ); and (2) the DBMS answers with result y ;
(3) our framework exploits pairs (q, y) to train its new statistical learning model.

The Training Mode uses three steps and the complete process is shown in Figure 3.8. Firstly,
a query q is issued by an analyst to the DBMS and the query is associated with an L1, L2 and
LPM, using the assignment step highlighted in Figure 3.8. Next an On-line adjustment step
is performed, in which the LR and RR are gradually modified with respect to, the associated
incoming query in the direction of minimizing the said objectives. Finally, a retraining rule

is checked and if the rule is satisfied an off-line adjustment step conditionally fine-tunes any
LPM associated with any processed query during Training mode.

1. Query Assignment Step. For each executed query-answer pair (q, y), q is asscoiated
with its closest LR using only the query center x based on (3.3). Concretely we use (3.10) to
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identify the closest LR.
w∗ = arg min

i∈K
||wi − x||22 (3.10)

Obtaining the closest LR, w∗k, allows us to directly retrieve the associated RRs U∗k =

{u∗1k, . . . ,u∗Lk}. Finding the best RR in U∗k is, however, more complex than locating the
best LR. In choosing one of the RRs, we consider both distance and the associated predic-

tion error. Specifically, the prediction error is obtained by the LPM of each RR from the set
U∗k . Hence, in this context, we first need to consider the distance of query q to all of the RRs
in U∗k :

||θ − ukl||1,∀ukl ∈ U∗k , (3.11)

and, also, the prediction error given by each RR’s associated LPM f̂kl. The prediction error
is obtained by the squared difference of the actual result y and the predicted outcome of the
LPM, ŷ = f̂kl(q):

(y − f̂kl(q))2, l = 1, . . . , L (3.12)

Therefore, to assign a query q to an RR, we combine both distances in (3.11) and (3.12) to
get the assignment distance in (3.13), which returns the RR in U∗k which minimizes:

l∗ = arg min
l∈[L]
{z||θ − ukl||1 + (1− z)(y − f̂kl(q))2} (3.13)

The parameter z ∈ (0, 1) tilts our decision towards the distance-wise metric or the predic-

tion-wise metric, depending on which aspect we wish to attach greater significance.

Remark 3: Why incorporate prediction error? We could associate an incoming query with
the closest RR as is done with an LR. However, note that an explanation function may have
lower prediction error even though is not the closest (with respect to RR). Intuitively, this
holds true, as some function might be able to make better generalizations even if their RRs
are farther apart. Therefore, we introduce the weighted-distance in (3.13) to account for this
and make more sophisticated selections.

2. On-line Representatives Adjustment Step. This step optimally adjusts the positions
of the chosen LR and RR so that these parameters are informed by new queries. Their
positions are shifted using SGD [30] over J1 and J2 with respect to w and θ parameters in
the negative direction of their gradients, respectively. This ensures the optimization of both
objective functions. Theorems 1 and 2 present the update rule for the RR selected in (3.13) to
minimize the EEL given that a query is projected to its LR and its convergence to the median
value of the length of those queries.

Theorem 1. Given a query q = (x,θ) projected onto the closest LR wk∗ and RR uk∗,l∗ , the
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update rule for uk∗,l∗ that minimizes J2 is:

∆uk∗,l∗ ← αzsgn(θ − uk∗,l∗) (3.14)

Proof. We adopt the Robbins-Monro stochastic approximation for minimizing the combined
distance-wise and prediction-wise loss given an RR u, that is minimizing E(u) = z‖θ −
u‖1 + (1− z)(y− f̂(θ;w))2, using SGD over E(u). Given the t-th training pair (q(t), y(t)),
the stochastic sample E(t) of E(u) has to decrease at each new pair at t by descending in
the direction of its negative gradient with respect to u(t). Hence, the update rule for RR u is
derived by:

∆u(t) = −α(t)
∂E(t)

∂u(t)
,

where scalar α(t) satisfies
∑∞

t=0 α(t) =∞ and
∑∞

t=0 α(t) <∞. From the partial derivative
of E(t) we obtain ∆u ← αzsgn(θ − u). By starting with arbitrary initial training pair
(q(0), y(0)), the sequence {u(t)} converges to optimal RR u parameters.

α ∈ (0, 1) is the learning rate defining the shift of θ ensuring convergence to optimal position
and sgn(x) = d|x|

dx
, x 6= 0 is the signum function. Given that query q is projected on an LR

w∗k and on an RR, uk∗,l∗ , the corresponding RR converges to the local median of all length
values of those queries.

Theorem 2. Given the optimal update rule in (3.14) for an RR uk,l, it converges to the median
of the θ values of each dimension of those queries projected onto the L1 query subspace Qk

and the L2 sub-cluster Ukl, i.e., for each query q = (x,θ) with x ∈ Qk, it holds true for
ukl ∈ Ukl that:

∫ ukl
0

p(θ|wk)dθ = 1
2
.

Proof. Focus on one dimesion, and consider the optimal update rule in (3.14) for an RR u

and suppose that u has reached equilibrium, i.e., ∆u = 0 holds with probability 1. By taking
the expectations of both sides and replacing ∆u with the update rule from Theorem 1:

E[∆u] =

∫

R
sgn(θ − u)p(θ)dθ = P (θ ≥ u)

∫

R
p(θ)dθ − P (θ < u)

∫

R
p(θ)dθ = 2P (θ ≥ u)− 1.

Since ∆u = 0 thus u is constant, then P (θ ≥ u) = 1
2
, which denotes that u converges to the

median of length for those queries represented by L1 RL and the associated L2 RR.

Using SGD, θk∗,l∗ converges to the median of all length values of all queries in the local L2
sub-cluster in an on-line manner.
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3. Off-line Adjustment Step. The mini-batch adjustment step is used to conditionally re-
train the LPMs to reflect the changes by (3.14) in Uk parameters. As witnessed earlier, repre-
sentatives are incrementally adjusted based on the projection of the incoming query-answer
pair onto L1 and L2 levels. For the LPMs, the adjustment of hinge points and parameters
(βi, λi) needs to happen in mini-batch mode taking into consideration the projected incom-
ing queries onto the L2 level. To achieve this, we keep track of the number of projected
queries on each L2 sub-cluster Uk and re-train the corresponding LPMs f̂kl given a condi-
tionally optimal RR ukl. For every processed query we increment a counter. Once we reach
a predefined number of projected queries-answers, we re-train every LPM that was affected
by projected training pairs.

Remark 3: Why Pre-Processing and Training Modes ? A concrete explanation as to why
these two modes need to co-exist was not provided in the previous sections. The curious
reader might notice that with just the Pre-Processing Mode we could do a pretty good job at
creating good enough LPMs to explain any new possible queries. However, with just a Pre-

Processing mode we eliminate the possibility of adjusting as new query-answers pairs are
processed. In addition, it does not take into consideration the prediction error thus it might
lead to inaccurate models which only consider the similarity of query patterns and not the
predictive power of LPMs. Moreover, Training Mode cannot exist on its own as the LPMs
need a number of queries to be initialized hence the need for a Pre-Processing step.

3.8 Explanation Serving

After Pre-Processing and Training, explanations can be provided for unseen AQs, i.e., AQs
which have never been used before during training or executed before over the DBMS data.
The explanations are based on the associated LPM found using the AQ’s input parameter
values. The process of returning an explanation function to the user is as follows: firstly,
the analyst issues a query q, q /∈ T , then, the closest LR, RR representatives are located,
and finally, the associated LPM is returned to the analyst used for explanation, as will be
discussed later.

As with Training Mode, the closest LR is identified using (3.10) and for the closest RR
(3.13) is used. As mentioned, the L2 representatives are associated with an LPM and, thus,
the related LPM is returned to the analyst.

This explanation function serves as an approximation of how the result of an unseen AQ
varies in that subspace queried by the original AQ. The explanation function coefficients (or
feature importance methods of various ML models) gives us a way to infer how the different
query parameters contribute to the end AQ result. The suggested method in this chapter is
able to do that by using only knowledge provided by coarse grained queries executed over
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Figure 3.9: Interactive exploration of data spaces by visualising the importance of parameters
in different subspaces.

the complete data space. Essentially, parameter importance is infered over much smaller
subspaces by utilizing previous coarse grained queries. The main difficulty to this, is that
LPMs are able to explain local subspaces. Within those local subspaces the framework
utilizes previous AQ to understand parameter importance. If those subspaces do not overlap,
then it will be challenging to identify how the AQ behaves within unknown areas. To be more
concise, imagine single dimension queries q ∈ R, where q could be a single input parameter
with a true function mapping to results y ∈ R. Now imagine that q1, q2, q3, are three queries
q1, q2, q3 ∈ [0, 1] such that q1 ≤ q2 ≤ q3. Training our model with those queries leaves the
model with high uncertainty as to what happens in the in-between spaces where no training
examples are acquired. Trying to approximate the behavior of a true function, within those
spaces requires good generalizability from the trained models. In our work, this is exactly
what we are trying to do. With minimal knowledge given from the coarse grained training
examples we are trying to infer the impact of parameters in much smaller unknown spaces.
As shown in our experimental section, our models overcome this difficulty and are able to
find approximate functions to explain what happens over the smaller subspaces.

3.8.1 Examples of Explanation Functions and Practical Usage

Using an LPM, the analyst obtains the result of queries, not yet executed, and can infer the
importance of query parameters under the given subspace. In this section, we provide some
examples of how LPMs can be utilized to provide insight and guide analysts during data
exploration.

In Figure 3.9 we have created an interactive plot of the different query parameters listed
as features and their importance across different clusters using Bokeh [29]. This overview
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Figure 3.10: Hierarchical representation of L1,L2 clusters and the parameter importance.
(Left) Clusters for query centers x and the average importance of parameters inferred by the
underlying LPMs. (Right) An L2 cluster associated with Cluster 0 from L1.

is constructed by averaging the importance of all LPMs associated with L2 clusters and
then shown for each L1 cluster. By hovering over a particular rectangle the analyst can
see the importance of a parameter over the specified cluster. As evident, the importance of
parameters varies across clusters which can lead the analyst to specific subspaces where the
parameter is more important. For instance, if a particular parameter has more weight in a
given cluster then the analyst knows that varying this parameter will have more impact to the
end result than other parameters. In essence, the analyst has a guide to inform them which
parameters to shift in certain subspaces such that they get meaningful results and not waste
resources executing queries that will not impact the end result.

Moreover, we can construct hierarchical visualizations that show a more fine grained rep-
resentation of parameter importance. For this example, we used the coefficients of LPMs
for explanation functions. Their main difference with parameter importance is that they also
indicate in what way they can influence the result as they can be negative or positive. For
instance, a large negative coefficient for a specific parameter as seen for input parameter 1
at L1=0 in Figure 3.10 (left) informs us that this particular parameter will have a negative
impact on the end query result. In Figure 3.10(left) the average coefficients for all parameters
over clusters at L1 are plotted. Using this visualisation, provides an overview of the coeffi-
cients associated with each parameter and allows the ability to zoom-in to a particular cluster
of L1 and see how the coefficients change at L2 clusters. In this case study, the parameters
0− 3 correspond to:

• 0 : X Coordinate

• 1 : Y Coordinate

• 2 : Size of X Coordinate
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• 3 : Size of Y Coordinate

These parameters define range queries that cover a spatial region on a map. The corre-
sponding response variable of the LPMs is the Arrest Rate within those areas. Therefore,
an analyst can start their analysis by consulting this figure. They can initially focus on
cluster 0 at L1 which shows the lowest average coefficient for parameter 1 : Y Coordinate.
The fine grained view shown in Figure 3.10(right) corresponds to the coefficients for all
input parameters across all clusters at L1-0. The analyst might then notice that all param-
eters have positive coefficients except parameter 1 especially over cluster 47 at L2. Given
this information, the analysts can obtain the actual LPM model and mean vectors for clus-
ters 0 at L1 and 47 at L2. The mean vectors correspond to the LRs and RRs, together
they denote the mean (average) query executed at those regions. Hence, they can identify
a possible region to which the arrest rate is smaller than the average arrest rate over other
regions without executing anything. The mean arrest rate is visualised in Figure 3.11 along
with the distribution of arrest rates over the pinpointed region. Using our methodology,
the analysts have identified an area with smaller than the mean, arrest rates. By obtain-
ing the coefficients for the corresponding LPM at L1-0 and L2-47, they can observe what
drives the arrest rate up or down. The corresponding coefficients in this particular case were
[621.64900659,−455.21564492, 34.93227467,−246.40730294] which indicates that as the
Y Coordinate increases, moving up north on the map, the arrest rate decreases. This is also
indicated by the region size covered by the Y Coordinate. Using this derived information, the
analyst can further investigate as to why that happens. Maybe the number of police officers
patrolling the areas has dropped, or maybe the incidents recorded did not warrant an arrest.

Hence, without even executing a single query, the analyst has tremendous knowledge which
can guide them when they first initiate their exploratory analysis. Surely, the LPMs used were
trained using queries which were executed before. However, these queries can be obtained
from past analyses made by other analysts. Therefore, the analysts can save time by focusing
on particular areas instead of starting with a coarse grained view with no tool to guide them.

3.9 Experimental Evaluation

We run experiments to evaluate the accuracy and performance/scalability of our proposed
solution. Accuracy is evaluated on two axes: (1) Predictive capability of the proposed expla-
nation function; using the function as a surrogate black-box function to compute the result of
an unknown query, and (2) Accuracy of estimated explanation functions. We conduct exper-
iments to analyse the performance of our system, measuring the time required for training
the different LPMs, and the impact of hyper-parameters in explanation serving.
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Figure 3.11: The average number of Arrests, across all regions, shown as a red vertical line
along with the distribution of arrests for queries executed over the region identified by 0-L1
and 47-L2

3.9.1 Experimental Setup & Metrics

Data Sets and Query Workloads: The real dataset B1 = {xi}Ni=1,x ∈ R2 with cardinality
|B1| = N = 6 · 106 contains crimes for the city of Chicago [6]. We obtain a synthetic
workload T containing m = 5 · 104 queries and their answers, i.e., {(q, y)i}mi=1 = T . Each
query is a 4-d vector q = (x,θ) with answer y where x = (x1, x2) ∈ R2 is the center, θ ∈ R2

is its length and y ∈ R the result obtained from executing the query against real dataset B1.
We use workload T for Pre-Processing and Training and create a separate evaluation set
V containing |V| = 0.2 · m new query-answer pairs. The synthetic query workloads were
obtained from [9] and follow a similar generation process as described in [18, 113] also
described in [9].

To implement our algorithms, we used scikit-learn [101] , KMeans [61], and an im-
plementation of the MARS algorithm [48]. We performed our experiments on a desktop
machine with a Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz and 16GB RAM. MARS was
used as the explanation function algorithm because of its superior accuracy to simple linear
regression. We note that any ML algorithm, which is able to provide an estimate on fea-
ture importance to characterize the importance of input parameters is a viable alternative to
MARS.

Evaluation Procedure

To evaluate the effectiveness of our proposed explanation functions on an unknown set of
AQs, we have to generate perturbed versions of each query q ∈ V . Assessing the explana-
tion functions just based on set V is not enough, as the metrics will report on the accuracy of
performing point estimates using the explanation functions. Instead, by perturbing a query
vector, we are able to assess whether the proposed explanation function is an accurate ap-
proximation of the black-box function generating the results of queries. For a query in V , we
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generate a set of perturbations P = {p1, . . . ,pn} with n = 100, where p ∈ [−1, 1]d. Using
these perturbations, we obtain a set of sub-queries S, where S = {q + p1, . . . ,q + pn} and
|S| = |P|. A number of sub-query sets are generated which is equal to the number of queries
in V , and {S1, . . . ,S|V|}. The results for each one of those perturbed versions of query q are
computed using the real dataset. Such that, each perturbed version of query q is also associ-
ated with its result y ∈ R. The explanation function, is then evaluated over each sub-query
set Si by measuring the loss (EEL) between our predictions and the actual responses. The
evaluation metrics are computed for the recorded responses and the responses obtained from
the proposed explanation function. We then report on an average of the evaluation metrics.

Evaluation & Performance Metrics

We use a variety of evaluation metrics to measure different aspects of the suggested frame-
work. These metrics can give a holistic overview on the accuracy of an explanation function.

Information Theoretic Metric: The EEL is measured using the Kullback-Leibler diver-
gence (KL). Concretely, the result is a scalar value denoting the amount of information loss

when one chooses to use the approximated explanation function, for a given unseen query
(without executing this query), instead of the actual explanation function (after executing the
unseen query). The EEL with KL divergence is defined as:

L(f, f̂) = KL(p(y)||p̂(y)) =

∫
p(y) log

p(y)

p̂(y)
dy, (3.15)

with p(y) and p̂(y) being the probability density functions of the true and approximated
query result, respectively.

Goodness of Fit: The EEL is measured, using the coefficient of determination R2. This
metric indicates how much of the variance generated by f can be explained using the ap-
proximated explanation function f̂ . This represents the goodness-of-fit of an approximated
explanation function over the actual one:

R2 = 1−
∑

i (yi − ŷi)2∑
i (yi − y)2

, (3.16)

The denominator in (3.16) is proportional to the variance of the true function and the nu-
merator are the residuals of our approximation. The EEL between f and f̂ can be computed
as:

L(f, f̂) = 1−R2 (3.17)
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Predictive Accuracy: We also quantify the predictive accuracy associated with explanation
(regression) functions. We employ the Normalized Root Mean Squared Error (NRMSE) for
this purpose:

NRMSE =
1

ymax − ymin
(
1

n

n∑

i

(yi − ŷi)2). (3.18)

Essentially, this shows how accurate the results would be if an analyst used the explana-
tion (regression) functions for further data exploration, without executing queries. This is
evaluated on set V as we want to evaluate the accuracy on point estimates.

3.9.2 Experimental Results: Accuracy

For our experiments we chose to show performance and accuracy results over three rep-
resentative aggregate functions: COUNT, AVG and SUM due to their extensive use in data
exploration. We compare the accuracy across the different workloads each one with differ-
ent distributions for region location and region size. Their abbreviations are shown in Table
3.1. We compare our LPMs with two baselines Local and Global. The Local model is
trained using the perturbed set of queries and answers S, hence, is the gold standard that
we are trying to achieve. Please note that obtaining a Local model is not actually possible
as one has to execute a number of perturbed versions of a query to be able to obtain it. We
are merely constructing such local functions to provide an estimate of the highest possible
accuracy that can be obtained. The Global model is obtained by training a single model on
T and is the baseline that we are trying to beat.

Distribution for x Distribution for θ
G.G Gaussian Gaussian
G.U Gaussian Uniform
U.G Uniform Gaussian
U.U Uniform Uniform

Table 3.1: Abbreviations for the different workloads used

Goodness of Fit Results: Figure 3.12 shows the results for R2 over all workloads for all
three aggregates. We report on the average R2 found by evaluating the models on queries in
V using their pertubed sets S. As expected the Local models perform best as they are trained
using queries in the pertubed sets. Overall, we see that our proposed explanation functions
approaches the accuracy of the Local models and is more accurate than the Global function,
except for one case in which both the LPM and Global achieve similar accuracy. It might be
the case that the knowledge obtained from the queries was not enough such that our LPMs
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Figure 3.12: Results for R2.
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Figure 3.13: Results for KL-Divergence.

would be able to approximate the general trend followed by these queries in more specific
subsets. We also notice some difference in accuracy levels across different workloads. This
leads us to believe that the distribution of queries is a significant factor in determining the
accuracy of the proposed models. However, the general outtake of this experiment is that
we can fit good approximate models that approach the accuracy of models fitted with the
pertubations themselves.

Information Theoretic Results: Figure 3.13 shows the ratio of bit increase when using
the approximated distribution generated by the LPMs rather than the actual values for y of
the perturbations (where lower is better). This indicates the inefficiency caused by using
the approximated explanations, instead of the true function. This information, theoretically,
allows us to make a decision on whether using such an approximation, would lead to the
propagation of errors further into the data analysis process. We observe, that overall, the
ratio is low for all methods with the Local method approximating the true distribution with
minimal loss of information. It is important to note that all results are less than 10% with
most of the loss incurred over the AVG function. We notice that sometimes the Global
function outperforms our LPMs. However, the difference in all of these cases is minimal. We
speculate that the Global model obtains a coarse grained view of how the aggregate statistic
across a much larger space which could tend to approximate the underlying distribution
for the pertubed queries. These results serve as evidence that using our approximations
is sufficient for conducting further analyses, by using these models instead of executing
subsequent queries to uncover more information.
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Figure 3.14: Results for NRMSE.

Predictive Accuracy Results: We have also measured the predictive accuracy of all meth-
ods, across all datasets to quantify how good the models would be in predicting the results
of future queries. The results are shown in Figure 3.14. As expected, the error is the lowest
for the Local method as the predictions are being made on the set of queries that the model
was trained on. The highest error was recorded by the Global method. Apart from AVG, the
Global method has extremely large NRMSE which makes it inappropriate to make predic-
tions for the perturbations, thus, it should not be used in this case. We also note, that across
all three aggregates, the U.U distributions appears the hardest to perform predictions. One
possible explanation is that models trained on uniform workloads, require more queries as
they have to be equally good uniformly across the space that they are being evaluated. Their
difference, with workload distributions having a Gaussian distribution, is that queries are
executed with a higher probability closer to the mean and thus the patterns might be easier
to learn. This experiment also shows that no one model is fit for all problems. So, in this
case, it might be more appropriate to investigate different models (with the same properties
of interpretability) to be used for different distributions. In conclusion, the accuracy across
statistics/aggregates and workloads is not preventive. It shows that our LPMs could be used,
in the context of providing approximate answers, to queries that analysts might have while
conducting their analysis. This could save up computational/monetary/productivity costs,
as the analysts would be using the LPMs to get answers efficiently without issuing queries
against any of the data.

3.9.3 Experimental Results: Efficiency and Scalability

Training Performance: To effectively measure how long it takes to complete training of
LPMs, we restrict the workloads used to ”G.G” and set the vigilance thresholds for clustering
to the default values of 0.4 for θ and 0.05 for x. These parameters control the number of
clusters created at the L1 and L2 levels. As will be shown in our sensitivity analysis section,
the number of clusters follows logarithmic scale with respect to the vigilance parameters.
For this experiment, we gradually increase the number of training examples and record the
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Figure 3.15: Training time for an increasing number of training examples

time (in seconds) required by our framework, to complete training of the LPMs. To account
for randomness, we repeat the procedure 10 times per number of training examples. Note
that this is part of the Pre-processing step which happens offline and helps to initialize the
LPMs. Our framework is also able to adjust its parameters online to account for new queries
being executed by the back-end analytics engine.

The results are shown in Figure 3.15, as the number of training examples increases we do not
observe a significant increase in the time required to train all LPMs. The time ranges from
40(s) to 80(s) with some significant variation. Further investigation reveals that the number
of training examples is not highly correlated with the training time. This is exhibited in Table
3.2, where correlation 1 varies from [−1, 1] with values closer to 1 indicating strong positive
correlation and values closer to −1 strong negative correlation. As evident, the number of
clusters that formed in L1 and L2 have strong positive correlation with Training Time. This
is attributed to the fact that, an increasing number of clusters, means that the hyper-tuning
procedure was running for longer. The hyper-tuning procedure was outlined in Algorithm 1.

L1 clusters L2 clusters Training Examples Training Time (s)

L1 clusters 1.000000 0.990559 -0.018008 0.885539
L2 clusters 0.990559 1.000000 -0.004828 0.886221
Training Examples -0.018008 -0.004828 1.000000 0.218372
Training Time (s) 0.885539 0.886221 0.218372 1.000000

Table 3.2: Pairwise Pearson’s Correlation Coefficient for different parameters.

To reinforce this finding we plot the different runs, as points with a varying color for the
number of L1/L2 clusters, shown in Figure 3.16. As the number of training examples (x-
axis) increases we see no upward trend (as one would expect), instead if the number of
clusters is low the training time for a particular run is at the lower end of the y-axis (Time).
However, as the number of L1/L2 clusters increase, Training Times also increase even for
runs where we used the smallest number of training examples. This is with an exception for

1Pearson’s Correlation Coefficient is used.
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Figure 3.16: Training time for an increasing number of training examples with the number
of clusters for (left) L1 and (right) L2 shown as different colors
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Figure 3.17: (Left) A CDF of the explanation serving time by varying hyper-parameters that
control number of clusters for L1/L2. (Right) Prediction serving time plotted against an
increasing dimensionality of the input vector q

the largest number of training examples where with an intermediate number of clusters we
get Training times at the higher end of y-axis. This goes out to show that even though the
number of training examples is not a driving factor it can contribute to the total training time.

Explanation & Prediction Serving Performance: We now assess the Explanation and Pre-
diction serving performance of our framework. The explanation functions and any predic-
tions stemming from the explanation functions (LPMs) have to be returned to the user ef-
ficiently. Our goal is to do that in less than 500 ms, as it has been shown that any answer
returned over that limit might hinder productivity [85]. For this experiment, we vary the
thresholds/vigilance parameters for x and θ which control the partitioning levels and hence
the number of clusters. The threshold values for both parameters x and θ were in the interval
of [0.01, 3). Figure 3.17 shows the results of our experiments. Two CDFs are plotted, one
where we vary the vigilance parameter for x with constant vigilance for θ and vice versa.
The creation of more clusters contributes to the total explanation serving time, as the closest
clusters (according to our formulation) have to be identified for an LPM to be returned to the
user. However, the partitioning level remains constant after exceeding particular threshold
values, as the optimal number of clusters is identified (optimal with respect to SSQE). Con-
sulting the CDF in Figure 3.17 we notice that for both cases the explanation serving time
is orders of magnitude less than 500ms. In our experiment with varying the threshold for x
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we saw no significant impact as the partitioning level quickly reaches the optimal number
of clusters (found to be 6). Although we would see an impact in performance if the number
of clusters at L1 increase, we note that this is no more than linear as a single pass over the
LRs of L1 can tell us which one is closer to the query issued by the analyst. Varying the
threshold/vigilance parameter for θ has more effect as we recorded a mean number of total
clusters in L2 of 492 with standard deviation of 211. Still, the explanation serving time is no
more than 0.08 ms, 6250× faster than the proposed limit for explanation serving time set at
500ms.

To measure the Prediction serving time we vary the dimensionality of the input vector as this
would affect the evaluation of the underlying LPM. We used MARS [48] as our ML model
and recorded the time required for making a prediction. We varied the dimensionality within
the range [8, 128]. An input vector with 128 dimensions means that a query is executed
with a multi-dimensional center x ∈ R64 which translates to filtering based on 64 different
attributes. This might be a bit of an overstretch but we wish to stress test our system and see
if LPMs can efficiently provide estimations for the answers of unseen queries. The results are
shown in Figure 3.17(right), with the Prediction time fluctuating however never exceeding
1ms. It is important to note that this includes the time of finding the closest LPM.

Overall, throughout our performance experiments we conclude that the use of the proposed
framework does not hinder productivity. On the contrary, it efficiently informs the user of the
unerlying variation in a statistic using LPMs. The LPMs are located and returned to the user
in milliseconds which allows for the analyst to continue ther analysis without bottlenecks.
In addition, using LPMs analysts can efficiently get estimates for the answers of any future
queries they might have.

3.9.4 Experimental Results: Sensitivity

Threshold/Vigilance Query Center Parameter (x)

Several experiments have been conducted to test the sensitivity of our algorithms to the ε
threshold used in Algorithm 1. As Algorithm 1 is used twice in the Pre-Processing mode we
refer to ε as the x Threshold and θ Threshold to distinguish between the thresholds used in
the creation of L1/L2 clustering phases. Effectively, these thresholds control the partition-
ing level (the number of clusters). As thresholds for parameters x and θ become smaller,
clustering level is increased. Meaning that parameter K for K-Means is incremented, until
the difference of SSQE between partitioning levels of K and K + 1 is equal to or below the
given threshold value.

We varied the threshold for x in the interval of [0.0001, 3). The results for this experiment
are shown in Figure 3.18. In this figure, we examine the effects of this threshold on both
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Figure 3.18: Measuring the effects of varying threshold/vigilance parameter for x. (Top)
The effects on accuracy R2 for different workloads and aggregate functions. (Bottom) The
effects on the number of L1 clusters for different workloads and aggregate functions.

the accuracy, Figure 3.18(top), and the number of clusters, Figure 3.18(bottom). Firstly, we
report that for all workloads and aggregate functions, the effects of this threshold reduce,
as the number of clusters reaches the optimal number. We can see that accuracy increases
and remains constant as the number of clusters converges. So in short, setting the optimal
threshold is important, for achieving high accuracy. In our experiments, we first normalize
the data to be at the same scale, which makes setting this threshold parameter easier. In
addition, a hyper-tuning procedure could be added for setting this threshold parameter at an
optimal value. However this was out of the scope of this work. In general, we can easily
determine a near optimal value by randomly testing a number of values along a given range
also known as Line-Search.

Threshold/Vigilance Query Parameter (θ)

We also vary the threshold for parameter θ and investigate its effects on the number of
clusters for L2 and accuracy measured by R2. Its effects are recorded for all workloads and
datasets in Figure 3.19. Figure 3.19(top) shows that accuracy is constant as the threshold
varies. This means that partitioning the region sizes has less effect than optimally partitioning
the query locations x. The same effect is observed across aggregates and workloads. On the
other hand, the threshold parameter influences the number of L2 clusters and as the threshold
increases the partitioning level becomes more coarse grained and less clusters are created at
L2. The number of L2 clusters shown on the y-axis is the total number of clusters associated
with all L1 clusters.
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Figure 3.19: Measuring the effects of varying threshold/vigilance parameter for θ. (Top)
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Figure 3.20: As the dimensionality of the query vector increases more clusters are needed
both in L1 and L2 to sufficiently reduce SSQE.

Dimensionality of Query Input Vector q

We experiment with an increasing dimensionality for the query/input vector and investigate
its effects on the partitioning levels (number of L1/L2 clusters). As evident in Figure 3.20,
the number of L1 and L2 clusters increases with respect to dimensionality. There is an
exponential increase in the total number of L2 clusters as an increase in L1 clusters has a
multiplicative effect on the number of L2 clusters. Hence, dimensionality has an effect on
the explanation and prediction serving performance as more clusters have to be investigated.
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3.10 Conclusions

In this chapter, we have defined a novel class of explanations for AQs, which are of particular
importance for exploratory analytics. The proposed AQ explanations are succinct, presented
in the form of regression functions. They convey rich information to analysts about the
queried data subspaces and explain how an aggregate value depends on key parameters of
the queried space. Furthermore, they allow analysts to utilize these explanation functions
for data exploration without the need to issue more queries to the DBMS. This is because
the proposed explanation functions can be used to estimate the result of an AQ given the pa-
rameter values used in an AQ. We have formulated the problem of deriving AQ explanations
as a joint optimization problem and have provided novel learning routines for its solution.
Specifically, the joint optimization problem is deconstructed into three parts which we solve
separately. The proposed scheme for computing explanations does not require DBMS data
accesses ensuring efficiency and scalability as we utilize QDL for all phases of our methodol-
ogy. In addition, we have shown examples of how the explanation functions can be leveraged
by analysts when performing data exploration. Data analysts, can consult the visualisations,
constructed using the explanation functions, to identify subspaces of interest a-priori without
executing any query against the underlying backend system. Overall, this chapter focused
on presenting alternative uses of the QDL mechanism by showing how past queries can be
utilized, to construct explanations that can assist analysts during data exploration. We be-
lieve this is a significant step forward in expediting the data analytic process without human
supervision/intervention.
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Chapter 4

Identifying interesting subspaces
with Query-Driven Surrogate Models

4.1 Introduction

Consider Exploratory Data Analysis (EDA), whereby analysts engage in repeatedly select-
ing regions in their data and subsequently summarizing them by extracting statistics [66].
For instance, analyzing spatial data one might filter out all data points except the ones of a
specific district and then measure the number of data points within that region to infer the in-
terestingness of it. Multiple methods/algorithms/visualizations implicitly adopt this process
and are part of an analyst’s toolbox. A challenge to this approach is that the task of mining
regions of interest is a tedious and laborious process and in the worst case has exponential
complexity. The interestingness of a region can be measured by comparing its extracted
statistic with a cut-off value or a given threshold by the analysts/applications. Regions to
which the extracted statistics are greater/less than a given threshold are deemed more inter-
esting. This approach is found in numerous applications. For instance, in cluster analysis
[109], this approach is used to decide which clusters to prune. In addition, similar approaches
are adopted in detecting regions of interest in fMRI scans [103] (where only the regions that
are ‘activated’ are shown). Lastly, regions are exluded by a given threshold in the process of
identifying landmarks [132], based on tracking data. For these reasons, we believe mining
regions that exceed a statistic threshold is in many cases more appropriate than having the
analyst ask for the top− k regions of interest.

4.1.1 Use Case Examples

Let 2-dimensional spatial coordinates describe the locations of Crime Incidents (or any data
points with spatial dimensions like traffic congestion and pollution levels in urban areas,
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etc.). Proactively identifying regions which contain a pre-defined number of data points
within them can advise analysts as to which areas are worth exploring. For instance, a re-
gion having more Crime Incidents than a global threshold or having higher (local) average
deprivation/crime-index indicator could suggest lack of infrastructure, policing or social/e-
conomic disparities compared to other regions. Identifying such regions is not trivial and we
will show that a naive approach has exponential complexity.

The use cases are not restricted to density of data points within regions. For instance, us-
ing data from activity trackers, analysts wish to find time-frames (regions in time) with high
ratio of a specific activity (e.g., sitting, standing etc). Those time-frames comprise crucial
information to the activity patterns of a user. If other attributes are also incorporated, like
GPS coordinates, geo-spatial readings from accelerometers, the analysts can be advised as to
when & where an activity occurs most often, along with what type of readings indicate the
activity is taking place. Note that the regions of interest denote boundaries in multidimen-
sional space thus making them easy to interpret.

Moving to high dimensional use cases, within ML classification problems, analysts are often
interested in finding regions with high ratio of certain classes (class-labels), thus, implicitly
suggesting classification boundaries. This task cannot be performed visually unless dimen-
sionality reduction is employed which does not guarantee fine-grained and accurate results
(going back to original space) and may suggest regions which are no longer interpretable.

4.1.2 Contributions

In this chapter, we describe a methodology to reduce the complexity of searching for regions
of interest per analyst request given a threshold. We continue in the same vein of Chapter
3, in that we focus on alternative use cases of QDL, which are directed towards automating
the data exploration processes. We formulate the problem at hand as an optimization one
which can be of multimodal nature as multiple regions matching the analyst request can
exist. We identify the back-end data/analytics system as being a bottleneck in examining the
validity of the proposed regions. To alleviate this key problem, we propose the use of QDL to
approximate the behavior of the back-end system, i.e., to find surrogate models that replace
the back-end data system for this task. We then use these models, produced by QDL, in
an evolutionary multimodal optimization (based on the principles of swarm intelligence) to
identify the regions of interest per analyst request. We name the model proposed in this paper
as SuRF, after the terms Surrogate Region Finder. To this end, this chapter’s contributions
can be summarized by the following points:

• The task of mining interesting regions is formalized. The formulation is based on
objective functions that incorporate statistics and a user-defined cut-off value.
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• How QDL and multimodal swarm optimization algorithm can be used to locate multi-
ple regions of interest.

• The use of QDL to approximate the back-end system. In a similar manner as previous
chapters, we exhibit how QDL can be used along with evolutionary optimization to
alleviate the inherent complexity of the considered task.

• Finally, we provide extensive experimental results evaluating and comparing the pro-
posed approach and the various algorithmic strategies with other methods.

The rest of the chapter is organized as follows: Section 4.2 formalizes the problem of finding
regions of interest and describes a baseline algorithm, which is of exponential complexity.
Section 4.3 defines the optimization problem at hand and introduces evolutionary multimodal
optimization for solving it. Section 4.4 describes the type of surrogate ML model needed to
approximate the behavior of the back-end analytics system. Finally, Section 4.5 contains
a comprehensive list of experiments and results that assess the accuracy and efficiency of
SuRF.

4.2 Problem Definition & Rationale

In this section, we initially provide some definitions that will be helpful throughout this
chapter. The challenge of identifying interesting regions is then formalized and a baseline
algorithm is provided. We show that the complexity of such an algorithm is exponential
which makes it unattractive for this task.

Definition 4.2.1. (Data Vector) Let a = (a1, . . . , ad)
> ∈ Rd denote a multivariate random

data vector. A dataset B is a collection of N data vectors {ak}Nk=1.

Definition 4.2.2. (Statistic Region) We define a statistic region in a d-dimensional vec-
tor space via the (2d + 1)-dimensional information vector q = (x, l, y)>, where x =

(x1, . . . , xd)
> ∈ Rd is the region center point of the hyper-rectangle with side lengths

l = (l1, . . . , ld)
> ∈ Rd

+ across the d dimensions. A statistic region q over dataset B is
associated with the subset D ⊆ B encompassing vectors a such that {a ∈ D|∧d

i=1(xi− li ≤
ai ≤ xi + li)}. A statistic region is similarly defined as AQs in prior chapters. However, we
refer to them as statistic regions as SuRF is not necessarily tied to any DBMS, but is instead
a generic method that can be used within any data analytic environment.

The component y = f(x, l) denotes a mapping f : Rd × Rd
+ 7→ R over D from the hyper-

rectangle (x, l) to a statistic of interest y ∈ R, i.e., scalar y is the statistic extracted from
the data vectors in D . This can be (not limited to) e.g., number of vectors in D, i.e., y =

f(x, l) = |D|, or the average āi of dimension ai, i.e., y = f(x, l; i) = 1
|D|
∑|D|

k=1 ai,k, ak ∈ D.
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Note that in the case of the average āi the i-th dimension is not part of the defined hyper-
rectangle and the definition becomes {a ∈ D|∧j−i∈d(xj − lj ≤ aj ≤ xj + lj)}.

Definition 4.2.3. (Surrogate Model) Given a region q, the corresponding mapping f returns
a local statistic of interest. Function f depends on the conditional data distribution p(a|x, l)
defined by the hyper-rectangle (x, l). The actual evaluation of f is computationally expen-
sive as one has to identify the complete data subset D given region q out of all data points.
Therefore, we rest on an approximate surrogate model f̂ to approximate f , i.e., f ≈ f̂

given any random q. Such approximation exploits past actual evaluations of f given random
regions. Using QDL, we obtain a surrogate model f̂ , thus, we can avoid an expensive eval-
uation of f , given a random region q. We can instead evaluate f̂ that can approximate the
results given by f . This yields orders of magnitude speed-ups with a trade-off in accuracy,
since the evaluation of f̂ does not involve identification and access to the data vectors in D.

Problem 1. Given a user requested cut-off value yR ∈ R, seek the k unknown regions {qk}
over the vectorial space of B such that their corresponding statistics {f(xk, lk) = yk} are
less (or greater) than yR. That is, find the k unknown regions {qk} defined by (xk, lk):

{qk ∈ R2d+1 : f(xk, lk) < yR, ∀k}. (4.1)

Note: we adopt (yk > yR) in the case where the sought statistics are all greater than yR. For
instance, find the areas where the crime index is greater than 60%, i.e., the statistic here is the
number of crime incidents of areas. Alternatively, the task could be to identify areas where
the average deprivation score is less than the expected one.

To avoid the inherent computationally heavy task of evaluating all possible (not trivially
countable) sub-regions that satisfy (4.1) (see later), we approach a solution to Problem 1
using surrogate models {f̂} over a dataset B. Evidently, this approach introduces approx-
imation of the evaluation of (4.1) by replacing f(xk, lk) with f̂(xk, lk). We also, re-write
Problem 1 to be expressed as an optimization problem. We define an objective function that
helps us find multiple regions by finding local-optima. In the optimization function, we in-
corporate region size defined by (x, l), which is of high importance as an arbitrarily large size
might not be informative enough. For instance, if we seek regions with population number
larger than yR with yR < |B|, then a region covering all data vectors (whole data-space) is
the optimal result. Therefore, we factor in the region size in the objective function defined
as:

J(x, l) =
yR − f(x, l)(∏d

i=1 li

)c . (4.2)
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The objective illustrated in (4.2), indicates the consideration of the total area covered by
the sought region in the denominator. A single global optimal solution maximizing the
objectve in (4.2) would be an infinitesimal box surrounding a single point with the greatest
difference given by yR − f(x, l). Indeed, this would be a valid solution and might be of
interest to the analyst. However, as we will later show there could be multiple local optimal
solutions meeting the constraints (introduced in (4.3)) and maximizing (4.2). Hence, we are
not interested in finding one global solution to the given objective, but many. For this reason,
we introduce a tuning scalar parameter c, which allows the user to restrict to smaller/larger
areas. Hence, we seek the region(s):

(x∗, l∗) = arg max
(x,l)∈R2d

J(x, l) s.t. f(x, l) < yR. (4.3)

In the case of the constraint being f(x, l) > yR, we maximize −J(x, l). In the remainder we
use (4.3) without loss of generality to either case. To avoid extra computational complexity
we take the logarithm of (4.2) obtaining:

J (x, l) = log(J(x, l)) = log(yR − f(x, l))− c‖ξ‖1, (4.4)

where ξ = [log(l1), . . . , log(ld)]
> and ‖ξ‖1=

∑d
i=1 log(li) is the L1 norm of the log-vector

of l = [l1, . . . , ld]
>. An interesting property arises from (4.4) as the logarithm is undefined

for negative values. Thus, the objective implicitly rejects regions in which yR − f(x, l) < 0

conforming to the constraint of finding regions less than yR (and vice versa for f(x, l) > yR),
as will be shown in our experiments. In (4.4), c > 0 is the L1 regularization parameter
limiting the size of ξ (and of l) coefficients and results in finding fine-grained regions (in
size), as discussed later.

4.2.1 Baseline Complexity

Before elaborating on our computationally efficient solution for Problem 1, we first describe
a baseline solution. The computational complexity of mining k regions in (4.1) grows expo-
nentially with data dimensionality d. It is not trivial to find exact solutions given continuous
data domain of (if not all) different dimensions in B. Given continuous (real-values) at-
tributes xi, one way of solving Problem 1 is to perform an exhaustive search. Initially, data
is discretized using a finite number of multidimensional center points to obtain n regions
{x1 � x2 . . . � xn};xi ∈ Rd (� denotes the point-wise inequality between values of the
same dimension). This discretization yields an approximate solution, as the optimal center
for a region could lie in-between the proposed centers. In addition, the arbitrary size of the
regions adds another level of complexity to the exhaustive search as we have to consider n
regions with varying sizes across dimensions, such that {l1 � l2, . . . � lm}, which again is
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an approximate size of the optimal region. Thus, to obtain potential regions via exhaustive
search yields asymptotic complexity ofO((n×m)d). We then have to evaluate the result for
each of the obtained regions using (4.4). Since the objective in (4.4) entails the evaluation of
f over D ⊆ B, the baseline complexity becomes O((n×m)d ×N), assuming that f can be
computed in a single pass over B in linear time. As dimensions d and data vectors N grow,
the task becomes prohibitively costly. In the next sections, we discuss how to leverage evolu-
tionary multi-modal optimization algorithms and surrogate models to reduce the complexity
associated with an exhaustive search.

4.3 Optimization & Viable Solutions

Given that the baseline complexity of solving this task becomes exponential we seek alterna-
tive solutions. Our task is to maximize the objective in (4.4) in an efficient manner. We first
discuss about the form of the objective which will help us identify candidate optimization
algorithms.

The solution space of the objective in (4.4) might have a unique (optimum) or multiple
solutions (local optima) given an arbitrary yR by the user. Based on Problem 1, given a yR,
the probability of finding a viable region is

P{f(x, l) > yR} = 1− FY (yR), (4.5)

where FY is the CDF of y. Since, limyR→+∞ FY (yR) = 1, it indicates that the objective
function will have less viable solutions because P{f(x, l) > yR} → 0, i.e., the probability
of a viable solution diminishes. In the case f(x, l) < yR, we obtain limyR→−∞ P{f(x, l) <

yR} = limyR→−∞ FY (yR) = 0. Hence, with an appropriate yR, i.e., strictly non-zero prob-
ability (4.5), we expect to find multiple regions (local optimal) satisfying (4.1), i.e., k ≥ 1

regions. It is highly plausible that given an appropriate yR, multiple regions k exist satisfying
f(xk, lk) > yR. Therefore we make use of a multimodal optimization algorithm capable of
finding all the possible solutions for Problem 1.

4.3.1 Multimodal Evolutionary Optimization for Regions Finding

Due to the multimodal nature of Problem 1, we cannot adopt optimization methods which
return a single optimal solution (=region) given yR. Therefore, we cast the optimization prob-
lem as an evolutionary multimodal optimization problem [139, 79] adopting methodologies
from Swarm Intelligence. We adopt the Glowworm Swarm Optimization (GSO), which is
a multimodal variant of the well-known Particle Swarm Optimization (PSO) method [72].
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Both GSO and PSO methods are computationally light, providing near-optimal solutions
(regions in our context) in the face of non-differentiable fitness objective functions. Notably,
GSO optimizes multimodal fitness functions as it converges towards multiple local-optima,
thus considered a good candidate optimizer for our problem.

GSO makes use of particles, which are represented as multidimensional candidate solutions
in the solution (region) space. It adopts a mechanism to move those particles around the
solution space, which converge eventually to local-optima. A candidate solution particle p =

(x, l) ∈ R2d refers to a region defined by (x, l) in the (2d)-dimensional solution space. The
fitness objective function that we use for GSO is the objective J in (4.4), which encapsulates
function f . However, given an arbitrary yR, our method avoids the evaluation of f over all
possible viable solutions. The fitness function of GSO becomes the objective Ĵ derived from
(4.4) by replacing f with the estimate f̂ . Hence, the solutions are evaluated using Ĵ given
estimate f̂ .

In short, GSO initializes a number of particles {pi} at random positions in R2d. Each particle
pi is associated with a luciferin value `i emulating glowworms. The GSO algorithm is an
iterative algorithm, with discrete steps t = {1, 2, . . .} and is split into two phases. The first
phase updates the luciferin `i(t) at step t for each particle pi = (xi, li) in the swarm using:

`i(t) = (1− ρ)`i(t− 1) + γĴ (xi, li) (4.6)

The factor ρ in (4.6) is the luciferin decay, which reduces attraction to particles that are
not moving towards local-optima. The factor γ in (4.6) is the luciferin enhancement and
increases attraction of particles close to local-optima dictated by the current evaluation of
Ĵ . The second phase, updates the (position) vector pi of each particle with respect to a
neighbourhood of particles Ni(t) = {pj : ‖pi − pj‖2 ≤ ri(t) ∧ `j(t) > `i(t)} in which
the selected neighbours have higher luciferin values and are within a current radius ri(t)
in L2 (Euclidean) distance. GSO then adapts the (position) vector pi towards a neighbour
pj ∈ Ni(t) with the maximum selection probability:

P{pj} =
`j(t)− `i(t)∑

k∈Ni(t)
`k(t)− `i(t)

(4.7)

Fig. 4.1 illustrates the final (converged) positions of the particles over a 2-dim. region space.
The x-axis denotes the center of a region, x, and the y-axis denotes the side length l. Hence,
each particle is a region defined over this space, with the intensity of the color at Figure
4.1 being the value of the objective function (4.4) across the space. The final positions
are illustrated as red “×” and the slightly shaded blue dots are previous positions held by
those particles. In this example, 84% of the particles have converged to regions satisfying
the constraint, set here at (f(x, l) > 1080), yR = 1080. As witnessed, a large number of
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particles have converged to the objective’s peaks which suggest better regions. Indeed, the
regions at the bottom (the peaks) constitute pre-defined ground-truth regions (explained in
section 4.5 of this chapter). There are also particles that seem stationary as they are in a
space undefined by our objective (4.4), where (f(x, l) < 1080). We also explain this in more
detail in section 4.5.
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Figure 4.1: Final positions of particles (optimal regions) in the 2-dim. region solution space.
The objective’s (4.4) value is the color’s intensity with the peaks shown at the bottom of
the figure. The white color in the plot corresponds to areas where the objective’s value is
undefined, meaning that a solution does not exist for these parameter values.

4.3.2 Constraining the Regions Solution Space

We introduce the use of surrogate models to expedite the process of evaluating viable regions.
However, the surrogate models are not restricted within a specific domain. Although, the
underlying f is undefined in regions with no data points in B, surrogate models are not. The
purpose of ML models, is to generalize to unknown regions. Hence, even if the function f is
undefined in areas with no data points, f̂ will still return a result. If the surrogate model is not
provided with training examples denoting where the function is undefined then the obtained
result might not reflect reality. Therefore, we have to adapt our algorithm to account for this
fact.

In addition, the particles in GSO are initially randomly spread across the solution space.
The valid solution space (space where data points and thus regions exist) is not reflected and
particles only have their neighbours’ luciferin values to guide them. These are inherently
associated with the fitness value Ĵ , which then goes back to the initial concern about the va-
lidity of the surrogate models. To alleviate this, we first approximate the distribution of the
data points pA(a) (over a sample for large-scale datasets) in B adopting Kernel Density Esti-
mation (KDE) [124] and then we obtain the probability of a region containing any number of
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data points, i.e., from x− l to x+ l. We use this as a guide for particles when selecting which
direction to explore. Therefore, given (4.7), we alternate the selection probability by multi-
plying with the density (probability) of data points around the particle pj’s data component
xj:

P′{pj} =
P{pj} ·

∫ xj+lj
xj−lj pA(a)da

∑
k∈Ni

P{pk} ·
∫ xk+lk
xk−lk

pA(a)da
(4.8)

4.3.3 Complexity of Multimodal Optimization

As reported earlier, the baseline complexity of the presented challenge is O((n × m)d ×
N). By adopting GSO and surrogate models f̂ , we expedite this process, obtaining viable
solution(s) inO(TL2d), where T is the number of iterations and L is the number of particles
for GSO. As a rule of thumb, GSO requires less than T ≈ 100 iterations and L ≈ 100

glowworms to converge (empirically demonstrated in section 4.5). On the contrary, using
the baseline/naive approach with just n = m = 6 and d = 5, one needs to evaluate more
than 6 · 107 possible regions over N data points. On the other hand, GSO has to execute
only 100 × 100 = 104 evaluations, just 0.016% of the evaluations needed by the baseline
approach.1 Therefore, by using GSO, the complexity is now of polynomial nature as not all
parameter values, spanning uniformly across the entire domain space, have to be examined.
In addition, the use of surrogate models and QDL, has eliminated the need to examine N
data points as the regions no longer have to be evaluated using f . In the next section, we
report on how to approximate f using ML models. This gives a near-constant time (with
respect to the chosen model) performance for evaluating the region’s statistic y.

4.4 Surrogate Model Estimate

We could approximate f via various ML models2 trained to associate a region (x, l) with
its corresponding statistic y = f(x, l) using a set of past function f evaluations in Q =

{qm = (xm, lm, ym)}Mm=1 inline with QDL methodology that was presented so far. Using
these training examples, ML models approximate the actual f . In general, ML algorithms
try to minimize the EPE minf̂ E[(f(x, l) − f̂(x, l))2] which is estimated using an out-of-
sample dataset different from Q. They also try to find models which are complex enough to
minimize this EPE and simple enough to ensure good generalizability to never before seen

1Note: Although the complexity contains T × L2, the number of region evaluations by the algorithm is, in
fact, T × L [79].

2We restrict to a single class of ML models in our experimentation, however this is not necessary and
alternative ML models could be employed.
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examples: they tune what is called the Bias-Variance trade-off to ensure the derived model is
neither under-fitting nor over-fitting [46]. However, our task is to approximate the behavior
of the actual f applied over regions of data subsets in B. Hence, our primary concern is not to
generalize well to new examples. Instead, it is to find a surrogate model f̂ , which follows the
trend of f over random regions given an arbitrary yR. In other words, our desideratum when
identifying f̂ is that given a random region (x, l), if the statistic y = f(x, l) and f(x, l) < yR

then (and only then) the estimate ŷ = f̂(x, l), and f̂(x, l) < yR. That is both f and f̂ should
agree on the constraint < yR for any random region. This, clearly by definition, does not
imply that |y− ŷ| is desired to be as small as possible (i.e., minimizing the prediction error).
Instead, we would like to obtain a model f̂ such that whenever y < yR holds then, ŷ < yR

holds true, too. Surely, if f̂ minimizes the EPE then we may statistically expect that the two
above-mentioned conditions hold true. Nonetheless, both conditions can hold true even if it
is not the case that y ≈ ŷ. To reflect this objective, we would require to find an estimate f̂ ,
which minimizes the L2 norm difference of gradients at any region:

min
f̂

E[‖∇f̂ −∇f‖2] (4.9)

Minimizing the gradient difference we expect that a surrogate model f̂ resembles the be-
havior of the true underlying function f . However, a number of problems arise if we seek
to minimize (4.9). We have no way of knowing if the true function f is differentiable and
we also do not restrict our choice of ML models to differentiable ones. We could approxi-
mate the gradient using a finite number of training samples that are equally spaced in (x, l).
But this would mean that we cannot take advantage of past function evaluations, issued by
analysts/applications, as an assumption that these examples are equally spaced is invalid.

In this paper, we do not use a specific class of ML models that minimizes (4.9) and is left as
our future work for further investigation. Nevertheless, we adopt conventional ML models
minimizing the EPE, which can be directly used for providing robust (in terms of predictabil-
ity) surrogate estimate model f̂ .

4.5 Performance Evaluation

In our evaluation, we seek to answer the following:

1. What is the impact on accuracy, for finding interesting regions per user request using
QDL and surrogate models f̂?

2. What are the performance benefits of SuRF over the baseline approach and other meth-
ods?
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3. How sensitive is SuRF to the choice of hyper-parameters and how is efficiency and
accuracy affected by different choices of objective functions?

We begin by outlining the implementation details & setup, discussing our methodology and
establish evaluation metrics in Section 4.5.1. We showcase the accuracy of SuRF in com-
parison to other methods using a variety of synthetic datasets in Section 4.5.2. A qualitative
analysis over real datasets, showing the applicability of SuRF is presented in Section 4.5.3.
The performance benefits of SuRF are discussed in Section 4.5.4. The aforementioned sec-
tions provide the answers to questions (1) and (2). Finally, we answer question (3) by evalu-
ating the sensitivity of objective functions, GSO and surrogate ML models in Sections 4.5.6,
4.5.7, and 4.5.8, respectively.

4.5.1 Implementation Details & Setup

We implemented our algorithms using scikit-learn [102] and used XGBoost (XGB) [35]
ML model for our surrogate models f̂ . We implemented GlowWorm [79] as our opti-
mization algorithm. We performed our experiments using Python 3.5 running on a desk-
top machine with an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz and 16GB RAM. The
surrogate models used for both synthetic and real datasets were trained using a set of past
function evaluations executed across the data space with centers x selected uniformly at
random and region side lengths l set to cover 1% − 15% (uniformly) of the data domain.3

The surrogate models were hyper-tuned using Grid-Search [102] with K-fold cross valida-
tion. A sensitivity analysis for surrogate models is discussed at Section 4.5.8. Note: A
Github repository was created to help aid the reproducibility of our experiments at https:
//github.com/Skeftical/SuRF-Reproducibility.

Methods: We evaluate the effectiveness and efficiency on mining interesting regions of four
different methods:

1. SuRF : Our framework SuRF which is the surrogate model, trained using QDL, and
used with the GSO algorithm.

2. Naive : The baseline method described in Section 4.2.14

3. f+GlowWorm : The GSO optimization coupled with the true underlying function
which accesses data to evaluate the objective function described in (4.4)

3Please note that uniformly sampling regions across the data space with uniform lengths is not the same as
obtaining training examples that are equally spaced across the complete domain in both x and l

4As the number of function evaluations becomes un-manageable we restrict the discretisation to n = m = 6
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4. PRIM : An implementation of the algorithm described in [50] and its implementation
is obtained from [4]. PRIM is used to find regions which maximize the result of an
output variable. We have found it performs good on our task as well.

Synthetic Datasets: We have created 20 synthetic datasets to compare the methods outlined
above. We use synthetic datasets as there are currently no real datasets that provide a list of
interesting regions a-priori. Hence, there is no way to verify whether algorithms are indeed
accurately identifying interesting regions. In addition, the use of synthetic datasets gives
us the flexiblity to adjust controlling parameters and observe the effect they have on the
evaluated models. The size of the datasets can be arbitrary and it is defined within each
experiment. The synthetic datasets have Ground Truth (GT) regions, which are purposely
either more dense than the rest of the dataset, or have relatively higher y values (for the
purposes of testing for other statistics). The GT regions are hyper-rectangles constraining a
region in all dimensions. Concretely we vary the following settings:

• Number of GT regions : k = {1, 3}.

• Statistic type for y : Either: (i) ‘density’ referring to number of data points in subset
D or (ii) ‘aggregate’ referring to average value of a certain dimension of data points in
subset D

• Data dimensions : d ∈ {1, 2, 3, 4, 5}.

Each dataset is characterized by a variation of these settings. Note that the statistic could be
any other type, e.g., variance, high-order moments. Figure 4.2 shows four different datasets
with varying settings. The sub-figures on the left column, show data points a when data
dimension is set to d = 1, as only the dimension a1 is to be used to bound the data space.
The dimension a1 has areas with larger values for ai and thus the average y = 1

|D|
∑|D|

m=1 ai,m

over the highlighted GT regions bounded on a1 is higher. On the other hand, the sub-figures
on the right column, show the corresponding datasets for the ‘density’ statistic. The region is
bounded by both a1 and a2 and for the highlighted (green rectangle) GT area, the density of
data points is higher. The number of GT regions k = 3 is evident at the bottom sub-figures,
in which multiple regions exist for both statistics, and k = 1 at the top sub-figures.

Our goal, for each synthetic dataset, is to estimate the GT boundaries as close as possible.
Let R(x, l) be the hyper-rectangle area corresponding to a random region (x, l) ∈ R2d with
coordinates: (x− l,x+ l). We use a popular metric adopted in data mining, the Intersection
over Union (IoU), also known as the Jaccard Index. Which is a ratio where the numerator
is the area of overlap between the bounding box (hyper-rectangle) R(xk, lk), mined from
any of the outlined methods, and the GT bounding box G(x0, l0) corresponding to the GT
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region [x0, l0]. The denominator is the area of union, i.e., the area encompassed by both the
R(xk, lk) and the GT bounding box G(x0, l0), thus, we obtain:

IoU =
R(xk, lk) ∩ G(x0, l0)

R(xk, lk) ∪ G(x0, l0)
, (4.10)

where ∩ and ∪ in (4.10) are adopted as the overlap and union operators over (hyper)-
rectangles. One might notice that region dimensionality is not exceedingly high (we experi-
ment up to 2d = 10 dimensions in the region solution space for d = 5 data dimensionality).
Indeed, at first we conducted experiments by producing synthetic datasets U(0, 1)d, d � 5,
resulting to searching for regions in significantly higher than 10-dimensional spaces. How-
ever, due to the effects of curse of dimensionality and as mentioned by Friedman et al. [46],
regions (and data points) become increasingly sparse and, thus, the mined regions were re-
turning no data points, thus, no interesting regions. The expected length l of a hyper-cube to
retrieve a fraction , r, of data points in unit volume in Rd is given by E[l; r] = r

1
d [46] (Sec-

tion 2.5 of [46]). Thus, as dimensionality d increases, the expected length becomes much
larger, covering most of the data domain. Hence, the notion of finding interesting regions
becomes meaningless as we would essentially return regions covering most of the data do-
main. Even though we set the synthetic datasets’ dimensionality up to 5, we highlight the
fact that our algorithm deals with 2d dimensions as our regions are expressed as vectors in
R2d (region solution space).
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Figure 4.2: Synthetic Ground Truth Regions (shaded green) for statistic type ‘aggregate‘
and d = 1(left) and ground truth regions (green rectangles) for statistic type ‘density‘ and
d = 2 (right), with both a single ground truth region k = 1 (top) and multiple regions k = 3
(bottom).

Real Datasets: We use the Crimes [6] and Human Activity datasets [22] publicly
available online. As ground-truth regions do not exist for these datasets, we use them to
conduct a qualitative analysis experiment, testing the applicability and effectiveness of SuRF
to find regions of interest for fixed yR. Specifically, we train surrogate models using function
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evaluations obtained uniformly across the data space with varying lengths and, then, try to
find regions of interest given yR. Finally, we analyze the obtained regions and confirm that
they match to true regions in those datasets. Parameter c for objective (4.2) was set to c = 4

in these experiments.

4.5.2 Accuracy of Interesting Region Identification

All experiments, for assessing the accuracy of interesting region identification were per-
formed on the constraint f(x, l) > yR with yR set to the value of the extracted statistic
given by the GT regions. Specifically yR = 2 for aggregate statistics and yR = 1000 for
the density statistic. As stated, the surrogate models were trained using past function evalua-
tions, the number of past function evaluations varied as the number of dimensions increases
(300− 300K) to account for the fact that more training examples are required to sufficiently
learn a much larger space. The GSO parameters were dynamically adjusted to reach con-
vergence outlined in Section 4.5.7. The objective’s parameter was set to c = 4. For PRIM,
minimum support for the sub-boxes was set to 0.01 and the threshold for aggregate statis-
tics to 2. For Naive, as the number of queries becomes prohibitively large, we resort to
a subset of the total queries that are to be generated. Nevertheless, this is still a good ap-
proximation for the method outlined in Section (4.2.1) and serves as a good baseline. As
the synthetic dataset size in this experiment is not important we create synthetic datasets of
7, 500− 12, 500 points. Bigger datasets will merely scale the responses. For all algorithms,
we obtain the average IoU per dataset by obtaining all the proposed regions given by the
algorithms and assessing their IoU with the GT regions.

Figure 4.3 shows the average IoU over all settings used. As dimensionality increases, the
IoU decreases for all methods across all settings. It is worth mentioning that our method
is identical to the true underlying function method (f+GlowWorm) without incurring any
of the costs associated with computing the exact results of the statistics. This leads us to
believe that the error attributed to the use of an approximation is minimal and, thus, it can be
safely used to identify interesting regions with no significant use of computational resources.
From all sub-figures, we can deduce that dimensionality plays a crucial role in making this
task more challenging. We see a drop in IoU as d > 3. One contributing factor, is that the
GT regions cover a much smaller space in higher dimensions. Given a fixed side length of
l = 0.3 in uniform space U(0, 1), then the ratio of space covered in d = 1 can be obtained by
0.3d = 0.31. As d increases then the ratio of space covered becomes much less and thus the
probability of fully intersecting with other hyper-rectangles is relatively small. For instance,
the ratio of covered space (by the GT) in d = 3 is 2.7% of the total space covered by the unit
hyper-cube.

For the aggregate statistic and k = 1 (top-left sub-figure of Figure 4.3), PRIM outperforms
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Figure 4.3: Average IoU: (Top-Left) for aggregate statistic and k = 1 GT region; (Top-Right)
for density statistic and k = 1 GT region; (Bottom-Left) for aggregate statistic and k = 3
GT regions; (Bottom-Right) for density statistic and k = 3 GT regions.

all other methods and is initially invariant by the increase in dimensions. However, for the
density statistic (right column in Figure 4.3), PRIM is unable to spot the GT regions as it is
not applicable in such domains. PRIM constructs sub-boxes (hyper-rectangles) by peeling

across a specific dimension. It sequentially generates smaller sub-boxes B until the support
of current box βB (i.e., βB = |B|; the number of points belonging in B) is below a user-
specified threshold β0. PRIM tries to identify sub-boxes with minimum support β0, that
maximize the average response value of a selected attribute. Formally, PRIM’s objective is:

max
B

E[f(a)|a ∈ B ∧ βB = β0]. (4.11)

The density of a box B is defined by the support to volume ratio: |B|∏d
i li

, where the denomi-
nator is the volume of the sub-box. To this end, there is neither a way to specify density as
the response variable, nor PRIM takes into consideration the volume of sub-boxes. In ad-
dition, PRIM progressively removes sub-boxes such that the expectation in (4.11) is greater
than what it was before the removal of the sub-box. In case where two sub-boxes Bi and
Bj provide similar gains with respect to (4.11), then the one with less support βBi

< βBj

is removed. However, in the case of the density statistic and, precisely because PRIM does
not consider the region covered by the sub-boxes, a sub-box with higher density might be
removed. Specifically, consider that there exist two boxes that both maximize (4.11) and
also have the same gain; then it might be the case that βBi

> βBj
and |Bi|∏d

k lk
<

|Bj |∏d
k lk

. Which
means that even if the support of a sub-box is smaller, its density might be larger. Of course
this should not be considered as a disadvantage of PRIM, as we are testing the algorithm in
settings that was not designed to operate. Its primary use case is to maximize the average
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Method CoV
SuRF 1.11
Naive 1.10
PRIM 2
f+GlowWorm 1.26

Table 4.1: Coefficient of Variation for IoU across methods.

response of an attribute by enclosing small sub-boxes in d-dimensional space.

PRIM also performed less than the rest methods for the aggregate statistic and k = 3 multiple
regions (bottom-left) in Figure 4.3) 5. In general, we are able to get satisfactory IoU with the
Naive method, but as we will exhibit in our performance section, its efficiency deteriorates
as datasets grow in size and dimension.

Figure 4.4 shows the average IoU along with the standard deviation for multiple/single
regions (left) and different statistic/aggregate types (right). For multiple regions, Figure
4.4(left) we note that PRIM has relatively largest standard deviation and largest decrease in
accuracy as we switch from 1 GT regions to 3; this can also be assessed by their associated
Coefficient of Variation (CoV) at Table 4.1, i.e., the ratio of the standard deviation to the
mean. Given that, the lower the value of CoV, the more precise the estimate becomes and
the fact that PRIM has the highest CoV, it indicates that it is unstable, across various settings.
The other methods have similar CoV’s across settings.

In addition, all other methods seem to be identical, with a decrease experienced from 1 GT
region to 3 GT regions. On the other hand, the statistic type (density or aggregate) in Figure
4.4(right) does not affect accuracy, apart for PRIM’s, which as stated is not able to find
regions under this setting. Given our experiments, it is safe to conclude that SuRF is able to
detect multiple regions of interest under different types of statistics.
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Figure 4.4: (Left) Average IoU for multiple regions; (right) Average IoU for different statis-
tics.

5The IoU for k = 3 is obtained by averaging IoU’s for 3 GT regions.
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4.5.3 Qualitative Analysis over Real Datasets

We also run a set of experiments over real datasets to exemplify the use cases of SuRF. Using
the approach described, we examine whether SuRF can indeed identify regions of interest
experimenting with Crimes [6] and Human Activity [22] real datasets. SuRF was
trained using synthetically generated past region evaluations. We use SuRF over Crimes
to identify regions where the crime index is over the 3rd quartile of a random set of regions,
i.e., yR = Q3 with f̂(x, l) > yR. Figure 4.5 shows the number of crimes over X-Y spatial
coordinates. The higher the intensity of the color, the higher the crime rate is within the
given area. We plot the corresponding density values obtained by the surrogate model f̂(·),
shown in Figure 4.5(left), and note that it is a coarse grained approximation to the true
density values shown on the right. However, optimizing the objective function using the
surrogate model is still sufficient to propose accurate regions in a matter of seconds. The
regions shown in Figure 4.5(left) are the regions that SuRF identified as complying with the
constraint f̂(x, l) > yR. Figure 4.5(right), shows the same regions over the true density
values with 100% of the proposed regions complying with f(x, l) > yR. This means that
the obtained region defined by (x, l) complied with the constraint > yR at both the surrogate
f̂ and the true function f . Thus, SuRF using approximate surrogate models and GSO is
able to pin-point regions of interest in the true data space, complying with the user request
f(x, l) > yR, yR = Q3. Moreover, the regions identified are highly parsimonious as the
regions denote boundaries in X-Y Coordinates.
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Figure 4.5: On the left, identified regions by approximate surrogate function f̂ match to
regions identified by the true function f shown to the right.

Furthermore, the Human Activity dataset reports the values for gyrometers and ac-
celerometers. Using the parameters (X, Y, Z) from the accelerometers, we used SuRF to
identify regions with high ratio for a specific activity; for this experiment we used the human
activity stand. This proactively suggests classification boundaries which the analysts can
adopt to build a baseline classifier, or further investigate the identified region. SuRF was
able to identify regions with ratio of 33% for activity stand. Notably, the empirical CDF
F̂Y , where Y corresponds to the ratio of data points with activity=stand, showed that the
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Table 4.2: Comparative Assessment of Different Methods.
Data size N 105 106 107

Method d dim. Time (sec)

SuRF 1 1.28 1.28 1.3
2 1.4 1.4 1.4
3 1.35 1.35 1.35
4 1.63 1.63 1.64
5 1.68 1.68 1.69

Naive 1 0.01 0.16 1.94
2 3.22 33.72 341.7
3 115.49 1221.6 - (22%)
4 - (66%) - (6%) - (0.5%)
5 - (1%) - (0.1%) - (0.01%)

f+GlowWorm 1 4.71 51.9 601.32
2 26.7 280.14 2856.02
3 26.46 289.5 2808.42
4 27.1 293.62 2981.81
5 30.21 320.03 -

PRIM 1 0.15 0.4 4.8
2 0.2 1.9 32.2
3 0.56 9.3 46.3
4 0.9 9.5 160.5
5 1.28 7.36 282.6

probability of obtaining yR = 0.3 was equal to P(f(x, l) > yR) = 1 − F̂Y (0.3) = 0.0035.
This denotes a highly unlikely event and also shows that regions with higher ratios are not
easy to identify. This denotes the capability of SuRF to mine interesting regions even for
cases where the users’ requests correspond to highly unlikely regions.

4.5.4 Models Comparison

We present a comparative assessment with other methods to showcase the efficiency and
scalability of SuRF in terms of data size and dimensionality. We also demonstrate the ex-
ponential complexity of the considered problem. The performance results are shown in Ta-
ble 4.2. As shown in Table 4.2, the Naive method is efficient with low dimensional data
(d = 1). For Naive, we kept m = n = 6, therefore the number of function evaluations
executed were just (6 × 6)1 = 36 for d = 1. However, there is an exponential increase in
time as d increases, and with N = 107 data points, Naive times out. The ratio included
denotes the number of regions examined before exceeding the time limit, which was set to
3000 seconds. The same trend appears in f+GlowWorm showing an increase in the amount
of time it takes to mine interesting regions. The GSO parameters were set to T = 100 and

98



L = 100 for both f+GlowWorm and SuRF, with initial swarm neighborhood range r0 = 3

and constants γ = 0.6, ρ = 0.4 as in [79]. For these experiments, we keep GSO’s parameters
fixed to explore the effects of dimensionality d and data size N . At (4.5.7) we investigate
the impact of GSO’s parameters on efficiency. PRIM is not affected as much and performs
well across all configurations except when the dimensions d and data points N become suf-
ficiently large. On the other hand, SuRF only takes a few seconds across all configurations.
Given the same dimesionality d and a varying dataset size N , SuRF’s performance remains
constant (scales very well) as SuRF does not actually access any data during the mining pro-
cess. Of course, SuRF’s surrogate models are trained before hand for separate statistics. The
models will be trained once on a number of past region evaluations and then successively
be used for different statistics, thresholds and by different users. Each new request does not
need to re-train the model and the overhead for training the surrogate models of SuRF is
incurred once. Note: It is worth mentioning that all datasets were loaded in memory for
performing these experiments. For larger datasets in size N that do not fit in memory the
methods in comparison would have to perform multiple disk accesses, thus, incurring sig-
nificantly higher costs in solving the discussed mining task. In addition, as stated in [50],
PRIM is not equipped to work with disk-access and a common remedy would be to sample
the dataset. On the contrary, SuRF models are light enough, to always be loaded in memory
and make no use of data at all. Hence, for SuRF, it does not matter if the data are stored in
disk or on a remote data center.

4.5.5 Training Surrogate Models

In this experiment, we measure the overhead required to train surrogate models on a varying
number of queries. The results are shown in Figure 4.6. Using GridSearchCV [102], we are
able to find optimal parameters for our model of choice. For GridSearchCV, we pre-specify
a range of parameter values for the parameters of XGBoost. We hypertune the parameters:

• learning rate ∈ [0.1, 0.01, 0.001]

• max depth ∈ [3, 5, 7, 9]

• n estimators ∈ [100, 200, 300]

• reg lambda ∈ [1, 0.1, 0.01, 0.001]

As expected, this takes more time than only training the models with their values pre-
specified, as witnessed in Figure 4.6. This is because 3 × 4 × 3 × 4 = 144 combinations
have to be tested on large sets of training examples. We could possibly reduce the number
of parameter values, to be tested, to increase efficiency. However, we run the risk of not
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getting adequate approximations to f . Surely, this should not be a problem to the analysts
as the models will only be trained once. In addition, the models could be trained in a central
location on more powerful clusters to expedite this process and then subsequently be used
by the analysts.

10 52 94 13
6

17
8

22
0

26
2

30
4

34
6

38
8

Queries (103)

10−1

100

101

102

103

104

T
im

e
(l

og
(s

))

Hypertuning

False

True

Figure 4.6: Training overhead shown in log-scale (y-axis) as the number of queries (x-axis)
increase.

4.5.6 Comparison of the Optimization Functions

We compare the effectiveness of the optimization objectives outlined in (4.2) and (4.4) and
present the results in Figure 4.7. The top sub-figures refer to the objective function in (4.4)
and the bottom sub-figures refer to objective function in (4.2). We used the synthetic dataset
with d = 1 and k = 3 to be able to visualise the objectives and demonstrate the multimodal-
ity in the optimization proccess. In all sub-figures, as the region-size optimization parameter
c increases, we observe much more contracted peaks. This is because viable region lengths,
l1’,s are restricted to smaller values. Regarding the objective (4.4), the use of logarithms,
forces regions not adhering to the constraint on yR, to become invalid and the corresponding
objective function to be undefined. Hence, the white area in Figure 4.7(top) corresponds to
those areas. Using objective (4.4), GSO is able to successfully isolate glowworms initial-
ized in those areas and eventually adjust their radii to reach glowworms in the valid solution
space only. On the other hand, if objective (4.2) was to be adopted, the glowworms could
have formed neighbourhoods in what they would believe are local optima, where in real-
ity, those regions would be invalid. In addition, we compare the obtained average IoU and
computational performance of the objectives shown in Table 4.3 using the same dataset with
d− 1 and k = 3. Although we do not notice vast differences in IoU, which means that using
both objective functions SuRF is able to mine interesting regions with the same accuracy, the
performance benefits of using objective (4.4) are clear, as it is computationally cheaper by
isolating non-viable region solution sub-spaces and because of its structure.
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Figure 4.7: 2-dim. region solution space examined by (top) objective J in (4.4) and by
(bottom) objective J in (4.2) as the optimization parameter c increases.

Table 4.3: Performance & Accuracy Comparison of Different Objectives
Method Time (sec) Average IoU

Objective J in (4.4) 8.81± 0.001 0.74± 0.08
Objective J in (4.2) 16.3± 11.8 0.77± 0.03

4.5.7 SuRF-GSO Algorithm Sensitivity

We have conducted experiments to evaluate the computational efficiency of GSO and also
examined its rate of convergence across different dimensions and parameter settings. Please
note that the Dimensions parameter has been doubled to reflect the fact that SuRF (and GSO)
operate at 2d dimensions per our definition for regions at Def.4.2.2. GSO specific parameters
such as γ, ρ are constant adopted from the respective paper [79]. The results are shown
in Figures 4.8 & 4.9. Experimentally, we have found that the number of glowworms and
neighbourhood radius (r0 in GSO parameters) have to be adjusted to account for the enlarged
region solution space. We increase glowworms using L = 50d and radius r0 = (1 − 1

2

1
L )

1
d

adopted from [46] Section 2, Equation (2.24). Although the number of needed iterations
does vary across settings, as witnessed in Figure 4.8, the average number of iterations across
all settings is 63. Hence, GSO is a robust and efficient algorithm, converging to the various
local-optima of the mining task, over different dimensions d and multiple regions k.

Moreover, the average performance for varying number of iterations and glowworms is
shown in Figure 4.9. In Figure 4.9(left), we increase dimensionality d and number of glow-
worms L as we keep the number of iterations T = 100 constant to measure the impact
on performance for a varying number of glowworms. This has minimal effect on the total
run-time as it takes no more than 15 seconds for GSO’s process to complete. The same
holds for the number of iterations in Figure 4.9(right). Although the average number of it-
erations required to reach convergence is estimated to be 63 and no setting required more
than T = 250 iterations, we measured the performance for up to T = 400 iterations with
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Figure 4.8: Expected convergence rates vs iterations T for different dimensionality d with
k ∈ {1, 3} multiple regions.

L = 100. No more than 10 seconds is required for the largest number of iterations to finish.
It appears that both parameters cause a super-linear increase in time for the same number
of dimensions even if the stated complexity was O(TL2d). This is because the number of
glowworms is small enough so that the time required is still driven by the prediction time
from the approximate f̂(x, l) instead of the increase in glowworms.
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Figure 4.9: SuRF-GSO mining performance over dimensionality d for (left) different number
of glowworms L and (right) iterations T

4.5.8 SuRF-Surrogate Model Sensitivity

In this experiment, we evaluate the sensitivity of the surrogate models. Specifically we
examine how the number of training examples and out-of-sample generalization error affect
the accuracy of the model. In addition, we evaluate how the complexity of the model affects
the accuracy of the model and its ability to obtain good IoU.

Figure 4.10 (left) shows a negative correlation between IoU and Root Mean Squared Error
(RMSE) obtained from the surrogate models using XGB. For this experiment we use the
dataset with a density static, dimensions d = 3 and single GT region k = 1. As the out-

102



0 50 100 150 200 250

RMSE

0.10

0.15

0.20

Io
U

Correlation Coef : -0.57

101 102 103 104 105

Training examples

100

200

300

400

500

600

700

800

R
M

S
E

Dimensions = 2

Dimensions = 4

Dimensions = 6

Dimensions = 8

Dimensions = 10

Figure 4.10: (Left) Correlation of IoU and RMSE; (right) number of training examples
needed to minimize RMSE of XGB ML-approximate surrogate model over different dimen-
sionality d.

of-sample test error (measured by RMSE) increases, the accuracy for IoU drops. This is
evidenced by an estimated regression line along with 95% confidence interval and Pearson’s
Correlation estimated at −0.57. Therefore, it is important to find ML models that can also
act as good statistic estimators. In addition, Figure 4.10 (right) shows how cross-validated
error decreases as the number of training examples for approximating a surrogate function
increases. For each ML model at different dimensions, we stop training when no further
improvement is measured with respect to RMSE. We use datasets with varying dimensions
using the density statistic and single region k = 1. The shaded area refer to the error’s
standard deviation. We note that by ∼ 1, 000 training examples, i.e., function evaluations,
and sufficient hyper-tuning of parameters, the ML models are able to learn the association
between region vectors (x, l) and statistic values y well enough. In our region identification
accuracy experiments, we examine the IoU behaviour up to 5-dim. hyper-rectangles corre-
sponding to 10-dim. vectors. Hence, the ML models need to learn using 2× d-dim. vectors.
The number of examples is not at all hard to obtain as in reality multi-dimensional regions
are extracted from datasets by a plethora of business intelligence applications. One could
also assume that the past function evaluations can be obtained, manually by SuRF, at regular
downtimes of the system (where traffic load is low).

We also analyze the impact of the XGB-ML model complexity on RMSE and IoU reflected
by the maximum depth in regression trees in XGB. The results for both training and cross-
validation steps are shown in Figure 4.11. As expected, RMSE drops as ML model complex-
ity is increased. Although not initially evident, IoU has a tendency to increase when model
complexity increases. However, this finding suggests, that we could safely omit training a
complicated model, as it is evident that they would be able to get a good enough approxima-
tion with relatively less complex models. ola
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4.6 Related Work

Identifying interesting regions can be traced back to Friedman et al. [50] who were inter-
ested in finding regions in d-dimensional spaces that would maximize/minimize a dependent
variable y. Their algorithm processed data sequentially to generate smaller regions (as met
in regression trees) and included a pruning step in the end. The computational cost of their
algorithm is prohibitive when considering large datasets with respect to dimensionality and
number of points. In addition, the objective described in [50], is different than the one de-
scribed in this chapter. SuRF does not seek regions that would maximize/minimize y but
regions that satisfy the conditions listed at (4.3). Moreover, our task is loosely coupled with
the objective of Subspace Clustering (SC) [100]. The algorithms proposed for SC aim to
identify clusters in low-dimensional sub-spaces, by pruning regions and dimensions using
some interestingness criterion. The interestingness criterion is often the support (e.g., num-
ber of data points with respect to total number of data points) of a given region. Other
measures of interestingness have also been proposed, [120] with the underlying metric still
being the number of points. Such methods rely on partitioning/discretising schemes, evalu-
ating the density of the found regions and pruning/merging until converging to a region of
interest. This is not ideal as the complexity is often exponential with respect to the number
of dimensions [120] as also mentioned and experimentally evidenced by our Naive/Baseline
solution. In addition, although we consider the density of regions as one example use case, in
general, we are interested in regions satisfying the constraint outlined in (4.3) for any given
statistic. Thus, our objective is substantially different than the one described in SC work, but
we regard it as equally important for data mining practitioners.

Furthermore, there is large body of work on Subgroup Discovery (SD) [24, 56, 28], of course
the list is not exhaustive. The purpose of SD is to find subsets of data that show an inter-
esting behaviour with respect to a given interestingness/quality function. It is similar to SC,
however SD generalizes the notion of interestingness to subsets of data (potentially across all
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dimensions) of various data types, i.e nominal, binary, numeric etc. Depending on the data
type, an analogous quality/interestingness function is employed. Multiple algorithms, both
exhaustive [25] and approximate [24] have been developed for this task. However, to our
knowledge most algorithms are data-driven and do not share our approach to this problem.
By data-driven we mean that they employ algorithms that work directly with the underly-
ing data and try to extract subgroups by repeatedly performing region evaluations. This
approach is costly as datasets become larger. On the other hand, by using QDL, SuRF can
scale regardless of dataset size, as it identifies interesting regions without accessing any of
the data.

In other contexts, finding interesting regions was explored for categorical attributes by the
construction of OLAP cubes [110] on defined dimensions and hierarchies. As we consider
the problem of identifying regions in continuous attributes this approach could not be lever-
aged as also mentioned in [110], in which they direct to other techniques for continuous
data. Alternative formulations, such as posing this problem as finding the top-k regions [87],
could also be leveraged and are considered to be complementary to our approach. In the
case of, top-k formulation, the user has to supply the number of regions, this is often ad-hoc
and as evidenced by our examples at Section 4.1 a threshold is more intuitive. Hence, each
approach can be used in cases when one of the values (k or threshold) is known. In addition,
the complexity of any top-k algorithm inevitably depends on N (the number of data items),
d, and k. In intended applications, N will be very large and (as we argued before, so will
be k). In contrast, our approach manages to offer performance independent of N , which is
likely to pay off big dividends for big data deployments. Also, note that for the multi-modal
case in our experiments, if all top-k regions were to be concentrated in one of the GT regions
(if y was to be slightly higher for one of the regions) then a top-k approach would effectively
identify just one of the regions.

Lastly, spatial indexing [58, 87] could also be considered as the indexes produce hyper-
rectangular regions over data points which is one of our requirements. However, their goal
is not to locate interesting regions with respect to a given statistic but to group data points
together for efficient access. Hence, the produced regions only consider the spatial distance
of data points and produce fixed regions which the user can use. For any subsequent region,
that a user wants to identify based on a threshold or a region size requirement, the user only
has access to those fixed regions which could be inadequate.

Finding regions has been considered in other domains [41, 84, 132, 17], with different ob-
jectives and algorithms which consider smaller datasets N < 200, 000. SuRF, is used with
an arbitrarily large number of data points N as effectively makes no use of the underlying
database system; instead, SuRF uses ML models to perform computations over surrogate
models.
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4.7 Conclusions

In this chapter, we move a step futher in automating exploratory analysis by employing
QDL to the task of automatically identifying interesting regions in data. Specifically, we
have introduced SuRF, a solution based on multimodal evolutionary optimization and QDL,
which efficiently mines regions of interest in multidimensional datasets. To be precise, the
regions are associated with a statistic of interest y computed using the data points included
in a region. Thus, the problem of locating regions of interest is formulated as finding re-
gions complying with y > yR or y < yR, where yR is a user defined threshold. Given
this constraint an optimization problem was introduced which yields a multimodal solution
space. SuRF leverages GSO built for this class of optimization problems. SuRF uses QDL
to approximate functions for predicting statistic y over interesting regions. By using this ap-
proach, SuRF locates regions of interest 150× faster than the best competitor and more than
3 orders of magnitude than the worse, with minimal impact in accuracy. To our knowledge,
the problem of finding interesting regions by fusing multimodal optimization with ML has
not been investigated before. SuRF is a promising approach in solving a laborious and often
manual mining task.
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Chapter 5

Dynamic Data & Query Workloads
Adaptation

5.1 Introduction

In the last chapters, we have described mechanisms that based on QDL, have managed to
expedite large parts of the Data Analysis process. With QDL, we have effectively created
ML models that can predict the results of aggregate queries. Given an input query, q, a
model based on QDL is simply a mapping of f̂ : Rd → R that imitates an AF. An AF
is considered as the true function f and a key objective throughout this thesis was to have
f̂(q) ≈ f(q),∀q. The models were trained using a set of query-answer pairs, C = {(q, y)}.
However, as time goes on, the state of a database might change. More data might be inserted,
some of the data might be deleted and other parts of the data might be updated. This fact
could cause the models to become inaccurate for a subset of all possible queries.

Moreover, the diversity of data analysts and the changing business directives make the query
workload more dynamic. The model that was trained to represent an AF, might not suffi-
ciently represent queries issued by all data analysts. By the introduction of new analysts to
the team, the distribution of p(q) might change. The same effect could be caused by changing
interests, that would denote different queries being issued. This fact would cause significant
problems to model f̂ , as the model f̂ has learned to represent distribution pold(y|q). If we
have a condition, where pnew(y|q) 6= pold(y|q), then the model could become inaccurate.

Hence, we need to introduce mechanisms for adapting existing models (or creating new
ones) when faced with a changing state in the database. Specifically, this chapter can be
summarized by the following points:

1. We introduce concepts such as data shift and workload shift. The former indicates a
change within the data and the latter a dynamic workload.
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2. A method for adapting to data shift is described.

3. An ensemble method based on query-space partitioning is described, to address, ini-
tially, diverse analyst interests.

4. Mechanisms for detecting workload shifts and for adapting models are described.

5. Extensive evaluation of the proposed methods for detecting workload/data shifts is
presented.

5.2 Definitions

We revisit some of the definitions that we have introduced in earlier chapters and also intro-
duce some new ones that will help throughout this chapter.

Definition 5.2.1. (Data) Data corresponds to a collection of random row vectors
a = [a1, . . . , ad]

> ∈ Rd. Data are generated from an unknown distribution p(a).

Definition 5.2.2. (Query) A query q, is a tuple (m, y), where m ∈ Rd is a vector that in-
cludes the extracted parameters of a query and y ∈ R is its corresponding result. Parameter
values are generated from an unknown distribution p(m) and the results from an unknown
conditional distribution p(y|m). Please note that the type of vectorization process that gen-
erates m can be any of the described processes in the past chapters.

Definition 5.2.3. (Model) Assuming an AF is the true function f , then a model is an es-
timated function f̂ that is obtained using QDL. Both functions are essentially mappings
f̂ : q ∈ Rd → y ∈ R and generally we want a model which minimizes EPE such that
f̂ = arg minf̂ E[(f(q)− f̂(q))2].

Definition 5.2.4. (Data Shift) A data shift occurs when the distribution p(a) changes, such
that pt(a) 6= pt+1(a), consequently we expect that pt(y|m) 6= pt+1(y|m) would also hold.

Definition 5.2.5. (Workload Shift) Workload shift corresponds to the case where pt(m) 6=
pt+1(m). Which we expect would cause pt(y|m) 6= pt+1(y|m). Hence, any model that has
learned the distribution pt(y|m) could be obsolete.

5.3 Dynamic Data Adaptation

Over the course of time there might be significant data updates that invalidate the patterns
learned by the models so far. However, in general, new data might not cause the accuracy
of models to deteriorate as it is still able to generalize. Hence, data updates need to be
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significant, to cause a Data Shift. Although insertions/updates/deletions could be expected
to be frequent, p(y|m) might not change. Therefore, the key observation is that we do not
need to track changes in the data space but instead need to monitor for changes in p(y|m). To
tackle Data Shift, we could naively retrain the models at fixed time intervals, to be sure that
the most updated data are used. Over, 1M+ queries are executed daily in large deployments
[70]; thus, it is easy to find new queries executed on fresh data. However, tracking when this
event actually happens would help minimize re-training models.

As repeated throughout this thesis, our solutions are based on QDL and do not access data
at any time. Therefore, to detect changes in data, we monitor queries that are successively
executed by the data warehouse (qt, . . .). To detect changes to the aggregates distribution
p(y|m) we employ the two-sample Kolmogorov-Smirnov (KS) test. The KS test output
statistic is listed in (5.1)

D = sup
y
|F1(y)− F2(y)| (5.1)

Where F1 is the Empirical Cumulative Distribution Function (ECDF) at time t of answers
Y1:t

1 of all queries that were used to train a model and F2 is the ECDF of Yt+1: from mon-
itored queries executed against the data warehouse. The KS test, evaluates the hypothesis
that the two sets of answers come from the same distribution. The hypothesis is rejected at a
significance level α ∈ (0, 1) if D > c(a)

√
n+m
nm

, where c(a) =
√
−1

2
+ ln α

2
and n = |Y1:t|,

m = |Yt+1:|. The minimal bound of this test becomes lower to larger sample sizes m,n.
The hypothesis is not rejected for a p-value > α. If the hypothesis is rejected, then the
distribution has shifted and the model associated with this AF needs to be retrained.

5.4 Query Space Partitioning

Recent research, analyzing analytics workloads from various domains, has shown that queries
within analytics workloads share patterns and their results are similar having various degrees
of overlap [137]. Based on this evidence, we mine existing queries to discover clusters of
queries, having similar predicate parameters. This helps address the challenge of numerous
analysts issuing queries, with those analysts having diverse interests. Hence, by partitioning
the query space we proactively adapt our models to diverse query workloads.

Formally, consider a discrete time domain t ∈ T = {1, 2, 3, . . .}, where at each time instance
t an analyst issues a query qt. The query is executed and an answer yt is obtained, forming the
pair (qt, yt). The issued queries are stored in a growing set Ct = {(q1, y1), . . . , (qt, yt)} =

Ct−1 ∪ {(qt, yt)}. Given this set, we incrementally extract knowledge from the query vec-
tors and then train local ML models that predict the associated outputs given new, unseen

1The notation 1 : t denotes the answers of queries at time-steps 1 to t and t+1 : denotes answers of queries
from t+ 1 onwards.
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queries. This is achieved by on-line partitioning the vectors {q1, . . . ,qt} ∈ Ct into dis-
joint clusters that represent the query patterns of the analysts (fundamentally, within each
cluster the queries are much more similar than the queries in other clusters). The distance
between queries, quantifies how close the predicate parameters are in the vectorial space.
Close queries q and q′ are grouped together into K2 clusters with respect to ‖q − q′‖22.
The objective is to minimize the expected quantization error E[mink=1,...,K‖q − wk‖22] of
all queries to their closest cluster representative wk, which reflects the analysts query pat-
terns and best represents each cluster. The K query representatives W = {w1, . . . ,wK}
optimally quantize Ct minimizing the expected quantization error while each query q is
projected onto its closest representative w∗ = arg minw∈W‖q − w‖22. Based on the par-
titioning of Ct, we produce K query-disjoint sub-sets such that Ck ∩ Cl ≡ ∅ for k 6= l and
Ck = {(q, y) ∈ Ct|wk = arg minw∈W‖q − w‖2}. A local ML model is then trained over
each subset using the pairs in Ck, k ∈ [K].

5.4.1 Ensemble Model Prediction

Each aggregate result y from the pair (q, y) ∈ Ct represents the true response. Using QDL
we train regression algorithms to minimize the EPE. After having partitioned the query space
into clusters C1, . . . , CK , we therein train K local ML models, M = {f̂1, . . . , f̂K} that as-
sociate queries q belonging to cluster Ck with their outputs y. Each ML model f̂k is trained
from query-response pairs (q, y) ∈ Ct from those queries q which belong to Ck such that wk

is the closest representative to those queries. Given a query q only the most representative
model f̂k is used for prediction, corresponding to the closest wk:

ŷ =
K∑

k=1

Ikf̂k(q) (5.2)

where Ik = 1 if wk = arg minw∈W‖q−w‖22; 0 otherwise.

5.5 Query Pattern Change Detection

Suppose that all trained ML models {f̂k}Kk=1 are deployed into production, we call this phase,
the PREDICTION mode. That is, for each incoming query, a model f̂ can predict the answer
of a query without executing the query. If we assumed a stationary query pattern distribu-
tion, in which queries and analysts’ interests do not change, then no adaptation mechanisms
would be necessary. However, this is not realistic, as it is highly likely that analysts interests

change over time (e.g., during exploratory analytics tasks, which are considered as ad-hoc
2The number of clusters K is automatically identified by the clustering algorithm used. [7]
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processes [66]). So, dynamic workloads may render the {f̂k}Kk=1 models obsolete, as they
were trained using past query patterns following distributions which may now be different.
Accommodating such dynamics is becoming increasingly important as ML is widely adopted
in software in production [119]. Specifically, when referring to analysts’ interests, we refer to
analysts who are tasked with informing different business decision processes. If those tasks
change, the data subspaces to be analyzed become different, which results in changed query
patterns. If models cannot be adaptive, expected prediction errors can become arbitrarily
high. When pt(y|q) changes to pt+1(y|q), it is highly likely that any previous approximation
would produce high-error answers, unless pt(y|q) ≈ pt+1(y|q). We capture such dynamics
using concept drift detection [131, 39], many methods have been developed for adjusting
when this arises [52, 39].

We introduce a Change Detection Mechanism (CDM) and an ADaptation Mechanism (ADM),
to address this problem, raising a number of challenges: (1) How to detect a query pattern
change; we need to enable triggers that alert the mechanism being in prediction mode in case
of a concept drift; (2) What kind of action should we take in case that happens, i.e., what
strategy to follow for updating the ML models; We explore these challenges and describe the
decisions we take in tackling them in the remainder.

5.5.1 Change Detection Mechanism

So far, we have trained K different local ML models to predict answers involving only
the k-th model that best represents a new incoming query through the representative wk.
This requires to individually monitor whether the query representatives, used for prediction
via their respective models, are still representatives in long-term predictions or whether the
analysts’ query patterns have changed. In this case, we need to introduce a CDM that triggers
when the original query representative has significantly diverged from the estimated one.

Our approach can be best understood by first assuming that the CDM maintains an on-line
average of the prediction error (y − ŷ)2 such that : uk ≈ E[(y − ŷ)2|q]. This is done for
each query representative wk across different users. Should the expected error uk escalate
significantly, then this may signal that a query pattern has shifted around the ‘region’ repre-
sented by the representative wk. But, recall that during PREDICTION mode, the actual y is
unknown since our goal is to predict accurate answers but without executing the query itself.
Hence, we develop an approximation mechanism for change detection, not requiring query
executions.

Once we have trained the individual ML modelsM and calculated their expected prediction
accuracy (using an independent test sample drawn from the original set of queries) we obtain
the EPE, which will be constant across all possible queries associated with a particular query
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representative defined as: EPE = E
[(
f(q)−∑K

κ=1 Iκf̂κ(q)
)2]. Using the EPE, we wish to

find a fine-grained estimate of the true prediction error rather just assuming this is constant
for each and every unseen query.

To do this, we have analyzed the error behaviour under changing query patterns. Our findings
reveal an interesting fact: The Euclidean distance d(q,wk) = ‖q−wk‖22 of a random query q

from its closest query representative wk is strongly correlated with the associated prediction
error (y − ŷ)2.3 Considering the correlation between d(q,wk) and the local uk, we define a
distance-based prediction error ũk of a query q as:

ũi = ln (1 + d(q,wk)− min
q`∈Ck

d(wk,q`)) · uk, (5.3)

where the natural-log operator acts as a penalizing/discount factor for queries given their
distance from the closest representative wk. The second term within the natural-log operator,
minq`∈Ck d(wk,q`) is the minimum distance between the query representative wk and the
associated queries q ∈ Ck. We subtract the minimum distance from d(q,wk) so that the
scale of the numbers will not affect the computation of the error.

We base our novel CDM in (5.3) using the series of error approximations {ũt} for monitoring
concept drifts in query patterns during prediction mode without executing the queries.

Consider the incoming unseen (random) queries (q0,q1, . . . ,qt) arriving in a sequence t ∈ T
during prediction mode. They are answered by specific local ML models (f̂0, f̂1, . . . , f̂k),
generating a series of distance-based error estimations {ũt}, t ∈ T. The CDM monitors this
series and, based on a specific threshold, signals the existence of concept drift, i.e., checks
whether the probability distribution of the queries has changed. Based on the series of error
estimations, we learn two query distributions: (1) the expected query distribution, which is
represented by the query representatives and (2) the novel query distribution, which cannot be
represented by the current query representatives. The expected distribution p0(ũ) is estimated
given a training period from ũk values corresponding to queries with closest representative
wk. The novel distribution p1(ũ) is estimated from ũm values corresponding to error values
derived from the rival representatives wm of queries with closest wm and k 6= m. Based
on this, we estimate the distribution of the error values generated from representatives which
were not the closest to the queries, thus, approximating novel error values. Both distributions
were approximated by fitting the p(ũ) ∼ Γ(e1, e2) distribution with scale e1 and shape e2.

Given a ũt value, we calculate the likelihood ratio st = log p1(ũt)
p0(ũt)

and the cumulative sum of
st up to time t, Ut =

∑t
τ=0 sτ . Based on the sequential ratio monitoring for a progressive

concept drift in distribution [55] from p0 to p1, a decision function is introduced for signaling

3A 0.3 Pearson’s Correlations was obtained on a real dataset.
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Figure 5.1: Change detection based on the likelihood ratio of the distance-based error, trig-
gered when query patterns are shifted.

a potential concept drift expressed as:

Gt = Ut − min
0≤τ≤t

Uτ−1. (5.4)

The decision function in (5.4) indicates the current cumulative sum of ratios minus its cur-
rent minimum value. This denotes that the change time estimate t∗ is the time follow-
ing the current minimum of the cumulative sum, i.e., t∗ = arg min0≤τ≤t Uτ . Therefore,
given that Ut = Ut−1 + st, the decision function in (5.4) is re-written in a recursive form:
Gt = {Gt−1 + st}+ with {z}+ = max(z, 0) setting, by convention, U−1 = 0 and G−1 = 0.
Hence, a concept drift of query patterns projected over the query representatives space is de-
tected at time tD: tD = min{t ≥ 0 : Gt > h}. The parameter h is usually set 3σ ≤ h ≤ 5σ

with σ the standard deviation of ũ. The process is shown in Figure 5.1, the cumulative sum of
ratios exceeds the threshold h as soon as queries are issued from an unknown distribution, as
the error estimates become steadily larger and are not just random fluctuations in errors. It is
worth noting that the change in query distribution is based on fusing the distance between the
queries and their closest representatives scaled with the EPE. We refer to this as an indication
of degradation in the performance of the model. Given that a change has been detected, the
CDM signals the ADM which transits from PREDICTION mode to BUFFERING mode as
shown in Figure 5.2. As soon as a change is detected the CDM signals the ADM compo-
nent, that new query patterns have been detected. In turn, the ADM signals the Prediction

Component (containing theM andW) to be put in BUFFERING mode since the prediction
component can no longer provide reliable answers for all queries. However, we can still
leverage the complete system to ask queries following the already known distributions with
only queries following the new shifted distribution being executed at the data warehouse. By
entering BUFFERING mode our ADM starts to adjust for the new query patterns until con-

verging. At that point it signals the Prediction Component to switch back to PREDICTION
mode, resuming normal operation.
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5.6 Adaptation Mechanism

In this section, we explain the fundamentals of the ADM. Once a local model f̂k transits to
BUFFERING mode, it is deemed unreliable to accurately predict the answers of incoming
queries. Therefore, during this phase, queries should be executed and their actual answers
returned to analysts while also being used for adapting the model and representative (f̂k,wk).
In the beginning of BUFFERING mode, we introduce a new query representative wK+1 and
adjust its coordinates with respect to queries that become associated to it. In the end, all
queries that have become associated with this new representative are used to train a new
model f̂K+1.

To reduce the expected number of queries executed during BUFFERING mode, we introduce
a query execution selectivity mechanism based on the current estimated error in (5.3). Specif-
ically, there would still be some queries issued by an analyst that could be locally answered
by current models during that phase. Therefore, we still monitor incoming queries and dis-

criminate between two types: (1) the ones that can be locally answered by models in M
and (2) the ones that cannot be answered, since these queries are not well represented by the
cached query representatives. The latter queries are then forwarded for execution. The se-
lectivity mechanism relies on the following rule: an incoming query qt, during BUFFERING
mode is locally answered, if the new local representative, notated by wK+1, is not the closest
representative i.e., wk∗ = arg minw∈W∪{wK+1}‖qt − w‖2 and k∗ 6= K + 1. If the query is
closest to the non-yet converged novel representative, wK+1, then it is forwarded for execu-
tion. However, since the novel representative wK+1 is not converged, we also consider the
distance from its rival (second closest) converged representative as a backup. The rival repre-
sentative can provide assistance and answer the query locally, if it is close enough to include
qt in the range around its variance σ2.4 An example is shown in Figure 5.3, queries qt and
qt+1 both have wk+1 as the closest representative. However, only qt+1 will be forwarded

4This is associated with the vigilance parameter in Adaptive Resonance Theory dealing with the bias-
plasticity dilemma.
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Figure 5.3: Demonstration of the forwarding rule by the ADM. Both queries (in blue) have
wk+1 (the non-converged) as the closest representative. Only one of them is send to the CS

as qt is within the radius of w3. The forwarding selectivity mechanism is also evident in
Algorithm 2. Based on the centroid theorem of convergence in vector quantization, i.e., the
converged wk is the expected query (centroid) of those queries having wk as their closest
representative, we exploit the variance σ2 = 1

|Qk|
∑

q∈Qk
‖q − wk‖22 for activating the for-

warding rule. The rule is based on the rival centroid and is fired if ‖qt − wk‖2 > λσ for
any scalar λ > 0 given that the query is closest to the non-converged wK+1. The probability
of forwarding incoming queries for execution, given that they cannot be reliably answered
by the local model f̂k is upper bounded as provided in Theorem 3. The query is executed if
inevitably the rival representative cannot be used for prediction since ‖qt −wK+1‖2 > λσ.
The value of λ is adopted from the scaling factor of h, i.e., 3 ≤ λ ≤ 5.

Theorem 3. Given a random query q whose distance from its rival (second closest) rep-
resentative wk is greater than λσ, the upper bound of the forwarding probability for query
execution is O( 1

λ2
).

Proof. Let the query q being projected to its closest representative wK+1, which is not yet
converged and let its second closest be the converged wk. The representative wk corresponds
to the mean vector of those queries belonging in the cluster Ck. In order for the query q to
be forwarded for execution, it means that wk should not be the mean vector for the incoming
query q. This is indicated if the distance ‖q−wk‖2 is greater than a proportion of the norm
of the variance σ of the cluster Ck by a factor λ > 1. Hence, the query is executed, if this
distance is greater than λσ, which is stochasitcally bounded by the factor 1/λ2 based on
Chebyshev’s inequality P (‖q−wk‖2 ≥ λσ) ≤ 1

λ2
.

5.6.1 Model Adaptation

When a query is selectively forwarded, the process of model adaptation has as follows: for
adapting to new query patterns, we rely on the principle of explicit partitioning [131, 39],
as a natural extension of our strategy using an ensemble of local ML models. To adjust to
new query patterns, we train a new model f̂K+1 using executed queries and their answers.
This is the optimal strategy for expanding the current M as other methods might lead to
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Algorithm 2 Adaptation Mechanism
Input:M andW
Set buffer Q = ∅
while MODE = BUFFERING do

Prediction Component receives query qt
wk∗ = arg minw∈W∪{wK+1}‖qt −w‖2 . closest
wk = arg minw∈W∪{wK+1}−{wk∗}‖qt −w‖2 . rival
if ‖qt −wk‖2 > λσ and wK+1 = wk∗ then

Send query qt for execution
Q = Q∪ {(qt, yt)} . actual query-answer pair
Adapt prototype wK+1

else
ŷ = ĝ(qt) . prediction

end if
Update learning rate γ
if convergence w.r.t. c then

Train new model f̂K+1 using Q
M =M∪ {f̂K+1},W =W ∪ {wK+1}
Set MODE = PREDICTION

end if
end while

catastrophic forgetting [52]. Indicatively, such methods adopt strategies to adapt the current
model by adjusting to new patterns whilst forgetting the old ones. In our context, this is not
applicable since analysts have the flexibility to issue queries either conforming to the old

patterns or to the new ones, depending on the analytics process.

The adaptation process is performed with parameters: the K query prototypesW and their
associated ML models M as shown in Algorithm 2. Let the queries series {q1,q2, . . .}
forwarded, based on selective forwarding. This means that most likely a query qt conforms
to new query patterns thus sent for execution. Once query qt is executed and its actual answer
yt is obtained, it is then considered as a new (initial) representative wK+1 forMK+1. The
pairs (qt, yt) are then used to incrementally update wK+1 and buffered in Q, which will be
the training set for f̂K+1. The adaptation of wK+1 to follow the new query pattern is achieved
by SGD [30]. SGD is widely used in statistical learning for training, by considering one
example (query-answer) at a time. We focus on the convergence of the query distribution
by moving the new query representative towards the estimated median of the queries in
Q and not the corresponding centroid. This is introduced so that the new representative
converges to a robust statistic, free of outliers and more reliable than the centroid (mean
vector). The convergence to the median denotes with high reliability convergence to the

distribution, which is what we desire for model convergence. In this case, we provide the
adaptation rule of the new query representative to converge to the median of the forwarded
queries, in Theorem 4.
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Theorem 4. The novel representative wK+1 converges to the median vector of executed
queries with respect to the update rule ∆wK+1 ∝ γsgn(q−wK+1), γ ∈ (0, 1); sgn(·) is the
signum function.

Proof. Each dimension i of the median vector m of the queries q in a sub-space satisfies:
P (qi ≥ mi) = P (qi ≤ mi) = 1

2
. Suppose that the new representative wK+1 has reached

equilibrium, i.e., ∆wK+1 = 0 holds with probability 1. By taking the expectations of both
sides of the update rule E[∆wK+1] = αE[sgn(q − wK+1)] = 0 and focusing on each
dimension i, we obtain that:

∫
sgn(qi − wK+1,i)p(qi)dqi = P (qi ≥ wK+1,i)

∫
p(qi)dqi −

P (qi < wK+1,i)
∫
p(qi)dqi = 2P (qi ≥ wK+1,i)− 1. Since E[∆wK+1,i] = 0 is constant, then

P (qi ≥ wK+1,i) = 1
2
, which denotes that wK+1,i converges to the median of qi, ∀i.

Once the novel representative, wK+1, has converged, given the condition ∆wK+1 < c and
a threshold parameter c, then a new model f̂K+1 is trained using queries buffered in set Q.
The models setM and representatives setW are expanded to account for the newly trained
model f̂K+1 and representative wK+1.

5.6.2 Convergence to an Offline Mode

When the system transits from the BUFFERING to PREDICTIONmode, the enhancement of
M andW gradually decreases the probability to enter the BUFFERING mode in the future.
This indicates that the gradually expanding sets reflect the analysts’ way of exploring and
analyzing data. Because of this expansion, the transition probability from PREDICTION to
BUFFERING mode gradually decreases saving computational resources.

The entry probability β to BUFFERING mode decreases asK →∞ thus reducing execution
overhead by transiting to ’offline’ mode.

This statement is better understood with an example, shown in Figure 5.4. Imagine a fixed
a number of query-space regions Z. That is, at any time, a query could be issued to any of
those regions. Assume that queries only have two query parameters, for clarity, which we
abbreviate as the ith and j th query parameters. Initially, none of those regions are known and
hence K = 0 then the probability of entering buffering mode β is equal to the probability
of issuing a query to any one of those unknown query subspaces, such that β = 1 − K

Z
.

Gradually and as K → Z, this probability diminishes. In Figure 5.4, these query subspaces
are gradually uncovered, starting from the top-left and moving to the right. One by one, the
query subspaces are identified such that whenever a query is issued with these subspaces, it
can be answered by a model f̂ . By the end of this process, seen in the bottom-right figure,
any query that is issued can be adequately represented.
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Figure 5.4: Gradually converging to an offline mode. Starting from the top-left and moving
to the right, the query-space is uncovered until all queries are represented.

5.7 Evaluation Results

The main questions we are striving to answer in our evaluation are the following :

1. How effective are the CDM/ADM mechanisms and what is the effect of continuously
learning and adapting to new queries ?

2. Can we successfully adapt to data shifts ? What is the effect of updates to p(y|q) on
error ?

3. How sensitive is the CDM algorithm ?

5.7.1 Implementation & Experimental Environment

To implement our algorithms we used scikit-learn , XGBoost[35] and an implemen-
tation of the Growing-Networks algorithm [89]. We performed our experiments on a
desktop machine with a Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz and 16GB RAM. For
the real datasets, the GrowingNetworks algorithm was used for clustering mainly because of
its invariance to selecting a pre-defined number of clusters and it’s ability to naturally grow
(as required by our adaptability mechanisms).

Real datasets: We use the Crimes dataset from [6]. The Crimes dataset contains |R1| =

6.6 · 106 data vectors. For Crimes, we generated predicates restricting the spatial dimension
as essentially this is what analysts would be doing in exploration tasks. For the predicates
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in the spatial dimension we used multiple multivariate-normal distributions to simulate the
existence of multiple users.

5.7.2 Query Workload Adaptivity
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Figure 5.5: (Left) Inducing concept drift of learned distribution of y; (right) Lower left is the
initial query pattern distribution; upper right is the new one.

To examine CDM, ADM due to concept drift we devised the following experiment. Con-
sider aMi that has already learned a particular distribution of y, being deployed to answer
queries. At a particular point in time query patterns might shift as shown in Figure 5.5. Fig-
ure 5.5 shows two different query distributions. Figure 5.5(left) are the distributions of the
query answers y. Their respective query patterns are shown in Figure 5.5 (right) 5. Our aim
is to examine whether CDM detects a query pattern shift from one distribution to another. If
remained undetected, it will cause detrimental problems in accuracy due to different distribu-
tions of y. We first set the detection threshold h = 3σũ and convergence threshold c = 0.008;
a following sensitivity analysis shows the impact of these tuning parameters on ADM and
CDM. We gradually introduce new query patterns and compare our system with an approach
where no adaptation is deployed. Figure 5.6 shows the different queries being processed by
our mechanism and the associated true prediction error. We first measure the error of queries
using the known distribution until t = 66. From that point onwards, we shift to the unknown
distribution and evidently the error increases dramatically should no adaptation mechanism
be employed. On the other hand, CDM detects that a shift has happened and transits the
system from prediction mode to buffering mode until the exiting criteria are met. In the end,
a new model is introduced which is trained using the new distribution as evidenced by the
decreased error atMnew.

5Only two dimensions shown for visualization purposes
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5.7.3 Parameter Sensitivity

Parameters h and c are responsible for the ADM and CDM with the impact of c shown in
Figure 5.7(left). As we increase c we allow for an early exit from buffering mode. An
early exit, means that less queries have been processed, thus, potentially the examples are
not sufficient for accurately learning the distribution. This is witnessed, in Figure 5.7(left),
where the relative error increases, therefore the accuracy decreases as we increase c.
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Figure 5.7: (Left) Error vs. convergence c; (right) diminishing probability of buffering β as
more query spaces are known.

Figure 5.7(right) shows the diminishing probability of entering the buffering mode β =

P (G > h) building upon our discussion of slowly converging the system into an Offline
mode. As more queries are processed across varying query spaces, our system is incre-
mentally learning the whole query space. At a certain point, all query subspaces will be
known along with their representatives. Thus, the probability of entering the buffering mode
due to potentially unknown query distribution reduces to zero almost surely. We provide
an experiment in which there is a predefined fixed number of Query Spaces (QS) Z = 16,
QS = {QS1, . . . , QSZ}. Queries are generated randomly in a sequence from one QS to
another, each time learning QSk−1. Thus, given this fixed number of QSs and setting h, c,
the probability of entering buffering mode can be approximated by β = P (G > h) = 1− K

Z
,
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where K ≤ Z denotes the number of known QS so far. Liaising this with Figure 5.7, we
observe that the probability reduces in a step-wise manner tending to zero when K → Z.
For a relatively high c value, the rate of convergence to the offline mode becomes faster but
with a higher error as witnessed by the previous experiment. As for parameter h, a low value
indicates smaller tolerance when estimating errors and vice versa. This might force the sys-
tem to adapt when not needed. Thus, it is domain appropriate to hyper-tune the parameter
accordingly. We have found the proposed heuristic of 3σ ≤ h ≤ 5σ to work well empirically.

5.7.4 Adaptation to Data Updates
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Figure 5.8: (Left) x-axis; Number of queries processed initially from p1 and then from p2;
y-axis; measured statistic (Right) p-value showing the significance of the KS test.

We also conduct an experiment to assess data shift detection. As we have elaborated we need
to identify cases where p(y|m) change by observing queries executed at the data warehouse
without accessing any data. Monitoring actual insertions/updates/deletions could prove futile
as the distribution of y might not be changing. For this experiment we use two distributions
p1(m, y) and p2(m, y). The distributions for parameters m are multivariate Normal distri-
butions initialized randomly at the data space of Crimes data set and the answers y are the
actual answers for COUNT over the same data set. We deliberately choose COUNT as it is
an AF that will most likely change, under significant insertions/updates/deletions. Statistics
like AVG are more resilient to such changes.

In this experiment we obtain the empirical distribution function of p1(y|m) and conduct the
KS test at regular intervals. We set the signifiance level at α = 0.01 and hence c(α) ≈=

1.628. At a specific point in time we shift to p2(y|m) which we then expect that KS statistic
will go over the threshold. The results in Figure 5.8(left) show that as the distribution shifts,
the KS statistic (orange line), increases and becomes larger than c(a)

√
n+m
nm

, as soon as data
shift happens (vertical dotted line). This is also indicated by the p-value shown in Figure
5.8(right). A vertical line is drawn when data shift occurs and a horizontal line is drawn at
the specified significance level set α = 0.01. We see that the p-value becomes less than α
indicating that the statistic is statistically significant.
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Figure 5.9: As updates become more significant, relative error increases. However, we are
able to detect and adapt in such an event.

In addition, Figure 5.9 shows the point where the KS statistic fires, with respect to the impact
of updates on p(y|m). Specifically, for this experiment we add a noise component N (0, σ)

with σ ∈ (0.01, 4) to the distribution p(y|m), such that y = p(y|y)+N (0, σ). This simulates
larger updates that distort the initial distribution even more. We can see that at the point
where the hypothesis is reject (ie data shift occurs), signaled by the vertical line in Figure
5.9, we can proactively adapt our models before the error drastically increases.

5.7.5 CDM Sensitivity Analysis & Robustness

We also conducted experiments to analyse the sensitivity of the CDM to various properties
focusing on (a) noisy observations, (b) outliers that might be encountered as part of the
original distribution and do not indicate a distribution shift, and (c) skewed distributions in
the predictor variables. By examining these properties, one can be advised on the robustness
of the CDM.
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Figure 5.10: (Left) Expected time-point detection difference (x-axis) as the noise intensifies
(y-axis). (Right) The expected time-point detection difference with respect to the Signal-to-
Noise-Ratio.
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We initially conducted an experiment to quantify the impact of noise on the CDM perfor-
mance. Queries, and hence their estimated errors are sampled from an initial distribution p1,
where p1(ũ) is the distribution of the estimated errors that are calculated using (5.3). We
then introduce white noise into these estimations such as ũ← ũ+N (0, v2), whereN (0, v2)

is Gaussian distribution with zero mean value and finite variance v2 for v ∈ [0, 3]. We repeat
this experiment for 200 random time-points t∗, where a time-point t∗ is the time instance
at which we switch distribution p1(ũ) to p2(ũ), which is expected to trigger the CDM. We
then record the exact time-point tD where the CDM has actually fired and calculate their
expected detection difference of t∗ − tD, notated as E[t∗ − tD]. Notice that we do not cal-
culate their absolute value difference, as a negative value indicates that the CDM has fired
after t∗, while a positive value before t∗. As before, we set the threshold for h = 3σ, where
σ is the standard deviation of p1(ũ). The results for this experiment are shown in Figure
5.10. Figure 5.10(left) shows the expected time-point difference, E[t∗− tD] and the standard
deviation across many runs. It is evident that as the noise variance is within [0, 1] the ex-
pected time-point detection difference is 0 which indicates that the CDM is robust to noise.
However, as the noise intensifies, it effectively shifts the distribution for the estimations ũ
and the CDM fires prematurely on average. This is due to the fact that the noisy observations
are now deemed as large error estimations. Nonetheless, this is not to say that the CDM is
no longer robust, as we expect this kind of behavior. This is reinforced by measuring the
Signal-to-Noise-Ratio (SNR), which we plot in Figure 5.10(right). The SNR is a quantity
that measures how much stronger the signal is with respect to the noise. As it is evidenced
in Figure 5.10(right), the expected time-point detection difference only increases as the SNR
decreases, which indicates that the noise becomes really large and then weakens the signal.
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Figure 5.11: The x-axis shows the probability of injecting an outlier to the estimated errors,
while the y-axis shows the expected firing ratio for the CDM (lower is better).

We have also investigated the effects of outliers on CDM. We sample values from an initial
distribution p1(ũ) and record whether the CDM has fired. However, we introduce outliers
to the sampled values by modifying the estimated error using ũ = ũ + mσ, where σ is the
standard deviation of the distribution for ũ and multiplicative factor m ∈ {3, 4}. The value
of m is selected based on a Bernoulli trial with success probability 0.2 and a success sets
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the value of m = 4. An outlier is injected based on a Binomial distribution with probability
of success p over a number of trials n = 100, where p ∈ [0, 1]. We vary the probability
p and record the expected firing ratio for a number of runs. We plot the results of this
experiment in Figure 5.11. As one can observe, the expected firing ratio is relatively low
even for outliers probability Pr{outlier} = 0.5, while the expected firing ratio is less than
15% where the Pr{outlier} = 1. We can also observe a linear increasing trend on the
expected firing ratio with respect to the probability of injecting an outlier. Please note, that
even at Pr{outlier} = 1, the CDM should not fire as the outlier values for ũ do not indicate
a distribution shift, but extreme values of the same distribution. Hence, given this experiment
it is safe to conclude on the fact that CDM is robust to outliers.
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Figure 5.12: The parameter α controls the skewness of the Γ(α, β) distribution; the skew
= 2√

α
has no visible effect on theCDM.

Lastly, we evaluate the CDM robustness and performance for various highly skewed distri-
butions of the predictors. In this experiment, our aim is to examine whether skewed dis-
tributions for the predictors would affect the CDM’s accuracy. As the CDM largely relies
on a distance-based metric (refer to (5.3)), i.e., CDM is highly influenced by the predictors,
a skewed distribution might affect the estimations produced and might cause the CDM to
misfire. For this experiment, we use Γ(α, β) distributions for the predictors. Each predictor
is distributed with respect to q ∼ Γ(α, β

c
), where α ∈ [0.1, 3] and parameters β and c are

pre-defined values that define the scale and location of the distribution. Therefore, we ini-
tially generate a distribution p1(q) where q ∼ Γ(α, β1

c1
). We set the EPE (uk) to a constant

and obtain an initial distribution of estimated errors p1(ũ) based on (5.3). We also generate
a second distribution of predictors p2(q) where q ∼ Γ(α, β2

c2
) and obtain the distribution of

errors p2(ũ) that we consider as the errors when the distribution of queries has shifted. We
then perform the same experiment as before, initially the error estimates from p1 are passed
to the CDM. Then at a random point in time, we switch to p2 and observe the detection
time-point difference t∗ − tD. We plot the results of this experiment in Figure 5.12. The α
parameter controls the skewness of the predictors distributions. The skewness decreases at a
rate of 2√

a
. As it is evidenced, the CDM is unaffected by this as it correctly fires immediately

after the time-point t∗ where the shift happens.

124



Overall, through these set of experiments, we have examined the CDM’s sensitivity on a
number of different settings. We have demonstrated its applicability and robustness under
various conditions and concluded on the fact that CDM is appropriate to use in many scenar-
ios.

5.8 Related Work

Query-driven models are largely being deployed for both aggregate estimation [21, 19] and
for hyper-tuning [133] database systems. In the past chapters we have also witnessed how
QDL can be employed for estimation, exploration and exploitation. In this chapter, we ad-
dress the crucial problem of detecting data and workload shifts and adapting to them. Which
(to our knowledge) has not been addressed before. Hence, our framework can be leveraged
by all query-driven implementations in cases of dynamic workloads and changing data dis-
tributions that are non-stationary.

Moreover, concept drift adaptation is well understood [131, 52, 39, 44], mostly dealing with
classification tasks, where classifiers adapt to new classes. We adapt concept drift to query-
driven analytical processing, relying on explicit partitioning [52], ensuring it avoids destruc-
tive forgetting given that the accuracy for the previously learned query patterns will not
degrade. It is also favorable given our initial off-line design which already uses partitioning
for clustering the query patterns and learning local models in given sub-spaces. Our work
contributes with monitoring and detecting real-time query patterns change based on approx-

imating the prediction error, which differentiates with the previous concept drift methods by
measuring the actual error; evidently, this is not applicable in our case.

5.9 Conclusions

In this work we contribute a novel framework for adapting trained models under workload-
/data shifts. We focus on models used for estimating analytical query answers efficiently
and accurately, however we note that the framework is applicable in other domains as well.
The contributions are centered, on a novel suit of ML models, which mine past and new
queries and incrementally build models over quantized query-spaces using a vectorial rep-
resentation. The described adaptation mechanisms bear the ability to adapt under changing
analytical workloads and data distributions, while maintaining high accuracy of estimations.
As shown by our evaluation, the proposed approaches are highly accurate and robust. The
contributed CDM and ADM mechanisms are able to detect changes using estimated errors
and swiftly adapt models. Furthermore, as more queries are processed, our system has the
potential to reach global convergence as no more query patterns remain undiscovered. This
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can significantly reduce unnecessary communication to cloud providers thus reduce network
load and monetary costs.
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Chapter 6

Conclusion

6.1 Overview

In this thesis, we have examined how QDL can be applied to expedite and automate sub-
processes during Data Exploration. To do that, we have drawn inspiration and made use of
a lot of techniques covered in the fields of Data Management, Machine Learning and Data
Mining. Specifically, QDL has been applied in the contexts of query-answer estimation,
AQ explanation to enhance exploration and finally for automating the process of identifying
regions of interest. We have covered a lot of complementary topics to be able to apply QDL in
varying contexts. Some of these topics include but are not limited to : Supervised Regression
[46], AQP [12], QR[76], Explanations of AQs [113], Unsupervised Clustering [46], MARS
[48], Locally Piecewise Linear models [46], Optimization, Interesting Region Identification
[24], Evolutionary Optimization/Multi-modal Optimization [79], Concept Drift Detection
and Adaptation [131].

The contributions of this thesis are crucial as data are exponentially increasing making the
data exploration process long. In addition, generating insights becomes more expensive both
in terms of computational power and monetary costs. As data are often stored in the Cloud,
data analysis is costly. This is due to the fact that, the nature of data exploration, requires
data analysts to repetitively execute different queries, with each query carrying a cost. More-
over, data analysts do not have tools that can assist them during data exploration, therefore
it becomes an exhaustive process where queries are issued and refined in an iterative man-
ner. QDL, and our contributions offer alternative methods that could be employed, offering
some assistance to the data analysts. Finally, most of the current approaches (in any of the
contributed domains) are data-driven. This means that AQ estimations, AQ explanations and
interesting region identification are tasks that are performed using data. Inevitably, any of
these approaches does not scale as data increases. With QDL, we have offered an alterna-
tive route and have shown how each one of these tasks can be performed accurately and
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efficiently.

Significant research contributions were made, as we have shown a new way which decouples
data exploration tasks from data and instead leverages knowledge obtained from queries. As
this thesis described different contexts in which QDL was applied successfully, we remain
confident that its application will soon follow in other contexts. In addition, we have ad-
dressed one of the crucial challenges of deploying QDL based systems, namely dynamic
data and changing query workloads. Hence, future practitioners or researchers wishing to
use QDL can utilize our contributed techniques for adapting their systems in such cases.

In general, QDL can be applied in domains where efficiency is paramount. Data-driven
algorithms do not scale as data rapidly increase and algorithms (such as the ones described in
the context of interesting region identification) are extremely expensive to execute over vast
amounts of data. Hence, QDL offers great scalability when data size makes these algorithms
unsuitable.

6.2 Lessons Learned & Future Work

We have had to face and overcome a number of challenges while developing QDL and ap-
plying it to various domains. This section will be a summary of all the things that we have
learned throughout this journey. In addition, we describe future goals that will be useful to
attain, as QDL becomes more widespread.

6.2.1 Finding the right evaluation methods

Firstly, it is very important to note that throughout this thesis we have described QDL being
applied in different contexts. Although, the underlying framework is the same in all of these
contexts, the evaluation procedure, metrics and criteria are vastly different. For instance, in
Estimation, it is crucial, to obtain highly accurate answers as efficiently as possible. The
accuracy in this case was measured by Relative Error and the chosen model performed best
in terms of this error. However, in both Exploration and Exploitation chapters, accuracy is
measured by different criteria as what we strive to accomplish is different. Therefore, future
practitioners should take care to properly define metrics/criteria/evaluation procedures that
are suitable to the task hand and not resort to only measuring the point-wise distance of
|y − ŷ|.
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6.2.2 Identifying proper ML models

We have made extensive use of GBMs in both Estimation and Exploitation. Such models,
offer great scalability, accuracy and efficiency. However, we initially examined other ML
models. Specifically, we investigated the use of Deep Learning for the tasks at hand. Most
often, Deep Learning models offered comparable accuracy but the overhead of properly tun-
ing and training them made their use inappropriate. In addition, in some cases GBMs were
also inappropriate. For instance, in Exploration, we make use of linear models as they are
highly interpretable and more appropriate to our use case. Finally, we had initially focused
on coming up with new ML models that were finely-tuned for each use case. Inevitably, this
caused lots of overhead and proved to be a distraction from our main focus. Hence, we chose
not to reinvent the wheel and instead use models that have been empirically shown to work
well. However, in many cases, we had to employ our own techniques to make them suitable.
For instance, in Estimation, coming up with a vectorization process for SQL queries and
identifying ways to obtain error estimates was not trivial. In addition, in Exploration we had
to incorporate, relatively simple models, in a complex strategy that used an ensemble of such
simple models.

6.2.3 Lack of Query Workloads

As real query-workloads are often not available we resorted in creating our own synthetic
workloads and shared them with the community [9]. Our approach was to generate vary-
ing workloads with realistic conditions, simulating the existence of multiple analysts with
varying interests. However, in the future, real query workloads will be needed for a more
truthful overview of how analysts interact with data and how often workloads/data change.
But it is our understanding, that this might be hard to achieve, as organizations are relatively
cautious when sharing such sensitive information. In addition, current privacy regulations
might impose additional barriers to publicly sharing this type of information.

6.2.4 Alternative Vectorization Process

Throughout all chapters, we have used various vectorization processes. As a reminder, a
vectorization process, is the process by which we transform a query to a vector. For instance,
the vectorization process in Estimation is different than the one described in Exploration

and Exploitation, as the focus in each chapter is different. However, in all cases, this was a
manual process. We had to design this transformation procedure and make sure it worked
correctly. Recent advances in Natural Language Processing [93] and Deep Learning [53]
might be promising approaches in automating this procedure.
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6.2.5 Active Learning

As previously discussed, real query-workloads are lacking and our current approach was to
generate our own synthetic datasets. This is a manual process, with many (realistically valid)
assumptions. However, as different datasets are guaranteed to have varying multivariate
distributions, a single workload generation strategy is difficult to generalize over multiple
datasets. Hence, a drastically different approach, which automates much of this process, is
the way forward. Active Learning [121], is a technique in which the agent/model gets to
choose between training examples and can also identify regions that should be queried next.
This is a fairly promising alternative, to the manual process that is currently being employed.
It can also prove to be more robust to changing datasets, as the model gets to choose which
regions to query. Inherently, this would allow to issue more queries in areas where AQ results
vary more and less queries in areas where AQ results have less variation.

6.2.6 System Implementation

We have verified the utility of all of the proposed methods individually, however, implement-
ing all of the techniques under one umbrella system will be extremely beneficial. A single
system will give the opportunity to holistically expand the analytics capabilities of data ana-
lysts. For instance, analysts could leverage ML-AQP to increase efficiency whilst executing
aggregate queries and at the same time consult explanation functions as to what kind of
query to execute next. Another user could leverage SuRF to identify interesting regions and
then utilize ML-AQP for further exploration within that region. Having all of this centrally
available by a single system and making all of the individual techniques interoperable could
dramatically improve data analysts experience during data exploration.

6.3 Concluding Remarks

Overall, the journey towards automating data exploration does not end here. QDL presents
a good alternative to data-driven algorithms for data exploration, and there is still lots of
work to be done within this domain. Throughout this thesis, we have examined contexts
where QDL can be used effectively along with addressing crucial challenges. The efficiency
achieved by using QDL is superior to data-driven approaches in multiple tasks. Therefore,
practitioners are urged to incorporate this technique in cases where efficiency is paramount.
Researchers wishing to engage with this topic, can consult the sections presented above for
some potential challenges within the domain of QDL. Finally, this thesis is a comprehensive
guide to QDL for both researchers and practitioners and our hope is to inspire more people
working in this new exciting topic.
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