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Abstract 35 

As our ancestors migrated throughout the different continents, natural selection 36 

increased the presence of alleles advantageous in the new environments. Heritable 37 

variations that alter the susceptibility to diseases vary with the historical period, the 38 

virulence of the infections, and their geographical spread. In this study we built 39 

polygenic scores for heritable traits influencing the genetic adaptation in the production 40 

of cytokines and immune-mediated disorders, including infectious, inflammatory, and 41 

autoimmune diseases, and applied them to the genomes of several ancient European 42 

populations. We observed that the advent of the Neolithic was a turning point for 43 

immune-mediated traits in Europeans, favoring those alleles linked with the 44 

development of tolerance against intracellular pathogens and promoting inflammatory 45 

responses against extracellular microbes. These evolutionary patterns are also 46 

associated with an increased presence of traits related to inflammatory and auto-47 

immune diseases. 48 

  49 
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Introduction 50 

Human history has been shaped by infectious diseases. Human genes, especially host 51 

defense genes, have been constantly influenced by the pathogens encountered 52 

(Fumagalli and Sironi, 2014; Karlsson et al., 2014; Quintana-Murci and Clark, 2013). 53 

Pathogens drive the selection of genetic variants affecting resistance or tolerance to 54 

the infection, and heritable variations that increase survival to diseases with high 55 

morbidity and mortality will be naturally selected in people before reproductive age 56 

(Karlsson et al., 2014). These selection signatures vary with historical period, virulence 57 

of the pathogen, and the geographical spread.  58 

Here we investigated the historical evolutionary patterns leading to genetic adaptation 59 

in cytokine production and immune-mediated diseases, including infectious, 60 

inflammatory, and autoimmune diseases. Cytokine production capacity is a key 61 

component of the host defense mechanisms: it induces inflammation, activates 62 

phagocytes to eliminate the pathogens and present antigens, and controls induction of 63 

T-helper adaptive immune responses. We have therefore chosen to investigate the 64 

evolutionary trajectories of cytokine production capacity in modern human populations 65 

during history. To determine the difference in polygenic regulation of diseases and 66 

cytokine production capacity, we used data derived from the 500 Functional Genomics 67 

(500FG) cohort of the Human Functional Genomics Project (HFGP; 68 

http://www.humanfunctionalgenomics.org). The HFGP is an international collaboration 69 

aiming to identify the host and environmental factors responsible for the variability of 70 

human immune responses in health and disease (Netea et al., 2016). Within the HFGP 71 

project, the 500FG study generated a large database of immunological, phenotypic and 72 

multi-omics data from a cohort of 534 individuals of Western-European ancestry, which 73 

have been used to integrate the impact of genetic and environmental factors on 74 

cytokine production and immune parameters. We subsequently deciphered the factors 75 

that influence inter-individual variation in the immune responses against different 76 
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stimuli (Bakker et al., 2018; Li et al., 2016; Schirmer et al., 2016; Ter Horst et al., 77 

2016). 78 

 79 

Results and Discussion 80 

Peripheral blood mononuclear cells from these individuals were challenged with 81 

bacterial, fungal, viral and non-microbial stimuli, and six cytokines (TNFα, IL-1β, IL-6, 82 

IL-17, IL-22 and IFNγ) were measured at 24h or 7 days after stimulation, generating 83 

105 cytokine-stimulation pairs (Fig. S1 and Table S1). We correlated cytokine 84 

production with genetic variant data to obtain cytokine quantitative trait loci (QTLs), 85 

which were employed to compute and compare the polygenic risk score (PRS) of the 86 

genomes of 827 individuals from different human historical eras (early upper 87 

Paleolithic, late upper Paleolithic, Mesolithic, Neolithic, post-Neolithic) which were 88 

downloaded from version 37.2 of the compiled dataset containing unimputed published 89 

ancient genotypes (https://reich.hms.harvard.edu/downloadable-genotypes-present-90 

day-and-ancient-dna-data-compiled-published-papers), and 250 modern Europeans 91 

randomly selected from the European 1000G cohort (see accompanying manuscript by 92 

Kuijpers et al.). We then investigated how the PRS changes over time by constructing 93 

linear models and performing correlation analysis. In order to account for the ancient 94 

DNA samples being pseudo-haploid, ambiguous SNPs (A/T and C/G) were excluded 95 

when computing PRS to prevent errors due to strand flips. PRS was computed using 96 

the most significant QTLs that had a P value lower than our predetermined threshold 97 

for each given trait and removing all variants within a 250kb window around these 98 

variants. The dosage of these variants was multiplied by their effect size while the 99 

dosage of missing variants in a sample were supplemented with the average dosage. 100 

Finally, we scaled the PRS to a range of -1 and 1 and correlated the scores of the 101 

samples with their respective carbon dated age. In order to verify the robustness of our 102 

results we repeated the analysis at multiple threshold combinations for variant 103 
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missingness and QTL thresholds. Furthermore, an analysis-based down-sampling 104 

approach shows that the trajectories observed in our results are consistent regardless 105 

of the sample size (Fig. S2). A schematic representation of the steps performed is 106 

shown in Fig. S3. 107 

 108 

Applying the methodology described above, several patterns were apparent (Fig. 1). 109 

The first overall observation is that the estimation of cytokine production capacity 110 

based on PRS shows significant differences between populations in various historical 111 

periods, and the strength of evolutionary pressure on cytokine responses was different 112 

before and after the Neolithic revolution. We did not observe significant changes in 113 

cytokine production capacity between individuals who lived at different historical 114 

periods before the Neolithic, whereas strong pressure is apparent after adoption of 115 

agriculture and animal domestication in Europe. This different pattern may have 116 

resulted from the more limited number of samples available for the older time periods, 117 

resulting in lower statistical power, but the presence of some evolutionary pressure 118 

also before the Neolithic argues that this is most likely not the full explanation. The 119 

development of agriculture and domestication of animals in the Neolithic increased 120 

population densities on the one hand, and the contact between humans and 121 

domesticated animals as source of pathogens on the other hand. The number of 122 

zoonoses increases dramatically (examples being tuberculosis, brucellosis, Q-fever, 123 

and influenza), which strongly increased the selective pressure and caused significant 124 

adaptations of immunity at the genetic level (Flandroy et al., 2018). Most of the genetic 125 

adaptations to pathogens took place in the period since modern humans abandoned 126 

their hunting-gathering lifestyle and developed agriculture (Deschamps et al., 2016). In 127 

this respect, the strongest changes leading to tolerance (decreased cytokine 128 

production) were exerted in the cytokine responses to intracellular zoonotic infections 129 

(tuberculosis and Coxiella) (Fig. 1). In contrast, responses to the extracellular 130 
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pathogens Staphylococcus aureus and Candida albicans indicate increased resistance, 131 

with high production of IL-22 and TNFα, respectively. The increased response to the 132 

important fungal pathogen C. albicans after the Neolithic period is validated also at 133 

transcriptional level. Overall, these patterns are reminiscent of the studies showing that 134 

human immune responses need to adapt to a new landscape of infectious agents 135 

depending on geographical location and types of microbe encountered (Ferwerda et 136 

al., 2007). Such different patterns were most likely encountered also through history. 137 

Importantly, our results also show significant patterns in the changes of the production 138 

of specific cytokines during history. The resistance against intracellular pathogens 139 

increased after Neolithic with higher IFN responses (see Fig.1): indeed, it is known 140 

that Th1-IFNγ responses are crucial for the host defense against intracellular 141 

pathogens such as mycobacteria or Coxiella (Thakur et al., 2019). In addition, the 142 

resistance to the extracellular pathogens C. albicans and S. aureus is also increased 143 

after this Neolithic era, with TNF and IFN production increasing steadily after. These 144 

two cytokines are very well known to be important for anti-Candida and anti-145 

Staphylococcus host defense (Chan et al., 2018; Domínguez-Andrés et al., 2017). On 146 

the other hand, a different pattern emerges in relation with the IL1-IL6-IL17 axis: the 147 

production of these cytokines is decreasing after Neolithic (see Figs. 1a and 1b). In this 148 

context, the decrease through time of poly I:C induction of cytokines, as a model of 149 

viral stimulation, is intriguing but potentially very important: many important viruses 150 

such as influenza and coronaviruses (SARS, MERS, and SARS-CoV-2) exert life-151 

threatening effects through induction of cytokine-mediated hyperinflammation (also 152 

termed “cytokine storm’) (Tay et al., 2020): evolutionary processes to curtail this 153 

exaggerated responses are thus likely to be protective, and tolerance against viruses 154 

become a host defense mechanism (Diard and Hardt, 2017). 155 

These evolutionary genetic adaptations to pathogens throughout human history greatly 156 

influence the way we respond to multiple diseases in modern times as well. To assess 157 
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these effects, we calculated the PRS associated with the risk of several highly 158 

prevalent immune mediated diseases. The first focus was on common infectious 159 

diseases such as malaria, HIV-AIDS, tuberculosis and chronic viral hepatitis; we 160 

calculated the changes in susceptibility to these diseases in the last 50.000 years of 161 

human history, based on summary statistics from genome-wide association studies 162 

(GWAS) databases available from the literature (Fig. S3). Our results show that 163 

humans are becoming more resistant to these diseases, with the notable exception of 164 

tuberculosis, whose risk score remained stable along the period studied (Fig. 2). These 165 

results suggest that humans have built up a genetic makeup which made them more 166 

resistant to a variety of microbes. The pattern of this adaptation is very interesting as 167 

well, with a suggested decrease of susceptibility to malaria especially in the last 10.000 168 

years. The reason for this accelerated resistance after Neolithic might be linked to 169 

higher disease prevalence due to increased populations density, as otherwise 170 

Plasmodium parasites are known to have circulated in Africa since at least the 171 

Paleogene 30 million years ago (Poinar, 2005), and we have likely inherited it from 172 

gorillas(Liu et al., 2010). Intriguingly, we also observe a strong decrease in 173 

susceptibility to HIV: this is a contemporary pathogen, therefore this signal could be 174 

due to common genetic and immune pathways with other infections that were present 175 

in human populations. The increased resistance to HIV in Europeans may be derived 176 

from selective pressures induced by other pathogens such as Yersinia pestis (Duncan 177 

et al., 2005). Our data suggest on the other hand that the source of this increased 178 

resistance is even older. 179 

In contrast, the lack of genetic adaptation in the susceptibility to tuberculosis is 180 

intriguing. This surprising finding may be explained by a concept in which M. 181 

tuberculosis is at the same time a pathogen and a symbiont, in which latent infection 182 

enhances the resistance against other pathogens and this is why our immune system 183 

tolerates mycobacterial presence (Pai et al., 2016). In this regard, individuals with 184 
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latent TB exhibit enhanced macrophage functions that may protect against other 185 

pathogens through the induction of trained immunity (Joosten et al., 2018). In this 186 

context humanity may not be adapting to tuberculosis because increased resistance 187 

against mycobacteria is not evolutionarily advantageous. All in all, these results 188 

suggest that the risk of suffering infectious diseases has steadily decreased at least for 189 

the last 50000 years as a result of the selection of genetic variants which confer 190 

resistance to infections.  191 

It has been proposed that the increased prevalence of inflammatory and autoimmune 192 

diseases is associated with the immune-related alleles that have been positively 193 

selected through evolutionary processes to protect against infections, hence the 194 

contrasting differences in the prevalence of autoimmune diseases between populations 195 

results from diverse selective pressures (Ramos et al., 2015). In line with this, it has 196 

been hypothesized that genetic variants associated with protection against infectious 197 

agents are behind the increased prevalence of autoimmune diseases in populations 198 

with low pathogen exposure, such as Europeans (Fumagalli et al., 2011; Raj et al., 199 

2013). To study the changing patterns of susceptibility to autoimmune and 200 

inflammatory disease during history, we used publicly available summary statistics from 201 

GWAS of digestive tract-related autoimmune and inflammatory diseases and arthritis-202 

related diseases (Fig. S4) and calculated the PRS for each of samples under study. 203 

Interestingly, we observed a robust increase of the genetic variants related with the 204 

development of inflammatory diseases in the digestive tract after the Neolithic 205 

revolution (Fig. 3). PRS scores associated with celiac disease, Crohn’s disease, 206 

ulcerative colitis and inflammatory bowel disease, were strongly associated with the 207 

age of the samples, regardless of the P value thresholds or the missing genotype rates 208 

used for PRS calculation, showing the robustness of these results (Fig. S2). The fact 209 

that especially intestinal inflammatory pathology is increased after a historical event 210 

that fundamentally modified human diet is unlikely to be an accident. Our results are in 211 
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line with earlier research demonstrating that variants in genes important for immune 212 

responses and involved in celiac disease pathophysiology (such as IL-12, IL-18RAP, 213 

SH2B3) are under strong positive selection (Zhernakova et al., 2010). The reasons for 214 

the selection pressure on these genes are not completely understood, but an 215 

advantage for host defense has been suggested (Zhernakova et al., 2010). 216 

In contrast to intestinal inflammation, the PRS of traits linked with juvenile-idiopathic 217 

arthritis, rheumatoid arthritis and multiple sclerosis shows a decrease in genetic 218 

susceptibility with the age of the sample after the Neolithic revolution. For pre-Neolithic 219 

periods, these patterns had little impact with decreasing PRS for digestive tract 220 

diseases and increasing PRS for ankylosing spondylitis and juvenile idiopathic arthritis. 221 

A strong decrease in susceptibility to juvenile idiopathic arthritis, rheumatoid arthritis 222 

and multiple sclerosis is seen after the Neolithic period (see Fig. 3). This is likely linked 223 

to the decreased production of the IL-1/IL-6/IL-17 axis described in Fig. 2, which is 224 

particularly important in the pathophysiology of these disorders (Akioka, 2019; Mei et 225 

al., 2011).  226 

The significant changes in cytokine production and disease susceptibility in European 227 

populations after the Neolithic can be due to selective processes on the one hand (as 228 

described above), but also with important demographic changes due to migrations of 229 

human communities such as the Anatolians (in Neolithic) or the Yamnaya populations 230 

from the Pontic steppe (during the Bronze Age) (Racimo et al., 2020). In this regard, 231 

several loci associated with inflammatory disease displayed a group alleles linked with 232 

Crohn’s disease, celiac disease and ulcerative colitis in Neolithic Aegeans, the 233 

community who spread farming across Europe (Hofmanová et al., 2016), with several 234 

of these alleles showing signs of positive selection in modern Europeans (Raj et al., 235 

2013). In addition, the gene expression PRS of several cytokines based on the cis- and 236 

trans- eQTLs from the eQTLGen Consortium (https://www.eqtlgen.org/) displayed a 237 

very strong association with time for TNFα after the Neolithic revolution (Fig. 4). 238 
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 239 

Collectively, our results show that the advent of the Neolithic era was a turning point for 240 

the evolution of immune-mediated traits in European populations, driving the expansion 241 

of alleles that favor the development of tolerance against intracellular pathogens and 242 

promote inflammatory responses against extracellular microbes. This is associated with 243 

a higher presence of genetic traits related with inflammatory and auto-immune 244 

diseases of the digestive tract and a lower number of alleles linked with the 245 

development of arthritis. Further research should compare the trends in different 246 

populations that have been exposed to different environments across the planet and 247 

clarify the influence of ancestry, time, rural vs. urban lifestyle to shed light on the 248 

influence of the infectious environment in genetics and human evolution.  249 
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 267 

Methods 268 

Cohort selection 269 

Ancient DNA genotype data was downloaded from version 37.2 of the published aDNA 270 

genotype database, compiled by and available on the David Reich Lab website 271 

(https://reich.hms.harvard.edu/downloadable-genotypes-present-day-and-ancient-dna-272 

data-compiled-published-papers). The ancient DNA samples consisted of pseudo-273 

haploid genotype data. This was due to the low genotyping coverage. Samples with 274 

variant missingness above 96 percent were filtered out using Plink (Purcell et al., 275 

2007). This was done in order to remove outliers with extremely low coverage. Only 276 

samples within Europe were used for this study, these samples were selected based 277 

on their geographic location, that is latitude (within 35 and 70 degrees north) and 278 

longitude (within 10 degrees west and 40 degrees east). Samples without a carbon-279 

dated age were also filtered out. We also selected 250 European samples from the 280 

1000 genomes project phase 3. Only variants present in both the ancient samples and 281 

the modern samples were retained. This resulted in a dataset of 827 ancient samples 282 

and 250 modern samples containing 1233013 variants. 283 

 284 

Carbon-dated sample origin and geographical location 285 

Both carbon-dated age of origin as well as latitudinal and longitudinal data was 286 

available for these 827 ancient European samples. Broad time periods were assigned 287 

to these samples with the Early Upper Paleolithic era for all samples originating from 288 
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before 25000 years before the common era standardized to 1950 (BCE). The Late 289 

Upper Paleolithic era follows until 11000 BCE. The Mesolithic era ranges from 11000 to 290 

5500 BCE. The Neolithic era ranges from 8500 to 3900 BCE, and the Post-Neolithic 291 

era ranges from 5000 BCE and more recent ages. Using the geographical data in 292 

combination with archeological clues and the genetic data, the broad time period of 293 

origin was also available for samples that were dated to a point in time with overlapping 294 

broad time periods. This allowed the samples to be classified as either Early Upper 295 

Paleolithic, Late Upper Paleolithic, Mesolithic, Neolithic, or Post-Neolithic. The sample 296 

age of the 250 modern European samples was set to 0. 297 

 298 

Summary statistics of GWAS and cytokine QTLs 299 

Summary statistics for complex traits were obtained from the UK Biobank (Bycroft et 300 

al., 2018) and the GWAS catalog (MacArthur et al., 2017) last accessed on 29th of 301 

March 2020. The stimulated cytokine response summary statistics from the 500FG 302 

cohort of the HFGP were used (Li et al., 2016). Some complex traits had multiple 303 

different sets of summary statistics available. In these cases, the data which was more 304 

recent and used bigger cohorts that were either of European or mixed (European and 305 

Asian) ancestry were selected. The variants of these summary statistics were then 306 

filtered by only keeping bi-allelic variants. Most aDNA genotypes available are pseudo-307 

haploid as a consequence of their lower sample quality. We excluded ambiguous SNPs 308 

(A/T and C/G) in order to prevent errors due to strand flips present in these pseudo-309 

haploid samples. 310 

 311 

Polygenic Risk Scores (PRS) calculation 312 

Polygenic risk scores were then calculated by first intersecting the filtered variants from 313 

the summary statistics with the variants present in the DNA samples. Starting at the 314 
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most significant variant, all variants within a 250kb window around that variant were 315 

excluded until no variants remained. We then multiplied the dosage of these variants 316 

with the effect size and these values were summed. If a variant is missing in a sample 317 

the dosage is substituted with the average genotyped dosage for that variant within the 318 

entire dataset. This way the PRS is not skewed in any specific direction. The formula 319 

for this is described below with the score S being the weighted sum of a variant’s 320 

dosage Xn multiplied by its associated weight or beta βn calculated using m variants. 321 

𝑆 = ∑ 𝑋𝑛 𝛽𝑛

𝑚

𝑛=1

 

 322 

Piecewise correlation analysis 323 

We constructed piecewise linear models for each trait by separating the samples into 324 

two groups. These two groups consisted of all samples preceding the Neolithic era and 325 

those of the Neolithic era and later respectively. We correlated PRS with the carbon 326 

dated age of our samples. We then multiplied the -log10 of the correlation P values 327 

with the sign of the correlation coefficients. 328 

 329 

Robustness of results 330 

In order to test the robustness of our results we calculated PRS using multiple different 331 

P value thresholds for QTL inclusion. We used P value thresholds from 10-3 to 10-8 for 332 

the complex traits obtained through GWAS catalog and the UK Biobank. The 333 

thresholds used for the stimulated cytokine responses ranged from 10-3 to 10-6. We 334 

also calculated PRS using different variant missingness thresholds. This means we 335 

removed samples with a variant missingness rate higher than 96, 90, 80, or 70 percent. 336 

All of the results from the piecewise linear models were then used to create a heatmap 337 

depicting the consistency and robustness of our observed correlations. 338 
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Additionally, various window-sizes were used for clumping the QTL’s and LD based 339 

clumping was also performed excluding variants with an LD greater than 0.2 compared 340 

to our lead SNP within a window. In order to see whether our observations were due to 341 

sample imbalances between the pre-Neolithic period and the later periods samples 342 

originating from the Neolithic period and later were randomly down-sampled to the 343 

same number of samples as the pre-Neolithic samples. Correlation coefficients 344 

between PRS and sample age were then recalculated for the Neolithic and younger 345 

samples and compared to the coefficients obtained using all Neolithic and younger 346 

samples. 347 
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Figures: 349 

 350 

 351 

 352 

 353 

Figure 1: A) Correlation between cytokine PRS and time.  Samples are colored by 354 

broad age period. The blue regression lines show PRS before the Neolithic revolution 355 

remained relatively constant for all traits whereas the red regression lines show the 356 

correlation after the start of the Neolithic period. The threshold of max missing 357 

genotype per sample was 0.96 and QTL P value cutoff was 10-4. MSUC: Monosodium 358 

urate crystals. B) Correlation between cytokine PRS and time. using multiple 359 

thresholds reveals consistent trend. Missing genotype rate ranged from 0.96, 0.9, 360 

0.8, and 0.7. QTL P value for variants included in our PRS models ranged from 10-3, 361 

10-4, 10-5, and 10-6. The color key indicates the range of -log10 P values of the Pearson 362 

correlation between PRS and time. Red and blue indicate positive and negative 363 

association, respectively. 364 

 365 
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 366 

Figure 2: Infectious disease risk PRS scores decrease with time, except 367 

tuberculosis. A) Samples are colored by broad age period. The blue regression lines 368 

show PRS before the Neolithic revolution remained relatively constant for all traits 369 

whereas the red regression lines show that the correlation after the start of the 370 

Neolithic period changed significantly. The threshold of max missing genotype per 371 

sample was 0.96 and QTL P value cutoff was 10-3. MSUC: Monosodium urate crystals. 372 

B) Correlation between disease PRS and time using multiple thresholds reveals 373 

consistent trend. Missing genotype rate ranged from 0.96, 0.9, 0.8, and 0.7. QTL P 374 

value for variants included in our PRS models ranged from 10-3, 10-4, 10-5, 10-6, 10-7, 375 

and 10-8. The color key indicates the range of -log10 P values of the Pearson 376 

correlation between PRS and time. Red and blue indicate positive and negative 377 

association, respectively. 378 
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Figure 3: Correlation between auto-immune and inflammatory disease PRS and 380 

time. A) Samples are colored by broad age period. The blue regression lines show 381 

PRS before the Neolithic revolution remained relatively constant for all traits whereas 382 

the red regression lines show that the correlation after the start of the Neolithic period 383 

changed significantly. The threshold of max missing genotype per sample was 0.96 384 

and QTL P value cutoff was 10-4. MSUC: Monosodium urate crystals. B) Correlation 385 

between disease PRS and time using multiple thresholds reveals consistent 386 

trend. Missing genotype rate ranged from 0.96, 0.9, 0.8, and 0.7. QTL P value for 387 

variants included in our PRS models ranged from 10-5, 10-6, 10-7, and 10-8. The color 388 

key indicates the range of -log10 P values of the Pearson correlation between PRS and 389 

time. Red and blue indicate positive and negative association, respectively. 390 

 391 
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Figure 4: Cytokine gene expression PRS scores using cis- and trans-eQTLs 393 

correlated with time. Most notably is the highly significant increase in TNFA gene 394 

expression PRS over time following the Neolithic revolution. Prior to the Neolithic 395 

revolution an increase in IL8 gene expression PRS can be observed which shifts to a 396 

decreasing trend after the Neolithic revolution. Both IL1B and IL1RN gene expression 397 

show a slight increase in PRS over time after the start of the Neolithic revolution. 398 

Missing genotype rate ranged from 0.96, 0.9, 0.8, and 0.7. QTL P value for variants 399 

included in our PRS models ranged from 10-3, 10-4, 10-5, 10-6, 10-7, and 10-8. The color 400 

key indicates the range of -log10 P values of the Pearson correlation between PRS and 401 

time. Red and blue indicate positive and negative association, respectively. 402 

 403 
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 405 

Figure S1: Correlation between cytokine PRS and time. Missing genotype rate 406 

ranged from 0.96, 0.9, 0.8, and 0.7. QTL P value for variants included in our PRS 407 

models ranged from 10-3, 10-4, 10-5, and 10-6. The color key indicates the range of -408 

log10 P values of the Pearson correlation between PRS and time. Red and blue 409 

indicate positive and negative association, respectively. 410 
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 412 

Figure S2: Robustness of correlation coefficients post Neolithic independent of 413 

sample size. Changes in PRS following the Neolithic revolution remain consistent after 414 

down-sampling samples from after the start of the Neolithic period to the same amount 415 

as samples before the Neolithic period. The lower number of samples reduces the 416 

power which reduces the amount of significant correlations but does not influence the 417 

direction of changes in PRS which were previously identified as significant. 418 
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 420 

 421 

 422 

 423 

Figure S3: Both aDNA and modern DNA samples of European individuals were 424 

used in combination with summary statistics from predominantly European 425 

populations to calculate PRS of immune-related traits. This was done at various 426 

threshold combinations before correlating the scores with the sample age.  427 
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 428 

Figure S4: GWAS summary statistics and cohorts used for PRS calculation. 429 

Traits were separated into two categories: Auto-immune and inflammatory diseases-430 

related traits, and infectious diseases-related trait. GWAS summary statistics from 431 

predominantly European populations were selected. 432 
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Table 1: Overview of the stimulus, cytokine, and timepoint combinations. In total 435 

105 unique stimulated cytokine traits were available using various types of stimuli 436 

measuring both the innate and adaptive immune response. 437 

 438 

 439 

 440 

 441 
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