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Phonon-limited electron mobility in Si, GaAs, and GaP with exact treatment
of dynamical quadrupoles

Guillaume Brunin ,1 Henrique Pereira Coutada Miranda ,1 Matteo Giantomassi ,1 Miquel Royo ,2

Massimiliano Stengel ,2,3 Matthieu J. Verstraete ,4,5 Xavier Gonze ,1,6 Gian-Marco Rignanese ,1

and Geoffroy Hautier 1,*

1UCLouvain, Institute of Condensed Matter and Nanosciences (IMCN), Chemin des Étoiles 8, B-1348 Louvain-la-Neuve, Belgium
2Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain

3ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
4NanoMat/Q-Mat/CESAM, Université de Liège (B5), B-4000 Liège, Belgium

5Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, 08193 Bellaterra, Spain
6Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel St. 3, 143026, Moscow, Russia

(Received 24 January 2020; accepted 16 June 2020; published 21 September 2020)

We describe a new approach to compute the electron-phonon self-energy and carrier mobilities in
semiconductors. Our implementation does not require a localized basis set to interpolate the electron-phonon
matrix elements, with the advantage that computations can be easily automated. Scattering potentials are
interpolated on dense q meshes using Fourier transforms and ab initio models to describe the long-range
potentials generated by dipoles and quadrupoles. To reduce significantly the computational cost, we take
advantage of crystal symmetries and employ the linear tetrahedron method and double-grid integration schemes,
in conjunction with filtering techniques in the Brillouin zone. We report results for the electron mobility in Si,
GaAs, and GaP obtained with this new methodology.
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I. INTRODUCTION

Electron-phonon (e-ph) interactions play an important role
in various physical phenomena [1] such as conventional
phonon-mediated superconductivity [2–7], phonon-assisted
light absorption [8–10], temperature-dependent band struc-
tures, zero-point renormalization of the band gap in semi-
conductors [11–15], and thermal [16–18] and electrical con-
ductivities [19–28]. Over the past years, several different
open-source codes have been developed to compute e-ph
related physical properties from first principles. For exam-
ple, the e-ph self-energy (SE) and the renormalization of
band energies can be obtained either with ABINIT [29–31] or
YAMBO [32,33]. The latter relies on the e-ph matrix elements
computed with QUANTUM ESPRESSO [34] and post-processes
the data to compute the SE and quasiparticle corrections.
With the EPW software [26,35], one can study several e-ph
quantities using an interpolation scheme that exploits the
localization in real space of the Wannier representation [36]
to obtain the e-ph matrix elements in the full Brillouin zone
(BZ) at a relatively small computational cost. Unfortunately
the generation of maximally localized Wannier functions
(MLWFs) is not always trivial and non-negligible effort may
therefore be needed to obtain an appropriate set of MLWFs
spanning the energy region of interest.1 This is especially true

*Corresponding author: geoffroy.hautier@uclouvain.be
1Considerable efforts have been made in recent years to develop

more robust algorithms to localize Wannier orbitals using few tun-
able parameters. See, for example, the SCDM method proposed in
Ref. [85].

for systems whose band structure cannot be easily interpreted
in terms of standard chemistry concepts, or when high-energy
states must be included to compute the real part of the SE
whose convergence with the number of empty states is no-
toriously slow [37]. It is therefore not surprising that recent
works proposed to replace Wannier functions with atomic
orbitals [38].

In this work, we present an alternative fully ab initio
method to compute the e-ph SE using plane waves and Bloch
wave functions as implemented in ABINIT [30,31,39] thus
bypassing the transformation to localized orbitals. Particular
emphasis is given to the calculation of the imaginary part
of the SE and phonon-limited mobilities although a similar
methodology can be employed for the real part of the SE
and temperature-dependent band structures [1,11]. While our
approach requires, in principle, more floating-point operations
and more memory than a Wannier-based approach, it has
the advantage that the computation can be automated with
minimal input from the user and that systematic convergence
studies can be easily performed. To make our approach
competitive with Wannier-based implementations, we take
full advantage of crystal symmetries and employ the linear
tetrahedron method in conjunction with double-grid and fil-
tering techniques both in k and q space. As a result, the
number of e-ph matrix elements needed to reach convergence
is significantly reduced. The scattering potentials are interpo-
lated on arbitrary q grids using a Fourier-based interpolation
scheme [40] in which the long-range dipolar and quadrupo-
lar fields are treated using nonanalytic expressions depend-
ing on the high-frequency dielectric tensor, Born effective
charges, dynamical quadrupoles tensors and the response to a
homogeneous static electric field. The importance of the
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dynamical quadrupoles for obtaining a reliable interpolation
at small q is discussed in our accompanying letter [41]. Paral-
lel scalability with memory distribution is achieved thanks to
five different levels of MPI parallelism.

The paper is organized as follows. In Sec. II, we intro-
duce the theory of e-ph interactions and its connection with
state-of-the-art first-principles methods. We also provide more
details on the Fourier interpolation of the scattering potentials
and derive the expression for the long-range components
including quadrupolar fields. In Sec. III, we lay out the
formalism to compute phonon-limited transport properties,
focusing on carrier mobilities within the linearized Boltzmann
equation. The different strategies implemented to reduce the
computational cost are discussed in Sec. IV. Finally, in Sec. V,
we illustrate all these techniques by computing the phonon-
limited mobility of electrons in Si, GaAs and GaP within the
self-energy relaxation time approximation (SERTA). Atomic
(Hartree) units are used throughout the paper.

II. ELECTRON-PHONON INTERACTION

In periodic solids, electron-phonon coupling effects are
usually discussed in terms of the Hamiltonian [1,42]

Ĥ = Ĥe + Ĥph + Ĥe-ph, (1)

where

Ĥe =
∑
nk

εnk ĉ†
nkĉnk (2)

describes noninteracting quasiparticles with crystalline mo-
mentum k, band index n, and dispersion εnk, while

Ĥph =
∑
qν

ωqν

(
â†

qν âqν + 1

2

)
(3)

is the Hamiltonian associated to noninteracting phonons with
wave vector q, mode index ν and frequency ωqν . ĉ†

nk and ĉnk
(â†

qν and âqν) are fermionic (bosonic) creation and destruction
operators. Finally,

Ĥe-ph = 1√
Np

∑
k, q
mnν

gmnν (k, q) ĉ†
mk+qĉnk(âqν + â†

−qν ) (4)

describes the coupling to first order in the atomic displace-
ments, with Np the number of unit cells in the Born-von
Kármán supercell and gmnν (k, q) the e-ph coupling matrix
elements. In principle, Eq. (1) should include the so-called
Debye-Waller (DW) Hamiltonian that gives the coupling to
second-order in the atomic displacement [1,11]. This term
contributes importantly to the real part of the SE and must
therefore be included when computing quasiparticle correc-
tions and temperature dependent band structures. In this work,
however, we will be mainly focusing on the imaginary part of
the e-ph SE hence the DW term will be ignored [1].

A. Connection with DFT and DFPT

The connection between the many-body Hamiltonian in
Eq. (1) and density-functional theory (DFT) is established
by using the Kohn-Sham (KS) band structure in Eq. (2) and
phonons from density-functional perturbation theory (DFPT)

in Eq. (3) [1,43]. Finally, the e-ph matrix element, gmnν (k, q),
is computed using

gmnν (k, q) = 〈ψmk+q| �qνV KS|ψnk〉, (5)

where ψnk is the KS Bloch state and �qνV KS is the first-order
variation of the self-consistent KS potential,

�qνV KS = 1√
2ωqν

∑
pκα

∂V KS

∂τκα

eκα,ν (q)√
Mκ

eiq·Rp (6)

where eκα,ν (q) is the αth Cartesian component of the phonon
eigenvector for the atom κ in the unit cell, Mκ its atomic mass,
Rp are lattice vectors identifying the unit cell p, and τκ the ion
position in the unit cell. Following the convention of Ref. [1],
we can write Eq. (6) in terms of a lattice-periodic function
�qνv

KS defined as

�qνV KS = eiq·r�qνv
KS. (7)

The latter can be obtained as

�qνv
KS = 1√

2ωqν

∑
κα

eκα,ν (q)√
Mκ

∂κα,qv
KS, (8)

where

∂κα,qv
KS =

∑
p

e−iq·(r−Rp) ∂V KS

∂τκα

∣∣∣∣
(r−Rp)

(9)

is the first-order derivative of the KS potential that can
be obtained with DFPT by solving self-consistently a sys-
tem of Sternheimer equations for a given (κα, q) perturba-
tion [44,45].

B. Interpolation of the e-ph matrix elements

Accurate calculations of e-ph properties require the cou-
pling matrix elements on very dense k- and q-point grids. The
explicit DFPT computation of ∂κα,qv

KS for many q points thus
represents the main bottleneck of the entire process. To reduce
the computational cost, following Ref. [40], we interpolate
the scattering potentials in q space using Fourier transforms
while the KS wave functions are obtained by performing a
non-self-consistent (NSCF) calculation on arbitrary k meshes.
In a pseudopotential-based implementation,2 the KS potential
is given by

V KS(r, r′) = [V H[n](r) + V xc[n](r) + V loc(r)]︸ ︷︷ ︸
V scf (r)

× δ(r − r′) + V nl(r, r′) (10)

and consists of contributions from the Hartree part (V H),
the exchange-correlation (XC) potential (V xc), and the bare
pseudopotential term that, in turn, consists of the local (V loc)
and nonlocal (V nl) parts [46]. Following the internal ABINIT

convention, we group the Hartree, XC and local terms in a
single potential, V scf, although only the first two terms are
computed self-consistently. The lattice-periodic part of the

2We assume norm-conserving pseudopotentials.
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first-order derivative of the KS potential thus reads

∂κα,qv
KS = [∂κα,qv

H + ∂κα,qv
xc + ∂κα,qv

loc]︸ ︷︷ ︸
∂κα,qvscf

+∂κα,qv
nl. (11)

The real-space representation of ∂κα,qv
scf is obtained through

the following Fourier transform:

Wκα (r − Rp) = 1

Nq

∑
q

e−iq·(Rp−r) ∂κα,qv
scf(r), (12)

where the BZ sum is over the Nq q points of the initial grid
employed in the DFPT calculation. Wκα (r − Rp) represents
the variation of the SCF potential associated with the displace-
ment of the atom κ in the unit cell identified by Rp along
the Cartesian direction α. Once Wκα (r − Rp) is known, one
can interpolate the potential at an arbitrary point q̃ using the
inverse Fourier transform:

∂κα,q̃v
scf(r) ≈

∑
Rp

eiq̃·(Rp−r)Wκα (r − Rp), (13)

where the sum is over the real-space lattice vectors in
the supercell associated to the q mesh used in Eq. (12).
Note that only the SCF part of the DFPT potential needs to
be interpolated as the derivative on the nonlocal part V nl can
be computed analytically [44].

Our approach therefore differs from Wannier-based meth-
ods in which electrons and phonons are treated on the same
footing and the e-ph vertex is expressed in real space as a
two-point function [47]. The advantage of our method is that
the Wannierization step is completely avoided since the elec-
tronic wave functions are treated exactly and only phonon-
related quantities (scattering potentials, phonon eigenvectors
and frequencies) need to be interpolated. The price to pay is
that one must perform an explicit NSCF calculation of the
Bloch states on the dense k mesh and the computation of the
e-ph matrix elements [Eq. (5)] now requires the application of
the first order KS Hamiltonian. It should be noted, however,
that the NSCF part represents a small fraction of the overall
computing time when compared to the DFPT calculations
that must be performed for each q point in the IBZ and
all irreducible atomic perturbations. The application of the
first order Hamiltonian is floating-point intensive but one can
benefit from highly efficient fast Fourier transforms to apply
∂κα,qv

scf in r space while the derivative of the nonlocal part
is computed directly in G space using pseudopotentials in the
fully separable Kleinman-Bylander form [48]. In Sec. IV C,
we also explain how to take advantage of homogeneous BZ
meshes and filtering techniques to reduce considerably the
number of matrix elements that must be computed.

C. Long-wavelength limit in semiconductors

The accuracy of the interpolation in Eq. (13) depends on
the density of the initial ab initio q mesh that in turn defines
the size of the Born-von Kármán supercell. This technique
was initially proposed to study superconducting properties in
metals and initial q meshes of the order of 8 × 8 × 8 were
found sufficient to obtain accurate results [40]. In metals,
indeed, the screened potential is usually short ranged pro-
vided one excludes pathological cases associated to Kohn

anomalies [49]. In semiconductors, on the contrary, the long-
range (LR) behavior of the screened potential is associated to
nonanalyticities for q → 0 that must be avoided in the Fourier
interpolation, and thus be handled separately.

We now generalize the standard technique used in polar
semiconductors to cope with these LR nonanalytic contribu-
tions to the scattering potentials, and analyze in detail the
contribution of quadrupolar terms. We recover the formal
study done by Vogl in 1976 [50] in the context of many-body
perturbation theory (MBPT), and update it to the DFPT treat-
ment of atomic displacement and electric field response [44],
as currently implemented in ABINIT and other first-principles
packages. We also establish the connection with the treatment
of Born effective charges and dynamical quadrupoles by
Stengel [51]. Finally, we show how the nonanalytic terms
are treated in the relevant interpolations, as already done
for the lowest-order dipole-dipole nonanalytic contribution to
the interatomic force constants [44] and for the Fröhlich-type
dipole-induced scattering potential [52], both relying on the
Born effective charges. We extend the latter work to the
next order by including dynamical quadrupoles and local-field
potentials.

For this purpose, the nonanalytic long-wavelength compo-
nents (q → 0) of the first-order derivative of the SCF potential
∂κα,qv

scf(r) must be identified. Our aim is to retain all contri-
butions that are O(qα/q2) with q the norm of q (the strongest
divergence is dipole-like and has already been treated, e.g., in
Ref. [52]), as well as O(qαqβ/q2), linked to quadrupoles and
local field potentials with nonanalytic directional behavior, as
shown in the following. On the other hand, we will neglect
all O(qαqβqγ /q2) contributions (associated with octupoles)
and analytic O(1) contributions that can already be Fourier
interpolated. We will obtain the above-mentioned behaviors
after alignment and rescaling of the wave-vector components.
In the following, for a real-space function fq(r), we denote
generically with fq(G) the components of its Fourier decom-
position:

fq(r) =
∑

G

fq(G)ei(q+G)·r. (14)

Let us first focus on the q → 0 behavior of the first-order
derivatives of the wave functions with respect to collective
atomic displacements, |uτκα

nk,q→0〉 [15,51]. The computation of
these quantities implies auxiliary DFPT calculations, deliv-
ering |uτ ′

κα

nk,q=0〉 and |uE ′
λ

nk〉. These are obtained by considering
perturbations of the collective atomic displacement and of the
electric field types, at q = 0, in which the divergent G = 0
component of the first-order derivative of the Hartree potential
4π
q2 has been removed, see Eq. (A2). From Ref. [15], we can
express the derivatives of the wave functions with the G = 0
contribution to the Hartree potential as

∣∣uτκα

nk,q→0

〉 = ∣∣uτ ′
κα

nk,q=0

〉 + 4π

�

(−Q)(qγ Z∗
κα,γ )qλ

∣∣uE ′
λ

nk

〉
q2εM (q)

e−iqητκη ,

(15)

where εM (q) is the q-dependent macroscopic dielectric func-
tion, Z∗

κ is the Born effective charge tensor, η, γ and λ, are
Cartesian coordinates, and Q is the electronic charge in atomic
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units, that is, −1. The sum over repeated indices is implied
in this equation and in the remaining of this section. See
Appendix A for more details about the derivation of Eq. (15).

We now generalize Eq. (15) to arbitrary q wave vec-
tors. We consider a first auxiliary DFPT calculation with
respect to collective atomic displacements, now at nonzero
q, where the G = 0 component of the first-order derivative
of the Hartree potential has been removed, delivering |uτ ′

κα

nk,q〉.
The second auxiliary DFPT calculation is with respect to a
monochromatic scalar potential φ, with nonzero q, as defined
in Ref. [53], again without the G = 0 contribution to the first-
order derivative of the Hartree potential. The corresponding
first-order wave function is |uφ′

nk,q〉. The first-order DFPT
response of the wave functions to collective atomic displace-
ments, at nonzero q with the G = 0 contribution to the Hartree
potential is then obtained as

∣∣uτκα

nk,q

〉 = ∣∣uτ ′
κα

nk,q

〉 + 4π

�

QQq
κα

q2εM (q)

∣∣uφ′
nk,q

〉
e−iqητκη , (16)

see Appendix A for more details. In the long-wavelength
limit, the cell-integrated charge response to a monochromatic
atomic displacement Qq

κα is [53]

Qq
κα = −iqγ Z∗

κα,γ − qβqγ

2
Qβγ

κα + · · · , (17)

where Qβγ
κα is the dynamical quadrupole.

The self-consistency loop is linear in the first-order deriva-
tives of the different quantities that are connected through
it. So, the first-order change of the density, the first-order
derivatives of the SCF and Kohn-Sham potentials of the τκα

perturbation bear the same relation to those of the τ ′
κα and

φ′ perturbation, than the one obtained for the wave functions,
Eq. (16). For the phase-factorized periodic part of the KS
potential [see Eqs. (7)–(9)], we obtain

∂κα,qv
KS = ∂ ′

κα,qv
KS + 4π

�

Qq
κα

q2εM (q)

(
1 + Q∂ ′

φvHxc
q

)
e−iqητκη ,

(18)

where the prime refers again to the auxiliary DFPT calcula-
tions and we have taken into account that the φ perturbation
has an external scalar Q contribution and that the nonlocal
term is not present in the φ perturbation or in the correspond-
ing Hartree or XC potentials. This formula allows one to
compute the e-ph matrix elements in the vicinity of q = 0,
to all orders in q.

We can now derive the dipole and quadrupole-type non-
analyticities through the analysis of the different contributing
terms. The first term in Eq. (18) is analytic. The denominator
of the second term, q2εM (q), expands as [15]

q2εM (q) = qδε
∞
δδ′qδ′ + O(q4), (19)

where ε∞ is the high-frequency dielectric tensor. Appearing
in the denominator, it gives the nonanalytic behavior of the
second term. There is no cubic contribution in q in this
expansion, as emphasized by Vogl [50]. The ε∞ tensor might
be used as a metric, to highlight the O(q2) character of this
denominator [44].

Equation (17) shows that the expansion of Qq
κα is analytic,

and likewise for ∂ ′
φvHxc, whose expansion starts with the term

proportional to q:

∂ ′
φvHxc

q = iqαvHxc,Eα + O(q2). (20)

Thus the dominant nonanalyticity is a real-space constant
shift in the potential, of dipolar character (i.e., of order qα

q2

considering the appropriate metric in reciprocal space):

4π

�

iqγ Z∗
κα,γ

qδε
∞
δδ′qδ′

e−iqητκη . (21)

At the quadrupole level (i.e., of order qβ qγ

q2 in the proper
metric), there are two contributions: a real-space constant
shift,

4π

�

( qβqγ

2

)
Qβγ

κα

qδε
∞
δδ′qδ′

e−iqητκη , (22)

and a nonconstant real-space potential,

4π

�

(−qβqγ )Z∗
κα,β

qδε
∞
δδ′qδ′

QvHxc,Eγ (r)e−iqητκη . (23)

The latter is obtained from ABINIT, considering the electric
field (QEα) perturbation.

These terms parallel those found in the MBPT context
by Vogl [50]. Note, however, that Vogl was focusing on
the e-ph scattering matrix elements for some well-defined
normal mode of vibration while the present work focuses
on the collective displacement of a given single sublattice
κ in a specific direction α. In this context, Vogl obtained a
third quadrupole contribution that is not present here. The
generalization of Eq. (21) to finite G has already been done
in Ref. [52]. The generalization of Eqs. (22) and (23) follows
the same derivation. The expression for the LR model finally
reads

V L
κα,q(r) = 4π

�

∑
G 
=−q

i(qβ + Gβ )Z∗
κα,β − (qβ + Gβ )(qγ + Gγ )

(
Z∗

κα,βQvHxc,Eγ (r) − 1
2 Qβγ

κα

)
(qδ + Gδ )ε∞

δδ′ (qδ′ + Gδ′ )
ei(qη+Gη )(rη−τκη ). (24)

In the actual implementation, following previous approaches [1,54], each component is multiplied by the Gaussian filter e− |q+G|2
4α .3

3The α parameter determines the separation between the long-range and the short-range parts of the interaction and is used to express Ewald
sums [44,86] in terms of a sum in G space (long-range part) and a sum in real space that, being short ranged, is not relevant for the definition
of the LR model. The optimal value of α is material-dependent and should therefore be subject to convergence studies. In our systems, we
observed small changes in the physical observables (∼1%) with α. A value of 0.1 Bohr−2 is used in all calculations.
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The impact of the electric-field term in Eq. (24) has been
analyzed in details in Ref. [41]. In Si, GaP, and GaAs, the
effect of the E term on the Fourier interpolation is negligible
compared to the role played by Qβγ

κα . Therefore we do not
include the E term in the computations reported in this work.
We do treat, however, the dipole-quadrupole and quadrupole-
quadrupole interactions when interpolating the phonon fre-
quencies following the formalism detailed in Ref. [51].

III. PHONON-LIMITED TRANSPORT PROPERTIES

A. Electron lifetimes

The electron lifetime due to the e-ph scattering is related
to the inverse of the imaginary part of the e-ph Fan-Migdal
SE [1]. The diagonal matrix elements of the SE in the KS
basis set are given by

�FM
nk (ω, εF , T ) =

∑
m,ν

∫
BZ

dq
�BZ

|gmnν (k, q)|2

×
[

nqν (T ) + fmk+q(εF , T )

ω − εmk+q + ωqν + iη

+ nqν (T ) + 1 − fmk+q(εF , T )

ω − εmk+q − ωqν + iη

]
, (25)

where fmk+q(εF , T ) and nqν (T ) correspond to the Fermi-
Dirac and Bose-Einstein occupation functions with T the
temperature and εF the Fermi level. For the sake of simplicity,
the temperature and Fermi level are considered as parameters,
and the dependence on T and εF will be omitted in the
following. The integral in Eq. (25) is performed over the q
points in the BZ of volume �BZ and η is a positive real
infinitesimal.

In the η → 0+ limit, the imaginary part of the SE [Eq. (25)]
evaluated at the KS energy is given by [1]

lim
η→0+

�{
�FM

nk (εnk )
}

= π
∑
m,ν

∫
BZ

dq
�BZ

|gmnν (k, q)|2

× [(nqν + fmk+q)δ(εnk − εmk+q + ωqν )

+ (nqν + 1 − fmk+q)δ(εnk − εmk+q − ωqν )] (26)

and corresponds to the linewidth of the electron state nk due to
the scattering with phonons. Finally, the electron lifetime τnk
is inversely proportional to the linewidth of the SE evaluated
at the KS energy [26,35]:

1

τnk
= 2 lim

η→0+
�{

�FM
nk (εnk )

}
. (27)

These lifetimes play an important role in different physical
properties, such as optical absorption [55] or transport proper-
ties [56]. In this work, we focus on the accurate computation
of phonon-induced lifetimes and transport properties, without
taking into account other scattering processes due to defects,
impurities, grain boundaries or other electrons. As we include
only one of the possible scattering mechanisms, our computed

mobilities are expected to overestimate the experimental re-
sults.4

B. Carrier mobility

In this article, we focus on the solution of the linearized
Boltzmann transport formulation [57] within the relaxation
time approximation (RTA). The generalized transport coeffi-
cients are given by [56]

L(m)
αβ = −

∑
n

∫
dk
�BZ

vnk,αvnk,β τnk(εnk − εF )m ∂ f

∂ε

∣∣∣∣
εnk

(28)

where vnk,α is the α-th component of the matrix element
vnk of the electron velocity operator. These quantities can be
obtained from interpolation methods such as Wannier [58]
or Shankland-Koelling-Wood (SKW) [59–62] whose form
allows one to analytically compute the derivatives of the
eigenvalues with respect to k. Alternatively, one can obtain
vnk using finite differences between shifted grids [55]. In our
implementation, we prefer to compute the velocity matrix
elements without any approximation using the commutator of
the Hamiltonian with the position operator [63]:

vnk = ∂εnk

∂k
= 〈ψnk|p̂ + i [V nl, r]|ψnk〉 (29)

with p̂ the momentum operator, as done in DFPT calculations
of the response to an external electric field [44]. We note,
in passing, that the group velocities can be used to compute
transport lifetimes within the so-called momentum relaxation
time approximation [22,23].

The generalized transport coefficients can be used to obtain
different transport properties such as the electrical conduc-
tivity, Peltier and Seebeck coefficients, and charge carrier
contribution to the thermal conductivity tensors [56]. The
electrical conductivity tensor is given by

σαβ = 1

�
L(0)

αβ (30)

and can be divided into hole and electron contributions:5

σ = neμe + nhμh (31)

where ne and nh are the electron and hole concentrations
in the conduction and valence bands respectively, and μe

and μh are the electron and hole mobilities, which can be
obtained by selecting the conduction or valences states n in
Eq. (28). For electrons,

ne =
∑
n∈CB

∫
dk
�BZ

fnk, μe = 1

ne�
L(0)

n∈CB (32)

where n ∈ CB denotes states in the conduction bands. Similar
expressions hold for holes. At zero total carrier concentration,

4Scattering by defects, impurities, grain boundaries, or other elec-
trons can be described either using semi-empirical models [66,87]
or first-principles computations [20,88]. The computation of these
effects is however outside the scope of the present work.

5We consider the conductivity related to the electric field only, not
the Hall mobility [77].
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the Fermi level εF is located inside the band gap so that
ne = nh.

The transport coefficients in Eq. (28) depend both on the
temperature and the doping level (through εF ). Formally,
τnk also depends on εF through the Fermi-Dirac occupations
in Eq. (26). A commonly used approximation consists in
neglecting the variation of τnk with εF . Under this assumption,
Eq. (28) can be solved for different εF at almost no additional
cost. This approach is valid when the transport coefficients
are obtained for values of εF similar to the ones used to
compute τnk.

IV. EFFICIENT COMPUTATION OF E-PH QUANTITIES

A. Use of symmetries

As mentioned in the introduction, our implementation ex-
ploits crystal symmetries to reduce the computational cost and
the memory requirements. As concerns the KS wave func-
tions, the NSCF calculation can be restricted to the k points in
the IBZ of the unperturbed system as the Bloch states in the
full BZ can be reconstructed by symmetry using the equations
given in Appendix B. At the level of the scattering potentials,
the DFPT computations need to be performed only for q
points in the IBZ and, for each q point, only an appropriate set
of irreducible perturbations needs to be computed explicitly.
As shown in Appendix C, all the scattering potentials can
be reconstructed from this irreducible set. These symmetry
properties are used, for instance, to compute the sum over q
points in the full BZ in Eq. (12).

Symmetries are also used in the computation of the elec-
tron lifetimes. First of all, the SE operator is invariant under
the action of all the operations of the space group of the crys-
tal. As a consequence, the computation of τnk can be restricted
to the k points in IBZ as τnk transforms as the KS eigenvalues
εnk. Last but not least, for a given k point, the integral in q
space in Eq. (26) can be restricted to an appropriate irreducible
wedge (IBZk) defined by the operations of the little group of
k, i.e., the set of point group operations that leave the k-point
invariant modulo a reciprocal lattice vector G.

B. Tetrahedron method

The evaluation of Eq. (26) requires an accurate integration
of the Dirac δ distribution, especially in the regions around
the band edges where lifetimes usually show strong varia-
tions and anisotropic behavior. For practical applications, it
is customary to replace the δ distribution by Lorentzian or
Gaussian functions with a small but finite width, also called
the broadening parameter η. According to previous stud-
ies [28], Gaussian functions lead to a faster convergence of
the q-point integral in Eq. (26). From a theoretical perspective,
the use of Lorentzian functions is more appropriate because,
in Eq. (25), the δ distribution is obtained as the limit of a
Lorentzian for η → 0. It should be stressed, however, that
both the Lorentzian and Gaussian methods require careful
convergence studies: for a given value of η, physical quantities
should be converged by increasing the density of q points
then one should monitor the behavior of the converged values
for η → 0 and select a broadening for which the results are
relatively stable.

FIG. 1. Schematic representation of the filtering of (a) k and
(b) q points for the computation of the SE in the case of a single
parabolic conduction band at the � point. (a) States represented
by green dots (red crosses) are included (excluded) in (from) the
transport computation according to the input variable �εc. (b) For
initial and final electron states ki and kf , the wave vector q = kf − ki

requires a phonon mode with frequency ωqν = εkf − εki . If this
condition is not fulfilled, the q point is ignored.

To avoid this additional convergence study, we prefer to
compute Eq. (26) with the linear tetrahedron method. The
implementation closely follows the algorithm proposed by
Blochl [64]. The full BZ is first partitioned into tetrahedra,
then symmetries are used to identify a set of irreducible
tetrahedra with the corresponding corners and multiplicity.
The presence of εmk+q in the argument of the two δ functions
implies that only the symmetries of the little group of k
can be used to define the irreducible tetrahedra covering the
IBZk. Once the irreducible tetrahedra have been identified for
a given k, the squared modulus of the e-ph matrix element
as well as the F±

mν (q) = εmk+q ± ωqν functions are linearly
interpolated in q space using the values at the corners of each
tetrahedron. Within the linear approximation, the isosurfaces
F±

mν (q) = εnk become planes that may cut the tetrahedron
depending on the value of εnk and the integration inside each
tetrahedron is performed analytically. Finally, as discussed in
Ref. [64], the sum over tetrahedra is converted into a weighted
sum over the q points in the IBZk with different weights
w±(n, m, ν, q) for absorption and emission processes. The
weights are nonzero only for q points associated to tetrahedra
intersecting one of the possible isosurfaces. This is the key to
the filtering algorithm in q space discussed in more details in
the next section.

C. k- and q points filtering

An initial filtering is achieved by noticing that the deriva-
tive of the Fermi occupation f in Eq. (28) is practically
nonzero only for electronic states close to the Fermi level.
Since εF is usually inside the band gap, only electronic
states with k and εnk close to the band edge(s) contribute
to Eq. (28) [65]. In our implementation, we use an input
variable that defines the energy range for electrons (�εc) and
holes (�εv): if εnk − εCBM > �εv or εVBM − εnk > �εv , the
lifetime τnk is not computed because this state is assumed
to give negligible contribution to Eq. (28). This selection
algorithm is depicted in Fig. 1(a), where τnk is computed
for the states represented by green circles but not for the red
crosses.
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The achievable speedup depends on the band dispersion,
the position of the Fermi level and the temperature. In most
cases, the effective number of k points is much smaller than
the initial number of wave vectors in the IBZ associated to the
homogeneous mesh. In Sec. V C, it is shown that converged
electron mobilities in Si and GaP can be obtained with around
29 and 60 irreducible k points, respectively, representing only
1% of the IBZ. An extreme scenario is represented by band
dispersions with small effective masses for which very high
resolution in k space is needed to sample the small electron
(hole) pockets. For instance, in GaAs, due to the very small
electron effective mass (∼0.053 m0 with m0 the free electron
mass), the effective number of k points reduces to around
0.05% of the IBZ. This class of systems is challenging also
for Wannier-based approaches as is apparent from the large
discrepancy in the results for the electron mobility in GaAs
reported by different authors [22,28,66]. In our implementa-
tion, we can treat systems with small effective masses with
the following procedure. We start with a NSCF calculation on
a reasonably dense k mesh to determine the position of the
band edges within a certain tolerance. Then we use the SKW
method [59–61] to interpolate electron energies on a much
denser k grid. This step allows us to identify the k points
lying inside a predefined energy window around the band
edges. Finally, a second NSCF calculation for this restricted
set of wave vectors is performed and the resulting (exact) KS
wave functions and energies are used to compute lifetimes and
transport properties.6 We note that all the calculations reported
in this work have been performed without this procedure
because mobility computations in Si and GaP do not need
particularly dense k grids to converge. We were also able to
reach converged computations in the worst-case scenario of
GaAs without employing this technique despite the increased
computational cost of the NSCF calculation. It is however
evident that e-ph calculations in more challenging systems
characterized by small effective masses and/or larger unit
cells will benefit from this SKW-based approach.

The reduction in the number of k points already leads to a
large speed-up but another, distinct, optimization can be im-
plemented when computing the imaginary part of the SE. For
a fixed k point, indeed, not all q points are compatible with
energy conservation [65]. This selection rule is schematically
depicted in Fig. 1(b). Thanks to the tetrahedron method, it is
possible to identify, for a given k point, the subset of q points
in the IBZk contributing to Eq. (26).7 This filtering technique
restricts the computation of the matrix elements gmnν (k, q) to

6The set of k points obtained with this procedure belongs to a
homogeneous mesh hence both symmetries and tetrahedron method
can be used without any modification. Small errors in the tetrahedron
weights may be introduced by the linear interpolation because k
points that are slightly outside of the energy window are interpolated
with SKW but this minor issue can be easily fixed by enlarging
the energy window. This techniques permits to reach very high
resolution in k space of the order of 300 × 300 × 300.

7In principle, a similar optimization can be implemented for the
Lorentzian and Gaussian broadening techniques, however this re-
quires choosing a threshold beyond which the broadened δ is treated
as zero.

FIG. 2. Schematic representation of the DG technique. Black
dots represent q points belonging to the coarse grid where the
e-ph matrix elements gmnν (k, q) are explicitly computed using our
interpolation procedure. Colored small dots are q points of the fine
grid where the gmnν (k, q) are assumed to be constant in the region
surrounding the black dot (the shaded green area).

a small set of q points in the IBZk. The achievable reduction
depends on the band structure and phonon dispersion, but
in most cases only a few percents of the total number of q
points pass this filter. In Si, for instance, less than 2% of
the IBZk needs to be taken into account when evaluating
the imaginary part of the SE thus leading to an additional
significant speedup. In GaAs, the reduction is even larger
thanks to the highly dispersive band centered at � that allows
for only a few intravalley transitions. In this case, less than
0.2% of the IBZk has to be considered for each k point.

D. Double-grid technique

The evaluation of εnk and ωqν is computationally less
demanding than that of gmnν (k, q). This is evident in our
implementation where the evaluation of Eq. (5) requires the
electron wave functions and the derivative of the potential to
be stored in memory to apply the first-order KS Hamiltonian.
To improve the convergence rate without increasing the
computational cost, we implemented the possibility to use
different q meshes: one coarse mesh for gmnν (k, q) and a
finer one to describe the absorption and emission terms in
Eq. (26) where only εmk+q and ωqν are needed. This method,
already implemented in the context of Bethe-Salpeter
calculations [55,67,68] and used by Fiorentini et al. [69] in
the context of e-ph computations, is commonly referred to as
a double-grid (DG) technique and is explained schematically
in Fig. 2. The rationale behind such a technique is that, apart
from the Fröhlich divergence, the e-ph matrix elements are
expected to vary smoothly when compared to the Dirac δ

functions in Eq. (26). Obviously this approximation breaks
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down in the region around q = � in polar semiconductors,
where a high-resolution sampling would be required to
capture the divergence. Theoretically, it would be possible
to address this issue by analytically integrating the diverging
matrix elements close to �, or to compute the LR part of the
matrix elements (as defined in Ref. [52]) on the fine mesh used
for the DG technique. These extensions of the DG method
are left for future studies. For reasons of computational
performance and reliability of the results, we only allow
commensurate grids. The phonon frequencies are obtained
on the fine grid by interpolating the dynamical matrix in q
space at negligible cost. The electron energies εmk+q on the
fine grid can be obtained either from a NSCF calculation or
interpolated using the SKW method [59–61]. This technique
offers enough efficiency and flexibility to perform fast
approximate computations of the electron lifetimes for
screening purposes with the additional benefit that the
accuracy can be systematically improved by densifying
the coarse grid for gmnν (k, q). The following convention is
used throughout this work: the q mesh used for the DFPT
computations is called the initial mesh, while the meshes onto
which the Fourier interpolation and the NSCF computations
are performed are called the dense meshes. When referring to
results obtained with the DG technique, the mesh used for the
KS wave functions and the e-ph matrix elements is called the
coarse mesh while the mesh used for the εmk+q energies and
the ωqν frequencies is denoted as the fine mesh.

E. Parallelization

Our implementation uses five different MPI levels to dis-
tribute both the workload and the most memory-demanding
data structures. By default, the code distributes the q points in
the dense IBZ to reduce the memory allocated for the scatter-
ing potentials and the computational cost for the integrals in
q space. This parallelization level is quite efficient but tends
to saturate when the number of MPI processes becomes com-
parable to the typical number of q points used to integrate the
self-energy. In this regime, indeed, the wall-time required to
compute the matrix elements becomes negligible and nonscal-
able parts such as the computation of the tetrahedron weights
and symmetry tables begin to dominate. In this case, one can
activate the parallelization over k points and spins to achieve
better parallel efficiency. Calculations of the SE at different
k points and spins are completely independent hence these
two MPI levels are embarrassingly parallel with excellent
scalability, albeit they do not lead to any additional decrease
in the memory requirements. If memory is of concern, one can
employ the MPI distribution over perturbations to parallelize
the computation of the e-ph matrix elements over the (κ, α)
index and distribute the corresponding scattering potentials.
Finally, an additional distribution scheme over the band index
m is available when the real part of the SE is computed by
summing over empty states.

V. RESULTS

A. Computational details

For all computations, we used norm-conserving
pseudopotentials of the Troullier-Martins type [70] in the

FIG. 3. Band structure of (a) Si and (b) GaAs. The Fermi level
is located so that ne = 1018 and 1015 cm−3 for Si and GaAs,
respectively. The energy window used to filter the k points for
transport computations is represented by horizontal dashed lines.
Phonon dispersions of (c) Si and (d) GaAs.

local-density approximation (LDA) from Perdew and
Wang [71] parametrized by Ceperley and Alder [72], with
a plane-wave kinetic energy cutoff of 20 Ha for Si and 30
Ha for GaP and GaAs. The use of LDA pseudopotentials
without nonlinear core corrections is imposed by the current
implementation of the dynamical quadrupoles. The theoretical
values of Qβγ

κα used in this work are given in Ref. [73]. The
relaxed lattice parameter is 5.38 Å for Si, 5.32 Å for GaP, and
5.53 Å for GaAs. To obtain an accurate Fourier interpolation
of the e-ph scattering potentials, we use 9 × 9 × 9 DFPT q
grids for Si and GaP and 6 × 6 × 6 for GaAs. The choice
of the initial DFPT grid is based on the study reported in
Ref. [41]. In the next sections, we discuss our results for
Si and GaAs, the detailed results for GaP can be found in
Ref. [73]. The ABINIT band structures of Si and GaAs, are
represented in Figs. 3(a) and 3(b), respectively, while the
phonon dispersions are shown in panels (c) and (d). The
ABIPY python library [74] has been used to automate part of
the calculations as well as the post-processing of the results.

B. Carrier linewidths

In Fig. 4, we report the linewidths for states within 90 meV
from the conduction band minimum (CBM) of Si obtained
with different integration schemes. Close to the CBM, for
energies ε − εCBM < ωLO (the frequency of the longitudinal
optical phonon), the linewidths are small as few scattering
channels are available. For higher energies, optical-phonon
emission becomes possible and leads to an increase in the
linewidths around ε = εCBM + ωLO, which corresponds to
64 meV above the CBM of Si. As expected, the values ob-
tained with the Lorentzian function approach the tetrahedron
results when the broadening is reduced provided the q mesh
is dense enough. A similar study with Gaussian broaden-
ing is performed in Ref. [73] where similar conclusions are
reached [73].
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FIG. 4. Electron linewidths near the CBM of Si obtained with a
60 × 60 × 60 k-point grid at T = 300 K. A very dense 180 × 180 ×
180 q-point grid is used for all curves to achieve well-converged
results. Results are obtained with Lorentzian (L) and tetrahedron (T)
methods. The broadening parameter is given in parentheses in meV.

In Fig. 5, we compare the convergence rate of the tetra-
hedron integration scheme with the one obtained with a
Lorentzian broadening of 5 meV. The plot shows the average
and maximum errors on the linewidths in Si and GaAs as
a function of the q mesh used to evaluate Eq. (26). The k
mesh for which the linewidths are obtained is fixed, and the
dense q mesh used for integrating Eq. (25) is progressively
increased until convergence is reached. In order to do this, we
perform a NSCF computation for each dense mesh in order
to have access to εmk+q and gmnν (k, q) on the dense mesh,
and select the nk states belonging to the 9 × 9 × 9 mesh to
compute the linewidths. Two conclusions can be drawn from
these results. (i) In both materials, the tetrahedron method
outperforms the Lorentzian broadening since convergence is
reached with less dense q-point grids. (ii) The convergence in
GaAs is slower than in Si because of the integrable Fröhlich
singularity for q → 0 present in polar semiconductors. This
is somehow expected as the numerical integration of the
singularity requires dense q meshes to sample enough points
in the region around �.

At this point, it is worth comparing the convergence rate
of the standard tetrahedron scheme with that obtained with
the DG technique presented in Sec. IV D. Figure 6 gives the
error on the linewidths in Si and GaAs, similarly to Fig. 5, but
now obtained with the tetrahedron method together with the
DG technique.8 We observe that, in Si, using a 18 × 18 × 18
coarse q grid for the e-ph matrix elements and a fine 36 ×
36 × 36 q grid for the KS energies and phonon frequencies
reduces the average error below 1 meV with a computational
cost very similar to that required by 18 × 18 × 18 k- and
q-point meshes. Increasing the density of the coarse grid
further reduces the error down to practically zero. In the case
of GaAs, a denser coarse q-point grid is required to reduce

8In all the calculations using the DG method, the KS eigenvalues on
the fine k mesh have been computed exactly by performing a NSCF
computation.

FIG. 5. Average (solid line) and maximum (dashed line) error
on the linewidths evaluated on a 9 × 9 × 9 k-point grid in (a) Si
and (b) GaAs as a function of the q grid used for the integration.
Only states within 1 eV from the CBM and VBM are considered.
Results have been obtained with the tetrahedron method (T, blue) and
a Lorentzian (L, red) broadening of 5 meV. The reference linewidths
for each curve are the results obtained with the densest q grid and the
corresponding integration technique. The insets show the linewidths
obtained with the tetrahedron method and the densest q grid.

the error because of the singularity around �. The density of
k points used in these tests is not large enough to converge
transport properties (as shown in the next section) but it is
clear that a sufficiently fine q mesh is important to achieve
accurate linewidths whose quality will affect the final results
for the mobility.

C. Phonon-limited mobility

For the computation of lifetimes and mobility, we con-
sider an electron concentration of 1018 cm−3 both in Si and
GaP, following the approach used for effective mass com-
putations in previous works [75–77]. This choice, indeed,
helps avoiding numerical noise and allows one to reach faster
convergence when compared to calculations done with lower
concentrations. Note, however, that the computed mobility
does not correspond to the experimental one measured for
1018 electrons per cm3, because such concentrations require
impurities in the crystal that would increase the scattering
rates and decrease the mobility. The results are representative
of the intrinsic mobility as long as the Fermi level remains
inside the band gap and far enough from the band edges (see
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FIG. 6. Average (solid line) and maximum (dashed line) error on
the linewidths on a 9 × 9 × 9 k-point grid in (a) Si and (b) GaAs as a
function of the fine q-point grid used for the integration. The matrix
elements are obtained on (a) coarse 9 × 9 × 9 (blue), 18 × 18 × 18
(red) and 27 × 27 × 27 (green) grids for Si and (b) coarse 9 × 9 × 9
(blue), 18 × 18 × 18 (red) 36 × 36 × 36 (green) and 72 × 72 × 72
(black) grids for GaAs. KS energies are computed on the fine grids.
Only states within 1 eV from the CBM and VBM are considered.
The reference linewidths (insets) are the results obtained with a 90 ×
90 × 90 (144 × 144 × 144) q-point grid for both matrix elements
and energies for Si (GaAs).

also the tests reported in Ref. [73]). In GaAs, we used an
electron concentration of 1015 cm−3 because the density of
states in the conduction band is very small.

In our implementation, as mentioned in Sec. IV C, lifetimes
and group velocities are computed only for the KS states
that contribute to Eq. (28) by introducing an energy window
around the Fermi level. Figure 7(a) shows the convergence
of the integrand of Eq. (28) (convoluted by δ(ε − εnk ) as
discussed in Appendix D) for increasing k-point densities, in
the case of electrons in the conduction band of Si. Integrating
this function directly gives the electron mobility. Figure 7(a)
shows that the integrand quickly vanishes for energies far
from the Fermi level (and, therefore, far from the CBM). As a
consequence, it is possible to find an optimal energy window
for the electrons that leads to a considerable computational
saving without affecting the quality of the calculation. This
is demonstrated in Fig. 7(b) where we report the mobility
obtained for different values of the window. In Si, an energy
range of 0.16 eV is sufficient to reach less than 1% relative
error on the mobility while a slightly larger value of 0.19
(0.18) eV is needed for GaAs (GaP). We therefore use these

FIG. 7. (a) xx component of the integrand in Eq. (28) convoluted
with δ(ε − εnk ) in the conduction band of Si, for 24 × 24 × 24
(black), 48 × 48 × 48 (red), and 72 × 72 × 72 (green) k-point and
144 × 144 × 144 q-point grids at T = 300K. (b) Electron mobility
of Si as a function of the energy window used for the computation of
the lifetimes in Eq. (28). 72 × 72 × 72 k-point and 144 × 144 × 144
q-point grids have been used. For these grids, the converged value is
1509 cm2 V−1 s−1. A 160-meV energy range is enough to reach a
relative error in the mobility lower than 1%.

values for the energy window and, hereafter, we focus on the
convergence of the electron mobility with respect to the k and
q meshes, including a detailed analysis of the effect of the DG
integration scheme on the convergence rate.

Figure 8 shows the dependence of the electron mobility in
Si on the equivalent k grid used for the integration of Eq. (28),
as well as on the dense q mesh used for the evaluation of the
lifetimes [Eq. (27)]. The mesh of q points is the same as the
k grid (black dots), or twice as dense in each direction (red
crosses). For a given k grid, increasing the q-point density
(compare vertically aligned data points in Fig. 8) systemati-
cally decreases the mobility as more scattering channels are
included. We need to include a sufficient number of k wave
vectors to evaluate Eq. (28) and enough q points to evaluate
Eq. (27). All the convergence curves shown in Fig. 8 follow
the same trend: at low k-point densities, the (unconverged)
mobility increases with the k-point density. This is because
the k-point sampling of the conduction band becomes denser
close to the CBM where the integrand of Eq. (28) reaches
its maximum [see Fig. 7(a)]. Once the number of k points
included in the computation of the mobility is large enough,
the mobility starts to decrease because the density of q
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FIG. 8. Electron mobility in Si (T = 300 K) as a function of
the k- and q-point grids. The density of q points is the same as
the density of k points (black), or twice as dense (red). The results
obtained with DG technique are also reported (green, dashed). In
this case, the densities of the k- and q-point grids are the same for
matrix elements and lifetimes, but a grid twice as dense is used for
the energies in Eq. (26). The equivalent homogeneous k mesh is first
reported, together with the corresponding number of points in the
IBZ. The effective number of k points included in the computation
of τnk is also given.

points increases and more scattering channels are properly
captured.

The total number of k points in the IBZ is reported on the
second x axis of Fig. 8, together with the effective number of
k points included in the integration of Eq. (28) (third x axis).
Note that only around 1% of the IBZ needs to be computed.
The red curve (obtained with a q mesh twice as dense in each
direction as the k mesh) shows that convergence within 1% is
achieved with a 60 × 60 × 60 k mesh together with a 120 ×
120 × 120 q grid. Using a 45 × 45 × 45 grid for electrons
and a 90 × 90 × 90 grid for phonons already leads to an error
lower than 5%. We conclude that, in Si, a q mesh twice as
dense in each direction as the k mesh is required to accelerate
convergence. If the mobility is computed with the same mesh
for electrons and phonons, indeed, the convergence is much
slower as we include an unnecessarily large number of k
points whose lifetimes are still far from convergence.

The mobility obtained with the DG technique for the
lifetimes is also reported (dashed green line). In this case,
the density of k and q points is the same for the lifetimes
and the e-ph matrix elements, but now the q-point density
is doubled in each direction for the energies in Eq. (26),
thus allowing a better description of phonon absorption and
emission processes. The results are almost identical to those
obtained by explicitly computing the e-ph matrix elements
on the same grid as the energies (red). To appreciate the
efficiency of the DG integration scheme, it is worthwhile
to compare the wall-time required by two calculations done
with the same sampling. The computation time of a standard
e-ph calculation in Si with a 45 × 45 × 45 k grid and a
90 × 90 × 90 q mesh using a single CPU is around 2 hours

FIG. 9. Electron mobility in GaAs (T = 300 K) as a function of
the k- and q-point grids. The density of q points is the same as
the density of k points (black), twice (red), or three times (blue) as
dense in each direction. The DG technique results are also reported
(green, dashed). In this case, the densities of the k- and q-point
grids are the same for e-ph matrix elements and lifetimes, but a grid
twice as dense in all directions is used for the energies in Eq. (26).
The equivalent homogeneous k mesh is reported, together with the
corresponding number of points in the IBZ. The effective number of
k points included in the computation of τnk is also given.

and decreases down to 40 minutes when the DG technique
is used. Obviously, the wall-time can be easily decreased
by running on multiple CPUs using the MPI implementation
discussed in Sec. IV E.

Our converged value for the electron mobility in Si is
1509 cm2 V−1 s−1 that compares well with experimental data
comprised between 1300 and 1450 cm2 V−1 s−1 [26]. Our
results are consistent with other theoretical SERTA calcu-
lations reported in the literature that range from 1555 and
1872 cm2 V−1 s−1 [22,23,26]. For the sake of completeness,
one should also stress that mobilities are quite sensitive to the
computational parameters. Poncé et al. showed that, in Si, the
choice of the XC functional can lead to a difference of about
10% in the mobility [26]. The lattice parameter also has a large
effect as well as the formalism used to compute the electronic
dispersion (for example, LDA versus GW ).

We now discuss our results for the electron mobility in
GaAs that are summarized in Fig. 9. First of all, we note
that, despite the very dense homogeneous k mesh employed,
a relatively small number of effective k points contribute and
therefore need to be computed. As explained in Sec. IV C,
this is due to the small effective mass (high dispersion) of
the CB in GaAs. The blue curve in Fig. 9 has been obtained
with a q mesh that is three times denser than the k mesh
in each direction. For the 108 × 108 × 108 k grid, the red
and blue curves give very similar results thus confirming that
a 216 × 216 × 216 q mesh is dense enough for an accurate
integration of the linewidths. Note, however, that a 216 ×
216 × 216 k mesh for electrons is not sufficient to converge
the mobility. Convergence within 5% is indeed reached with
a 264 × 264 × 264 k mesh (and the same q mesh). The
mobility obtained using the DG technique is also reported in

094308-11



GUILLAUME BRUNIN et al. PHYSICAL REVIEW B 102, 094308 (2020)

FIG. 10. Electron mobility in GaP (T = 300 K) as a function of
the k- and q-point grids. The density of q points is the same as the
density of k points (black), twice (red), or three times (blue) as dense
in each direction. The DG technique results are also reported (green,
dashed). In this case, the densities of the k- and q-point grids are
the same for matrix elements and lifetimes, but a grid twice as dense
in all directions is used for the energies in Eq. (26). The equivalent
homogeneous k mesh is reported, together with the corresponding
number of points in the IBZ. The effective number of k points
included in the computation of τnk is also given.

Fig. 9 (green dashed line). The results with the double grid
are systematically improved (closer to red crosses, compared
to black dots). Unfortunately, the convergence of the double
grid is not as smooth and fast as the one observed in Si, likely
due to the divergence of the e-ph matrix elements around �.
Our final value for the electron mobility in GaAs obtained
with a 400 × 400 × 400 grid both for electrons and phonons
is 7075 cm2 V−1 s−1. This result is in the range of reported
electron mobilities for GaAs, roughly between 7000 and
12 000 cm2 V−1 s−1 [22,38,66]. The large range of computed
mobilities has been analyzed in Ref. [22]. The lattice param-
eter has a very important role, as well as the formalism used
both for the electronic band structure (GGA, GW , etc.) and the
transport computation (iterative BTE, momentum-relaxation
time approximation, etc.). In addition, we use the tetrahedron
integration method and treat dynamical quadrupoles in the
interpolation of the scattering potentials.

Finally, in Fig. 10, we report the electron mobility in GaP.
This system is less problematic than GaAs and convergence
within 5% is reached with 54 × 54 × 54 k-point and 108 ×
108 × 108 q-point meshes. Oscillations are still observed for
k meshes denser than 78 × 78 × 78, but not larger than 2%.
For these grids, the q-point mesh is well converged, as shown
by the blue curve (q mesh three times as dense in each
direction as the k mesh). The mobility obtained with the DG
technique is also reported in the same figure (green dashed
line). Once the q mesh is dense enough to correctly describe
this divergence (66 × 66 × 66 mesh), the DG results are very
similar to a full computation taking into account the variation
of the e-ph matrix elements on a q mesh twice as dense as
the k mesh (red crosses). There are few experimental data

for the electron mobility in GaP with values between 200 and
330 cm2 V−1 s−1 [78] but experiments are usually performed
on polycrystalline samples. A more accurate description of
transport properties in GaP would therefore require the inclu-
sion of grain-boundary scattering effects that are beyond the
scope of the present work. It is clear that additional theoretical
work and more advanced ab initio techniques including self-
consistency in the Boltzmann transport equation, many-body
effects in the electron-electron interaction as well as addi-
tional scattering processes are needed in order to improve the
agreement between theory and experiment. Nonetheless, our
convergence studies for the phonon-limited electron mobility
in Si and GaP indicate that the q mesh should be at least as
dense as the k mesh in order to capture enough scattering
channels with small momentum transfer. In GaAs, a very
fine k mesh is required due to the high dispersion of the
conduction band. In this case, it is not as interesting to use
a denser q mesh.

VI. CONCLUSION

We present an efficient method based on plane waves and
Bloch states for the computation of the e-ph self-energy and
carrier mobilities in the self-energy relaxation time approx-
imation. Our approach takes advantage of symmetries and
advanced integration techniques such as the linear tetrahedron
and double-grid methods to achieve accurate results with
a computational cost that is competitive with state-of-the-
art implementations based on localized orbitals. The num-
ber of explicit DFPT calculations is significantly reduced
by interpolating the scattering potentials using a real-space
representation in conjunction with Fourier transforms while
Bloch states are treated exactly. A systematic analysis of the
convergence behavior of electron linewidths and mobilities in
Si, GaAs and GaP as a function of the initial ab initio q mesh
reveals that the proper treatment of the long-range fields due to
dynamical quadrupoles is crucial for an accurate and efficient
interpolation in the region around � [41]. We discussed how
to treat quadrupolar terms in e-ph calculations in a fully
ab initio way using the recently proposed first-principles the-
ory of spatial dispersion [53]. Our approach is implemented as
direct post-processing of standard DFPT calculations and the
e-ph results can be easily converged by monitoring a small
set of parameters defining the BZ sampling and an energy
window around the Fermi level. Smart sampling techniques
and highly parallel algorithms make it possible to obtain
converged carrier mobilities for relatively small crystalline
systems in a few hours with commodity-class clusters. Our
work will hopefully pave the way towards systematic and
high-throughput studies of materials properties related to e-ph
interaction both in polar and nonpolar semiconductors.

Note added. Recently, we became aware of a related work
by another group that reaches similar conclusions about the
importance of the dynamical quadrupole term to obtain an
accurate physical description of e-ph interactions [89,90].
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APPENDIX A: LONG-WAVELENGTH LIMIT
IN SEMICONDUCTORS

1. DFPT potentials for q → 0

In the e-ph scattering potentials, there are two different
nonanalytic terms in q space. The derivative of the local part
of the pseudopotential, ∂κα,qv

loc, behaves like [51,53,79]:

∂κα,qv
loc(G = 0) = i

4π

�

qα

q2
Zκ + O(qα ), (A1)

with Zκ the charge of the (pseudo) ion κ . The second term is
the derivative of the Hartree potential ∂κα,qv

H that is linked to
the density variation by a simple formula in reciprocal space:

∂κα,qv
H(G) = 4π

|q + G|2 ∂κα,qn(G). (A2)

The G = 0 component of the density change is therefore
amplified by a diverging 4π/q2 factor. This is handled in
DFPT by the separate treatment of the screened electric field
as discussed in Refs. [15,51,79]. This term is subtracted in
auxiliary DFPT computations, as explained in Sec. II C. In
principle, there is also a 1/q2 contribution coming from the
(exact) XC kernel but approximated functionals such as LDA
or GGA fail to reproduce such behavior [79,80]. The nonlocal
part of the pseudopotential is short-ranged in real space and
does not pose additional challenges.

2. Derivations of Eqs. (15) and (16)

Equation (15) can be obtained by the combination of
different equations coming from Appendix A of Ref. [15].
Namely, one should use Eqs. (A5), (A6), (A26), (A51), (A54),
(A73), and (A66), rewritten here with the notation of this
paper. The first-order derivatives of the wave functions with
respect to collective oscillations for q → 0 are obtained as

∣∣uτκα

nk,q→0

〉 = −A−1w + −b + a(u†A−1w)

1 + a(u†A−1u)
A−1u, (A3)

where the definitions of A, w, u, a and b can be found in
Ref. [15]. The denominator in the previous equation is the
q-dependent macroscopic dielectric function:

εM (q) = 1 + a(u†A−1u). (A4)

The numerator is given by extending Eq. (A73) of Ref. [15] to
the next order in q:

−b + a(u†A−1w) = −4π iqγ

�q2
Z∗

κα,γ e−iqητκη . (A5)

The first term in Eq. (A3) is the first-order wave function due
to collective atomic displacements at q = 0, where the G = 0
term of the Hartree potential change has been removed:

−A−1w = ∣∣uτ ′
κα

nk,q=0

〉
, (A6)

and A−1u is the same first-order wave function but with an
electric field perturbation:

A−1u = −iQqλ

∣∣uE ′
λ

nk

〉
. (A7)

Inserting Eqs. (A4)–(A7) into Eq. (A3) gives Eq. (15) of
the main text. Note that the electric field perturbation in
Eqs. (15) and (A7) has been defined following the convention
of Ref. [53], that differs from the convention of Ref. [79].
The difference is the charge of the electron, that has already
been included in the latter. In Ref. [79], the perturbation might
be better referred to as the QEα perturbation. So, in this
sense, ABINIT implements the QEα perturbation and not the
Eα perturbation.

Equation (16) is obtained using Eq. (A4) and extending

−b + a(u†A−1w) (A8)

in Eq. (A5) to the cell-integrated charge response to a
monochromatic atomic displacement from Eq. (17).

APPENDIX B: SYMMETRY PROPERTIES OF THE
WAVE FUNCTIONS

In this Appendix, we discuss how to use symmetries to
reconstruct KS eigenvalues and wave functions in the full BZ
from the IBZ. We focus on scalar wave functions, the gener-
alization to two-component spinors is discussed in Ref. [81].

A generic element of the crystalline space group will be
denoted in the following with the Ŝf symbol where S is a real
orthonormal matrix corresponding to a proper or improper
rotation and f the associated fractional translation in Cartesian
coordinates. The application of the symmetry operator Ŝf to
the atomic position τ is defined by

Ŝf τ ≡ Sτ + f . (B1)

The inverse of Ŝf has rotational part S−1 and fractional
translation −S−1f . The application of the symmetry operation
Ŝf on a generic function F (r) of the three spatial coordinates
r is conventionally defined by:

Ŝf F (r) ≡ F (S−1(r − f )). (B2)

Since Ŝf commutes with the KS Hamiltonian Ĥ of the crystal,
it readily follows that, given ψnk(r) eigenstate of Ĥ with
eigenvalue εnk also Ŝf ψnk(r) is eigenstate of the Schrödinger
problem with the same eigenvalue:

Ĥ Ŝf ψnk = Ŝf Ĥ ψnk = εnk Ŝfψnk. (B3)

Although Ŝf ψnk(r) has the same eigenenergy as ψnk(r), its
crystalline momentum is different. The operator Ŝf transforms
a Bloch eigenstate eik·runk(r) with vector k into a new Bloch
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state of crystalline momentum Sk. This important property
can be seen as follows:

[Ŝfψnk](r + R) = ψnk(S−1(r + R − f ))

= eik·S−1(r+R−f ) unk(S−1(r − f ))

= eitS−1k·R ψnk(S−1(r − f ))

= eiSk·R Ŝfψnk(r), (B4)

where the invariance under lattice translation of the periodic
part of the Bloch wave function unk(r) has been exploited. The
set of equations below summarizes the relationships employed
to reconstruct the wave functions in the BZ9

εSk = εkuSk(r) = e−iSk·f uk(S−1(r − f ))uSk(G)

= e−i(Sk+G)·f uk(S−1G), (B5)

where we used the following conventions for the Fourier
series of periodic lattice quantities

u(G) = 1

�

∫
�

u(r)e−iG·r dr, (B6)

u(r) =
∑

G

u(G)eiG·r. (B7)

The time invariance of the Hamiltonian leads to the additional
symmetries

ε−k = εk, u−k(r) = u∗
k(r), u−k(−G) = u∗

k(G), (B8)

that may be used to halve the number of k points even if the
system is not invariant under spatial inversion. Finally, wave
functions with k-wave vector outside the first Brillouin zone
are obtained with the gauge

ψnk+G(r) = ψnk(r). (B9)

It is important to stress that in Eqs. (B5), (B8), and (B9),
we assumed nondegenerate eigenstates. In the presence of
degeneracy, indeed, it is always possible to construct new
orthonormal eigenstates of the Hamiltonian by performing a
unitary transformation within the degenerate subspace. How-
ever, electron lifetimes (and physical observables, in general)
do not depend on this gauge since all the degenerate states are
summed over in Eq. (27) hence the presence of this gauge is
irrelevant in our context.

APPENDIX C: SYMMETRY PROPERTIES OF THE
SCATTERING POTENTIALS

Symmetry properties can also be used to reconstruct the
e-ph scattering potentials from an appropriate set of atomic
perturbations with wave vector q in the IBZ of the unper-
turbed crystal. For the local external potential, the deriva-
tion of the symmetry properties is particularly simple as the

9In our implementation, we prefer to perform the symmetrization
of the periodic part of the wave function in G space because the
fractional translation can be easily taken into account by multiplying
by a phase factor. The symmetrization in real space, on the other
hand, requires a real-space FFT grid compatible with all the frac-
tional translations of the space group.

lattice-periodic part of the first order derivative can be easily
expressed in reciprocal space using [79]

∂κα,qv
loc(G) = − i

�
(q + G)αe−i(q+G)·τκ vloc

κ (|q + G|), (C1)

where vloc
κ (|q + G|) is the Fourier transform of the local part

of the pseudopotential associated to atom κ . Starting from this
formula, one obtains that the Fourier component at the rotated
(Sq,SG) is given by a linear combination of the symmetry-
related (κ ′β ) terms with wave vector q in the IBZ

∂κα,Sqv
loc(SG) =

∑
β

Sαβ ∂κ ′β,q vloc(G)e−i(q+G)·(L0+S−1f ),

(C2)

where τκ ′ denotes the position of the symmetric atom in the
first unit cell and L0 is a, possibly null, real-space lattice
vector. The two symmetric atoms at τκ and τκ ′ are related by
the inverse of Ŝf :

S−1(τκ − f ) = τκ ′ + L0. (C3)

We now derive the symmetry properties of the SCF part of
the DFPT potential using Eq. (C2) and well-known results for
the inverse dielectric matrix ε−1. The first-order variation of
the self-consistent potential is indeed related to the first-order
change of the external potential by

δV scf(r) =
∫

dr′ε−1(r, r′)δV ext(r′), (C4)

where ε−1 is invariant under all the symmetry operations of
the crystal:

ε−1(r + R, r′ + R) = ε−1(r, r′), (C5)

ε−1(Ŝf r, Ŝf r′) = ε−1(r, r′). (C6)

In Fourier space, Eq. (C6) leads to the following symmetry
property [82]:

ε−1
SG1,SG2

(Sq) = e+iS(G2−G1 )·f ε−1
G1,G2

(q) (C7)

where the Fourier transform of a two-point function is
defined by

fG1,G2 (q) = 1

V

∫∫
V

e−i(q+G1 )·r1 f (r1, r2)ei(q+G2 )·r2 dr1 dr2,

(C8)

and V is the volume of the Born-von Kármán supercell. In
G space, the screened potential is related to the external
perturbation by:

∂κα,qv
scf(G) =

∑
G′

ε−1
G,G′ (q)∂κα,qv

loc(G′) (C9)

Using Eqs. (C2) and (C7) in Eq. (C9), after some algebra
to rearrange the different terms, one obtains that the Fourier
components of the SCF part of the DFPT potential transform
similarly to the local part of the pseudopotential [compare
with Eq. (C2)]

∂κα,Sqv
scf(SG) =

∑
β

Sαβ ∂κ ′β,q vscf(G)e−i(q+G)·(L0+S−1f ).

(C10)

094308-14



PHONON-LIMITED ELECTRON MOBILITY IN Si, GaAs, … PHYSICAL REVIEW B 102, 094308 (2020)

When Sq = q, the equation provides a connection among
atomic perturbations with the same wave vector q that can
be used to reconstruct by symmetry all the 3Natom potentials
starting from an irreducible set. Finally, we note that the con-
tribution associated to the nonlocal part of the pseudopotential
can be computed explicitly for arbitrary q using the equations
given in [79] hence no symmetrization is required for this
term.

APPENDIX D: BOLTZMANN TRANSPORT EQUATION

An equivalent formulation of the linearized Boltzmann
transport equation in the RTA uses the transport distribution
function [56]:

Lαβ (ω) =
∑

n

∫
dk
�BZ

vnk,αvnk,βτnkδ(ω − εnk ) (D1)

that can be used to express the generalized transport coeffi-
cients as

L(m)
αβ = −

∫
Lαβ (ω)(ω − εF )m ∂ f (ω)

∂ω
dω. (D2)

The expression given in the main text (Eq. (28)) is obtained by
replacing Eq. (D1) in Eq. (D2) and integrating the δ function
in frequency space. The integrand represented in Fig. 7(a) of
the main text is

−vnk,αvnk,βτnk
∂ f (ω)

∂ω
δ(ω − εnk ), (D3)

which corresponds to the integrand in Eq. (D2) for m = 0.
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