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Abstract

Background: One of the most unusual sources of phylogenetically restricted genes
is the molecular domestication of transposable elements into a host genome as
functional genes. Although these kinds of events are sometimes at the core of key
macroevolutionary changes, their origin and organismal function are generally poorly
understood.

Results: Here, we identify several previously unreported transposable element
domestication events in the human and mouse genomes. Among them, we find a
remarkable molecular domestication that gave rise to a multigenic family in placental
mammals, the Bex/Tceal gene cluster. These genes, which act as hub proteins within
diverse signaling pathways, have been associated with neurological features of
human patients carrying genomic microdeletions in chromosome X. The Bex/Tceal
genes display neural-enriched patterns and are differentially expressed in human
neurological disorders, such as autism and schizophrenia. Two different murine
alleles of the cluster member Bex3 display morphological and physiopathological
brain modifications, such as reduced interneuron number and hippocampal
electrophysiological imbalance, alterations that translate into distinct behavioral
phenotypes.
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Conclusions: We provide an in-depth understanding of the emergence of a gene
cluster that originated by transposon domestication and gene duplication at the
origin of placental mammals, an evolutionary process that transformed a non-
functional transposon sequence into novel components of the eutherian genome.
These genes were integrated into existing signaling pathways involved in the
development, maintenance, and function of the CNS in eutherians. At least one of its
members, Bex3, is relevant for higher brain functions in placental mammals and may
be involved in human neurological disorders.

Keywords: Genetic novelty, Transposon domestication, Bex3, Tceal, Placental
mammals, Gene cluster, Neurodevelopmental disorders, mTOR, Autism spectrum
disorder

Background
Newly evolved genes in a given lineage showing no homologs in other taxa are known

as “orphan” or “taxonomically restricted” genes [1]. One of the most striking sources

for the birth of lineage-restricted genes is the molecular domestication of transposable

element (TE) proteins into novel coding genes [2], which are sometimes involved in the

appearance of clade-specific traits and even true evolutionary novelties [3]. Despite

their evolutionary relevance, a systematic search for domesticated transposons taking

advantage of current and improved genomic annotations was lacking in human and

mouse. We have identified now several domestication cases in these species. Among

them, we highlight here a previously unreported event that took place at the origin of

eutherian mammals, which gave rise to a multigenic family known as Bex/Tceal and

shaped a cluster of 14 genes on the X chromosome of the placental ancestor. While

most are scarcely studied, several reports have linked some of these genes to processes

such as cancer proliferation [4–9], cellular reprogramming [10] and differentiation [11],

or cell cycle modulation [12, 13]. To investigate the function of this gene family at the

organism level, we generated and phenotyped mutant mice for one of its members,

Bex3. Mutants showed molecular, cellular and anatomical alterations in the brain, as

well as important neurological and behavioral alterations typical of neurodevelopmental

defects. Altogether, we describe the evolutionary pathways of a TE-derived gene family

that integrated into complex molecular routes, while underscoring its impact on neural

development and its neuropsychiatric significance.

Results
Identification of genes derived from molecular domestication of TEs

In order to detect new transposon domestication events in the mammalian lineage, we

looked for protein-coding genes made up by TE-derived sequences. By identifying

genes with a coding sequence overlapping greater than 50% with annotated TEs and

present in more than one species, we obtained a list of 28 and 9 candidates in the hu-

man and mouse genomes, respectively (Additional file 1: Table S1). We recovered well-

known TE-derived genes, such as syncytin-1 [14], syncytin-2 [15], SETMAR [16], and

the ZBED [17] and PNMA families [18]. More ancient domesticated transposons like

the vertebrate-specific RAG1 and RAG2 genes [3] were not detected, probably due to

higher sequence divergence in relation to the ancestral TE element. We also found new
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putatively domesticated TEs, most with unknown function, confined to either primate

or Mus species. However, our attention was drawn to the remarkable case of Tceal7, a

gene present in all major groups of placental mammals. Due to its broad phylogenetic

range, we decided to study this molecular domestication event in further detail.

Molecular composition of the Tceal7 gene

Tceal7 is a small gene consisting of two 5′ non-coding exons and a third exon that in-

cludes the whole open reading frame (ORF) and the 3′UTR. We observed an overlap of

76% between the Tceal7 ORF sequence and that of HAL1b, a non-LTR retrotransposon

belonging to the long interspersed nuclear element-1 (LINE-1 or L1) superfamily

(Fig. 1a). Moreover, the last 18 nucleotides of the Tceal7 ORF and most of the 3′UTR

originated from two other L1 subfamilies: the elements L1MEe and L1ME4a (Fig. 1a

and Additional file 1: Fig. S1). We observed a partial retention of the original TE coding

frame, as human TCEAL7 amino acid sequence shares 31.7% identity with the ORF1p

of HAL1b (Fig. 1b). From these results, we determined that the Tceal7 gene arose from

a composite sequence derived from two L1 elements (Fig. 1).

Although Tceal7 stands out as the most similar to the ancestral L1 retrotrans-

poson sequences, it is but a representative member of a multigenic family called

Bex/Tceal. This family forms a gene cluster on the X chromosome of placental

mammals, with no detectable orthologs outside this clade [21]. In humans, the

cluster consists of 5 Bex (brain-expressed X-linked) and 9 Tceal (transcription

elongation factor A (SII)-like) genes, spanning ~ 1.5 Mb. In mouse, the number is

reduced to 11 genes due to the lineage-specific loss of Tceal2, Tceal4, and Bex5.

Interestingly, we detected the presence of clustered Bex/Tceal genes in each major

eutherian lineage (Additional file 1: Fig. S2), confirming that the origin and expan-

sion of the family took place after the divergence of the marsupial-placental clades,

and before the radiation of the latter. In agreement, HAL1b, L1MEe, and L1ME4a

elements have been suggested to be active retrotransposons during the appearance

of early eutherians ~ 150 Mya [22].

Evolutionary diversification of the Bex/Tceal family

BEX and TCEAL protein sequences are relatively divergent [21], likely due to low se-

lective constraints after the retrotransposon domestication. However, both families

share a conserved region toward their C-terminal end (Additional file 1: Fig. S3A). BEX

proteins, with the exception of BEX4, are predicted to have a coiled coil within this re-

gion [23–25], and we found that TCEAL1, TCEAL7, and TCEAL8 are also predicted to

harbor a C-terminal coiled coil domain (Additional file 1: Fig. S3A). Remarkably, most

of the protein-protein interactions of BEX1, BEX2, and BEX3 have been mapped to this

domain [24], highlighting its potential functional relevance. Furthermore, BEX proteins

have been classified as intrinsically disordered proteins (IDPs) [24]. We found that

TCEAL proteins, as previously described for BEX members [24], are predicted to have

a disordered N-terminal region and C-terminal α-helices (Additional file 1: Fig. S4).

Interestingly, we also detected all these structural features in the ancestral transposon

HAL1b (Additional file 1: Fig. S4), suggesting that these features were preserved along

the domestication process and inherited by the Bex/Tceal genes.
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Previous studies using a reduced number of mammalian species reported gene

conversion events and positive selection signatures on some Bex/Tceal genes [21,

26]. We decided to perform an expanded analysis adding species from the major

eutherian clades, and found homogenization of coding sequences among three

Fig. 1 Transposon domestication and co-option of a DNA motif originated the Bex/Tceal gene family. a
Diagram showing the domestication of L1 fragments to originate the TCEAL7 gene ORF and 3′UTR. The
target site duplication (TSD) and the inversion junction (Inv Jun) resulting from the transposition process
[19] are shown. The identity (ID) value was obtained by aligning the transposon nucleotide sequences with
the corresponding region of the human TCEAL7 gene. L1MEe and L1ME4a-derived sequences of TCEAL7 are
drawn as belonging to the same L1ME-like retrotransposon. The protein domains of the ORF1p of HAL1b
are indicated: CC, coiled coil; RRM, RNA-recognition motif; and CTD, carboxy-terminal domain. b Protein
alignment of the HAL1b ORF1p and the N-terminus of TCEAL7 proteins from three placental species: Hsa,
Homo sapiens; Eca, Equus caballus; Laf, Loxodonta africana. c Diagram showing the proposed evolutionary
scenario for the formation of the BGW cluster. (1) A proto-BGW motif lay upstream of the alpha-
galactosidase (Gla) promoter (P α) in the X chromosome of the ancestor of eutherians and metatherians. (2)
In the eutherian lineage, a Hnrnph1 transcript was retrotranscribed and inserted upstream of Gla and next
to the ancestral BGW motif. (3) The co-option of this BGW motif (P BGW) gave rise to Hnrnph2 retrogene.
This genomic region was duplicated, and retrotransposons HAL1b and L1ME-like inserted nearby. (4) The
new retrotransposon-derived ORF fell under the transcriptional influence of a BGW motif (P′ BGW). The YY1
binding site derived from the 5′UTR of HAL1b [20] was preserved. (5) The BGW motif (P″ BGW) and the YY1
binding site of a Bex/Tceal gene duplicated upstream of a retrocopy of the Armc10 gene, giving rise to the
ArmcX ancestral gene. (6) Before the diversification of placentals, the Bex/Tceal and ArmcX gene families
expanded forming the BGW cluster
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groups of Bex/Tceal paralogs (Tceal2 with Tceal4; Tceal3 with Tceal5 and Tceal6;

and Bex1 with Bex2) across all studied lineages (Additional file 1: Fig. S3B). More-

over, after filtering out sequences experiencing gene conversion [27], we detected

several sites with signatures of positive selection, mainly in the Bex subfamily tree,

and an episode of positive selection after the branching of Bex5 (Additional file 1:

Fig. S5). This suggests that an ancestral gene within the branch leading to Bex3

and Bex4 went through an adaptive process in an eutherian ancestor before the di-

versification of placental mammals.

Neighboring DNA sequence co-option as a central regulatory element

Within the same eutherian-specific chromosomal region containing Bex and Tceal

genes, there are multiple retrocopy genes belonging to another gene family (the Armcx

family, also known as ALEX) [28]. Despite no protein similarity between both families,

they share a homologous DNA sequence motif in their promoter region known as the

BGW motif [21], a ~ 60 base pair (bp)-long sequence containing an internal E-box,

which has been shown to be essential for the regulation of mouse Tceal7 [29] and hu-

man ARMCX1 [30] expression. The promoter region of Hnrnph2, another eutherian-

specific retrogene located at the centromeric end of the cluster, also harbors this

unique motif [21]. This multiplicity of BGW motifs raises the question of how genes

with three independent origins ended up with separate, but homologous, regulatory ele-

ments. The promoter of Hnrnph2 is bidirectional and shared with the galactosidase-

alpha (GLA) gene [31]. We found a BGW-like motif upstream of the GLA promoter in

marsupials that lacks an eutherian-restricted 11 bp sequence required for the proper

transcription of human ARMCX1 gene [30] (Additional file 1: Fig. S6). Therefore, the

origin of the BGW motif can be traced back to sequences already present in the GLA

promoter of the last therian common ancestor. Although we cannot determine the pre-

cise order of the events leading to the assembly of the whole cluster, the inferred co-

option of the BGW motif by the ancestors of the Bex/Tceal and Armcx families allows

us to reconstruct the main steps of this evolutionary process (diagrams depicted in

Fig. 1c, see legend for details).

Brain expression of the Bex/Tceal genes and deregulation in neuropsychiatric disorders

Information about expression patterns for Bex/Tceal genes is disperse, with data

restricted to human, mouse, or rat [12, 29, 32–37]. We gathered publicly available

transcriptomic data from eight homologous adult organs of five species belonging

to main placental lineages. We observed that most genes present a tissue-enriched

pattern, with brain being the organ showing the highest expression levels for most

paralogs across species (Fig. 2a). Although brain is an organ where many genes

tend to be expressed [38], this result suggests that some of the neural functions re-

ported in mouse and human for this gene family [11, 12, 39] might be conserved

among the eutherian clade.

We also investigated the expression patterns of this group of genes during mouse

development by in situ hybridization and observed a subset of Bex/Tceal genes be-

ing highly and widely expressed during mouse embryogenesis, especially Bex genes

(Fig. 2b and Additional file 1: Fig. S7). Bex3 expression was particularly strong in
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the central nervous system during murine development compared to other mem-

bers of the family (Fig. 2b).

By analyzing publicly available human transcriptomic data of autism spectrum dis-

order (ASD) and schizophrenia, two well-studied neuropsychiatric disorders, we found

a significant decrease in the expression of BEX/TCEAL genes in patients compared to

controls in different brain regions and datasets (Additional file 1: Table S2), being BEX

but not TCEAL genes significantly enriched among the differentially expressed genes in

most datasets (Additional file 1: Table S3). Notably, BEX3 is located in the interval as-

sociated with the neurological features of patients diagnosed with early-onset neuro-

logical disease trait (EONDT), which harbor different genomic deletions encompassing

BEX/TCEAL genes [40–42].

Activation of neural tube progenitor proliferation by BEX/TCEAL proteins in a non-

eutherian vertebrate

Next, we investigated the putative function of the inferred, original TE composite se-

quence that later evolved into the Bex/Tceal family. To understand the potential

physiological response of this ancient element in the eutherian ancestor, we aimed to

mimic the original scenario by using a non-eutherian organism. For this purpose, we

synthetically reconstructed a version of the ancestral Bex/Tceal protogene, termed

HALEX (HAL1b-derived on eutherian X chromosome), based on TE consensus se-

quences (see “Methods”). Moreover, we also studied two Bex/Tceal members: Tceal7,

the gene with the highest sequence similarity to the original protogene; and Bex3,

Fig. 2 Bex/Tceal genes show a tissue-enriched expression pattern, particularly in neural organs. a Heatmaps
showing relative gene expression levels of Bex and Tceal genes in eight adult tissues/organs using RNA-seq
data from five eutherian species: human (Homo sapiens), mouse (Mus musculus), dog (Canis familiaris), cow
(Bos taurus), and nine-banded armadillo (Dasypus novemcinctus). In the analyzed organisms, most genes are
highly expressed in the brain, particularly Bex genes. Highest and lowest expression levels are represented
in red and blue, respectively. b In situ hybridization of Bex and Tceal genes, which show high expression
levels (Bex1, Bex2, Bex3, Bex4, Tceal7, and Tceal9) in E13.5 mouse embryos. Sagittal sections of the whole
embryo are shown. drg, dorsal root ganglion; ge, gut epithelium; gg gasserian ganglion; he, heart; ki,
kidney; li, liver; lu, lung; oe, olfactory epithelium; pe, pancreatic epithelium; Rp, Rathke’s pouch; se, stomach
epithelium; sm, skeletal muscle; tg, thyroid gland; tr, thymic rudiment. Scale bar: 1 mm
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which shows the strongest expression in the embryonic nervous system. We electropo-

rated murine Bex3, Tceal7, and HALEX genes into the neural tube of chicken embryos

at stage HH12 to investigate their capacity to elicit a cellular response in neuronal pro-

genitors. Expression of Bex3 and Tceal7, but not HALEX, generated a significant in-

crease in cell proliferation in the chicken embryonic neural tube, similarly to previous

reports in mammalian cultured cells [11, 43] (Additional file 1: Fig. S8). Although the

heterologous approach we have used cannot reproduce the regulatory and signaling en-

vironments of the eutherian ancestor, the observation that only the murine constructs,

but not the ancient element, produced a measurable response suggests that the current

ability of Bex/Tceal genes to effectively modulate cellular physiology was not present in

the ancestral protogene, being acquired during eutherian evolution.

Generation of two independent Bex3 mutant lines

While functional studies for the Bex/Tceal genes have focused mainly on in vitro as-

says, little is known about their role at the organism level. Based on previous reports

linking Bex3 to neuronal physiology [11, 43, 44], the analyses on patients with neuro-

logical features harboring deletions encompassing BEX/TCEAL genes [40–42], and its

neural-enriched expression in adult and embryonic tissues, we decided to generate

mouse mutant lines for this gene. We used CRISPR-Cas9 technology to generate mu-

tant alleles for Bex3 in mice and selected two for in-depth characterization (Fig. 3a and

Additional file 1: Fig. S9). One of them, namely Bex3KO, carried a 196-bp deletion that

caused a frameshift mutation, introducing a premature stop codon that led to a trun-

cated coding sequence. The second line, which we named Bex3Δ(24–72), carried a 147-

bp deletion that removed 49 amino acids of the central core of the protein, specifically

the pro-apoptotic domain, and retained the C-terminal coiled coil domain required for

BEX3 dimerization, nuclear import, ubiquitination [44], and interaction with its mul-

tiple partners [24]. Therefore, this mutation potentially expresses a protein lacking an

essential functional domain, which is likely to act as a hypomorph or a dominant nega-

tive allele, as it has been shown to be the case in cell culture experiments [44].

Anatomical alterations in skull and brain of Bex3 mutant mice

Homozygous mutant mice for both lines could be distinguished from wild-type coun-

terparts by external observation of subtle facial differences (Fig. 3b, c), hence skull mea-

surements were taken out in order to identify the origin of these alterations. Snout-to-

midbone length (D2 in Additional file 1: Fig. S10) tended to be smaller in the mutants,

while the width of the eye sockets (D24 in Fig. 3c) was significantly larger in Bex3KO

mice. Further, the ratio between these measurements was reduced by 19.4% ± 3.4 in

Bex3KO (p = 0.001) and 10.2% ± 3.4 in Bex3Δ(24–72) (p = 0.064), suggesting abnormal

frontal bone morphology that resulted in a rounder eye appearance. Additionally, lack

of fully functional Bex3 also led to increased size of posterior parameter measurements

(D5, D19-D21 in Fig. 3c and Additional file 1: Fig. S10), indicating that the bone cavity

harboring the cerebellum was larger in the mutants, particularly in Bex3KO mice.

The overall brain and cerebellum anatomical structures of Bex3KO and Bex3Δ(24–

72) mice appeared close to normal, although they showed a reduction in cortical

surface and size, as well as in cerebellum size (Fig. 3d, e) despite the layered
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structures of the cortex, hippocampus, and cerebellum, being preserved in the mu-

tants (data not shown). In addition, we observed a marked increase in brain ven-

tricular surface in both mutant lines (Fig. 3e). It is worth noting that reduced

brain size and enlargement of brain ventricles have been described extensively in

neurodevelopmental diseases [45–47].

Behavioral defects in Bex3 mutant mice

To determine if the anatomical and physiological brain defects observed in the Bex3 mu-

tant mice have an effect on animal behavior, adult mutant and control mice were sub-

jected to a comprehensive battery of behavioral tests (Fig. 4 and Additional file 1: Fig.

S11). In non-stressful open field, Bex3 mutant mice showed normal locomotor activity [F

(10,1) = 0.291; p = 0.601 and F (10,1) = 1.628; p = 0.230] for Bex3KO and Bex3Δ(24–72) lines

respectively (Fig. 4a). However, we observed that both Bex3KO and Bex3Δ(24–72) lines dis-

played significantly more repetitive behavior events [rearing: Bex3KO: F (10,1) = 5.078; p =

Fig. 3 CRISPR-Cas9-generated Bex3 mutant alleles show skull and brain abnormalities. a Schematic
representation of the mouse Bex3 locus (mm10; chrX:136,270,126-136,272,051) depicting exon-intron
structure (non-coding and coding exons represented as black and blue rectangles, respectively). Two
sgRNAs (red arrows) were used to generate CRISPR-Cas9-mediated deletions. The altered proteins
potentially produced by the edited alleles that were selected to generate homozygous mice are shown
below. In the Bex3KO line, the deletion caused a frameshift in the open reading frame (region in gray)
leading to the appearance of a premature STOP codon. The deletion in the Bex3Δ(24–72) line removed 54
amino acids from the central core of the protein. AD, pro-apoptotic domain; CC, coiled coil domain; NES,
nuclear export signal. b, c Morphometric analyses of skulls from wild-type and mutant Bex3KO 6-week-old
males employing a total of 24 anatomical measurements b revealed that Bex3 dysfunction led to cranial
abnormalities in frontal bone and skull height c (the complete analysis can be found in Additional file 1:
Fig. S10). Measurements were normalized to maximum skull length (D0) and expressed relative to controls
(black horizontal line). Deviations of 5% with respect to controls are shown as dotted red and green
horizontal lines. Results are presented as mean ± SEM (N≥ 4); *p < 0.05, one-way ANOVA. d, e Bex3 mutant
brains showed altered brain morphology as evidenced by gross d and refined e anatomical measurements,
concomitant with enlarged ventricular surfaces. Scale bar: 1 mm. Results in d and e are presented as
mean ± SEM (N≥ 5); *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001, one-way ANOVA
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0.047 and Bex3Δ(24–72): F (10,1) = 1.355; p = 0.271; grooming: Bex3KO: F (10,1) = 6.188; p =

0.032 and Bex3Δ(24–72): F (10,1) = 22.216; p < 0.001] when compared to their wild-type lit-

termates (Fig. 4a). We evaluated social interaction using a three-chambered assay to

study the interactions with familiar or stranger mice (Fig. 4b). While wild-type mice

showed preferential interaction with familiar mice against the empty compartment [F (10,

1) = 94.218; p < 0.001], we only found impairment in the interaction with the familiar mice

in Bex3KO line, with no significant differences in the sniffing time between empty and the

familiar mice containing compartments [F (10,1) = 2.053; p = 0.182]. In contrast, in a social

novelty paradigm, control animals spent significantly more time in close interaction with

the novel animal, whereas Bex3KO displayed no significant preference for social novelty [F

(10,1) = 3.114; p = 0.108] or even avoided social novel interaction in Bex3Δ(24–72) [F (10,

1) = 51.494; p < 0.001]. Furthermore, only Bex3KO mice also showed impairment in nest

building [F (10,1) = 9.800; p = 0.010; Fig. 4c], which has been correlated with abnormal so-

cial organized behavior [48, 49]. Sensorimotor gating, whose impairment is also strongly

associated with some neurodevelopmental disorders [50], was assayed by prepulse inhib-

ition (PPI) of acoustic startle reflex. Although Bex3 mutants showed similar acoustic star-

tle reflex than wild-type mice (Additional file 1: Fig. S11), both mutant lines exhibited a

significant enhancement of PPI [Bex3KO: F (10,1) = 6.588; p = 0.028 and Bex3Δ(24–72): F

(10,1) = 6.038; p = 0.033; Fig. 4d]. Moreover, cognitive behavior was assayed in the Y-maze

test, object recognition memory, and passive avoidance tests. In the Y-maze test, Bex3

mutant mice showed significantly lower spontaneous alternation indexes, indicative of at-

tention deficits and/or working memory [Bex3KO: F (10,1) = 5.186; p = 0.045 and Bex3Δ(24–

72): F (10,1) = 8.125; p = 0.017; Fig. 4e]. On the contrary, only Bex3KO mice showed signifi-

cant lower performance compared to their control littermates in object recognition mem-

ory [Bex3KO: F (20,3) = 4.843; p = 0.039 and Bex3Δ(24–72): F (20,3) = 0.549; p = 0.467,

analyzed by 2-way ANOVA for genotype X session interaction; Fig. 4f] and passive avoid-

ance tests [Bex3KO: F (20,3) = 6.548; p = 0.018 & Bex3Δ(24–72): F (20,3) = 0.262; p = 0.613,

analyzed by 2-way ANOVA for genotype X session interaction; Fig. 4g]. In summary, the

behavioral experiments indicated that both Bex3 mutant lines display repetitive behaviors

and abnormal social conducts and that Bex3KO mice presented more severe phenotypes,

especially in cognitive tests.

Reduction in the number of cortical and subcortical interneurons in Bex3-deficient mice

A link between the disruption of interneuron inhibitory circuits in the neocortex and

some clinical aspects of neurodevelopment and psychiatric disorders has already been

established [51]. Our data show that both Bex3 mutant lines display gross brain mor-

phological alterations and have abnormal behavioral traits and that Bex3KO mice pre-

sented more severe phenotypes, especially in terms of memory and learning

impairment. These results, together with transcriptomic and structural genomic data

related to human neurological disorders (Additional file 1: Tables S2 and S3) [40–42],

suggest that Bex3 may function through the maintenance/renewal of specific neurons,

and its absence can give rise to neurological conditions.

We measured parvalbumin-positive (PV+) interneuron density and found it was sig-

nificantly decreased in motor, cingulate and sensory cortices, and caudate-putamen of

Bex3KO mice; Bex3Δ(24–72) mice showed a significant reduction of PV+ interneurons
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only in cingulate and sensory cortices (Fig. 5a, b) and minor, non-significant, decrease

in motor cortex and caudate-putamen. On the other hand, altered numbers of hippo-

campal neurons and interneurons have been associated to the onset of social and cog-

nitive deficits in several animal models for neurological disorders (reviewed in [52]).

Even though the hippocampus-to-hemisphere size ratio was not significantly altered in

Bex3 mutant mice (Fig. 5c), we observed a strong reduction in the density of total neu-

rons and, particularly, calretinin-positive (CR+) inhibitory interneurons in the stratum

radiatum of the CA1–2 hippocampal fields of Bex3KO mice (Fig. 5d, e).

We decided to analyze the status of the adult hippocampal neurogenic niche in Bex3

mutant mice. Interestingly, the density of immature neurons was significantly decreased

in the subgranular zone of Bex3KOmice, but not in Bex3Δ(24–72) (Fig. 5f, g), thus suggest-

ing that adult neurogenesis could be partially compromised in these animals.

Alteration in the excitation/inhibition balance in the hippocampal CA2 region of Bex3KO mice

Impaired social interaction and social learning is known to rely on the CA2 neuronal

circuit within the hippocampus [53, 54], while altered interneuron numbers in the CA2

hippocampal field can disrupt the excitatory/inhibitory hippocampal balance. Thus, we

Fig. 4 Bex3 mutant mice display an array of behavioral and cognitive alterations. Adult control and Bex3
mutant mice were subjected to a comprehensive battery of behavioral tests. a Locomotor activity (number
of broken beams) and total repetitive behaviors (number of grooming and rearing) were evaluated in a 5-
min open field test. b Social behavior was assayed in the three-chambered test. Sniffing times are showed
in social familiar and social stranger phases. c Social organized behaviors were tested by the nesting
building assay. d Sensory motor integration was determined by prepulse inhibition of acoustic reflex. e The
Y-maze test was performed to evaluate repetitive conducts, attention, and/or working memory. As
alternance, the % of triplets was determined. f Novel object recognition memory was evaluated 24 h after a
training session. A positive discrimination index in this memory test indicates novel object preference
exploration. g The passive avoidance test was used to evaluate emotional cognition. Entry latencies to the
dark compartment in training and memory testing sessions are shown. Results are presented as mean ±
SEM (N = 6 mice per experimental group); *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001, one-way ANOVA
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tested if CA2 synaptic transmission was altered in Bex3KO mice, which have reduced

numbers of hippocampal interneurons in this area. To determine whether the evoked

synaptic activity was altered in hippocampal pyramidal CA2 neurons, we monitored

evoked excitatory (eEPSCs) and inhibitory (eIPSCs) postsynaptic currents. We found

that the amplitude of eIPSCs—but not eEPSCs—was clearly decreased in mutant mice

(Fig. 5h). However, no statistically significant differences were found between wild-type

and Bex3KO mice in the input-output curve, indicating that the net basal synaptic activ-

ity was not affected in these animals (Fig. 5i). Additionally, we studied spontaneous syn-

aptic transmission onto hippocampal CA2 pyramidal neurons (Fig. 5j-m). Total

spontaneous activity frequency (sEPSC + sIPSC) was significantly decreased in Bex3KO

mice respect to wild-type (Fig. 5l) due to a strong reduction in sIPSCs frequency. On

the other hand, no differences were found between sEPSCs and sIPSCs amplitude when

comparing wild-type and mutant mice (Fig. 5m). These results indicate an excitation/

inhibition imbalance in the hippocampal CA2 region of Bex3KO mice due to a strong

decrease in inhibitory synaptic transmission, which is in agreement with the reduced

density of inhibitory interneurons observed in this region.

Altered mTOR signaling in the adult brain of Bex3-deficient mice

BEX3 protein physically interacts with the TSC1/TSC2 complex [55], which is essential

for the proper regulation of the mTOR signaling cascade [56]. This pathway controls

brain development and function at multiple levels, and its dysregulation has been impli-

cated in several neurological diseases [57]. Intriguingly, we found a decrease in the

phosphorylation of the mTORC1 readout S6K1 in brain lysates of both Bex3 mutant

lines, which would suggest mTORC1 hypoactivation; in contrast, no changes were de-

tected in other targets like 4E-BP1 or S6. The mTORC2 readouts AKT and NDRG1

were hyperphosphorylated, whereas PKCɑ and PKCγ protein levels were unaltered

(Fig. 6 and Additional file 1: Fig. S12). All these data suggest a hyperactivation of

mTORC2 signaling in the adult brain as one of the possible molecular consequences

linked to Bex3 deficiency.

Discussion
By screening the human and mouse genomes for domesticated transposons, we have

identified the footprints of two L1 retrotransposons within the human TCEAL7 gene,

indicating that a domestication event restricted to placental mammals gave rise to a

whole new gene family in the X chromosome. After the eutherian-specific gene L1TD1

[58], the Bex/Tceal family represents the second case of domestication of non-LTR

transposons reported in metazoans, and the first to give rise to a multigenic family.

This domestication generated an ancestral protogene that we termed HALEX, and our

experiments in a non-eutherian model suggest an evolutionary scenario where this

element was progressively integrated into anciently established gene networks through

complete neofunctionalization before the diversification of eutherians. This is in con-

trast with most other known domestication cases, where new genes perform tasks at

the cellular level similar to those of the ancestral element [59]. Several members of the

Bex/Tceal gene family have been reported to code for hub proteins, due to their high

number of interactions with multiple proteins belonging to several signaling pathways
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Fig. 5 Adult hippocampal neurogenesis, cortical interneuron density, and excitation/inhibition balance are
altered in Bex3 mutant mice. a Representative microphotographies of PV immunoreactivity in motor (M),
cingulate (Cgl), and sensory (S) cortices, and caudate-putamen (CPu) nucleus. b PV+ interneuron density
quantification reveals significant differences among the groups. c Relative hippocampus area with respect
to total area of coronal section was determined by NeuN immunostaining and showed no differences
between animal groups. d Representative images of NeuN and CR immunostainings depicting
hippocampal sections of control and Bex3 mutant mice. SR; stratum radiatum. e A significant reduction in
the number of NeuN+ neurons and calretinin (CR) interneurons in the stratum radiatum of hippocampal
CA1–2 was found in Bex3KO but not Bex3Δ(24–72) mice. f Representative photomicrographies of dentate gyrus
immunolabeled for DCX (doublecortin) as a marker for adult immature neurons. g % of DCX-positive area
showing a significant and selective decrease in Bex3KO mice. For morphological analyses, results are
presented as mean ± SEM (N = 6 mice per experimental group); *p < 0.05, **p < 0.01, ***p < 0.005, ****p <
0.001, one-way ANOVA. h Evoked eEPSCs and eIPSCs in WT and Bex3KO mice. i Relationship between the
applied voltage and the amplitude magnitude of ePSCs from CA3-CA2 synapses in WT and Bex3KO mice. j, k
Representative recordings of spontaneous excitatory and inhibitory synaptic activity onto CA2 neurons
illustrating frequencies and amplitudes of total (sPSCs), excitatory (sEPSCs), and inhibitory (sIPSCs) synaptic
activity from WT j and Bex3KO mice k. l Quantification of results in j and k in frequencies. m Quantification
of results in j and k in amplitudes. Results are presented as mean ± SEM and the number of slices is shown
in parentheses (N = 6–8 slices from 3 to 4 mice); *p < 0.05, **p < 0.01, Student’s two-tailed t tests
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[11, 12, 35, 60–64]. Remarkably, we found that both BEX/TCEAL proteins and the an-

cestral HAL1b sequence from which they derive are predicted to be predominantly dis-

ordered at their N-terminus and contain C-terminal α-helices (Additional file 1: Fig.

S4). Relatedly, disorder is a structural property that frequently translates into variable

conformations and the ability to bind multiple partners [65]. Thus, we suggest that the

evolutionary potential of Bex/Tceal genes for a multiplicity of protein-protein interac-

tions might be a direct legacy of the ancestral HAL1b retrotransposon protein.

The mammalian target of rapamycin (mTOR) pathway stands out as one of the mo-

lecular networks in which Bex/Tceal genes integrated, as shown by previous work on

BEX2 and BEX4 [62, 64]. The mTOR protein kinase is involved in a myriad of pro-

cesses related to cell growth, proliferation, and survival. It can assemble into two mo-

lecularly and functionally different complexes that include some specific components

such as mTORC1 and mTORC2 [66]. mTORC1 main substrates are S6K and 4E-BP ki-

nases, while mTORC2 downstream targets include AKT and SGK kinases. Upon phos-

phorylation, AKT inhibits the TSC1/2 complex [67], which regulates both mTORC

signaling cascades in opposite directions: it inhibits mTORC1 and activates mTORC2.

Yet, it can interact physically with mTORC2 only, specifically through Tsc2 [67].

Our data show that Bex3 deficiency leads to hyperphosphorylation of Akt on Ser-473

in brain extracts, suggesting mTORC2 hyperactivation. Akt hyperphosphorylation

should also induce hyperactivation of the mTORC1 route but no changes in 4E-BP1

phosphorylation were detected, while S6K1 was found to be hypophosphorylated on

Thr-389. Importantly, earlier phosphorylation steps on the autoinhibitory domain of

S6K1 are needed to render residue Thr-389 accessible to mTORC1. Both mTORC1

and JNK are involved in the phosphorylation of this domain of S6K1 in muscle [68].

JNK is inhibited by mTORC2, and therefore, mTORC2 hyperactivation in our models

could indirectly lead to the observed S6K1 hypophosphorylation on Thr-389. Surpris-

ingly, phosphorylation levels of S6K1 main effector S6 on residues Ser235/236 were not

affected, suggesting the possible existence of compensatory mechanisms by other ki-

nases that can target these residues [69]. In summary, our biochemical data and the fact

that BEX3 interacts with the TSC1/TSC2 complex [55] suggest the putative involve-

ment of the mTOR pathway in some of the reported phenotypic alterations. However,

the weak differences found in some mTOR effectors imply that additional signaling

pathways may also be involved in the reported changes.

Fig. 6 Bex3 deficiency leads to aberrant mTOR signaling in the brain. a Western blot analyses of whole
brain lysates of adult Bex3KO mice revealed abnormal phosphorylation ratios of some mTORC1 and mTORC2
targets. Representative images. b Quantification of data in a, relative to wild-type. Results are presented as
mean ± SEM (N = 4–5 per experimental group); *p < 0.05, non-parametric Mann–Whitney test
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Given that BEX3 physically interacts with TSC1, an interaction shown to prevent

proteasome degradation and thus necessary for NGF-p75NTR-BEX3-mediated apop-

tosis [55], we propose that BEX3 could prevent the TSC1/2 complex from interacting

with mTORC2, eventually reducing the activity of the pathway. The absence of Bex3

would then cause a hyperactivation of the mTORC2 pathway without affecting

mTORC1. Thus, the function of BEX3 could be that of fine-tuning the regulation of

these cascades. The fact that the Bex3KO and Bex3Δ(24–72) lines show analogous results

suggests that the missing central core of the mutant Bex3Δ(24–72) protein is necessary

for TSC1/2 recognition or, alternatively, that its coupling with the TSC1/2 complex

does not interfere with mTORC2 binding, presumably due to the smaller size of the re-

sultant protein. Furthermore, since mTOR signaling has been involved in adult neuro-

genesis and neuronal excitability and is dysregulated in several neurological diseases,

the mTOR pathway is a compelling candidate to explain, at least in part, the molecular

alterations behind the phenotype observed in Bex3-deficient mice.

The acquisition of regulatory sequences enabling transcription is also a crucial but

scarcely studied step during the process of domestication and subsequent neofunctio-

nalization of transposable elements [70]. We have described here a short, non-coding

regulatory region called BGW motif that was co-opted during eutherian evolution by

three unrelated gene ancestors generated from retrotransposition events.

Although transposons and mammalian-restricted genes predominantly show tissue-

specific patterns [71, 72], we observed a relatively wide expression for most Bex/Tceal

genes. In mouse embryos, expression profiles of Bex/Tceal genes are consistently asso-

ciated with proliferative tissues within organs such as the stomach, lungs, pancreas, or

central nervous system. Interestingly, some of these genes are used as markers for pro-

genitor cells in developing tissues and are involved in cell proliferation, differentiation,

and cell death [11, 29, 34, 73, 74]. In adult tissues, our results suggest that Bex3 regu-

lates adult hippocampal neurogenesis, while some Bex/Tceal genes are induced upon

injury, having an impact on axonal, muscular, and hepatic regeneration [29, 37, 39].

BEX1 and BEX3 have been recently identified among the most significantly downreg-

ulated genes in excitatory neurons of the prefrontal cortex of Alzheimer’s disease pa-

tients [75]. Furthermore, patients with severe intellectual disability, craniofacial

dysmorphism, and autism have been reported to carry different genomic microdeletions

in Xq22 encompassing BEX/TCEAL genes, with BEX3 pinpointed as one of the main

candidates to cause these neurological features [40–42]. Also, a small 252-kb duplica-

tion spanning BEX3, TCEAL4, TCEAL9, and RAB40A has been reported in a patient

with autism (Decipher database, ID: 290829) [76]. Here we show that mutations of

murine Bex3 lead to subtle craniofacial changes and have a profound impact on repeti-

tive and social behavioral performance, two important behavior alterations required to

diagnose autism spectrum disorders (ASD) [77]. Consistent with ASD-like behaviors,

some cerebral cortex areas, related with social behaviors [78, 79], and the striatum, re-

lated with repetitive behavior [80], showed alterations in the number of parvalbumin

interneurons, another feature found in ASD mice models and patients [81–88]. Cogni-

tive alterations are frequently found in ASD patients [89]. In this aspect, only Bex3KO

mice show learning and memory defects in object recognition and passive avoidance

tests, two hippocampus-dependent paradigms [90–92]. In parallel, alterations in calreti-

nin interneurons in the CA1–2 hippocampal stratum radiatum, excitatory-inhibitory
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imbalance in the CA2 field, and potential defects in adult dentate gyrus neurogenesis

were also found only in Bex3KO mice. In this regard, the less severe phenotype of

Bex3Δ(24–72) mice suggests that the resulting protein may act as a hypomorph version of

the wild-type allele. In brief, the phenotypical features of Bex3 mutant mice makes this

gene an exciting candidate for future research into human neurological disorders that

impact upon repetitive behavior, sociability, and intellectual disability.

Conclusions
We characterized the evolutionary process by which an ancient retrotransposon was

inserted into the genome of an eutherian ancestor and progressively integrated into

host molecular networks while acquiring crucial functions for the organism. We sug-

gest that this process of strict neofunctionalization was channeled by the inherited

structural properties of the ancestral transposable element, facilitating the evolution of

protein interactions. This domesticated gene subsequently duplicated, generating the

Bex/Tceal cluster, whose expression is enriched in neural tissues. By generating new al-

leles for one of its members, Bex3, we show that this gene is involved in the develop-

ment, maintenance, and function of specific areas of the central nervous system. The

mutant alleles show subtle anatomical alterations in skull morphology, and important

variations in cortical and subcortical neuron populations, as well as electrophysiological

hippocampal imbalance, which can explain some of the behavioral changes identified.

We also find a disruption in the mTOR pathway that might explain the molecular

cause underlying some of the observed phenotypes. It remains to be elucidated if other

genes in the cluster, most of which are highly expressed in the central nervous system,

play similar or complementary roles in the establishment of higher neurological func-

tions in placental mammals, or into which existing signaling pathways have been

incorporated.

Methods
Study design

Our original hypothesis posited that recently improved genome and repetitive element

annotations may help uncover new events of transposon domestication in the human

and mouse genomes. Thus, the primary objective was to identify previously undetected

TE-derived genes in the human and mouse genomes. A bioinformatic genome-wide

screening provided a list of putative candidates, including previously uncharacterized

cases. We decided to study in depth the event that gave rise to the Bex/Tceal gene fam-

ily, which originated at the base of the eutherian lineage. We hypothesized that they

could have provided an evolutionary novelty and sought to functionally characterize

one of its members, Bex3, to explore this possibility. Using the CRISPR/Cas9 technol-

ogy in mice, we generated two mutant lines for this gene, namely Bex3KO and Bex3Δ(24–

72), which were maintained in a CBA/C57Bl6 hybrid background. These mice, together

with wild-type counterparts, were subjected to a battery of morphological, behavioral,

physiological, histological, and molecular analyses. Additionally, chick embryos were

employed as a non-eutherian animal model. All experiments were performed using 4 to

7 animals per experimental group, as presented in the manuscript. They were randomly

chosen from the available animals in each case. For quantitative data, most
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measurements were made automatically and, thus, not subject to operator bias. Add-

itionally, the limited number of researchers working on each experiment prevented

blinding procedures. No data were excluded from the analysis.

Identification of domesticated transposon candidates

Gene and repetitive element annotations for the hg38 human and mm10 mouse gen-

ome assemblies were downloaded from the table browser tool of the UCSC website,

selecting UCSC genes and RepeatMasker tracks, respectively. In order to discard non-

TE elements, we filtered the RepeatMasker output as in [93]. These gene and repetitive

element annotations were directly compared, and the results were filtered according to

the following criteria: (i) overlap above 50% across the candidate gene coding region;

(ii) txCdsPredict score above 800, which is approximately 90% predictive of protein-

coding genes (it considers the length of the ORF, the presence of a Kozak consensus se-

quence, nonsense mediated decay mechanisms, and upstream ORFs); and (iii) conserva-

tion of the ORF in more than one species. Mammalian species with genome available

at Ensembl genome browser (http://www.ensembl.org) were considered when checking

for ORF conservation.

Sequence retrieval

BLASTn and BLAT searches in NCBI and UCSC databases using human sequences

were carried out in order to identify Bex/Tceal family genes in eutherian species. To

clarify the orthology between genes undergoing gene conversion, surrounding inter-

genic sequences were added to the corresponding human query. The genomic assem-

blies used were as follows: GRCh38/hg38 for human (Homo sapiens); Broad

CanFam3.1/canFam3 for dog (Canis familiaris); GRCm38/mm10 for mouse (Mus mus-

culus); Bos_taurus_UMD_3.1.1/bosTau8 for cow (Bos taurus); Broad/equCab2 for horse

(Equus caballus); Baylor/dasNov3 for nine-banded armadillo (Dasypus novemcinctus);

Broad/choHof1 for Hoffmann’s two-toed sloth (Choloepus hoffmanni); Broad v1.0/tri-

Man1 for Florida manatee (Trichechus manatus latirostris); Broad/monDom5 for gray

short-tailed opossum (Monodelphis domestica); WTSI Devil_ref v7.0/sarHar1 for Tas-

manian devil (Sarcophilus harrisii), TWGS Meug_1.1/macEug2 for tammar wallaby

(Macropus eugenii). The consensus sequences of TE subfamilies were retrieved from

the RepBase-derived RepeatMasker library update 20170127 (http://www.girinst.org/

server/RepBase/).

Evolutionary analyses and secondary structure prediction

Nucleotide and protein sequences were aligned using the L-INS-i iterative refinement

method of MAFFT [94], and the resulting alignments were edited with Jalview [95].

The phylogenetic reconstruction was performed using IQ-TREE [96] and built-in soft-

ware ModelFinder [97]. Branch support was calculated running 1000 replicates of the

SH-like approximate likelihood ratio test [98] and ultrafast bootstrap [99]. Phylogenetic

trees were visualized and edited with FigTree v1.4.2 [100] and Dendroscope 3 [101].

PCOILS was used for coiled coil prediction [102]. PSI-PRED 4.0 [103, 104] and DIS-

OPRED3 [105] were used for α-helix and protein disorder prediction, respectively. Fi-

nally, the positive selection analysis was performed using HyPhy [106], specifically the
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MEME [107] and aBSREL [108] methods. Taking into account the divergence observed

between the Bex and Tceal subfamilies, the analysis was split in two parts to avoid sat-

uration of substitutions.

Differential expression analysis of eutherian adult tissues

RNA-seq data from eight homologous adult organs of dog, cow, and nine-banded ar-

madillo were downloaded from SRA database: SRP016501 (GSE41637, Bos taurus),

SRP114662 (GSE20113, Canis familiaris), and SRP012922 (GSE106077, Dasypus

novemcinctus). Protein-coding cDNA sequences were downloaded from Ensembl

(http://www.ensembl.org) as a transcriptomic index to map against. When Bex/Tceal

orthologs were found to be incomplete or absent in these files, we replaced the partial

sequences or introduced the missing ones, respectively. RNA-seq data was trimmed to

50 base pairs and mapped using Bowtie (allowing no more than two mismatches and

discarding reads that mapped more than once) against their respective libraries for each

species, and expression levels were calculated correcting for the effective length of each

transcript (read-long positions repeated in other transcripts were excluded) to obtain

cRPKM metrics [109]. cRPKM values for human and mouse were obtained from VAST

DB [110]. Heatmaps were produced with Heatmapper [111] using Pearson’s distance

measurement and average linkage as the clustering method.

Expression of BEX/TCEAL genes in autism spectrum disorder and schizophrenia

Differential expression of BEX/TCEAL genes was assessed using transcriptomic data

from all publicly available human transcriptomic datasets for schizophrenia and autism

spectrum disorder, either in GEO (http://www.ncbi.nlm.nih.gov/geo) or published arti-

cles (Additional file 1: Table S2). Statistical analysis of these data is specified in the cor-

responding “Statistical analysis” section.

In situ hybridization

Mouse embryos were collected at E13.5, cryoprotected, and cut in 20-μm-thick sec-

tions. Primer pairs (Additional file 1: Table S4) were designed in order to amplify mur-

ine Bex/Tceal genes by PCR using cDNA. Next, digoxigenin-labeled RNA antisense

probes were synthesized, and in situ hybridization was performed as described else-

where [112]. Images were obtained with a Leica MZ16 F stereomicroscope.

Generation of transgenic mice using the CRISPR-Cas9 system

Two CRISPR guide RNAs (sgRNAs) targeting the mouse Bex3 gene were designed on

exon 1 using CRISPR DESIGN (http://crispr.mit.edu) and CRISPRSCAN [113], consid-

ering potential off-target effects and predicted functional activity. They were generated

by in vitro transcription from sgRNA DNA templates as previously described [114].

Briefly, for each sgRNA, two complementary oligos containing the CRISPR-Cas9 target

sequence were annealed leaving BbsI-compatible overhangs. Oligo sequences for each

sgRNA can be found in Additional file 1: Table S4. Annealed products were then

cloned into the pgRNAbasic plasmid, a kind gift from Dr. Moises Mallo (Instituto Gul-

benkian de Ciencia, Portugal), at the BbsI site located downstream the T7 promoter

and upstream the universal tracrRNA sequence necessary for sgRNA folding and
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activity. Plasmids were linearized with FspI and the purified product used for T7

in vitro transcription according to the manufacturer’s instructions (New England Bio-

labs). sgRNAs were purified by phenol:chloroform extraction after DNaseI treatment

(Roche). Next, in vitro digestion assays were performed to evaluate sgRNA activity

[115]. In brief, a DNA template containing the CRISPR-Cas9 target sites was amplified

by nested PCR with the primers listed in Additional file 1: Table S4. Purified PCR prod-

ucts (200 ng) were incubated for 3 h at 37 °C with Cas9 protein (20 ng/μl, Addgene vec-

tor #47327) and sgRNA (2.5 ng/μl) in digestion buffer (20 mM HEPES pH 7.5, 150 mM

KCl, 0.5 mM DTT, 0.1 mM EDTA, 10mM MgCl2). Cleavage efficiency was then ana-

lyzed by electrophoresis in a 1% agarose gel stained with ethidium bromide.

Cas9 mRNA (100 ng/μl, SBI) and sgRNA (10 ng/μl) were co-injected into the cyto-

plasm of CBA/C57Bl6 fertilized eggs using standard methods. Deletions in F0 pups

were detected by nested PCR (see Additional file 1: Table S4) of genomic DNA ob-

tained from tail biopsies, and confirmed by sequencing after TA cloning into pCR2.1

(Invitrogen). Mutant F0 carriers were crossed with wild-type CBA/C57Bl6 hybrids, and

their descendants were likewise analyzed to identify the specific deletion allele transmit-

ted. Mutant lines with deletions in mm10 chrX:136271359-136271505, for Bex3Δ(24-72),

and in chrX:136271327-136271522, for Bex3KO, were established and maintained in a

hybrid background.

RT-PCR analyses

Brain RNA was extracted from three adult male wild-type and mutant mice using Tri-

Pure isolation reagent (Roche), and cDNA was then synthesized with the first-strand

cDNA synthesis kit for RT-PCR (AMV) (Roche), according to the manufacturer’s in-

structions. Bex3 and actin expression were analyzed with the primers listed in Add-

itional file 1: Table S4.

Morphometric analysis of mouse skulls

Control and mutant adult male mice at 6 to 8 weeks of age were sacrificed by cervical

dislocation. Their heads were severed, skinned, defleshed, and incubated for 2–3 days

in 2% NaOH/PBS in agitation to remove all remaining soft tissue. Undigested tissues

where removed with forceps and skulls washed 3 times in PBS for 20 min. Samples

were oriented and photographed using a high-resolution 3-CCD JVC camera (model

KY-F55B) fitted onto a Nikon SMZ1500 stereomicroscope. Images were assembled,

and 25 anatomical measurements were taken in Adobe Photoshop. Results were nor-

malized to maximum skull length (D0 in Fig. 3) and relativized with respect to

controls.

Histological staining

Adult control and Bex3 mutant mice were anesthetized and transcardially perfused for

20 min with 4% PFA/PBS. Brains were removed, post-fixed 24–48 h in 4% PFA/PBS,

cryoprotected with 30% sucrose/PBS overnight, frozen in isopentane, and stored at −

80 °C until use. Brains were sectioned coronally (30 μm), sections were collected in

cryoprotectant solution (85% glycerol, 100% ethylene glycol, 0.1M PBS) and kept at −

20 °C until analysis. In the case of Nissl staining, sections were dehydrated and
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mounted (Eukitt). Slide images were captured using a Nanozoomer slide scanner (Ha-

mamatsu) and analyzed by measuring the maximum width (mm) and height (mm) in 5

sections per animal, corresponding to different anterior-posterior levels based on

Bregma. Measurements were performed by using NanoZoomer Digital Pathology soft-

ware. Ventricular surface was measured in 2 histological sections per animal by using

ImageJ software. Additionally, immunohistochemistry (IHC) labelling was performed

on 50-μm coronal brain cryosections with the following primary antibodies: mouse

anti-NeuN (1:3000, Millipore), rabbit anti-parvalbumin (1:3000, Swant), mouse anti-

calretinin (1:1000, Novocastra), rat anti-GFAP (1:3000, Calbiochem), and goat anti-

doublecortin (1:500, Santa Cruz). Immunoreactivity was developed with DAB-

peroxidase reaction. To minimize variability, at least 2–3 sections from each area were

analyzed per animal on a bright-field DMRB RFY HC microscope (Leica). In each sec-

tion, the total number of labeled cells per area of tissue was quantified using ImageJ

software.

Chick embryos were fixed for 2–4 h at 4 °C in 4% (w/v) paraformaldehyde in PB,

washed in PBS, and vibratome sectioned (45 μm). BrdU detection and immunostaining

were performed following standard procedures [116, 117]. The following antibodies

were used: rabbit anti-GFP (1:500, Invitrogen), rat anti-BrdU (1:500, AbDSerotec),

rabbit anti-Sox2 (1:500, Invitrogen), Alexa488- and Alexa562-conjugated antibodies

(Invitrogen). The sections were recorded using a Leica SPE confocal microscope. Cell

counting was carried out on 10–17 pictures obtained from 5 to 7 chick embryos per ex-

perimental condition.

Behavioral tests

Behavioral tests were performed in 3- to 5-month-old mice in a room with con-

stant sound and light after 1 h of habituation. In all tests, during mice manipula-

tion and behavioral evaluation, the researcher was blind to mice genotypes. The

order in which the tests were run was always the same: open field, three-

chambered test, nesting test, startle, Y-maze, object recognition memory, and step-

down passive avoidance.

Open field test

Motor activity was assessed in an open field for 5 min (38 × 21 × 15 cm: Cybertec S.A.,

Madrid, Spain) as previously described [92]. This apparatus, which is coupled with in-

frared (IR) emitters and sensors connected to a computer, allowed to quantify the num-

ber of times mice interrupted the IR beams/min. In parallel, sessions were video

recorded in order to evaluate rearing and grooming.

Three-chambered sociability test

Sociability was analyzed in an arena (60 × 60 cm) divided in three equal compartments.

Each lateral compartment contained a clear Plexiglas cylinder (each 7 cm in diameter, 12

cm tall) with multiple holes (1 cm in diameter) to allow auditory, visual, and olfactory

interaction between the stimulus mouse and the test mouse placed inside and outside of

the cylinder, respectively. The paradigm, lasting 5min per animal, consisted in a three-

stage procedure: During the habituation phase, the test mouse was allowed to explore the
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apparatus with the cylinders empty. In the social familiar subject phase, a conspecific from

its same home cage was placed in one of the cylinders while the other remained empty. Fi-

nally, the social stranger subject phase was performed with an unfamiliar age- and sex-

matched CD1 mouse placed in one of the cylinders maintaining the other empty. Social

interaction was evaluated by the time that test mice spent sniffing each cylinder.

Nesting test

The ability to build a nest was assessed following previously described procedures [118].

Acoustic startle reflex and prepulse inhibition

During training, the mouse was placed in the startle chamber (Cibertec S.A., Madrid,

Spain) for 3 min for acclimation; then, baseline startle responses were measured and av-

eraged from 25 to 30 recordings after the presentation of 20 sounds (125 dB, 100 ms

long). From this phase, the average response and peak latencies, as well as the peak re-

sponse, were determined. During prepulse inhibition (PPI) trials, the same sound was

preceded (250 ms) by a prepulse stimulus of 85 dB, 50 ms long. Trials including pre-

pulse stimuli were randomly presented with normal startle stimuli, the final total being

25 of each, and the proportion of PPI was determined as [(1 − prepulse/startle) × 100].

The ambient background noise was 70 dB.

Y-maze

Each mouse was placed in the center of a Y-maze consisting of three equally sized arms

(8 × 40 × 20 cm), with white opaque walls at a 120° angle from each other, and allowed

to freely explore the arms during 5 min. The number of arm entries and triads were

used to calculate the alternation index. An entry was considered to occur when all four

limbs were within the arm.

Object recognition memory

The object recognition protocol was described extensively elsewhere [92]. Briefly, two

equal objects were placed in a rectangular arena (55 × 40 × 40 cm) during the training

phase. The next day, one object was replaced by a novel one, and the animal’s memory

of the original object was assessed by comparing the amount of time spent actively ex-

ploring the novel object against that for the familiar one using a discrimination index

[DI = (tnovel − tfamiliar)/(tnovel + tfamiliar). Exploration of an object was defined as directing

the nose toward the object at a distance of ≤ 1.5 cm or touching the object with the

nose or vibrissae. Circling or sitting on the object were not considered exploratory

behaviors.

Step-through passive avoidance test

During habituation, mice were allowed to explore for 1 min a chamber (47 × 18 × 26

cm, Ugo Basile) symmetrically divided into one light and one dark compartment sepa-

rated by a door. During the training phase, mice were confined to the light compart-

ment for 30 s and then allowed to access the dark compartment. Once inside, the door

was closed automatically and the mice received an electrical stimulation (0.3 mA, 5 s)

through the metal floor. Retention tests were performed the next day. Here, the latency
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to enter into the dark compartment (escape latency) was assessed as a measure of

memory retention.

Electrophysiological recordings

Hippocampal slices were prepared as previously described [119, 120]. Five-month-old

mice were anesthetized with isoflurane (2%) and decapitated for slice preparation.

Briefly, after decapitation, the whole brain containing the two hippocampi, was placed

into ice-cold solution (I) consisting of the following (in mM): 126 NaCl, 3 KCl, 1.25

KH2PO4, 2 MgSO4, 2 CaCl2, 26 NaHCO3, and 10 glucose (pH 7.2, 300 mOsm), posi-

tioned on the stage of a vibratome slicer and cut to obtain transverse hippocampal

slices (350 μm). Slices were maintained continuously oxygenated for at least 1 h before

use. All experiments were carried out at room temperature (22–25 °C). For experi-

ments, slices were continuously perfused with the solution described above. Whole-cell

patch clamp recording of pyramidal cells located in the CA2 field of the hippocampus

was obtained under visual guidance by IR differential interference contrast (DIC) mi-

croscopy and were verified as pyramidal cells through their characteristic voltage re-

sponse to a current step protocol. Neurons were recorded in the current-clamp

configuration with a Multiclamp 700B patch clamp amplifier. Data were acquired using

pCLAMP 10.2 software (Molecular Devices). To record evoked excitatory postsynaptic

currents (eEPSCs), electrical pulses were delivered to Schaffer collateral axons. To

evoke inhibitory postsynaptic currents (eIPSCs), electrical pulses were delivered to in-

terneurons situated in the stratum oriens. Spontaneous synaptic activity (sPSCs), either

excitatory (sEPSCs) or inhibitory (sIPSCs), was recorded from hippocampal CA2

neurons.

Patch electrodes were pulled from borosilicate glass and had a resistance of 4–7MΩ

when filled with the following (in mM): 120 CsCl, 8 NaCl, 1 MgCl2, 0.2 CaCl2, 10

HEPES, 2 EGTA, and 20 QX-314 (pH 7.2, 290 mOsm). Experiments were performed at

− 70 mV. Only cells with a stable resting membrane potential of − 55 mV were assessed,

and the cell recordings were discarded if the series resistance changed by more than

15%. All recordings were low-pass filtered at 2 kHz and acquired at 10 kHz. Excitatory

postsynaptic currents (evoked, eEPSCs, and spontaneous, sEPSCs) were isolated by add-

ing bicuculline (20 μM) to the perfusion solution to block GABAA receptors. Inhibitory

postsynaptic currents (evoked, eIPSCs, and spontaneous, sIPSCs) were isolated adding

D-AP5 (50 μM) and NBQX (10 μM) to the perfusion solution to block NMDA receptor

and AMPA/Kainate receptor-mediated currents, respectively. Signals were averaged

every 12 traces. Spontaneous recordings consisted of 60 sweeps/5 s long that were ana-

lyzed for amplitude and frequency of detected events.

Western blotting
Total brain tissue was homogenized in RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM

NaCl, 1 mM EDTA, 1% (v/v) Triton X-100, 0.1% (w/v) SDS), containing protease in-

hibitor cocktail (Roche) and phosphatase inhibitors (2 mM sodium orthovanadate, 1

mM sodium pyrophosphate, 10 mM sodium fluoride). Protein concentration was mea-

sured using the bicinchoninic acid (BCA) protein assay as specified by the manufac-

turer (Pierce, Thermo Fisher Scientific). Samples were resolved by SDS-polyacrylamide
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gels and transferred onto nitrocellulose membranes. Blocking and incubation with pri-

mary and secondary antibodies were performed following the manufacturer instruc-

tions. Membranes were developed with the ECL system (GE Healthcare), and acquired

images were quantified using ImageJ software. Tubulin or GAPDH loading controls

were used when needed. The primary antibodies used were the following: S6 1/1000

(#2217; Cell Signaling), p-S6 (Ser235/236) 1/1000 (#2217; Cell Signaling), S6K1 1/1000

(#9202; Cell Signaling), p-S6K1 (Thr389) 1/1000 (#9205; Cell Signaling), 4E-BP1 1/

1000 (#9644; Cell Signaling), AKT 1/1000 (C-20, Santa Cruz Biotechnology), p-AKT

(Ser473) 1/1000 (#9271; Cell Signaling), PKCα 1/1000 (10/2018, Cell Signaling), PKCγ

1/1000 (C-4, SC-166385, Santa Cruz Biotechnology), NDRG1 1/1000 (B-5, SC-398291,

Santa Cruz Biotechnology), p-NDRG1 (Thr346) 1/1000 (#3217; Cell Signaling), GAPD

H (6C5, ab 8245, Abcam), and tubulin 1/1000 (#9026; Sigma-Aldrich). The secondary

antibodies used were HRP-labeled anti-mouse 1/2000 (P447-01, Vector) and anti-rabbit

1/2000 (P217-02, Vector).

HALEX ancestral protogene reconstruction and in ovo electroporation

In order to obtain an approximate reconstruction of the ORF of the ancestral HALEX

protogene, a segment of the consensus sequences of HAL1b and inverted L1MEe de-

rived from RepeatMasker, together with the sequence of the TCEAL7 human gene cor-

responding to the hypothetical target site duplication of an ancestral L1ME element,

were combined (Additional file 1: Table S4). Finally, the synthesis of an artificial gene

cloned into a pcDNA™3.1/myc-His was ordered to GenScript.

Eggs from white-Leghorn chickens were incubated at 38.5 °C in an atmosphere with

70% humidity and staged according to the method of Hamburger and Hamilton [121].

In ovo electroporation was performed at stage HH11-12 (48 h of incubation) with DNA

plasmids as described previously [117, 122]. Bromo-deoxyuridine (1 mM; Sigma) was

injected into the lumen of the chick neural tube at 20 min before harvesting, to label

dividing cells. The embryos were recovered at 24 h post-electroporation.

Statistical analysis

Enrichment analyses for BEX and TCEAL genes in gene expression datasets for autism

spectrum disorder and schizophrenia were performed for each dataset using a hyper-

geometric test; p < 0.05 was considered as a threshold for statistical significance. Other

statistical analyses were performed using Student’s two-tailed t tests or one-way

ANOVA with Tukey’s multiple comparison tests, where appropriate. When data were

not normally distributed, non-parametric Mann–Whitney tests were used to determine

the statistical significance. Calculations were performed with GraphPad Prism version 6

or in R; *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001.

Supplementary information
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