
VOLUME 69, NUMBER 23 P H YSI CA L R EV I E% LETTERS 7 DECEM BER 1992

Theory of Energy Loss in Scanning Transmission Electron Microscopy of Supported Small Particles
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A general expression for the energy loss probability in scanning transmission electron microscopy
(STEM) is derived. The method uses a Green's function for the incident and scattered electrons and

then folds the specimen into a local response function. Our expression is appropriate to any target
geometry and dielectric response. As an application, the energy loss spectrum of a STEM electron mov-

ing close to an Al sphere half-embedded in an Al planar surface is calculated. The coupling between
diA'erent I modes, neglected in earlier theoretical approaches, is taken into account.

PACS numbers: 71.45.Gm, 61.16.Di, 73.20.Mf, 79.20.Kz

The development of scanning transmission electron mi-

croscopy has stimulated and renewed the interest in the
interaction of high-energy electron beams with surfaces
and small particles [1-7]. In a typical STEM configu-
ration, a well-focused 0.5-nm probe of 100-keV electrons
provides a high-resolution transmission scanning image
for samples with complex structures, such as catalyst or
semiconductor devices. It also yields, from selected re-

gions of the structure, x-ray emission spectra and electron
energy loss spectra. Quantal theories [8-10] have been
developed to analyze the experimental energy loss spectra
in some simple cases.

Solutions, within the classical dielectric theory, have
been worked out for a number of cases involving planar
interfaces [I ll, spheres [12,131, cylinders [14-16],spher-
oids [17], and edges [18]. For these simple geometries,
experimental results show that dielectric excitation theory
is capable of predicting the loss spectra, allowing a fully
consistent dielectric characterization of an interface or a
small particle [19].

In many experimental situations the real problem is

one of a mixed geometry, e.g. , plane spherical, or two in-

terpenetrating spheres [2,3,20-221. Some authors have

theoretically studied the surface modes of one sphere cou-

pled to another surface (sphere [2,23] or plane [24]). In

all those works the coupling among diAerent multipolar
terms was not taken into account, therefore their results
are valid only for spheres at large distances or weakly
coupled to the other surface. The theoretical approach by
Wang and Cowley [20] to the problem of a half-em-
bedded sphere mixes time and frequency in the derivation
of the screened potential. Howie and Walsh [25] have

presented results for the case of small Al particles in a
matrix of AlF3 and discussed them in terms of dielectric
excitation theory for a two-phase medium. They showed
that their data could not be interpreted in terms of any
available effective medium theory [26-29]. A calculation
for more complicated geometries could lay a foundation
for the application of electron energy loss spectroscopy to

a new range of challenging and important microstructural
problems.

In this Letter we describe a general way of calculating
results for spatially resolved electron energy loss spectros-
copy. It does this by using a Green's function for the in-

cident and scattered electrons and then folding the speci-
men structure into a local response function. Although
we concentrate in this Letter on STEM, our method is

general and, as we discuss in the conclusions, can be ap-
plied to other situations involving interaction of electrons
with specimens of various geometries. Our approach de-
couples the probe from the specimen for calculation.
This has not been generally accomplished in spatially
resolved scattering. In addition it treats the probe as a
wave packet from the start, thus exhibiting clearly the
symmetry properties of the scattering. This is relevant
and possibly important to STEM with probe sizes smaller
than the lattice parameter, i.e., with the sub-A probes the
new 300-keV STEM is projected to have.

The probability P(co) of losing energy to, is related to
the energy loss rate y experienced by the particle, which
in turn is given in terms of the imaginary part of the in-

cident electron self-energy Zp, y= —21m(Zp) (we use
atomic units throughout this paper).

The self-energy can be written in the pair approxima-
tion [30,31] in terms of the Green's function and the re-

tarded screened interaction W(r, r', co). For STEM elec-
trons the target is well described by a local dielectric
function, the nonlocal eAects are only relevant at very
small distances between the probe and the surface (—A)
[32]. The averaged self-energy for the case of an electron
interacting with the medium is then given by [9]

dco +, [4p (f)@p(r')4I (r')@l'(r)]
Zp = dr dr'

f p tr co Ep+ El itl

x Im[W(r, r', co)],

where @0, NI, Eo, and EI are the initial and final wave
function and electron energies, and g is a positive infini-
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where ko is the incident electron momentum and @q is

chosen so that at z =0 the packet is distributed in a nar-
row probe about the impact parameter b with spatial

tesimal. W(r, r', ru) is the screened interaction, i.e., the
solution of the Poisson equation for a unit charge at rest
at r.

The incident electron wave packet No is described

extension 5 about b. The factor in the wave function
describing the z variation is normalized in the large spa-
tia1 interva1 of length L.

To illustrate the application of the method we shall ad-
dress the problem of energy loss of an electron interacting
with a small spherical particle of radius a, half-embedded
in a planar surface as shown in the scheme of the upper
part of Fig. 1. A set of local dielectric functions e;(ro)
(i=1,3) (see Fig. 1) describe the three different media.
The screened interaction in the external region can be
written as follows:

oo rL
W(r, r', ru) = g g t)Lm

™
r~+, PL (p)PL (p')e' ". "

e)+e2 L-om--L L+m ! pL)+'

oo L
+ g g AL (r',p'), PL (p)e' " ",

L Om —L /'
(3)

where r, p =cos8, and p are the polar coordinates of r (or r' when stated). Here riL =1 if L+m is even or e2/e~ other-
wise; r & and r & are, respectively, the largest and smallest of both r and r', and PLm are the Legendre functions. The
first term on the right-hand side of Eq. (3) is the dynamical image solution corresponding to a planar interface [33],
while the contribution of the sphere to the screened interaction is given by the second term. In the following we will

concentrate on the energy loss due to the presence of the sphere, i.e., derived from the AL terms; the riL term gives

rise to the well-known expression for the stopping power of a particle moving close to a plane [11]. From the matching
conditions we obtain a system of linear equations (one for each value of m) in which all the multipoles are coupled

' L+1
t )(L m)' L+Z MLj [gLm [je3 Lci ] + ( —

1 )— [je3
—Le2]] —, PLm (IJ')

e~ + e2 L (L +m)! r'

(-1)"1
QMLJ —(L+1)e)+J83+ [(l+1)e2+je3] 'ALm,
L gLm

(4)

P((k)) 0 e
(arb. u. )

where the matrix M is MLJ =fodxPL (x)PJ (x). The coupling among the multipoles implies that the collective modes

of such a complex system are not related to a single multipolar term (as in the case of an isolated sphere). In general
that system has to be solved numerically. 100 terms have
been included in the following calculations.

In the case of a well-focused beam along the z axis,
;;,'-ygggyy~ I ' with impact parameter b, and parallel to the planar sur-

face in which a target is lying, the probability of energy
loss is given
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FIG. I. Spectra corresponding to a 10-nm Al sphere half em-
bedded in an Al surface (continuous line). The probe position
into the plane (A) is shown above. The distance between the
beam and the surface is I nm. Spectra corresponding to the
same beam position near an isolated sphere (dotted line) and a
planar interface of length 2a have been plotted (dashed line).

where the function W(r, r', co) is evaluated at p=p'=b.
Expression (4) is also valid for any target geometry.

We have computed the P(ro) for the case of a metallic
sphere half embedded in an infinite medium of the same
material. In Figs. 1 and 2 we show the spectra calculated
for the case of a 100-keV electron beam in vacuum
(e~ =1), at grazing incidence close to the top (Fig. 1) and
to the edge (Fig. 2) of a 10-nm Al sphere half embedded
in an A1 support. A Drude die1ectric function with small
damping has been used for Al (rap =15.1 eV, y=0.27
eV).

The spectrum of Fig. 1 is rather similar to that corre-
sponding to an isolated sphere for values of co above 9.5
eV. This similarity is due to the fact that for that partic-
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FIG. 2. Spectrum corresponding to a 10-nm Al sphere half
embedded in an Al surface. The probe position into the plane
(B) is shown above. The distance between the beam and both
surfaces is I nm.

FIG. 3. Dependence of the height of the 6.8 eV with the re-
duced radius of the Al sphere half embedded in an Al support.
The probe position is (A) as in Fig. 1. The distance between
the beam and the surface has been kept constant (1 nm).

ular beam position the probe sees an almost spherical sur-
face at the distances involved in those excitations (of the
order of veau

' —10 nm in our case). Thus the support
has little influence on such excitations. The main differ-
ences between both spectra are the existence of a new res-
onance at 6.8 eV, together with the lowering of the dipo-
lar peak at 8.7 eV. The position of the 6.8 peak does not
depend either on the size of the sphere or on the relative
beam-target position (as it also happens with the modes
of the single sphere). Thus this resonance is a new inter-
face mode which appears due to the coupling between the
plane and the sphere. This resonance does not take place
in the case of an insulator support, therefore it can be at-
tributed to the possibility of a new collective excitation
originated by the grounding of the sphere by the infinite

support. From the dependence of the peak intensity on
the radius of the embedded sphere (Fig. 3) we conclude
that this new mode is relevant only for spheres of radius
smaller than 20-25 nrn. The application of the method
to the example points out a new observation —that some
parts of the scattering are simple superposition of the
constituent scattering while others are due only to the
coupling among the constituents.

The more relevant part of the spectrum shown in Fig. 2
consists of some broad resonances above the planar sur-

face plasmon at ru, =co~/J2. This result is consistent
with the modes of one edge [lg]. Spectra of Figs. 1 and 2
correspond to extreme cases of the beam position; for any
intermediate position of the beam all modes below and
above m, take place in the spectrum.

In Figs. l and 2 the energy loss probability becomes
negative in the neighborhood of 10.7 eV. This fact would
be corrected by adding the contribution of the planar in-
terface which has not been included in those spectra. It is
well known that this spectrum (dashed line in Fig. 1)
presents a peak centered on the planar surface plasmon,

just where the negative values occur.
Experimental observations by Batson [2,3] on spherical

targets have confirmed the existence of such a low-energy
resonance as the main effect of the support. The particu-
lar scattering geometry of our example is different from
that of the experiment of Batson and therefore it does not
reproduce the dependence of the mode energy on relative
sphere radii.

In conclusion, we have obtained a general expression
for the energy loss probability of a STEM electron by us-

ing a Green's function for the incident and scattered elec-
tron and then folding the specimen structure into a local
response function. Our formalism is relevant and possi-
bly crucial to STEM with sub-A probes. We have illus-
trated its use by evaluating the energy loss for the case of
an electron beam interacting with a spherical particle half
embedded in a planar support. We have established that
the modes of such a complex system are those corre-
sponding to the isolated sphere and the plane, plus some
new resonances below and above the planar plasmon en-

ergy co, . Those new modes are associated with the cou-
pling sphere/support. We estimate the size of the parti-
cles where this resonance can be relevant.

Our method is of more general interest than the appli-
cation to STEM that we have discussed above. It can be
of practical use in the study of optical properties of com-
plex shapes and in problems involving electrons at sur-
faces such as the definition of an optical potential in low-

energy electron diffraction and reflection high-energy
electron diffraction [34,35] or in the interaction of elec-
trons with surface states [36-40]. Of particular interest
might be its application to STM: In this case a different
Green's function should be used to describe the tunneling
electron. The formalism could then serve to evaluate in-

elastic scattering and temperature increases in STM ex-
periments.
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