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Recently, a low-energy collective excitation has been predicted to exist at metal surfaces where a quasi
two-dimensiona(2D) surface-state band coexists with the underlying three-dimengi@bakcontinuum. Here
we present a model in which the screening of a semiinfinite 3D metal is incorporated into the description of
electronic excitations in a 2D electron gas through the introduction of an effective 2D dielectric function. Our
self-consistent calculations of the dynamical response of the 3D substrate indicate that an acoustic surface
plasmon exists for all possible locations of the 2D sheet relative to the metal surface. This low-energy
excitation, which exhibits linear dispersion at low wave vectors, is dictated by the nonlocality of the 3D
dynamical response providing incomplete screening of the 2D electron-density oscillations.
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I. INTRODUCTION affecte-h and phonon dynamics near the Fermi le\el.
In this paper, we present a model in which the screening

Since the early suggestion of Pihékat low-energy plas- of a semiinfinite 3D metal is incorporated into the descrip-
mons with soundlike long-wavelength dispersion could betion of electronic excitations in a 2D electron gas through the
realized in the collective motion of a system of two types ofintroduction of an effective 2D dielectric function. We find
electronic carriers, these modes have spurred over the yearstat the dynamical screening of valence electrons in the
remarkable interest and research acti¥ifyhe possibility of metal changes the 2D plasmon energy from its characteristic
having a longitudinal acoustic mode in a metal-insulator-square-root behavior to a linear dispersion, not only in the
semiconductofMIS) structure was anticipated by Chapfik. case of a 2D sheet spatially separated from the semiinfinite
Chaplik considered a simplified model in which a two- metal, as anticipated by Chapfilgut also when the 2D sheet
dimensional(2D) electron gas is separated from a semiinfi-coexists in the same region of space with the underlying
nite three-dimensiondBD) metal. He found that the screen- metal, as occurs in the real situation of surface states at a
ing of valence electrons in the metal changes the 2D plasmometal surface. Furthermore, our results indicate that it is the
energy from its characteristic square-root wave-vector denonlocality of the 3D dynamical response which allows the
pendence to a linear dispersion, which was also discussed ligrmation of 2D electron-density acoustic oscillations at
Gumbhaltet in his study of transient interactions of surface- metal surfaces, since these oscillations would otherwise be
state electron-holée-h) pairs at surfaces. completely screened by the surrounding 3D substrate. Unless

Nevertheless, acoustic plasmons were only expected tetated otherwise, atomic units are used throughout, é%.,
exist for spatially separateghlasmas, as pointed out by Das =#=m,=1.
Sarma and Madhuk&rThe experimental realization of two-
dimensionally confined and spatially separated multicompo-
nent structures, such as quantum wells and heterostructures,
provided suitable solid-state systems for the observation of A variety of metal surfaces, such as (B@0l) and the
acoustic plasmorfsAcoustic plasma oscillations were then (111) surfaces of the noble metals Cu, Ag, and Au, are
proposed as possible candidates to mediate the attractive iknown to support a partially occupied band of Shockley sur-
teraction leading to the formation of Cooper pairs in high- face states with energies near the Fermi |éveéince the
superconductor§® wave function of these states is strongly localized near the

Recently, Silkinet al® have shown that metal surfaces surface and decays exponentially into the solid, they can be
where a partially occupied quasi-2D surface-state lwmeX-  considered to form a 2D electron gas.
istsin the same region of space with the underlying 3D con- In order to describe the electronic excitations occurring
tinuum support a well-defined acoustic surface plasmonwithin a surface-state band that is coupled with the underly-
which could not be explained within the originatal model  ing continuum of valence electrons in the metal, we consider
of Chaplik® This low-energy collective excitation exhibits a model in which surface-state electrons comprise a 2D elec-
linear dispersion at low wave vectors, and might thereforg¢ron gas atz=z; (z denotes the coordinate normal to the

II. THEORY
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surface, while all other states of the metal comprise a 3D
substrate consisting of a fixed uniform positive background

(jellium) of density

n, z<0,
n+(z):{ (1)

0, elsewhere,

:ja(z;q,w)=Jdz”{é(z—z”)+]dz’v(z,z’;q)

X X3D(Z,vz”;qlw):|¢6Xt(zu;qrw)' (8)

Equation(5) suggests that the screening of the 3D subsystem

plus a neutralizing inhomogeneous cloud of interacting elecean be incorporated into the description of the electron-

trons. The positive-background charge densiig often ex-
pressed in terms of the 3D Wigner radius®

=(3/4m)Y3/ a5, a;=0.529 A being the Bohr radius.

density response at the 2D electron gas through the introduc-
tion of the effective density-response function of K§),
whose poles should correspond to 2D electron-density oscil-

We consider the response of the interacting 2D and 3Dations.

electronic subsystems to an external potentl(r , w). Ac-

Alternatively, we can focus on the 2D Fourier transform

cording to time-dependent perturbation theory, keeping onlyf the total potential az in the presence of both 2D and 3D
terms of first order in the external perturbation, and Fourielsubsystems

transforming in two directions, the electron densities induced

in the 2D and 3D subsystems are found to be
MNyp(2,9,0) = 8z~ Zd)XzD(q,w){QseXt(Z;q,w)

+fdz’v(z,z’;q)maD(z’;q,w)] (2

and
ongp(z,0,w) = f dZ'Xso(z,Z’:q.w)[¢ex‘(Z’ 10, o)

+fdZ”v(Z’,i’;Q)mzo(z”;q,w)}- ()

#(2,9,0) = $¥z;0,0) + f dZv(z,Z';9)[dnyp(Z';0, w)

+ ongp(Z';9, )], (9)

which with the aid of Eqs(3) and(8) can also be expressed
in the following way:

$(2,0,0) = $(z,0,0) + f dZW(z,2';0, @) pp(Z'; 0, ).
(10
Now we choose=z4, and using Eq(5) we write

B(2g;9, @) = [1 +W(Zg, Z; 0, ) Xert(0 ©) (23 9, @),
(17

Here,q is the magnitude of the 2D wave vector parallel to which allows one to introduce the effective inverse 2D di-

the surface,x,p(q,w) and y3p(z,Z’;q,w) are 2D and 3D

interacting density response functions,

of the bare Coulomb interaction

v(z,2';q) =ve 17, (4)
with vq=2m/q.
Combining Egs(2) and(3), we find
MNyp(Z,0,0) = Az 2 xerl(0, ) Bz G 0),  (5)
where
a0, @) = X2p(9, ®) 6)

1 = x2p(0, @)[W(Z4,24; 0, ) —vg]

WI(z4,24;9,w) being the so-called screened interaction

W(z,z’;q,w):v(z,z’;q)+fdzlfd22

X U(21 Zl;q)XSD(leZZ;qy w)U(ZZIZ, 1q) ’

)

and E;(z;q,w) being the 2D Fourier transform of the total

potential atz in the absence of the 2D sheet

respectively,
¢*Yz;q,w) is the 2D Fourier transform of the external po-
tential ¢*(r ,w), andv(z,2’;q) is the 2D Fourier transform

electric function

(0 @) = 1 +W(Z4,24; 9, ) Xer(0, @) - (12

Since our aim is to investigate the occurrence of long-
wavelengthl(g— 0) collective excitations, we can rely on the
random-phase approximatigRPA),*? which is exact in the
g— 0 limit. In this approximation, the 2D and 3D interacting
density-response functions are obtained as follows:

XgD(ql w)

13
1 _XgD(qrw)vq ( )

XZD(qiw) =

and
xa0(z.2';0,0) = X3p(z.2;q,0) + f dz f dz

X X3p(2.21;0, )v(21,2;9) x3p(22, 23 G, ),
(14

wherex35(q, w) andx35(z,2';q, w) represent their noninter-
acting counterparts. An explicit expression for the 2D nonin-
teracting density-response functiq@D(q,w) was reported

by Stern®® In order to derive explicit expressions for the 3D
noninteracting density-response functi;@%b(z,z’ ;q,w) one
needs to rely on simple models, such as the hydrodynamic or
infinite-barrier model, but accurate numerical calculations
have been carried oldt'®>from the knowledge of the eigen-
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functions and eigenvalues of the Kohn-Sham Hamiltonian of ) 1 @
density-functional theoryDFT).16 “Lno Xzp(d, aveq) = = vl 1 (22
Combining Eqgs.(6), (12), and (13), one finds the RPA d v
effective 2D dielectric function and
€eif(0, @) = 1 ~W(Zg,Z4;0, @) (0, ). (15) lim W(zq, 240, aved) = 1(zo). (23)
gq—

The longitudinal modes of the 2D subsystem, or plasmon

s
are solutions of An inspection of Eqs(15), (22), and(23) indicates that for a

low-energy acoustic oscillation to occur the quantityy)
(0, w) = 0. (16)  must be different from zero. In that case, the long-

-wavelength limit of the effective 2D dielectric function of

In the absence of the 3D subsystem, the 3D screened in- . .
teractionW(z,Z' ;q, w) reduces to the bare Coulomb interac'%g(.:i(llla?or;]azflgiiigyagf\%?] (t:)(;/rrlfesg(lj)n\(/jvli?r? to a low-frequency

tion v(z,Z';q), and the solution of Eq(16) leads at long

wavelengths to the well-known square-root wave-vector de- L [1(zg) ? ”
= +
pendence of the 2D plasmon enetyy a=1/ o+ 2(20)] (24)
wap=E g, (17) In the following, we investigate the impact of the 3D
vm screening on the actual wave-vector dependence of the low-

energy 2D collective excitation. We first consider the two
tivelv. The 2D Fermi velocity is si limiting cases in which the 2D sheet is located far inside and
mass, respectively. The ermi velocity is simply ¢, 0 icide the metal surface, and we then carry out self-

=g¢/m. onsistent calculations of the 3D screened interaction
In the presence of the 3D subsystem, the long-wavelengt (2,79, ), which will allow us to obtain plasmon disper-

limit of the effective 2D dielectric function of Eq15) is _sions for arbitrary locations of the 2D sheet.
found to have two zeros. One zero corresponds to a high-

frequency(w>wveq) oscillation in which 2D and 3D elec-
trons oscillate in phase with one another. The other mode A. 2D sheet far inside the metal surface
corresponds to a low-frequency acoustic oscillation in which
both 2D and 3D electrons oscillate out of phase.

At high frequencies, where>vgq, the long-wavelength
limit of the 2D density-response functiq@D(q,w) is known
to be

gr andm being the 2D Fermi momentum and 2D effective

In the case of a 2D sheet that is located far inside the
metal surface, the 3D subsystem can safely be assumed to
exhibit translational invariance in all directions, i.e., the
screened interactio(zy4,z4;q, w) entering Eq(15) can be
easily obtained from the knowledge of the interacting
1 w2y density-response functiopp(k, w) of a uniform 3D electron

lim x3p(0,0> veQ) = ——. (18)  gas, as follows:

gq—0 Vg @
On the other hand, when the 2D sheet is located either far W(zg, ;0 @) = zf d—gzegé(k,w), (25)
inside or far outside the metal surface, the long-wavelength k
limit of the 3D screened interactioi(zy,z4;q, w) takes the

form wherek=g?+¢? is the magnitude of a 3D wave vector and

e55(k, w) is the inverse dielectric function of a uniform 3D
2 electron gas

. w
lim W(z4,24;0, 0 > veQ) =vg—5 5, (19
q—0 0" = wpg . _ A7

63D(k! w) =1+ ?X:%D(kv w) . (26)

where w, s represents either the bulk-plasmon frequengy

M .

=v4mn_or the conventional surface-plasmon energy | the RPA,
=wp/ 2} depending on whether the 2D sheet is located

inside or outside the solid. Introduction of E¢$8) and(19) _. 47T,
into Egs.(15) and(16) yields a high-frequency mode at esplki) =1 K2 Xaplk,®), (27)
o = wh o+ whp. (200 x3p(k,w) being the noninteracting density-response function

At low frequencies, we seek for an acoustic 2D plasmonfIrSt obtained by Lindharéf

energy that in the long-wavelength limit takes the form
1. Local 3D response

= aveq. (21 If one characterizes the 3D uniform electron gas by a

A careful analysis of the 2D density-response functionlocal dielectric functionesp(w), then Eq.(25) yields

0 ; H .
Xop(d, @) and the 3D screened interactioi(zg,z4;q, ) ocal . _ 1
shows that aiw=avgq the long-wavelength limits of these WOz 241, ) Uq€an(®)- (28)
guantities take the form In a 3D gas of free electronggp(w) takes the Drude form
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N

® 3D substrate a well-defined low-energgousticplasmon oc-
€3p(w) =1- o2 (290 curs, the sound velocity being just over the 2D Fermi veloc-
ity vg. The small width of the plasmon peak is entirely due to
which yields plasmon decay inte-h pairs of the 3D substrate.
We have carried out calculations of the effective 2D di-
lim W°a(z,,z4: 0, aveq) = 0. (300  electric function of Eq.(15) for a variety of 2D and 3D
q-0 electron densities, and we have found that a well-defined

acoustic plasmon of energy=aveq is always present for

This means that in a local picture of the 3D response th(=2D wave Vectors up to a maximum valueat: ge where the
F

characteristic collective oscillations of the 2D electron 98, o ustic-plasmon dispersion meraes with The coefficient
would be completely screened by the sorrounding 3D sub- P P 9 !

strate and no low-energy acoustic mode would eXist a that we have obtained from the zeros in ETf) is repre-
9y ' sented by stars in Fig. 2 versus the 3D Wigner raalﬁ?s

together with the prediction of E@24) as obtained with the
computed RPA value of(z;— —) (solid line) and the hy-
Dispersion effects of the 3D subsystem can be incorpodrodynamic prediction of Eq(33) (dotted ling. Figure 2
rated approximately in a hydrodynamic model. In this ap-shows that Eq(33) is a good representation of the linear
proximation, the dielectric function of a 3D uniform electron dispersion of this low-energy plasmon, especially at the

2. Hydrodynamic 3D response

gas is found to b highest 3D electron densities. Figure 2 also shows that for
) low electron densities the hydrodynamic prediction is too

ko) =1 - 31 small, which is due to the fact that at low densities the long-

esplk,w) = W’ - B (3D wavelength limit of the 3D screened interaction is underes-

o timated in this approximation.
where8=11/3Kke represents the speed of propagation of hy-
drodynamic disturbances in the electron systémand kg is

the 3D Fermi momentum. B. 2D sheet far outside the metal surface

Introducing Eq.(31) into Eqg.(25), one finds In the case of a 2D sheet that is located far outside the
_ metal surface, where the 3D electron density is negligible,
lim WI(zy,24;0, aveq) = 27l wp, (32 the 3D screened interaction of E) at z=z' =z, takes the
-0 form
which yields the following simple expression for the acoustic i
coefficient of Eq.(24): WI(z4,24;0, 0) = v [1 —€7%g(q, w)], (34
4’32/0)2 whereg(q,w) is the so-called surface-response function of
a= +——B (33)  the 3D subsystem
1+46lw,
3. Full 3D response g(qaw) = _qu dzlf dZZeq(Zl+ZZ)X3D(ZlaZZ;qaw)- (35)

We have carried out numerical calculations of the RPA
effective dielectric function of Eq(15), by using the full
Xop(d, @) and x3,(k,w) density-response functions, and
choosing the electron-density parametg?r'%:3.14 andrsD In the simplest possible model of a metal surface, one
=1.87 corresponding to th@001) surface of B! characterizes the 3D substratezat 0 by a local dielectric

The results we have obtained witp=0.01a," and q  function which jumps discontinuously at the surface from
=0.1a;" are displayed in Figs.(4) and Xb), respectively. We  €3p(w) inside the meta(z<0) to zero outsidéz>0). Witin
observe that at energies below the upper edgeveq this model?
+0°/(2m) (vertical dashed lineof the 2D e-h pair con-
tinuum (where 2De-h pairs can be excitgdhe real part of local _eplw) -1
the effective dielectric function is nearly constant and the g°(q, @) ‘m* (36)
imaginary part is large, as would occur in the absence of the ®

3D susbtrate. At energies aboug, momentum and energy \hich is precisely the long-wavelength limit of the actual
conservation prevents 2&h pairs from being produced, and grface-response function.

IM €(q, w) is very small. At low frequencies, where;p(w) is large[see Eq.(29)]
Collective excitations are related to a zero of Rgq, ) andg°(q, ») — 1, Eq.(34) yields

in a region where Ing.#(q, w) is small and lead, therefore, to

a maximum in the energy-loss function [le_(q, )22 In lim WOz, 7,1, avq) = 4z, (37)

the absence of the 3D substrate, a 2D plasmon would occur q—0

at w,p=1.22 eV for q=0.01a;> and w,,=3.99 eV for q

=0.1a,". However, Fig. 1 shows that in the presence of thelntroducing Eq.(37) into Eq.(24), one finds

1. Local 3D response
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FIG. 1. Effective dielectric function of a 2D sheet that is located far inside the metal surface, as obtained frgirh) Edth (a) q
=0.01 andb) q=0.1. The real and the imaginary partsegf(q, w) are represented by thick and thin solid lines, respectively. The dotted line
represents the effective 2D energy-loss functiofHe@flf(q, w)]. The vertical dashed line represents the upper eggerq+g?/(2m) of the
2D e-h pair continuum, where 2[B-h pairs can be excited. 2D and 3D electron densities have been taken to be those corresponding to the
Wigner radiir?°=3.14 andr3P=1.87, respectively. The 2D effective mass has been taken to=te

1622 only by the localq=0) surface-response functig/°®(q, w)
a=1/1+ 1+8, (38) but also by the leading correction @nof the actual nonlocal
g(g, ). Feibelman showed that up to first order in an expan-
For large values of the distanegbetween the 2D sheet and sion in powers ofg, the surface-response function of a jel-

the metal surface, one can write lium surface can be written s

a~\2z, (39)
which is the result first obtained by Chapliky using the _€plw) -1 €3p() 2
Drude-like 2D density-response function of Eg8). 9(a ) = esp() + 1 1+2qd, () esp(w) + 1 +0(a),

(40)
2. Nonlocal 3D response

An inspection of Eq(34) shows that the long-wavelength
limit of the screened interactio(zy,z4; g, ) is dictated not ~ which at low frequencies yields
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1.6 T T T T I T I T

14 — FIG. 2. Stars represent thecoefficient of the
acoustic-plasmon energy=avgq versus the 3D

Wigner radius, as obtained from E¢L6) in the
long-wavelength limit. These results are found to
be insensitive to the 2D Wigner radiug’. The
solid line represents the prediction of Eg4), as
L2 . obtained with the full RPA value of(zq— —).

The dotted line represents the hydrodynamic pre-
diction of Eq.(33).

g(g,w) = 1+ 2qd, (0). (41 We have carried out numerical calculations of the effec-
. o tive dielectric function of Eq.15), by using the full 2D
The frequency-dependentt, () function occurring in EQ.  poninteracting density-response functiap(q, w), and the
(40) represents the centroid of the induced 3D charge denself-consistent RPA surface-response functigiu, ), with
sity, which in the static limit(w=0) reduces to the image electron-density parameter§D:3.14 andrgD:1.87 corre-

plane of an external point charge. sponding to BE001).
Using Eq.(41), we find the actual long-wavelength limit  The results we have obtained for a 2D sheet located at
of Eq. (34): zy=\g are displayed in Figs.(8) (with g=0.01a;") and 3b)

(with q:O.laal), Ng=27/kg being the 3D Fermi wavelength.

Lmo W(zq24; 0 avr) = 4729 = d. (0)], (42 Figure 3 clearly shows that in the presence of the 3D sub-
strate a well-defined low-energy acoustic plasmon occurs,
which combined with Eq(24) yields the sound velocity being close to that predicted by @&®§)
5 with d, (0)=0.2\¢ (vertical long-dashed lingsThe actual
a= \/1 +M_ (43) plasmon energy is smaller than predicted by &®{), espe-
1+8z5—-d, (0)] cially at the shortest wavelengtkig=0.1a;"), simply due to

This shows that the acoustic-plasmon sound velocity deriveg1e bending of the plasmon dispersion as a functiog (sfee

from the local mode[see EQq.38)] remains unchanged, as Ig. 7 below.
long asz is replaced by the coordinate of the 2D sheet C. 2D sheet at an arbitrary location
relative to the position of the image plane.

1. Hydrodynamic 3D response

3. Full 3D response An explicit expression for the screened interaction

In order to compute the full RPA surface-response funcW(z,Z';q,») of Eq. (7) can be obtained in a hydrodynamic
tion of Eq.(35), we follow the method described in Ref. 14 model in which the 3D electron density is assumed to change
for a jellium slab. We first assume that the 3D electron denabruptly at the surface from inside the metal to zero out-
sity vanishes at a distaneg from either jellium edgé® and  side. After writing and linearizing the basic hydrodynamic
compute the noninteracting density-response functiorgquations, i.e., the continuity and the Bernouilli equation, we
X35(2,2';9,0) from the knowledge of the self-consistent find

Kohn-Sham wave functions and energies of BFTyhich 2mB

we obtain in the local-density approximatighDA ).26 We _ P (1 - e2uelf), 7,<0,
then introduce a double-cosine Fourier representation for IMm W(zy,z4;0,aveq) = @p

both the noninteracting and the interacting density-response 40 47zy, 74> 0,
functions, and find explicit expressions for the surface- (44)

response function in terms of the Fourier coefficients of the

density-response functid.To ensure that our slab calcula- which combined with Eq(24) yields an explicit expression
tions are a faithful representation of the actual surfacefor the acoustic coefficient. We note that in a local descrip-
response function of a semiinfinite 3D system, we follow thetion of the electronic response of the solid surf§6e 0) the
extrapolation procedure described in Ref. 28. 3D screened interaction(zy,2y4; 9, avgq) is zero inside the
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250 —

150

€ (q.m)

50

04 0.5

€ (q,0)
|

(b) (V)

FIG. 3. As in Fig. 1, but now for a 2D sheet that is located at one 3D Fermi wavelength outside the metal @Hage The
long-dashed vertical lines here represent the plasmon eaergy q predicted by Eq(43) with d, =0.2\¢. For real frequencies, a 2D sheet
that is located aty=Ag exhibits a plasmon peak that@t O.O]a(;l is extremely sharpaszy— o the plasmon peak becomes a delta fungtion
hence, in the calculations presented in this figure we have replaced the @nbygg complex quantityw+i» with (a) »=0.05 eV forq
=0.01a;" and (b) =0 for q=0.1a"

solid (zy=<0) and 4mz, outside(zy>0). This shows that in incides with that of Eq.(44) outside the surfacéz,>0),
the 2D long-wavelength limitg— 0) the nonlocality of the though small differences may arisez« 0.
3D response is only present inside the sglig<0), where When the 2D sheet is located far inside the mégl
finite values of the 3D momentukare possible. <0), Eq. (44) yields the hydrodynamic asymptotic behavior
Alternatively, the screened interactiofl(z,z';q,w) can  dictated by Eq(32), and the SRM combined with the RPA
be obtained within a specular-reflection mo@®RM)?° or,  bulk dielectric function yields the correct RPA asymptotic
equivalently, a classical infinite-barrier mod@IBM)3%31of  behavior. However, these hydrodynamic and specular-
the surface, which have the virtue of describing the 3Dreflection models, which are both based on the assumption
screened interaction in terms of the bulk dielectric functionthat the 3D electron density drops abruptly to zero at the
esp(k,w) of a 3D uniform (and infinite electron gagsee surface, fail to reproduce the correct asymptotic behavior
Appendix). If this bulk dielectric function is chosen to be the outside the surfacpsee Eq(42)]. This is due to the fact that
hydrodynamic dielectric function of Eq31), then these the leading correction i of the surface-response function
models yield Eq.(44). A more accurate description of the g(g,w) is governed by the spill out of the electron density
bulk dielectric functione;p(k, w) yields a result that still co- into the vacuum, which is not present in these models.
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100 T

- - FIG. 4. Long-wavelength limitl(zy) of the

screened interactio(zy,24; g, aveq). The thick

60 = m solid line represents the full self-consistent RPA

calculation. The results obtained from E@2)

with d, (0)=0.2\¢ and from Eq.(44) are repre-

40 = | sented by dotted and thin solid lines, respectively.
The horizontal dashed line represents the result

r g obtained from the RPA bulk screened interaction

of Eq.(25). The 3D Wigner radius has been taken
20~ 7 to ber2P=1.87.

I(au.)

2. Full 3D response the occurrence of acoustic surface plasmons is originated by

For an arbitrary location of the 2D sheet we need to com?@ combination of the nonlocality of the 3D response and the

pute the full screened interactioM(zy.zy:q,®) of Eq. (7). spill out of the 3D electron density into the vacuum.

. . . A Figures %a) and %b) exhibit the results we have obtained
To calculate this quantity we consider a jellium slab, as Weq, the effective dielectric function of Eql5) (with q

did to obtain the surface-response functigo, w), and we :0.013(—)1 [Fig. 5a)] andq=0.1a51 [Fig. 5b)]) by using the
f|nd eXpliCit eXpI’eSSionS in terms Of the Fourier Coefﬁcientsfu” 2D noninteracting density_response functiQﬁD(q'w)

of the interacting density-response functinwhich we  and the self-consistent RPA screened _interaction
compute in the RPAsee Eq(14)] from the knowledge of the W(zg4,74;0, ), with electron-density parameter§D=3.14
LDA eigenvalues and eigenfunctions of the Kohn-Shamgng r30=1.87 corresponding to B@00D. In these figures
Hamiltonian of DFT. the 2D sheet has been taken to be located,aD, as ap-

In Fig. 4, the long-wavelength limit(zy) of the screened proximately occurs with the quasi-2D surface-state band in
interactionW(zy,24; 4, aveq) [See Eq(23)] is displayed ver- Be0001). For comparison, also shown in these figures are
sus z4, as obtained Withr§D=1.87 from our full self- the results we have obtained for the energy-loss function
consistent RPA calculationghick solid ling and from the  when the 2D sheet is located inside the meta};at-\¢ and
hydrodynamic Eq(44) (thin solid ling). Far inside the solid, outside the metal aty=\z/2 andzy=\g.
our full calculation is close to the hydrodynamic prediction  An inspection of Fig. 5 shows théit) the results we have
(see also Fig. Rand coincides with the result one obtains obtained forzy=-\r and zy=\r are exactly reproduced by
from the bulk screened interaction of E@®5) (horizontal the limiting Eqs.(25) and(34) appropriate for a 2D sheet far
dashed ling Near the surface, our full calculation consider- inside and far outside the metal surface, respectively(and
ably deviates from the hydrodynamic prediction and con4n the actual situation where the 2D surface-state band is
verges far outside the solid with the asymptotic curve dicdocated very near the jellium positive background edge
tated by Eq(42) with d, (0)=0.2\ (dotted ling.32 =0), a well-defined low-energy acoustic plasmon occurs, the

At this point, it is interesting to note that within a local sound velocity being very close to the limiting case of a 2D
picture of the 3D response the long-wavelendifz;)  sheet far inside the metal surface and being, therefore, just
screened interaction would be zero for all locations of the 2Dabovew,. This is in agreement with the recent prediction that
sheet inside the metét;<0), showing that the screening of in a real metal surface where a partially occupied quasi-2D
2D electron-density oscillations would be complete and ncsurface-state band coexists in the same region of space with
acoustic surface plasmon would occur. It is precisely thghe underlying 3D continuum an acoustic surface plasmon
nonlocality of the 3D respongdinite values of the 3D mo- should occur at energies just above the upper edge of the 2D
mentumk are still present in the 2D long-wavelength lijnit e-h pair continuun®
which provides incomplete screening and allows, therefore, The sound velocitws (w=vsq) of the acoustic plasmon
the formation of acoustic surface plasmons in the interior othat is visible in Fig. 5 is displayed in Fig. 6 versus the
the solid. We also note that within a simple nonlocal picturelocation z; of the 2D sheet relative to the jellium edge, as
of the 3D response, such as the hydrodynamic and speculasbtained from our full RPA self-consistent calculation of the
reflection models described above, the screening of 2[2ffective 2D dielectric function of Eq(l5) (open circle
electron-density oscillations would still be complete at thetogether with the sound velocity;= av obtained from Eq.
jellium edge(zy=0). Hence, in the real situation where the (43) with d, (0)=0.2\¢ (dotted ling. When the 2D sheet is
2D surface-state band is located very near the jellium edgicated inside the metal surface, the sound velocity nicely
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FIG. 5. Asin Fig. 1, but now for a 2D sheet that is located at the jellium ézge0). Also shown is the effective 2D energy-loss function
Im [—egl(q,w)] for zg=-Ag, zg=A\g/2, and zz=\p (dotted line$. The open circles represent the effective 2D energy-loss function
Im [—€.4(q, w)] obtained from the limiting Eq(25) appropriate for a 2D sheet far inside the metal and from the limiting(B4). with z,
=\r appropriate for a 2D sheet far outside the metal. These calculations are found to coincide with the full calculatignsNprand
Z4=\p, respectively. As in Fig. @), the calculations presented here fge\ andq=0.01a5l have been carried out by replacing the energy
o by a complex quantityn+i# with =0.05 eV. All remaining calculations have been carried out for real frequencies, i.e.pwih

converges with the RPA bulk calculation from E5) (hori- The sound velocity of Fig. §open circles has been ob-
zontal short-dashed lineWhen the 2D sheet is located out- tained from the effective 2D dielectric function at very low
side the metal surface, the sound velocity converges with theD momenta, where the energy of the acoustic plasmon is
limiting value avg obtained from EQ.(43) and d,(0) linearing. The behavior of this plasmon energy as a function
=0.2\¢. For comparison, also shown in this figure is the of the 2D momentuny is displayed in Fig. 7, with the 2D
result we have obtained from E@4) by using the actual sheet chosen to be located far inside the s(itiitk dotted
RPAI(zy) screened interactiofthick solid ling) and from the  line), at zy=0 (open circley at zy=\¢ (solid line), and infi-
hydrodynamic Eq(44). These calculations clearly show that nitely far outside the solidsolid circle9. The upper edge of
Eq. (24) accurately reproduces the dispersion of acoustic surthe 2D e-h pair continuum is represented by a thick dashed
face plasmons, as long as the long-wavelength llfzi) of  line, showing that in the real situation where the 2D sheet is
the screened interaction is described self-consistently withocated near the jellium edge the energy of the acoustic sur-
full inclusion of the electronic selvage structure at the surface plasmon(open circles is just outside the 2-h pair
face. continuum for all momenta under study.
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T T T FIG. 6. The open circles represent the sound
velocity vs (w=v4q) of the low-energy acoustic
plasmon that is visible in Fig. 5 versus the loca-
40 - - tion z4 of the 2D sheet with respect to the jellium
edge. The horizontal short-dashed line represents
the result we have obtained from the limiting Eq.
(25) appropriate for a 2D sheet far inside the
metal. The dotted line represents the result we
have obtained from the limiting Eq43) with
d, =0.2\¢, which is appropriate for a 2D sheet
20 - far outside the metal. The long-wavelength limit
ve of the upper edgevw,/q of the 2D e-h pair
continuum is represented by an horizonal long-
dashed line. The thick and thin solid lines repre-
sent the results obtained from E@4) by using
the actual RPAI(zg) and the hydrodynamic Eg.
(44), respectively. 2D and 3D electron densities

v eV aO)

0 ' L ' have been taken to be those corresponding to the
0 ! Wigner radii r2°=3.14 andr3P=1.87, respec-
zy/ Ay tively. The 2D effective mass has been taken to
bem=1.
Ill. SUMMARY AND CONCLUSIONS tion occurs in a region of 2D momentum space wheree2D

-h pairs cannot be produced, this is a well-defined acoustic

The partially occupied band of Shockley surface states iplasmon. The finite width of the plasmon peak is due to a
a variety of metal surfaces is known to form a quasi-2Dsmall probability for the plasmon to decay ingeh pairs of
electron gas that is immersed in a semiinfinite 3D gas othe 3D substrate.
valence electrons. In order to describe the impact of the dy- We have shown explicitly that when the 2D sheeéxists
namical screening of the semi-infinite 3D continuum on thein the same region of space with the underlying 3D con-
electronic excitations at the 2D electron gas of Shockley surinuum the origin of acoustic surface plasmons, which have
face states, we have presented a model in which the dynamiveen overlooked over the years, is dictated by a combination
cal screening of 3D valence electrons is incorporated througbf the nonlocality of the 3D response and the spill out of the
the introduction of an effective 2D dielectric function. 3D electron density into the vacuum, both providing incom-

We have considered the two limiting cases in which theplete screening of the 2D electron-density oscillations.
2D sheet is located far inside and far outside the metal sur- We have carried out self-consistent DFT calculations of
face. In both cases, the dynamical screening of the valename dynamical density-response function of the 3D system of
electrons in the metal is found to change the 2D plasmowalence electrons, and we have found that a well-defined
energy from its characteristic square-root behavior to a lineaacoustic plasmon exists for all possible locations of the 2D
dispersion, the sound velocity being proportional to thesheet relative to the metal surface. The energy dispersion of
Fermi momentum of the 2D gas. As this collective oscilla-this acoustic surface plasmon is slightly higher than the en-

12 T I T I T I T I T

r FIG. 7. Dispersion of the acoustic plasmon
| occurring in a 2D sheet that is taken to be located
A far inside the solid(thick dotted ling, at ;=0
r 70 (open circleg atzy=\g (solid line), and infinitely
sl e 7 . far outside the meta(solid circleg. The thick
g os” dashed line represents the upper edggveq

> i +0?/(2m) of the 2De-h pair continuum. The thin
6 Bis - dotted line represents the 2D plasmon enevgy

Q.27 dictated by Eq.(17), which is accurate at long
e wavelengthgq— 0). The thin dashed line repre-
4l -~ L - sents the 2D plasmon energw3,+3v2q?/4 that
| " Lo is obtained after an expansion gbp(q,w) in
»” ‘9;;9 powers ofveq/w. 2D and 3D electron densities
~ have been taken to be those corresponding to the
% Wigner radii r2°=3.14 andr3=1.87, respec-
' o2 tively. The 2D effective mass has been taken to
0

0.1 0.2 0.3 0.4 0.5 bem=1.

10—

o (V)
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ergy of the collective excitation that has recently been preMCyT, and the Max Planck Research Award Funds is grate-
dicted to exist at real metal surfaces where a quasi-20ully acknowledged. V.U.N. acknowledges support by the
surface-state band coexists with the underlying 3DKorea Research Foundation through Grant No. KRF-2003-
continuum? Small differences between the plasmon energie®15-C00214 and the hospitality of the Donostia International
obtained here and those reported previoushe due to the Physics Cente(DIPC).

absence in the present model of transitions between 2D and
3D states’3 APPENDIX: SPECULAR-REFLECTION MODEL OF THE

3D RESPONSE

Either by assuming that electrons are specularly reflected
at the surfacéSRM)?° or by invoking the so-called classical
Partial support by the University of the Basque Country,infinite-barrier modelCIBM) of a jellium surface®3! one
the Basque Unibertsitate eta lkerketa Saila, the Spanisfinds
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1-e29%[1 - £(0;0)J[1+ &(0;w)], z=0,

€40;0,0) + €4(224;0,0) — 2€X(24;9, w)/[€40;0, ) + 1], elsewhere, (A1)

W(z4,2;0, @) = vq{

If the 3D dielectric functione;p(q, w) is chosen to be the
hydrodynamic dielectric function of E¢31), then one finds

wherek= \s’q2+q§ is a 3D momentum and

2
Wi Bl
— 2 [ 22~2 2 2

wp ,ﬁq +wp—w

da, .., -
GS(Z; q, (D) = %f k_(gzelqlzegljj(k, a)) y (AZ) ES(Z; q’ (1)) = 5 e_qlzd| ,
— w

e3p(0, w) being the dielectric function of a uniforigand in- (A3)

finite) 3D electron gas. which in combination with Eq(A1) yields Eq.(44).
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