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Recently, a low-energy collective excitation has been predicted to exist at metal surfaces where a quasi
two-dimensional(2D) surface-state band coexists with the underlying three-dimensional(3D) continuum. Here
we present a model in which the screening of a semiinfinite 3D metal is incorporated into the description of
electronic excitations in a 2D electron gas through the introduction of an effective 2D dielectric function. Our
self-consistent calculations of the dynamical response of the 3D substrate indicate that an acoustic surface
plasmon exists for all possible locations of the 2D sheet relative to the metal surface. This low-energy
excitation, which exhibits linear dispersion at low wave vectors, is dictated by the nonlocality of the 3D
dynamical response providing incomplete screening of the 2D electron-density oscillations.
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I. INTRODUCTION

Since the early suggestion of Pines1 that low-energy plas-
mons with soundlike long-wavelength dispersion could be
realized in the collective motion of a system of two types of
electronic carriers, these modes have spurred over the years a
remarkable interest and research activity.2 The possibility of
having a longitudinal acoustic mode in a metal-insulator-
semiconductorsMISd structure was anticipated by Chaplik.3

Chaplik considered a simplified model in which a two-
dimensional(2D) electron gas is separated from a semiinfi-
nite three-dimensional(3D) metal. He found that the screen-
ing of valence electrons in the metal changes the 2D plasmon
energy from its characteristic square-root wave-vector de-
pendence to a linear dispersion, which was also discussed by
Gumhalter4 in his study of transient interactions of surface-
state electron-holese-hd pairs at surfaces.

Nevertheless, acoustic plasmons were only expected to
exist for spatially separatedplasmas, as pointed out by Das
Sarma and Madhukar.5 The experimental realization of two-
dimensionally confined and spatially separated multicompo-
nent structures, such as quantum wells and heterostructures,
provided suitable solid-state systems for the observation of
acoustic plasmons.6 Acoustic plasma oscillations were then
proposed as possible candidates to mediate the attractive in-
teraction leading to the formation of Cooper pairs in high-Tc
superconductors.7,8

Recently, Silkinet al.9 have shown that metal surfaces
where a partially occupied quasi-2D surface-state bandcoex-
ists in the same region of space with the underlying 3D con-
tinuum support a well-defined acoustic surface plasmon,
which could not be explained within the originallocal model
of Chaplik.3 This low-energy collective excitation exhibits
linear dispersion at low wave vectors, and might therefore

affect e-h and phonon dynamics near the Fermi level.10

In this paper, we present a model in which the screening
of a semiinfinite 3D metal is incorporated into the descrip-
tion of electronic excitations in a 2D electron gas through the
introduction of an effective 2D dielectric function. We find
that the dynamical screening of valence electrons in the
metal changes the 2D plasmon energy from its characteristic
square-root behavior to a linear dispersion, not only in the
case of a 2D sheet spatially separated from the semiinfinite
metal, as anticipated by Chaplik,3 but also when the 2D sheet
coexists in the same region of space with the underlying
metal, as occurs in the real situation of surface states at a
metal surface. Furthermore, our results indicate that it is the
nonlocality of the 3D dynamical response which allows the
formation of 2D electron-density acoustic oscillations at
metal surfaces, since these oscillations would otherwise be
completely screened by the surrounding 3D substrate. Unless
stated otherwise, atomic units are used throughout, i.e.,e2

="=me=1.

II. THEORY

A variety of metal surfaces, such as Be(0001) and the
(111) surfaces of the noble metals Cu, Ag, and Au, are
known to support a partially occupied band of Shockley sur-
face states with energies near the Fermi level.11 Since the
wave function of these states is strongly localized near the
surface and decays exponentially into the solid, they can be
considered to form a 2D electron gas.

In order to describe the electronic excitations occurring
within a surface-state band that is coupled with the underly-
ing continuum of valence electrons in the metal, we consider
a model in which surface-state electrons comprise a 2D elec-
tron gas atz=zd (z denotes the coordinate normal to the
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surface), while all other states of the metal comprise a 3D
substrate consisting of a fixed uniform positive background
(jellium) of density

n+szd = Hn̄, zø 0,

0, elsewhere,
J s1d

plus a neutralizing inhomogeneous cloud of interacting elec-
trons. The positive-background charge densityn̄ is often ex-
pressed in terms of the 3D Wigner radiusrs

3D

=s3/4pn̄d1/3/a0, a0=0.529 Å being the Bohr radius.
We consider the response of the interacting 2D and 3D

electronic subsystems to an external potentialfextsr ,vd. Ac-
cording to time-dependent perturbation theory, keeping only
terms of first order in the external perturbation, and Fourier
transforming in two directions, the electron densities induced
in the 2D and 3D subsystems are found to be

dn2Dsz;q,vd = dsz− zddx2Dsq,vdFfextsz;q,vd

+E dz8vsz,z8;qddn3Dsz8;q,vdG s2d

and

dn3Dsz;q,vd =E dz8x3Dsz,z8;q,vdFfextsz8;q,vd

+E dz9vsz8,z9;qddn2Dsz9;q,vdG . s3d

Here,q is the magnitude of the 2D wave vector parallel to
the surface,x2Dsq,vd and x3Dsz,z8 ;q,vd are 2D and 3D
interacting density response functions, respectively,
fextsz;q,vd is the 2D Fourier transform of the external po-
tential fextsr ,vd, andvsz,z8 ;qd is the 2D Fourier transform
of the bare Coulomb interaction

vsz,z8;qd = vqe
−quz−z8u, s4d

with vq=2p /q.
Combining Eqs.(2) and (3), we find

dn2Dsz;q,vd = dsz− zddxeffsq,vdf̃sz;q,vd, s5d

where

xeffsq,vd =
x2Dsq,vd

1 − x2Dsq,vdfWszd,zd;q,vd − vqg
, s6d

Wszd,zd;q,vd being the so-called screened interaction

Wsz,z8;q,vd = vsz,z8;qd +E dz1E dz2

3 vsz,z1;qdx3Dsz1,z2;q,vdvsz2,z8;qd,

s7d

and f̃sz;q,vd being the 2D Fourier transform of the total
potential atz in the absence of the 2D sheet

f̃sz;q,vd =E dz9Fdsz− z9d +E dz8vsz,z8;qd

3 x3Dsz8,z9;q,vdGfextsz9;q,vd. s8d

Equation(5) suggests that the screening of the 3D subsystem
can be incorporated into the description of the electron-
density response at the 2D electron gas through the introduc-
tion of the effective density-response function of Eq.(6),
whose poles should correspond to 2D electron-density oscil-
lations.

Alternatively, we can focus on the 2D Fourier transform
of the total potential atz in the presence of both 2D and 3D
subsystems

fsz;q,vd = fextsz;q,vd +E dz8vsz,z8;qdfdn2Dsz8;q,vd

+ dn3Dsz8;q,vdg, s9d

which with the aid of Eqs.(3) and(8) can also be expressed
in the following way:

fsz;q,vd = f̃sz;q,vd +E dz8Wsz,z8;q,vddn2Dsz8;q,vd.

s10d

Now we choosez=zd, and using Eq.(5) we write

fszd;q,vd = f1 + Wszd,zd;q,vdxeffsq,vdgf̃szd;q,vd,

s11d

which allows one to introduce the effective inverse 2D di-
electric function

eeff
−1sq,vd = 1 +Wszd,zd;q,vdxeffsq,vd. s12d

Since our aim is to investigate the occurrence of long-
wavelengthsq→0d collective excitations, we can rely on the
random-phase approximation(RPA),12 which is exact in the
q→0 limit. In this approximation, the 2D and 3D interacting
density-response functions are obtained as follows:

x2Dsq,vd =
x2D

0 sq,vd
1 − x2D

0 sq,vdvq

s13d

and

x3Dsz,z8;q,vd = x3D
0 sz,z8;q,vd +E dz1E dz2

3 x3D
0 sz,z1;q,vdvsz1,z2;qdx3Dsz2,z8;q,vd,

s14d

wherex2D
0 sq,vd andx3D

0 sz,z8 ;q,vd represent their noninter-
acting counterparts. An explicit expression for the 2D nonin-
teracting density-response functionx2D

0 sq,vd was reported
by Stern.13 In order to derive explicit expressions for the 3D
noninteracting density-response functionx3D

0 sz,z8 ;q,vd one
needs to rely on simple models, such as the hydrodynamic or
infinite-barrier model, but accurate numerical calculations
have been carried out14,15 from the knowledge of the eigen-
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functions and eigenvalues of the Kohn-Sham Hamiltonian of
density-functional theory(DFT).16

Combining Eqs.(6), (12), and (13), one finds the RPA
effective 2D dielectric function

eeffsq,vd = 1 −Wszd,zd;q,vdx2D
0 sq,vd. s15d

The longitudinal modes of the 2D subsystem, or plasmons,
are solutions of

eeffsq,vd = 0. s16d

In the absence of the 3D subsystem, the 3D screened in-
teractionWsz,z8 ;q,vd reduces to the bare Coulomb interac-
tion vsz,z8 ;qd, and the solution of Eq.(16) leads at long
wavelengths to the well-known square-root wave-vector de-
pendence of the 2D plasmon energy13

v2D =
qF

Îm
Îq, s17d

qF and m being the 2D Fermi momentum and 2D effective
mass, respectively. The 2D Fermi velocity is simplyvF
=qF /m.

In the presence of the 3D subsystem, the long-wavelength
limit of the effective 2D dielectric function of Eq.(15) is
found to have two zeros. One zero corresponds to a high-
frequencysv@vFqd oscillation in which 2D and 3D elec-
trons oscillate in phase with one another. The other mode
corresponds to a low-frequency acoustic oscillation in which
both 2D and 3D electrons oscillate out of phase.

At high frequencies, wherev@vFq, the long-wavelength
limit of the 2D density-response functionx2D

0 sq,vd is known
to be

lim
q→0

x2D
0 sq,v @ vFqd =

1

vq

v2D
2

v2 . s18d

On the other hand, when the 2D sheet is located either far
inside or far outside the metal surface, the long-wavelength
limit of the 3D screened interactionWszd,zd;q,vd takes the
form

lim
q→0

Wszd,zd;q,v @ vFqd = vq
v2

v2 − vp,s
2 , s19d

wherevp,s represents either the bulk-plasmon frequencyvp

=Î4pn̄ or the conventional surface-plasmon energyvs
=vp/Î2,17 depending on whether the 2D sheet is located
inside or outside the solid. Introduction of Eqs.(18) and(19)
into Eqs.(15) and (16) yields a high-frequency mode at

v2 = vp,s
2 + v2D

2 . s20d

At low frequencies, we seek for an acoustic 2D plasmon
energy that in the long-wavelength limit takes the form

v = avFq. s21d

A careful analysis of the 2D density-response function
x2D

0 sq,vd and the 3D screened interactionWszd,zd;q,vd
shows that atv=avFq the long-wavelength limits of these
quantities take the form

lim
q→0

x2D
0 sq,avFqd =

1

p
F a

Îa2 − 1
− 1G s22d

and

lim
q→0

Wszd,zd;q,avFqd = Iszdd. s23d

An inspection of Eqs.(15), (22), and(23) indicates that for a
low-energy acoustic oscillation to occur the quantityIszdd
must be different from zero. In that case, the long-
wavelength limit of the effective 2D dielectric function of
Eq. (15) has indeed a zero corresponding to a low-frequency
oscillation of energy given by Eq.(21) with

a =Î1 +
fIszddg2

pfp + 2Iszddg
. s24d

In the following, we investigate the impact of the 3D
screening on the actual wave-vector dependence of the low-
energy 2D collective excitation. We first consider the two
limiting cases in which the 2D sheet is located far inside and
far outside the metal surface, and we then carry out self-
consistent calculations of the 3D screened interaction
Wsz,z8 ;q,vd, which will allow us to obtain plasmon disper-
sions for arbitrary locations of the 2D sheet.

A. 2D sheet far inside the metal surface

In the case of a 2D sheet that is located far inside the
metal surface, the 3D subsystem can safely be assumed to
exhibit translational invariance in all directions, i.e., the
screened interactionWszd,zd;q,vd entering Eq.(15) can be
easily obtained from the knowledge of the interacting
density-response functionx3Dsk,vd of a uniform 3D electron
gas, as follows:

Wszd,zd;q,vd = 2E dqz

k2 e3D
−1sk,vd, s25d

wherek=Îq2+qz
2 is the magnitude of a 3D wave vector and

e3D
−1sk,vd is the inverse dielectric function of a uniform 3D

electron gas

e3D
−1sk,vd = 1 +

4p

k2 x3Dsk,vd. s26d

In the RPA,

e3Dsk,vd = 1 −
4p

k2 x3D
0 sk,vd, s27d

x3D
0 sk,vd being the noninteracting density-response function

first obtained by Lindhard.18

1. Local 3D response

If one characterizes the 3D uniform electron gas by a
local dielectric functione3Dsvd, then Eq.(25) yields

Wlocalszd,zd;q,vd = vqe3D
−1svd. s28d

In a 3D gas of free electrons,e3Dsvd takes the Drude form
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e3Dsvd = 1 −
vp

2

v2 , s29d

which yields

lim
q→0

Wlocalszd,zd;q,avFqd = 0. s30d

This means that in a local picture of the 3D response the
characteristic collective oscillations of the 2D electron gas
would be completely screened by the sorrounding 3D sub-
strate and no low-energy acoustic mode would exist.19

2. Hydrodynamic 3D response

Dispersion effects of the 3D subsystem can be incorpo-
rated approximately in a hydrodynamic model. In this ap-
proximation, the dielectric function of a 3D uniform electron
gas is found to be18

e3Dsk,vd = 1 −
vp

2

v2 − b2k2 , s31d

whereb=Î1/3kF represents the speed of propagation of hy-
drodynamic disturbances in the electron system,20 andkF is
the 3D Fermi momentum.

Introducing Eq.(31) into Eq. (25), one finds

lim
q→0

Wszd,zd;q,avFqd = 2pb/vp, s32d

which yields the following simple expression for the acoustic
coefficient of Eq.(24):

a =Î1 +
4b2/vp

2

1 + 4b/vp
. s33d

3. Full 3D response

We have carried out numerical calculations of the RPA
effective dielectric function of Eq.(15), by using the full
x2D

0 sq,vd and x3D
0 sk,vd density-response functions, and

choosing the electron-density parametersrs
2D=3.14 andrs

3D

=1.87 corresponding to the(0001) surface of Be.21

The results we have obtained withq=0.01a0
−1 and q

=0.1a0
−1 are displayed in Figs. 1(a) and 1(b), respectively. We

observe that at energies below the upper edgevu=vFq
+q2/ s2md (vertical dashed line) of the 2D e-h pair con-
tinuum (where 2De-h pairs can be excited) the real part of
the effective dielectric function is nearly constant and the
imaginary part is large, as would occur in the absence of the
3D susbtrate. At energies abovevu, momentum and energy
conservation prevents 2De-h pairs from being produced, and
Im eeffsq,vd is very small.

Collective excitations are related to a zero of Reeeffsq,vd
in a region where Imeeffsq,vd is small and lead, therefore, to
a maximum in the energy-loss function Imf−eeff

−1sq,vdg.22 In
the absence of the 3D substrate, a 2D plasmon would occur
at v2D=1.22 eV for q=0.01a0

−1 and v2D=3.99 eV for q
=0.1a0

−1. However, Fig. 1 shows that in the presence of the

3D substrate a well-defined low-energyacousticplasmon oc-
curs, the sound velocity being just over the 2D Fermi veloc-
ity vF. The small width of the plasmon peak is entirely due to
plasmon decay intoe-h pairs of the 3D substrate.

We have carried out calculations of the effective 2D di-
electric function of Eq.(15) for a variety of 2D and 3D
electron densities, and we have found that a well-defined
acoustic plasmon of energyv=avFq is always present for
2D wave vectors up to a maximum value ofq,qF where the
acoustic-plasmon dispersion merges withvu. The coefficient
a that we have obtained from the zeros in Eq.(16) is repre-
sented by stars in Fig. 2 versus the 3D Wigner radiusrs

3D,
together with the prediction of Eq.(24) as obtained with the
computed RPA value ofIszd→−`d (solid line) and the hy-
drodynamic prediction of Eq.(33) (dotted line). Figure 2
shows that Eq.(33) is a good representation of the linear
dispersion of this low-energy plasmon, especially at the
highest 3D electron densities. Figure 2 also shows that for
low electron densities the hydrodynamic prediction is too
small, which is due to the fact that at low densities the long-
wavelength limit of the 3D screened interaction is underes-
timated in this approximation.

B. 2D sheet far outside the metal surface

In the case of a 2D sheet that is located far outside the
metal surface, where the 3D electron density is negligible,
the 3D screened interaction of Eq.(7) at z=z8=zd takes the
form

Wszd,zd;q,vd = vqf1 − e−2qzdgsq,vdg, s34d

wheregsq,vd is the so-called surface-response function of
the 3D subsystem

gsq,vd = − vqE dz1E dz2e
qsz1+z2dx3Dsz1,z2;q,vd. s35d

1. Local 3D response

In the simplest possible model of a metal surface, one
characterizes the 3D substrate atzø0 by a local dielectric
function which jumps discontinuously at the surface from
e3Dsvd inside the metalszø0d to zero outsidesz.0d. Witin
this model,23

glocalsq,vd =
e3Dsvd − 1

e3Dsvd + 1
, s36d

which is precisely the long-wavelength limit of the actual
surface-response function.

At low frequencies, wheree3Dsvd is large[see Eq.(29)]
andglocalsq,vd→1, Eq. (34) yields

lim
q→0

Wlocalszd,zd;q,avFqd = 4pzd. s37d

Introducing Eq.(37) into Eq. (24), one finds
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a =Î1 +
16zd

2

1 + 8zd
. s38d

For large values of the distancezd between the 2D sheet and
the metal surface, one can write

a < Î2zd, s39d

which is the result first obtained by Chaplik3 by using the
Drude-like 2D density-response function of Eq.(18).

2. Nonlocal 3D response

An inspection of Eq.(34) shows that the long-wavelength
limit of the screened interactionWszd,zd;q,vd is dictated not

only by the localsq=0d surface-response functionglocalsq,vd
but also by the leading correction inq of the actual nonlocal
gsq,vd. Feibelman showed that up to first order in an expan-
sion in powers ofq, the surface-response function of a jel-
lium surface can be written as24

gsq,vd =
e3Dsvd − 1

e3Dsvd + 1
F1 + 2qd'svd

e3Dsvd
e3Dsvd + 1

G + Osq2d,

s40d

which at low frequencies yields

FIG. 1. Effective dielectric function of a 2D sheet that is located far inside the metal surface, as obtained from Eq.(15) with (a) q
=0.01 and(b) q=0.1. The real and the imaginary parts ofeeffsq,vd are represented by thick and thin solid lines, respectively. The dotted line
represents the effective 2D energy-loss function Imf−eeff

−1sq,vdg. The vertical dashed line represents the upper edgevu=vFq+q2/ s2md of the
2D e-h pair continuum, where 2De-h pairs can be excited. 2D and 3D electron densities have been taken to be those corresponding to the
Wigner radii rs

2D=3.14 andrs
3D=1.87, respectively. The 2D effective mass has been taken to bem=1.
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gsq,vd < 1 + 2qd's0d. s41d

The frequency-dependentd'svd function occurring in Eq.
(40) represents the centroid of the induced 3D charge den-
sity, which in the static limitsv=0d reduces to the image
plane of an external point charge.

Using Eq.(41), we find the actual long-wavelength limit
of Eq. (34):

lim
q→0

Wszd,zd;q,avFqd = 4pfzd − d's0dg, s42d

which combined with Eq.(24) yields

a =Î1 +
16fzd − d's0dg2

1 + 8fzd − d's0dg
. s43d

This shows that the acoustic-plasmon sound velocity derived
from the local model[see Eq.(38)] remains unchanged, as
long as zd is replaced by the coordinate of the 2D sheet
relative to the position of the image plane.

3. Full 3D response

In order to compute the full RPA surface-response func-
tion of Eq. (35), we follow the method described in Ref. 14
for a jellium slab. We first assume that the 3D electron den-
sity vanishes at a distancez0 from either jellium edge,25 and
compute the noninteracting density-response function
x3D

0 sz,z8 ;q,vd from the knowledge of the self-consistent
Kohn-Sham wave functions and energies of DFT,16 which
we obtain in the local-density approximation(LDA ).26 We
then introduce a double-cosine Fourier representation for
both the noninteracting and the interacting density-response
functions, and find explicit expressions for the surface-
response function in terms of the Fourier coefficients of the
density-response function.27 To ensure that our slab calcula-
tions are a faithful representation of the actual surface-
response function of a semiinfinite 3D system, we follow the
extrapolation procedure described in Ref. 28.

We have carried out numerical calculations of the effec-
tive dielectric function of Eq.(15), by using the full 2D
noninteracting density-response function,x2D

0 sq,vd, and the
self-consistent RPA surface-response function,gsq,vd, with
electron-density parametersrs

2D=3.14 andrs
3D=1.87 corre-

sponding to Be(0001).
The results we have obtained for a 2D sheet located at

zd=lF are displayed in Figs. 3(a) (with q=0.01a0
−1) and 3(b)

(with q=0.1a0
−1), lF=2p /kF being the 3D Fermi wavelength.

Figure 3 clearly shows that in the presence of the 3D sub-
strate a well-defined low-energy acoustic plasmon occurs,
the sound velocity being close to that predicted by Eq.(43)
with d's0d=0.2lF (vertical long-dashed lines). The actual
plasmon energy is smaller than predicted by Eq.(43), espe-
cially at the shortest wavelengthssq=0.1a0

−1d, simply due to
the bending of the plasmon dispersion as a function ofq (see
Fig. 7 below).

C. 2D sheet at an arbitrary location

1. Hydrodynamic 3D response

An explicit expression for the screened interaction
Wsz,z8 ;q,vd of Eq. (7) can be obtained in a hydrodynamic
model in which the 3D electron density is assumed to change
abruptly at the surface fromn̄ inside the metal to zero out-
side. After writing and linearizing the basic hydrodynamic
equations, i.e., the continuity and the Bernouilli equation, we
find

lim
q→0

Wszd,zd;q,avFqd = 52pb

vp
s1 − e2zdvp/bd, zd ø 0,

4pzd, zd . 0,
6
s44d

which combined with Eq.(24) yields an explicit expression
for the acoustic coefficienta. We note that in a local descrip-
tion of the electronic response of the solid surfacesb=0d the
3D screened interactionWszd,zd;q,avFqd is zero inside the

FIG. 2. Stars represent thea coefficient of the
acoustic-plasmon energyv=avFq versus the 3D
Wigner radius, as obtained from Eq.(16) in the
long-wavelength limit. These results are found to
be insensitive to the 2D Wigner radiusrs

2D. The
solid line represents the prediction of Eq.(24), as
obtained with the full RPA value ofIszd→−`d.
The dotted line represents the hydrodynamic pre-
diction of Eq.(33).
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solid szdø0d and 4pzd outsideszd.0d. This shows that in
the 2D long-wavelength limitsq→0d the nonlocality of the
3D response is only present inside the solidszdø0d, where
finite values of the 3D momentumk are possible.

Alternatively, the screened interactionWsz,z8 ;q,vd can
be obtained within a specular-reflection model(SRM)29 or,
equivalently, a classical infinite-barrier model(CIBM)30,31of
the surface, which have the virtue of describing the 3D
screened interaction in terms of the bulk dielectric function
e3Dsk,vd of a 3D uniform (and infinite) electron gas(see
Appendix). If this bulk dielectric function is chosen to be the
hydrodynamic dielectric function of Eq.(31), then these
models yield Eq.(44). A more accurate description of the
bulk dielectric functione3Dsk,vd yields a result that still co-

incides with that of Eq.(44) outside the surfaceszd.0d,
though small differences may arise atzd,0.

When the 2D sheet is located far inside the metalszd

!0d, Eq. (44) yields the hydrodynamic asymptotic behavior
dictated by Eq.(32), and the SRM combined with the RPA
bulk dielectric function yields the correct RPA asymptotic
behavior. However, these hydrodynamic and specular-
reflection models, which are both based on the assumption
that the 3D electron density drops abruptly to zero at the
surface, fail to reproduce the correct asymptotic behavior
outside the surface[see Eq.(42)]. This is due to the fact that
the leading correction inq of the surface-response function
gsq,vd is governed by the spill out of the electron density
into the vacuum, which is not present in these models.

FIG. 3. As in Fig. 1, but now for a 2D sheet that is located at one 3D Fermi wavelength outside the metal surfaceszd=lFd. The
long-dashed vertical lines here represent the plasmon energyv=avFq predicted by Eq.(43) with d'=0.2lF. For real frequencies, a 2D sheet
that is located atzd=lF exhibits a plasmon peak that atq=0.01a0

−1 is extremely sharp(aszd→` the plasmon peak becomes a delta function);
hence, in the calculations presented in this figure we have replaced the energyv by a complex quantityv+ ih with (a) h=0.05 eV forq
=0.01a0

−1 and (b) h=0 for q=0.1a0
−1.
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2. Full 3D response

For an arbitrary location of the 2D sheet we need to com-
pute the full screened interactionWszd,zd;q,vd of Eq. (7).
To calculate this quantity we consider a jellium slab, as we
did to obtain the surface-response functiongsq,vd, and we
find explicit expressions in terms of the Fourier coefficients
of the interacting density-response function,27 which we
compute in the RPA[see Eq.(14)] from the knowledge of the
LDA eigenvalues and eigenfunctions of the Kohn-Sham
Hamiltonian of DFT.

In Fig. 4, the long-wavelength limitIszdd of the screened
interactionWszd,zd;q,avFqd [see Eq.(23)] is displayed ver-
sus zd, as obtained withrs

3D=1.87 from our full self-
consistent RPA calculations(thick solid line) and from the
hydrodynamic Eq.(44) (thin solid line). Far inside the solid,
our full calculation is close to the hydrodynamic prediction
(see also Fig. 2) and coincides with the result one obtains
from the bulk screened interaction of Eq.(25) (horizontal
dashed line). Near the surface, our full calculation consider-
ably deviates from the hydrodynamic prediction and con-
verges far outside the solid with the asymptotic curve dic-
tated by Eq.(42) with d's0d=0.2lF (dotted line).32

At this point, it is interesting to note that within a local
picture of the 3D response the long-wavelengthIszdd
screened interaction would be zero for all locations of the 2D
sheet inside the metalszdø0d, showing that the screening of
2D electron-density oscillations would be complete and no
acoustic surface plasmon would occur. It is precisely the
nonlocality of the 3D response(finite values of the 3D mo-
mentumk are still present in the 2D long-wavelength limit)
which provides incomplete screening and allows, therefore,
the formation of acoustic surface plasmons in the interior of
the solid. We also note that within a simple nonlocal picture
of the 3D response, such as the hydrodynamic and specular-
reflection models described above, the screening of 2D
electron-density oscillations would still be complete at the
jellium edgeszd=0d. Hence, in the real situation where the
2D surface-state band is located very near the jellium edge

the occurrence of acoustic surface plasmons is originated by
a combination of the nonlocality of the 3D response and the
spill out of the 3D electron density into the vacuum.

Figures 5(a) and 5(b) exhibit the results we have obtained
for the effective dielectric function of Eq.(15) (with q
=0.01a0

−1 [Fig. 5(a)] andq=0.1a0
−1 [Fig. 5(b)]) by using the

full 2D noninteracting density-response functionx2D
0 sq,vd

and the self-consistent RPA screened interaction
Wszd,zd;q,vd, with electron-density parametersrs

2D=3.14
and rs

3D=1.87 corresponding to Be(0001). In these figures
the 2D sheet has been taken to be located atzd=0, as ap-
proximately occurs with the quasi-2D surface-state band in
Be(0001). For comparison, also shown in these figures are
the results we have obtained for the energy-loss function
when the 2D sheet is located inside the metal atzd=−lF and
outside the metal atzd=lF /2 andzd=lF.

An inspection of Fig. 5 shows that(i) the results we have
obtained forzd=−lF and zd=lF are exactly reproduced by
the limiting Eqs.(25) and(34) appropriate for a 2D sheet far
inside and far outside the metal surface, respectively, and(ii )
in the actual situation where the 2D surface-state band is
located very near the jellium positive background edgeszd

=0d, a well-defined low-energy acoustic plasmon occurs, the
sound velocity being very close to the limiting case of a 2D
sheet far inside the metal surface and being, therefore, just
abovevu. This is in agreement with the recent prediction that
in a real metal surface where a partially occupied quasi-2D
surface-state band coexists in the same region of space with
the underlying 3D continuum an acoustic surface plasmon
should occur at energies just above the upper edge of the 2D
e-h pair continuum.9

The sound velocityvs sv=vsqd of the acoustic plasmon
that is visible in Fig. 5 is displayed in Fig. 6 versus the
location zd of the 2D sheet relative to the jellium edge, as
obtained from our full RPA self-consistent calculation of the
effective 2D dielectric function of Eq.(15) (open circles),
together with the sound velocityvs=avF obtained from Eq.
(43) with d's0d=0.2lF (dotted line). When the 2D sheet is
located inside the metal surface, the sound velocity nicely

FIG. 4. Long-wavelength limitIszdd of the
screened interactionWszd,zd;q,avFqd. The thick
solid line represents the full self-consistent RPA
calculation. The results obtained from Eq.(42)
with d's0d=0.2lF and from Eq.(44) are repre-
sented by dotted and thin solid lines, respectively.
The horizontal dashed line represents the result
obtained from the RPA bulk screened interaction
of Eq. (25). The 3D Wigner radius has been taken
to be rs

3D=1.87.
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converges with the RPA bulk calculation from Eq.(25) (hori-
zontal short-dashed line). When the 2D sheet is located out-
side the metal surface, the sound velocity converges with the
limiting value avF obtained from Eq.(43) and d's0d
=0.2lF. For comparison, also shown in this figure is the
result we have obtained from Eq.(24) by using the actual
RPA Iszdd screened interaction(thick solid line) and from the
hydrodynamic Eq.(44). These calculations clearly show that
Eq. (24) accurately reproduces the dispersion of acoustic sur-
face plasmons, as long as the long-wavelength limitIszdd of
the screened interaction is described self-consistently with
full inclusion of the electronic selvage structure at the sur-
face.

The sound velocity of Fig. 6(open circles) has been ob-
tained from the effective 2D dielectric function at very low
2D momenta, where the energy of the acoustic plasmon is
linear inq. The behavior of this plasmon energy as a function
of the 2D momentumq is displayed in Fig. 7, with the 2D
sheet chosen to be located far inside the solid(thick dotted
line), at zd=0 (open circles), at zd=lF (solid line), and infi-
nitely far outside the solid(solid circles). The upper edge of
the 2De-h pair continuum is represented by a thick dashed
line, showing that in the real situation where the 2D sheet is
located near the jellium edge the energy of the acoustic sur-
face plasmon(open circles) is just outside the 2De-h pair
continuum for all momenta under study.

FIG. 5. As in Fig. 1, but now for a 2D sheet that is located at the jellium edgeszd=0d. Also shown is the effective 2D energy-loss function
Im f−eeff

−1sq,vdg for zd=−lF, zd=lF /2, and zd=lF (dotted lines). The open circles represent the effective 2D energy-loss function
Im f−eeff

−1sq,vdg obtained from the limiting Eq.(25) appropriate for a 2D sheet far inside the metal and from the limiting Eq.(34) with zd

=lF appropriate for a 2D sheet far outside the metal. These calculations are found to coincide with the full calculations forzd=−lF and
zd=lF, respectively. As in Fig. 3(a), the calculations presented here forzd=lF andq=0.01a0

−1 have been carried out by replacing the energy
v by a complex quantityv+ ih with h=0.05 eV. All remaining calculations have been carried out for real frequencies, i.e., withh=0.
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III. SUMMARY AND CONCLUSIONS

The partially occupied band of Shockley surface states in
a variety of metal surfaces is known to form a quasi-2D
electron gas that is immersed in a semiinfinite 3D gas of
valence electrons. In order to describe the impact of the dy-
namical screening of the semi-infinite 3D continuum on the
electronic excitations at the 2D electron gas of Shockley sur-
face states, we have presented a model in which the dynami-
cal screening of 3D valence electrons is incorporated through
the introduction of an effective 2D dielectric function.

We have considered the two limiting cases in which the
2D sheet is located far inside and far outside the metal sur-
face. In both cases, the dynamical screening of the valence
electrons in the metal is found to change the 2D plasmon
energy from its characteristic square-root behavior to a linear
dispersion, the sound velocity being proportional to the
Fermi momentum of the 2D gas. As this collective oscilla-

tion occurs in a region of 2D momentum space where 2De
-h pairs cannot be produced, this is a well-defined acoustic
plasmon. The finite width of the plasmon peak is due to a
small probability for the plasmon to decay intoe-h pairs of
the 3D substrate.

We have shown explicitly that when the 2D sheetcoexists
in the same region of space with the underlying 3D con-
tinuum the origin of acoustic surface plasmons, which have
been overlooked over the years, is dictated by a combination
of the nonlocality of the 3D response and the spill out of the
3D electron density into the vacuum, both providing incom-
plete screening of the 2D electron-density oscillations.

We have carried out self-consistent DFT calculations of
the dynamical density-response function of the 3D system of
valence electrons, and we have found that a well-defined
acoustic plasmon exists for all possible locations of the 2D
sheet relative to the metal surface. The energy dispersion of
this acoustic surface plasmon is slightly higher than the en-

FIG. 6. The open circles represent the sound
velocity vs sv=vsqd of the low-energy acoustic
plasmon that is visible in Fig. 5 versus the loca-
tion zd of the 2D sheet with respect to the jellium
edge. The horizontal short-dashed line represents
the result we have obtained from the limiting Eq.
(25) appropriate for a 2D sheet far inside the
metal. The dotted line represents the result we
have obtained from the limiting Eq.(43) with
d'=0.2lF, which is appropriate for a 2D sheet
far outside the metal. The long-wavelength limit
vF of the upper edgevu/q of the 2D e-h pair
continuum is represented by an horizonal long-
dashed line. The thick and thin solid lines repre-
sent the results obtained from Eq.(24) by using
the actual RPAIszdd and the hydrodynamic Eq.
(44), respectively. 2D and 3D electron densities
have been taken to be those corresponding to the
Wigner radii rs

2D=3.14 and rs
3D=1.87, respec-

tively. The 2D effective mass has been taken to
be m=1.

FIG. 7. Dispersion of the acoustic plasmon
occurring in a 2D sheet that is taken to be located
far inside the solid(thick dotted line), at zd=0
(open circles), atzd=lF (solid line), and infinitely
far outside the metal(solid circles). The thick
dashed line represents the upper edgevu=vFq
+q2/ s2md of the 2De-h pair continuum. The thin
dotted line represents the 2D plasmon energyv2D

dictated by Eq.(17), which is accurate at long
wavelengthssq→0d. The thin dashed line repre-
sents the 2D plasmon energyÎv2D

2 +3vF
2q2/4 that

is obtained after an expansion ofx2D
0 sq,vd in

powers ofvFq/v. 2D and 3D electron densities
have been taken to be those corresponding to the
Wigner radii rs

2D=3.14 and rs
3D=1.87, respec-

tively. The 2D effective mass has been taken to
be m=1.
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ergy of the collective excitation that has recently been pre-
dicted to exist at real metal surfaces where a quasi-2D
surface-state band coexists with the underlying 3D
continuum.9 Small differences between the plasmon energies
obtained here and those reported previously9 are due to the
absence in the present model of transitions between 2D and
3D states.33
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APPENDIX: SPECULAR-REFLECTION MODEL OF THE
3D RESPONSE

Either by assuming that electrons are specularly reflected
at the surface(SRM)29 or by invoking the so-called classical
infinite-barrier model(CIBM) of a jellium surface,30,31 one
finds

Wszd,zd;q,vd = vqH 1 − e−2qzdf1 − ess0;vdg/f1 + ess0;vdg, zd ù 0,

ess0;q,vd + ess2zd;q,vd − 2es
2szd;q,vd/fess0;q,vd + 1g, elsewhere,

J sA1d

wherek=Îq2+qz
2 is a 3D momentum and

essz;q,vd =
q

p
E
−`

+`

dqz

k2 eiqzze3D
−1sk,vd, sA2d

e3Dsq,vd being the dielectric function of a uniform(and in-
finite) 3D electron gas.

If the 3D dielectric functione3Dsq,vd is chosen to be the
hydrodynamic dielectric function of Eq.(31), then one finds

essz;q,vd =
1

v2 − vp
2Fv2 −

bvp
2q

Îb2q2 + vp
2 − v2Ge−quzdu,

sA3d

which in combination with Eq.(A1) yields Eq.(44).
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