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We report on theoretical study of the magnetic properties of a magnetic metal � layer embedded into a
nonmagnetic nondegenerated semiconductor, taking into account the diffusion smearing, that is unavoidable in
the case of delta doping. The system of interest is modeled by the � layer core, enriched in metal atoms, and
a nearly depleted smeared periphery. Confinement states in the form of two-dimensional spin-polarized sub-
bands within the semiconductor band gap arise from potential and exchange scattering of carriers at the core.
The mechanism of indirect exchange between impurity spins placed within the peripheral region of the � layer,
via partially occupied confinement states, is analyzed. It is shown that, in the case of a ferromagnetic core, the
impurity spins align parallel or antiparallel to the core magnetization, due to the polarization of carriers in the
confinement states. Allowing for the confinement mechanism of interaction between the impurity spins as well
as for the exchange mechanism through deep levels of the semiconductor host, the magnetic configuration of
the impurity spins in the peripheral region of the � layer is obtained in the framework of a phenomenological
approach.
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I. INTRODUCTION

Selective alloying appears to be a widespread method to
introduce ferromagnetic �FM� ultrathin layers of a magnetic
metal �henceforth, � layers� into a nonmagnetic semiconduc-
tor host, when growing hybrid nanostructures of the type
semiconductor/ferromagnet. Two such systems are more ex-
tensively investigated, which are of interest from the point of
view of the fundamental research and of possible practical
applications: �1� isolated FM � layer in semiconductor het-
erostructure with a quantum well and �2� periodical lattice of
FM � layers within a homogeneous semiconductor �the so-
called digital magnetic alloy �DMA��.

While initially the attention was almost exclusively con-
centrated on structures in which the matrix was realized by
III–V semiconductors, an increasing interest was subse-
quently devoted to systems based on semiconductors of the
IV group �Si and Ge�. The investigation of semiconductor-
ferromagnet heterostructures with an isolated FM � layer
was undertaken in a series of works1–4 for the
GaAs /��Mn� /AlxGa1−xAs layered structures, in which a �
layer of Mn was embedded into a GaAs layer, in the prox-
imity of the GaAs /AlxGa1−xAs interface. Additional doping
of the AlxGa1−xAs layer with Be atoms led to the transfer of
free carriers �holes� toward the � layer and allowed to inves-
tigate the role of these carriers on FM ordering in the � layer
�the “carrier-mediated ferromagnetism” concept�. The study
was to a large extent addressed to the achievement of a
higher Curie temperature and acceptable transport properties
as compared to bulk materials, e.g., diluted magnetic semi-
conductors �DMSs�, such as GaAs:Mn. The results of Refs.
1–4 put in evidence a lot of inconsistencies: even if the Curie
temperature exceeded 100 K, at the same time a very small

value of the mobility of the free holes was obtained
�2–5 cm2 / �V·s��. The low mobility was related with the
evident attempt of the authors of Refs. 1–4 to achieve a
density of holes as high as possible at the location of the
magnetic Mn ions, i.e., at the � layer. Unfortunately, such a
spatial distribution of carriers, alongside with the enhance-
ment of exchange, leads to their strong scattering on ionized
Mn impurities, consequently lowering the carrier mobility.

In Refs. 5 and 6 a thorough investigation of the magnetic
and transport properties of the GaAs /��Mn� / InxGa1−xAs het-
erostructure, containing the Mn-rich FM � layer and the
InxGa1−xAs quantum well, spatially separated by a thin GaAs
spacer layer, was carried out. Differently from Refs. 1–4, in
Refs. 5 and 6 the holes were mostly introduced in the
InxGa1−xAs conducting channel rather than in the region of
the FM � layer. The Curie temperature of the system exam-
ined in Refs. 5 and 6 was about 40 K, which is somewhat
lower than the temperature achieved in Refs. 1–4, but the
mobility of the holes was on the order of 103 cm2 / �V·s�. It
was found that an external field induces a magnetic phase
transition in the � layer, accompanied by a biasing of the
hysteresis loop of the magnetization. In this way, it was
shown that the intentional spatial separation of holes and
magnetic atoms not only allows to achieve significant values
of the mobility of the carriers in nanostructures of the type
semiconductor/ferromagnet but also entails peculiar mag-
netic properties.

As it is well known, DMSs are characterized by a strong
disorder in the distribution of the atoms of magnetic metal in
the nonmagnetic semiconductor host. Unfortunately, the
equilibrium solubility limit is rather small, the maximum ra-
tio amounting to few atom percent. In contrast to them,
DMAs contain discrete layers �monolayers or submonolay-
ers�, enriched in magnetic �as a rule, 3d transition� metal
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atoms, which are regularly embedded into the host. The dis-
tance between adjacent magnetic �sub�monolayers is usually
on the order of 10 semiconductor layers, which would cor-
respond to a nominal bulk concentration of the metal on the
order of 10 at. %. In this respect, DMAs cannot be regarded
as some kind of DMSs. Indeed, thanks to the locally high
concentration of magnetic atoms, the exchange interaction in
a DMA is much stronger than in a DMS with the same nomi-
nal concentration of magnetic atoms.

So far, studies on DMAs are far from conclusive, and the
quantitative and qualitative understanding of many of their
important properties is still lacking. Many DMAs have a
higher Curie temperature as compared to DMSs as well as
unusual magnetic and magnetotransport properties. For in-
stance, a significant anomalous Hall effect is found even at
room temperature, which is a clear evidence for the large
spin polarization of carriers. In pioneering works7,8 the delta
doping technique was applied to DMAs based on III–V semi-
conductors, such as GaAs/Mn and GaSb/Mn. These systems
are currently the object of an intense investigation.9,10 In the
GaAs/Mn DMAs, a semiconductor-type conductivity and
relatively moderate Curie temperature, about 40 K, were
observed,7 but for the GaSb/Mn DMA, a semi-metal-type
conductivity and high Curie temperature exceeding 400 K
were reported.8 Calculations of the electron band structure
for these systems indicate peculiar features, such as the spa-
tial localization �confinement� and nearly full spin polariza-
tion of carriers in the vicinity of the FM � layers, the strongly
pronounced anisotropy of the magnetic and transport
properties,11 the switching of the interlayer exchange cou-
pling from antiferromagnetic �AFM� to FM with increasing
hole concentration.12 At present, the investigations of DMAs
based on semiconductors of the IV group �Si and Ge� are at
an initial stage. The first-principles calculations accom-
plished for the DMAs �Ge/Mn �Ref. 13� and Si/Mn �Ref.
14�� predict sizable carrier polarization at the Mn monolayers
and a remarkable redistribution of charge density between
the metal monolayers and the semiconductor host. According
to Refs. 13 and 14, the interlayer exchange coupling remains
FM in the whole ranges of doping and interlayer distance,
and the Curie temperature of the �Si,Ge�/Mn digital alloys is
higher than that of the �Si,Ge�:Mn disordered binary alloys.

The problem of ferromagnetism within the � layer re-
mains one of the open issues to be investigated from a the-
oretical point of view. It is unlikely that the � layer can be
treated as a sort of diluted alloy since the magnetic metal
atoms are very well localized in a restricted region of the
material. Moreover, the mechanism of indirect exchange be-
tween local impurity spins via itinerant carriers, that is the
standard Ruderman-Kittel-Kasuya-Yosida �RKKY� mecha-
nism transferred from the theory of metal magnetism to the
DMS theory,15 is a priori not applicable to nondegenerated
magnetic semiconductors, as the systems under discussion
frequently are. Evidently, the qualitative interpretation of the
results of Refs. 1–4 in the framework of a RKKY-type ap-
proach would be possible, provided the � layer is close
enough to the conducting channel.16 However, the fact that
the FM ordering is found in structures where the Mn-rich �
layer inserted into the GaAs nondegenerated host is placed
too far from the InxGa1−xAs conducting channel, so that the

free carriers �holes� cannot be responsible for the magnetic
interaction, casts serious doubts about the validity of the
RKKY scheme to describe the system.5,6 As far as DMAs are
concerned, it is apparently irrelevant to use a RKKY-type
approach for the explanation of magnetic phenomena in
these structures. Indeed, the band-structure calculations11–14

have demonstrated that in DMAs it is not possible to divide
the electron states into localized and itinerant due to their
strong �s , p�-d hybridization and to the charge redistribution
between the � layer and the host. The electron spectrum of
these systems has a complex structure, which contains both
strongly correlated �Hubbard type� narrow bands and weakly
correlated wide bands. The FM order, which appears in the �
layer due to the strong electron correlations within the nar-
row bands, is accompanied by the spin splitting of the wide
bands and the formation of the quasi-two-dimensional spin-
polarized subbands, in such a way as to lower the total en-
ergy of the system in a half-metallic state. Seemingly, the
spin ordering in DMAs could be described within a scheme
similar to the one adopted for itinerant magnetism in transi-
tion metals and their alloys,17 but the issue is difficult and, to
our knowledge, still unsolved.

The multifaceted morphology of the metal � layer embed-
ded into the semiconductor host puts serious obstacles to the
theoretical interpretation of the experimental results on the
properties of the delta-doped structures. In fact, the idealized
representation of the � layer as a perfect monolayer or sub-
monolayer of metal atoms regularly embedded into the semi-
conductor host, on which the aforementioned numerical cal-
culations are based, turns out to be far from the real situation
for the reasons listed hereafter.

First, during the synthesis of layered structures, it is im-
possible to avoid atomic interdiffusion of the various com-
ponents. Depending on the growing techniques, the diffusion
length ranges from several angstroms to several nanometers.
In real DMAs, the atoms of the nominally �sub�monoatomic
metallic layer undergo diffusion to occupy sites in several
neighboring atomic layers of the semiconductor host. The
profile of the real metal � layer, which forms due to the
diffusion process, displays a strong gradient along the
growth direction of the DMA and could be roughly divided
into two different regions: a central region �core layer�,
which extends over two or three atomic planes enriched in
metal atoms; a much broader peripheral region, with locally
low dopant concentration, which envelops the core. The pe-
ripheral region may be regarded as a DMS. Indeed, as noted
in Ref. 18 the �Mn�0.11 nm�/GaAs� DMAs prepared by
molecular-beam epitaxy contain heavily doped regions in the
vicinity of the Mn core monolayers �lattice planes�, in which
80% of Mn is located. At the background level, Mn is also
present in the unintentionally doped GaAs interlayer spacers.

Second, in real DMAs, the � layers have a significantly
inhomogeneous morphology in the direction perpendicular to
the growth direction. Even under optimal conditions of epi-
taxial growth with monolayer precision, the thickness of the
metal � layer embedded into the semiconductor host fluctu-
ates with respect to the nominal value on the nanometer
scale. One can expect that the compositional integrity of the
ultrathin � layer is not preserved �i.e., the � layer does not
form a continuous metal plane�. Thus, nanosized breaches
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may appear in the metal plane, and the layer may even be
fragmented into separate islands, i.e., nanoislands enriched in
metal atoms. In order to interpret the data on the anomalous
Hall-effect measurements in the �GaSb/Mn� DMAs with Mn
submonolayer insertions, the authors of Ref. 8 supposed that
the Mn layer represents a complex quasi-two-dimensional
alloy. This alloy consists of both randomly distributed Mn
impurities, the spins of which are ferromagnetically ordered
below 30–50 K, and the MnSb plane islands, with high Curie
temperature, Tc�580 K; besides, some Mn atoms migrate
into the GaSb host.

Third, the large metal content beyond the equilibrium
solubility limit in the semiconductor promotes the phase seg-
regation within the smeared � layer, possibly with the forma-
tion of both magnetic and nonmagnetic inclusions, such as
clusters and precipitates, which are nanosized. For example,
the DMSs based on IV-group semiconductors doped with Mn
show a strong tendency to the formation of secondary
phases: the Mn5Ge3 and Mn11Ge8 germanates or the Mn4Si7
silicides.19 It is commonly believed that a similar tendency
exists in the corresponding DMAs based on Ge or Si, once
the Mn concentration exceeds the solubility limit ��6%�.

The simultaneous and combined allowance for all the
above-mentioned factors makes the set up of an adequate
microscopic model for the magnetic ordering in the digital
heterostructures, based on semiconductors with embedded
FM � layers, a very complicated task. In this work we un-
dertake the theoretical effort, along the direction indicated
above, starting with the study of the magnetic properties of a
single FM � layer inserted into an infinite semiconductor
host. In what follows we discuss the semiphenomenological
scheme to describe the magnetic ordering in this system,
which takes into account only the first of the aforesaid fac-
tors, namely, the smearing and spatial inhomogeneity of the
� layer. As it will be evident from further inquiry, the task
proves to be highly nontrivial even under such a simplified
assumption.

The paper is organized as follows. In Sec. II we discuss
the model for a single FM � layer embedded into a semicon-
ductor host, which includes an ideal FM layer describing the
core region and randomly distributed magnetic impurities in
the peripheral region. In Sec. III we consider the two-
dimensional spin-polarized electron states �confinement
states� which are induced by potential and exchange scatter-
ing of carriers at the core part of the FM � layer and deter-
mine the dependence of the spin polarization of these states
on the distance from the core region. The behavior of the
magnetic moment of a single impurity in the peripheral re-
gion of the semiconductor host containing the FM � layer is
described in Sec. IV, where we derive the expression for the
spin polarization of the carriers in the presence of both the
ideal FM � layer and the impurity spin. In Sec. V we esti-
mate how the FM core influences the indirect exchange cou-
pling between the local impurity moments in the periphery of
the smeared � layer. The possible patterns of magnetic order-
ing in the periphery are analyzed within an effective func-
tional in Sec. VI. In particular, we describe the structure of
the domain wall in the relevant case of AFM ordering within
the peripheral region. All calculations are restricted to the
zero-temperature limit. Summary and concluding remarks
are found in Sec. VII.

II. SET UP OF THE PROBLEM AND MODEL
HAMILTONIAN

Let us consider an ultrathin �no more than a few atomic
monolayers thick along the axis of growth of the heterostruc-
ture, z� and homogeneous �on scales larger that the param-
eter of elementary cell of the host in the �x ,y� plane� layer of
atoms of the magnetic metal embedded into a nonmagnetic
semiconductor host. Assuming that inside the layer FM or-
dering is present, we call this an ideal FM � layer. The very
assumption of FM ordering is far from obvious. Indeed, due
to the strong hybridization of wave functions of semiconduc-
tor and metal ions, there exist a sizable redistribution both of
charge and spin densities between the host and the � layer.
Strictly speaking, the electron structure and magnetic order
of the semiconductor with a �sub�monolayer of magnetic at-
oms should be studied, for instance, within a microscopic s-d
Anderson model. Of course, this would require a great deal
of numerical calculations. Nevertheless, a simple phenom-
enological scheme �that we call model of a single FM plane
defect� is fairly suited in order to capture, at least qualita-
tively, the main physical aspects of the system under consid-
eration. Within the model of a FM single plane defect, the
FM order in the � layer, promoted by strong correlations of
electron states at the metal ions, is merely postulated. The
influence of the FM plane defect on the electron states of the
semiconductor host is described by means of an effective
one-dimensional potential, which includes both a potential
contribution, independent of the spin component, and an ex-
change contribution, which depends on the spin component.
Recently, in Ref. 20 we have fruitfully employed a similar
model to calculate the interlayer exchange coupling in
DMAs. It may be shown that the present scheme is valid
within a static approximation for the self-energy part of the
one-particle Green’s function in the Anderson model for an
ideal FM � layer.21

In the present work we deal with the more realistic situa-
tion when the � layer inserted into the semiconductor host is
smeared due to the diffusion of metal atoms into the bulk.
The distribution of metal atoms within the � layer is assumed
to be inhomogeneous, so that one can distinguish the thin
central part �core� with relatively high concentration of mag-
netic ions and the thicker external region �periphery� with
relatively low concentration of magnetic ions. The core is
regarded as an ideal FM � layer and approximately described
by the model of the single FM plane defect. In turn, the
periphery represents per se a DMS where rare metal impurity
atoms, carrying local spins, are randomly dispersed within
the semiconductor host. It should be noted that the nature of
the magnetic order which establishes within the peripheral
region of the � layer is a priori uncertain. The configuration
of impurity spins is governed by competing exchange inter-
actions of different origin and kind; some of them are intrin-
sic to DMSs, while others are induced by the proximity to
the FM core.

It is then necessary to make some additional assumptions.
We assume that the local concentration n�z� of magnetic at-
oms �which occupy random positions Ri in the semiconduc-
tor crystal lattice� is homogeneous in the �x ,y� plane of the �
layer and rapidly decays away from it with increasing �z�. In
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the core region, where the value of n�z� is rather large, there
is significant overlap of the wave functions of the magnetic
atoms thanks to the hybridization of the electron states at the
nearest-neighboring impurity sites. On the contrary, in the
periphery, where the value of n�z� is too small, because of
the large spatial separation of the magnetic atoms in the al-
loy, the wave functions belonging to different ions have a
negligibly small overlap.

The impurity spin Si localized at the site Ri= �Xi ,Yi ,Zi�
experiences a contact exchange interaction with carriers of
the semiconductor host. To simplify the treatment, we shall
describe the impurity spin Si classically, regarding it as a
magnetic moment denoted by the same symbol Si. All the
spins are assumed to be of equal magnitude, �Si�=S. For-
mally speaking, our approach is correct in the case of a large
spin, i.e., within a 1 /S expansion. Therefore one may hope
that the classical approach will not introduce qualitative
shortcomings in the estimation of the exchange interaction
energy in DMSs.22 It is clear that, within the given approach,
the Kondo screening effect for the impurity spin is ignored.
However, the latter restriction is unessential in the case of a
nondegenerated semiconductor that is the object under inves-
tigation.

We therefore write the Hamiltonian H of the electron
states of a nonmagnetic semiconductor in the presence of a
FM � layer in the form

H = HB + HL + HI, �1�

where

HB =	 dr

�

��
+�r���− i�����r�

is the Hamiltonian of carriers in the semiconductor host in
the absence of the FM � layer,

HL =	 dr

�,�

��
+�r��V��� + J���� · M�����r���z� �2�

is the Hamiltonian of interaction between these carriers and
the core of the FM � layer, treated as a FM plane defect, and

HI = 

i
	 dr


�,�
��

+�r������ · Si����r���r − Ri� �3�

is the Hamiltonian of interaction between the carriers and the
impurity spins in the peripheral region of the � layer. The
operators ��

+�r� and ���r� create and annihilate an electron
with spin projection � onto the quantization axis, at the point
r= �x ,y ,z�. Hamiltonian �2� includes the terms of the poten-
tial �V� and exchange �J�� ·M�� interaction of carriers with
the core, J is the exchange integral, M is the magnetization
of the � layer, and � is the vector of the Pauli matrices. For
the sake of simplicity, we suppose that only the electron
states of one band of the semiconductor �for definiteness, say
the conduction band� are most strongly affected by the po-
tential of the FM plane defect and give rise to the change in
energy of the system. In this work we consider the likely
relevant case of a nondegenerated semiconductor, when in
the absence of the FM plane defect there are no free carriers,

and the Fermi level is located in the band gap of the semi-
conductor host.

In the vicinity of the FM plane defect, there is some re-
distribution of the electron density and two-dimensional
bound states of carriers �the so-called confinement states�
might appear under certain conditions. To describe this ef-
fect, we associate an effective attractive potential with the
FM plane defect �for electrons of both spin subbands�, i.e.,
we take V�0 and �V�� �J�M in Eq. �2�. The restriction
��S�	W is imposed on the matrix element � of the exchange
interaction of carriers with the impurity spins in Eq. �3� �W is
an energy on the order of the conduction-band width� which
allows us to avoid at this stage the question about localized
states inherent to spin polarons with small radius.

We imply that, in the absence of the metal � layer, there
are no free carriers in the host. The insertion of the � layer
results in a FM plane defect approximately described in our
model by the delta-function scattering potential. At the same
time, the metal forming the � layer acts as a donor or an
acceptor in the semiconductor host. To correctly describe
these two combined effects, strictly speaking, we should
solve the rather intricate problem of the self-consistent cal-
culation of both the FM plane effective potential and the
position and filling of the electron confinement states split
off the band edge by this potential. We shall not deal with
this problem. Within our approach, on a phenomenological
basis, we merely postulate that the Fermi level lies within the
confinement subbands. In other words, all carriers �electrons
or holes�, which are transferred from the � layer to the host,
occupy the confinement states and not the bulk band states of
the semiconductor. Apparently, when the confinement states
are empty, the model of a FM plane defect loses its sense.
However, it should be noted that the numerical simulations
of the band structure in DMAs have established that the con-
finement states are always partly occupied and spin
polarized,11–14 supporting our phenomenological assump-
tions.

Below, we study the system at zero temperature. The free
energy can be formally written as

F = −
1



Im 	 d� Tr ln G��� , �4�

where G���= ��+ i0−H�−1 is the full Green’s function of the
semiconductor host in the presence of the smeared � layer.
Following Ref. 22, we express the quantity ln G��� in terms
of the components of the Green’s function of the semicon-
ductor host containing only the core part of the � layer �with-
out the peripheral impurities�, g���= ��+ i0−HB−HL�−1,
which are diagonal �gd� and off-diagonal �god� with respect
to the indexes of the impurity sites Ri. The symbolic form of
the corresponding expression is

ln G = ln g − ln�1 − gdK� + 

n=1

�
1

n
�godt�n, �5�

where symbol t denotes the single-site scattering matrix that
describes the multiple scattering of electrons on the impurity
spin placed at the point Ri within the peripheral region of the
� layer
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t = K�I − gdK�−1.

By taking into account the spin indexes, the matrix K is
written as K���Ri�=����� ·Si�.

According to Eq. �5�, the free energy �Eq. �4�� may be
divided into three contributions

F = F0 + Fd + Fod. �6�

The term F0 is the free energy of the semiconductor host
with the ideal � layer �i.e., the FM plane defect� and it is
independent of the electron-impurity interaction. The last
two terms in Eq. �6� represent the excess free energy caused
by the exchange interaction of carriers with magnetic impu-
rities dispersed in the peripheral region. The site-diagonal
term Fd appears in the single-impurity approximation,
whereas the site-off-diagonal term Fod is related to the inter-
ference of the states belonging to different impurity sites.
Since we are interested in the situation of a strongly diluted
alloy in the periphery of the � layer, the terms up to the
second order of god will be retained to calculate the energy
contribution Fod.

III. TWO-DIMENSIONAL SPIN-POLARIZED ELECTRON
STATES INDUCED BY AN IDEAL FM � LAYER

First of all, we wish to draw the attention to the subject of
the confinement states, which arise due to the presence of the
ideal FM plane defect representing the core of the � layer. To
this purpose, we can neglect the impurities in the peripheral
region and write the single-particle Green’s function
g���k ,k� ,�� associated with Hamiltonian HB+HL in the mo-
mentum representation

g���k,k�,�� = �k,k����g0�k,��

+ �k�,k��
g0�k,��T���k�,��g0�k�,�� ,

where the following notations are introduced:

T���k�,�� = ��V − �V2 − J2M2�g̃0�k�,������ + J���� · M�

���k�,���−1, �7�

��k�,�� = �1 − Vg̃0�k�,���2 − �JMg̃0�k�,���2,

g̃0�k�,�� =
1

Nz


kz

g0�k,�� =	 adkz

2

g0�k,�� . �8�

Here g0�k ,��= ��−��k��−1 is the Green’s function of the
bulk semiconductor, T���k� ,�� is the full t matrix for the
scattering of the band electrons on the FM plane defect, and
� is the frequency. The quasimomentum k= �k� ,kz� is mea-
sured from the point where the energy of the conduction
band is minimum, ��0�=0; k� = �kx ,ky� is the component of
the quasimomentum parallel to the FM plane defect, a is the
lattice parameter of the semiconductor, and Nz is the number
of the host sites along the z direction.

We now proceed to the calculations of the magnetic prop-
erties of our model in three steps: first, we show that the FM
plane defect may induce bound confinement states and deter-

mine their band structure; then, we calculate the explicit ex-
pression of the electron Green’s function in the presence of
the FM plane defect; this expression is finally used to deter-
mine the dependence of the spin polarization of the confine-
ment states on the distance from the FM plane defect.

As it is seen from Eq. �8�, if V�0 �with �V�� �J�S�, con-
finement states exist inside the band gap of the host. Their
energy spectrum, �=���k��, consists of two spin-polarized
two-dimensional subbands and is determined by the equation
��k� ,��=0, i.e.,

g̃0�k�,�� = �V � JM�−1.

We adopt henceforth a definite form for the energy spec-
trum of the host

��k� =
k2

2m
=

k�
2

2m
+

kz
2

2m
, �9�

where m is the effective mass of an electron near the bottom
of the conduction band. Within the adopted effective-mass
approximation the dispersion law of the confinement states
takes the form

���k�� = �� +
k�

2

2m
,

where

�� = ���0� = −
ma2

2
��V� � JM�2,

are the energies of the edges of the corresponding subbands
����0�. The quasiparticle excitation energies are small in
comparison with the band width �W, i.e., ����	W.

Having determined the energy spectrum of the confine-
ment states, we now proceed to the explicit calculation of the
electron Green’s function in the presence of the FM plane
defect. In the coordinate representation, the Green’s function
of the confinement states g����� can be written in the form

g���r,r�,�� = g0�r,r�,����� + ����r,r�,�� , �10�

where

g0�r,r�,�� = −
ma3

2
�r − r��
exp�− �2m����r − r��� , �11�

����r,r�,�� =
m2a4

8
2 	
0

�

d�T���� − ��


exp�− �2m�� − ����z� + �z����

� − �

J0��2m��r� − r���� �12�

and J0��� is the zeroth-order Bessel function. The t matrix
�Eq. �7�� appearing in the integral in Eq. �12� depends on the
difference �−� since in correspondence of the band spec-
trum of the form �Eq. �9�� one finds
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g̃0�k�,�� = − a� m

2��k�
− ��

,

where �k�
=k�

2 /2m is the energy of the electron motion paral-
lel to the plane of the � layer.

In view of the forthcoming analysis, it is convenient to
put in evidence the potential and exchange spin structure of
the function ����r ,r� ,��

����r,r�,�� = ��+��r,r�,������ + ���� · n�� + ��−��r,r�,��

���� − ���� · n�� , �13�

where n=M /M is the unit vector oriented along the direction
of the magnetization of the FM core.

To proceed in the calculation of the dependence of the
spin polarization within the confinement states, we need to
find the expression of the propagator of the host at equal
spatial arguments, r=r�, bearing in mind that an energy on
the order of W must be taken as upper limit for the integra-
tion over energies. Then, we obtain

g0�r,r,�� = g0��� =
�a�m�3

�2

����� − �W + ���� �14�

and

�����r,r,�� =
g0

2
�����

W
exp�− 2�z��2m�����

 E1�2�z��2m����� − ������� , �15�

where

E1��� = 	
�

�

dt
exp�− t�

t
�16�

is the exponential integral,23 �z� is the distance between the
point r in the host and the core, and g0=g0��=0�.

The exponential integral �Eq. �16�� is a single-valued
function in the complex plane cut along the negative real
axis. Hence, the imaginary part of �����r ,r ,��, that is pro-
portional to the local density of states of the corresponding
confinement subband, is a steplike function of the frequency,
i.e., it vanishes at ���� and is finite and constant at
����. We note, on passing, that the function
Im������r ,r� ,���, calculated at arbitrary r and r�, has simi-
lar analytical properties. Indeed, one can obtain the expres-
sion

Im������r,r�,��� =

g0

2
�����

W
h�� − ���exp�− �2m����

��z� + �z����J0��2m�� − ����r� − r���� ,

�17�

where h��� is the Heaviside function �h���0�=1 and h��
�0�=0�. Noticeably, the function Im������r ,r� ,��� is inde-
pendent of the frequency when r� =r�� and oscillates with �
otherwise.

We have now all the ingredients that are needed to deter-
mine the spin polarization of the electron states of the semi-

conductor host in the vicinity of the FM plane defect. Our
results are meaningful over distances which exceed essen-
tially the lattice spacing a. To proceed, we calculate the spin
polarization of the confinement states induced at the point r
due to the FM plane defect, m0�r�=nm0�r�, where

m0�r� = Im 	� d�





��

���
z g���r,r,�� �18�

and we adopted n as the direction of the local quantization
axis. Taking into account Eqs. �15�, �17�, and �18�, one ob-
tains the explicit space dependence of m0�r� in the form

m0�r� = m0
�+��r� + m0

�−��r� , �19�

where

m0
����r� = � g0�����

W
�� − ���h�� − ���

exp�− 2�z��2m����� . �20�

As it is seen from Eqs. �19� and �20�, the carriers of both
confinement subbands give rise additively to the spin polar-
ization m0�r�. The typical behavior of m0�r�=m0�z� as a
function of the distance from the FM plane defect and of the
Fermi energy is shown in Fig. 1. The electron states belong-
ing to the subbands of opposite spin polarization, ���k��,
have different characteristic lengths near the core, on the
order of l�= ��2m�����−1 �with l��a�. For example, in the
case J�0, the spin-up subband is characterized by a shorter
wavelength as compared to the spin-down subband. As a
result, if both subbands are partially occupied, the spin po-
larization m0�r�=m0�z� might switch its orientation at the
distance z0=z0��� from the core, in such a way that m0�r� is
parallel to M at z�z0, m0�r� is antiparallel to M at z�z0 �of
course, the opposite holds for J�0�, and m0�z0�=0. In Fig.

FIG. 1. �Color online� Spin polarization induced by the FM
plane defect, Eq. �20�, as a function of the distance from the FM
plane defect z and of the Fermi energy �, for �JM /V�=0.1. The
dimensionless quantities m� 0=2W�m0��
�V�3�g0�2�−1, z�=2ma�Vz�,
and �� =2����ma2V2�−1 are reported on the axes. The thicker line
represents the frontier separating the regime where both confine-
ment subbands are occupied, at smaller �� , from the regime where a
single confinement subband is occupied, at larger �� . When �� is
large enough, the two subbands are both empty and m� 0 vanishes.
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2, we plot surface that separates the region of parameter
space where the electron states are polarized parallel or an-
tiparallel to the magnetization M of the FM plane defect, z
=z0�� ,b� with b= �JM /V�.

IV. SINGLE CLASSICAL SPIN IN A SEMICONDUCTOR
HOST WITH AN IDEAL FM � LAYER

In Sec. III we have studied the formation and spin polar-
ization of the confinement states near the ideal FM plane
defect, neglecting the effect of the magnetic impurities in the
peripheral region. To include this effect, let us now initially
assume that a single classical moment Si is inserted into the
semiconductor host, which contains the ideal FM � layer.
This magnetic moment produces an additional scattering po-
tential ��Si ·����r−Ri�. The Green function for a particle
moving in this system obeys the equation

G��
�i� �r,r,�� = g���r,r,��

+ 

��

g���r,Ri,��t���Ri,��g���Ri,r,�� ,

�21�

where the resolvent g���r ,r� ,�� is determined by the rela-
tions �10�–�15�. The single-site scattering matrix t���Ri ,��
in Eq. �21� can be written as

t���Ri,�� =
��Si · �� + �2S2ğ���Ri,Ri,��

D�Ri,��
,

where

D�Ri,�� = det���� − 

�

g���Ri,Ri,����Si · ����� �22�

and the function ğ���r ,r� ,�� is obtained from the function
g���r ,r� ,�� by means of the formal substitution n→−n in

Eq. �13�. By definition, the total spin polarization of the con-
finement states at the point r is

m�r� = Im 	� d�





��

���G��
�i� �r,r,�� = m0�r� + mi�r� .

�23�

This expression includes the component m0�r� that is caused
by the ideal FM � layer and was calculated in Sec. III and the
component mi�r� that is induced by the local scattering po-
tential ��Si ·����r−Ri�. Inserting Eq. �21� into Eq. �23�, we
obtain

mi�r� = Im 	� d�





����

���

 g���r,Ri,��t���Ri,��g���Ri,r,�� . �24�

Now, supposing that r=R j, we arrive at the expression for
the local spin polarization mi�R j�, which is induced at jth
impurity site due to the presence of the classical spin Si at ith
impurity site. Keeping only the lowest order of the perturba-
tion theory in the dimensionless parameter ��Sg0�	1, we
arrive at the compact expression

mi�R j� = Im 	� d�



Tr��godtgod� ,

where

Tr��godtgod� = 2��Si�� ji�ij − � ji�ij� + 2n�n · Si�� ji�ij� .

�25�

Here, the following notations are adopted:

�ij = ��Ri,R j,�� = ��+��Ri,R j,�� − ��−��Ri,R j,�� ,

�26�

�ij = ��Ri,R j,�� = g0�Ri,R j,�� + ��Ri,R j,�� , �27�

�ij = ��Ri,R j,�� = ��+��Ri,R j,�� + ��−��Ri,R j,�� . �28�

For i� j, Eqs. �11� and �12� are used, whereas Eqs. �14� and
�15� are used for i= j. Note that �ij =� ji and �ij =� ji.

Within the weak-coupling approximation adopted hereby,
��Sg0�	1, the impurity spin inserted into the semiconductor
host does not induce a bound state inside the band gap. In
other words, the determinant D�Ri ,�� in Eq. �22� does not
vanish for all � and only the occupied confinement states
contribute to the integral �Eq. �24��. As it was already stated,
we are assuming that the Fermi energy of the system under
consideration, �, falls within the gap near the conduction-
band edge. Substituting the expressions �25�–�28� into Eq.
�24�, one obtains the spin polarization induced by the impu-
rity spin in the form

mi�R j� = 4�g0�Si���Ri,R j� + u�Ri,R j� − f�Ri,R j��

+ 2n�n · Si�f�Ri,R j� , �29�

where

FIG. 2. �Color online� Surface separating the region of param-
eter space where the electron states are polarized parallel or anti-
parallel to the magnetization M of the FM plane defect. The dimen-
sionless quantities �� =2����ma2V2�−1, z�=2ma�Vz�, and b= �JM /V�
are reported on the axes. The region underneath the surface ��
=�� �z�,b� corresponds to antiparallel polarization for J�0 and to
parallel polarization for J�0. The sign of J dictates the alignment
of the spin polarization close to the FM plane defect, which is
located at z�=0.
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��Ri,R j� =
1

g0	� d�



g0�Ri,R j,��Im���Ri,R j,��� ,

�30�

f�Ri,R j� =
1

g0	� d�



Re���Ri,R j,���Im���Ri,R j,��� ,

�31�

u�Ri,R j� =
1

g0	� d�



Re���Ri,R j,���Im���Ri,R j,��� .

�32�

The functions ��Ri ,R j�, f�Ri ,R j�, and u�Ri ,R j� are sym-
metric under permutation of the impurity indexes. As it is
seen from Eq. �29�, the direction and magnitude of the spin
polarization mi�R j� depend on the mutual orientation of the
vectors M and Si, on the value and sign of the interaction
parameter �, and on the position of the Fermi level. We point
out that Eqs. �30�–�32� are not valid at small distances
�Ri−R j�� �mW�−1/2 within the effective-mass approximation.

The relation �29� between the spin polarization mi�R j�
and the spin Si allows us to define the linear-response coef-
ficients, namely, the longitudinal susceptibility and trans-
verse susceptibility, such that mi

��R j�=�ij
� �Si and mi

��R j�
=�ij

��Si. The longitudinal susceptibility then reads

�ij
� = � ji

� = 4g0���Ri,R j� + u�Ri,R j� + f�Ri,R j�� �33�

and the transverse susceptibility reads

�ij
� = � ji

� = 4g0���Ri,R j� + u�Ri,R j� − f�Ri,R j�� . �34�

These quantities will be used in Sec. V to express the ex-
change coupling between peripheral impurities

Both the spin polarization �Eq. �29�� and the susceptibili-
ties �Eqs. �33� and �34�� are rather complicated functions of
the space coordinates, whose expressions could be found
only numerically, in the general case. In the asymptotic limit,
�2m���Rij�1, where Rij = �Ri−R j�, we find

�ij
� � �ij

� � 4g0��Ri,R j� ,

��Ri,R j� =
�g0�

2mRij
2

���
W

exp�− �2m���Rij�

� ��−�
W

exp�− �2m��−���Zi� + �Zj���

 J0�k−
�
�ij�h�� − �−�

+
��+�
W

exp�− �2m��+���Zi� + �Zj���

J0�k+
�
�ij�h�� − �+�� . �35�

Here, �ij
2 = �Xi−Xj�2+ �Yi−Y j�2=Rij

2 − �Zi−Zj�2 and k�
�

=�2m��−���. Therefore, the asymptotic behavior of the
spin polarization induced by an isolated impurity in the pe-
ripheral region of the � layer is

mi�R j� � 4�g0��Ri,R j�Si. �36�

The expressions �35� and �36� demonstrate the oscillating
distribution of the spin density around the local impurity
moment in the plane parallel to the � layer core. The periods
of oscillation of the contributions of the two confinement
subbands are proportional to the inverse of the corresponding
Fermi wavevectors, k�

� . The oscillations are exponentially
damped by the prefactor exp�−�2m���Rij�, whose character-
istic length is generically shorter than the oscillation wave-
length. A typical behavior of the spin density induced by an
isolated impurity in the periphery of the � layer is shown in
Fig. 3.

V. INFLUENCE OF THE CORE ON THE ORDERING OF
THE LOCAL SPINS IN THE PERIPHERY OF A

SMEARED FM � LAYER

In Secs. III and IV we have determined the spin polariza-
tion of the electron states which are formed near an ideal FM
plane defect and the influence of isolated peripheral mag-
netic moments on such a polarization. Now, we want to ana-
lyze the interaction mechanism between peripheral magnetic
moments, in the presence of the ideal FM plane defect.

In the smeared FM � layer the magnetic metal atoms lo-
cated at the core are coupled via the indirect exchange inter-
action with atoms of the same metal situated in the periph-
eral region at fairly large distance from the core. The point is
that the magnetic bias field of the core, whose influence is
transferred by means of the confinement electron states, af-
fects the peripheral magnetic atoms. To clarify this peculiar
proximity effect in the framework of our model, we need to
calculate the diagonal contribution Fd to the free energy �Eq.
�6��. Let us write it in the explicit form

FIG. 3. �Color online� Spin polarization of the electron states
induced by an isolated magnetic impurity in the peripheral region of
the � layer, Eq. �36�. The dimensionless variables z̆=�2m��+�z,
�̆=�2m��+��ij, and �̆=2
�2W exp�2Zi

�2m��+���m3/2�+
2�−1

��Ri ,R j�, where ��Ri ,R j� is taken from Eq. �30�, are reported on
the axes. The FM plane defect is located at z̆=0. The figure illus-
trates the case when the impurity is located at z̆=1 and �̆=0. This
point is shown in the figure. The function ��Ri ,R j� is formally
plotted for �̆�0.1.
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Fd = 

i

Im 	� d�



ln D�Ri,�� �37�

with

D�Ri,�� = 1 – 2��n · Si��ii + �2S2��ii
2 − �ii

2� .

In the case of the nondegenerated semiconductor host, the
integral �Eq. �37�� is nonvanishing provided at least one of
the confinement subbands is partially occupied, i.e., �+��
�0. Omitting the terms independent of the mutual orienta-
tion of the vectors n and Si and, hence, immaterial in the
present context, with an accuracy up to the terms on the
order of ��Sg0�2, we obtain for the exchange part of the
diagonal free energy the expression

Fd
�ex� = 


i

�Ai
�1��n · Si� + Ai

�2��n · Si�2� , �38�

where the exchange integrals are given by

Ai
�1� = A�1��Ri� = 2�	� d�



Im���Ri,Ri,��� ,

Ai
�2� = A�2��Ri� = 4�2	� d�



Im���Ri,Ri,���

 Re���Ri,Ri,���

and the expression for the function ��Ri ,Ri ,�� has been
given above, see Eq. �26�.

The first, bilinear, term in Eq. �38� is proportional to the
spin polarization of the carriers in the confinement states at
the impurity site, Ai

�1�=2�m0�Ri�. The magnitude of the cou-
pling depends on the position of the Fermi level and on the
distance between the impurity site and the core, Ai

�1�

=A�1���Zi� ,��. When only one of the confinement subbands
�say, the spin-up subband� is occupied, the effective indirect
exchange integral Ai

�1� keeps the same sign at all the impurity
sites. This means that, if the local exchange constants J and
� have the same sign, J��0, the impurity spins in the pe-
riphery �Si are polarized in the direction parallel to the core
magnetization M; similarly, if J��0, the impurity spins are
polarized in the direction antiparallel to the vector M. How-
ever, when both the spin-up and the spin-down confinement
subbands are occupied, the exchange integral Ai

�1� changes
sign at �Zi�=z0���, following the coordinate dependence of
the electron-spin polarization m0�z�, Eqs. �19� and �20�.
Hence, the alignment of the impurity spins near the core, at
�Zi��z0���, is opposite to the alignment of the impurity spins
far off the core, at �Zi��z0���. In this case, one could say
that the magnetic impurity atoms in the periphery would
screen to a certain extent the core magnetization of a
smeared �realistic� FM � layer.

The second, biquadratic, term in Eq. �38� can be ex-
pressed via the exponential integral �Eq. �16��. Under the
conditions ����� /W	1 and 2�Zi��2m������+������1, we
obtain the estimate

Ai
�2� �

��
W

��g0�2exp�− 2�2m������ + ������Zi��

�2�2m�Zi��2
.

It is clear that, as a rule, the bilinear coupling dominates over
the biquadratic coupling, �Ai

�1��� �Ai
�2��. Nevertheless, when

both the confinement subbands are occupied, the role of the
biquadratic coupling could turn out to be important for the
impurity atoms placed at the distance �Zi��z0��� from the
core, where the magnitude of Ai

�1� is very small.
To determine the indirect exchange coupling between the

impurity magnetic atoms dispersed in the peripheral region
of the smeared FM � layer, one has to calculate the off-
diagonal contribution to the free energy �Eq. �6��, Fod. By
keeping the terms up to the second order in god, we obtain
the expression

Fod = − 

ij

Im 	� d�

2

Tr�godtgodt�

= − 

ij

Im 	� d�

2
 

����

g���Ri,R j,��

t���R j,��g���R j,Ri,��t���Ri,�� , �39�

which takes into account all paired interactions between the
impurity local spins, i� j. The off-diagonal Green’s function
god entering Eq. �39� is given in Eqs. �11� and �12�, if one
sets r=Ri and r�=R j, where i and j are the impurity site
indexes �i� j�. Below we omit the terms that are indepen-
dent of the mutual orientation of the moments of the impu-
rities and the core, Si, S j, and M, and therefore are irrelevant
to the determination of the exchange coupling.

To the second order in the expansion parameter �Sg0, the
exchange part of the integrand in the right-hand side of the
Eq. �39� is given by

Tr�godtgodt��ex = 2�2��Si · S j���ij� ji − �ij� ji� + 2�n · Si�

�n · S j��ij� ji� . �40�

Correspondingly, the energy of the indirect exchange inter-
action between the magnetic atoms in the periphery takes the
form

Fod
�ex� = 


ij

�Bij�Si · S j� + Cij�n · Si��n · S j�� . �41�

The exchange integrals can be expressed via the nonlocal
susceptibility �Eqs. �33� and �34��

Bij = −
�2

2
�ij

� , �42�

Cij = −
�2

2
��ij

� − �ij
�� . �43�

Note that values of Bij and Cij decay exponentially with
increasing separation between the impurity atoms and the
core of the � layer over the scales on the order of l�
= ��2m�����−1, since the indirect interaction appears in the
nondegenerated semiconductor host due to the quasiparticle
excitations through the energy barrier ���� separating the
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confinement states from the conduction-band edge. At small
values of the ratio ���� /W, the main contribution to the ex-
change energy �Eq. �41�� comes from the first term involved
in the integral Bij. It is noteworthy that Bij does not vanish
even at M=0.

VI. COMPETITION BETWEEN DIFFERENT KINDS OF
EXCHANGE INTERACTIONS AND MAGNETIC

ORDERING IN THE PERIPHERY OF A SMEARED FM �
LAYER

In Sec. V we have determined the interaction between the
peripheral spin and the core of a smeared � layer, and the
indirect exchange between the peripheral spin mediated by
the confinement states. Now, we want to discuss the possible
patterns of spin configurations in the peripheral region.

The contributions �Eqs. �38� and �41�� to the exchange
energy of the local moments are associated with the carrier
confinement at the core of the � layer. However, when ana-
lyzing the magnetic ordering in the periphery of a FM �
layer, other possible sources of exchange interaction should
be considered. Indeed, we recall that, according to our
model, the peripheral region of the � layer constitutes per se
a nondegenerated DMS. In such a medium, the superex-
change interaction between the local moments through the
deep impurity states in the host plays an important role. For
instance, this matter had been investigated in detail in Ref.
24. Since deep impurity states were neglected in the initial
Hamiltonian �1�, we introduce an additional phenomenologi-
cal term of the Heisenberg type to the free energy of the
system, FSE=
ijIij�Si ·S j�, where the exchange integral Iij de-
pends only on the intersite distance �Ri−R j�, but not on the
separation of the moments Si and S j from the core. The de-
tails of the band structure of the semiconductor host deter-
mine the sign of the coupling Iij. Thus the whole expression
for the exchange energy of the impurity local moments in the
periphery of the � layer can be cast in the form

F�ex� = 

i

�Ai
�1��n · Si� + Ai

�2��n · Si�2� + 

ij

�Bij�Si · S j�

+ Cij�n · Si��n · S j�� + 

ij

Iij�Si · S j� . �44�

The case Iij�0 is not of deep interest, since the superex-
change �last� term in Eq. �44� merely enhances the tendency
to FM ordering, which exists due to the confinement �first
two� terms in Eq. �44�. Conversely, in the situation Iij�0,
that is quite possible according to Ref. 24, the AFM super-
exchange coupling could prevail in the periphery far away
from the core, where the integrals Ai

�1,2�, Bij, and Cij are
exponentially suppressed. Hence, the competition between
the superexchange and the confinement mechanisms of cou-
pling of the local moments is expected to appear in the pe-
riphery, not too far from the FM core. Unfortunately, a thor-
ough analysis of the magnetic configurations for the system
�Eq. �44�� is very difficult because of the complicated depen-
dence of the exchange integrals Ai

�1,2�, Bij, Cij, and Iij on the
site coordinates �Ri ,R j of the randomly distributed impuri-
ties. Therefore, we restrict our analysis to a qualitative esti-

mate of the possible magnetic states of the model �Eq. �44��,
under the condition Iij�0, adopting some simplifying as-
sumptions.

First, we assume that only the lower �say, spin-up� con-
finement subband is partially occupied and the terms propor-
tional to Ai

�2� and Cij are negligibly small, after the smallness
of the parameter ����� /W	1. Hereafter we omit the super-
fluous superscript and let Ai

�1�→Ai. Second, carrying out the
double summation in Eq. �44�, we retain the paired interac-
tions only between the nearest-neighboring impurity mo-
ments, �ij�. Moreover, the average interimpurity distance, ā
� n̄−1/3, is regarded to be much shorter than the characteristic
smearing thickness of the � layer, L, the carrier wavelength,
and the confinement state scale, so that the relations ā
	 l+ , �k+

� �−1	L hold. This means that, in the periphery of the
� layer, a rather large number of sites of the host are substi-
tuted by the impurity atoms, and the concept of the average
impurity concentration, n̄, is meaningful. Within this ap-
proximation, the integral Iij does not depend on the site in-
dexes �Iij→ I� and, in turn, the integrals Ai and Bij depend
only on the distance between the core and the impurity
site�s�. Thus, Eq. �44� is reduced to the expression

F�ex� = 

i

Ai�n · Si� + 

�ij�

�Bij + I��Si · S j� , �45�

where the summation in the second term is carried out over
the indexes of the nearest-neighboring sites �ij�

Ai � − A exp�−
�Zi�
l+
� , �46�

Bij � − B exp�−
�Zi� + �Zj�

l+
� �47�

with A ,B , I�0.
Let us introduce the impurity concentration n�z� averaged

over a scale larger than ā, which is homogeneous in the �x ,y�
plane, symmetric, n�z�=n�−z�, and decays away from the
core in the z direction. We first evaluate the energy of the
system �Eqs. �45�–�47�� for the simplest inhomogeneously
ordered configuration of the impurity moments. Namely, we
imagine that, within a layer adjacent to the core, at 0� �z�
�L0 /2, a homogeneous FM phase is established, and within
two layers that are further away from the core, at L0 /2� �z�
�L /2, a homogeneous two-sublattice AFM phase exists.
The magnetizations of the FM layer and of the core are par-
allel to each other; the magnetizations of the AFM sublattices
are coplanar to the vector M. In the mean-field approxima-
tion, the exchange energy per unit of area, f �ex�, for this con-
figuration is given as a function of the thickness L0 by the
expression

fF/A
�ex��L0� = 	

0

L0/2

dzn�z��dIS2 − �dBS2 + 2AS�exp�−
2z

l+
��

− 	
L0/2

�

dzn�z��dIS2 − dBS2 exp�−
2z

l+
�� . �48�

The parameter d is a coordination number that depends on
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the distribution of the impurity atoms among the sites of the
host at the periphery. Under the assumption of an uncorre-
lated distribution of the impurity atoms among the sites of a
simple cubic lattice, one can take the rough estimate d�6.

When the peripheral region of the smeared � layer has a
fairly sharp boundary, the impurity concentration can be ap-
proximated by the steplike function, n�z�= n̄h�L−2�z��. In
this case Eq. �48� is reduced to the form

fF/A
�ex��L0� = − n̄

dS2

2
�I�L − 2L0� + Bl+�1 + exp�−

L

l+
�

− 2 exp�−
L0

l+
�� +

2Al+

dS
�1 − exp�−

L0

l+
��� .

If dBS+A�dIS, the function fF/A
�ex��L0� reaches its minimum

value at L0=L0
�min�=0. In other words, the AFM ordering

dominates practically over the whole periphery. However, if
dBS+A�dIS, the function fF/A

�ex��L0� has a minimum at a non-
zero thickness L0=L0

�min��L, with

L0
�min� = l+ ln�BdS + A

IdS
� . �49�

Under such conditions, the mixed FM/AFM state appears to
be preferred for the impurity moments in the periphery.

Consider, for example, the situation in which the ex-
change between the impurity moments via the confinement
electron states gives the main contribution to the FM order-
ing within the layer �z��L0 /2 and the polarization effect of
the moments under the influence of the “molecular” field nAi
associated to the core is comparably weaker. As the param-
eter �A /BdS� tends to zero, one has L0

�min�=0 for I�B, and
L0

�min�= l+ ln�B / I� for I�B. This situation might be met in the
case of a � layer with weakly FM or even nonmagnetic core.
When the superexchange through the deep electron states is
strong, I�B, the dispersed local moments in the peripheral
region of the smeared � layer align antiferromagnetically,
and the FM order could be present only within the core. On
the contrary, when the superexchange is weak, I�B, a more
complex magnetic configuration establishes, which includes
a FM region near the core and an AFM region far off it.

It is remarkable that we arrive at the same results if we
adopt a smooth concentration distribution of the form n�z�
=n�0�exp�−�z� /z�0��.

Our rough estimations on the basis of the functional �Eq.
�48�� qualitatively sketch out the ordering pattern of the im-
purity moments. The simplified scheme discussed above
shows that the spin density in the vicinity of a real � layer
may be of an inhomogeneous nature, with domains of both
FM and AFM arrangement of the impurity moments. How-
ever, it is evident that the real magnetic structure in the pe-
riphery is by no means realized in the form of a FM and an
AFM layers with a sharp boundary between them. The com-
petition among various types of exchange coupling in the
periphery would lead to appearance of a spatially inhomoge-
neous state of the type of a domain wall.25 The characteristic
length scale and nature of the domain wall is determined by
the exchange stiffness and magnetic anisotropy of the DMS.
In the mean-field model of the � layer with competing inter-

actions, where the FM exchange between the impurity local
moments prevails over the AFM exchange near the core and
exactly the opposite situation occurs in the periphery, a do-
main wall parallel to the plane of the � layer mainly de-
scribes the large-scale arrangement of the impurity moments.

To capture the key features of the spatial magnetic struc-
ture of the � layer, we need to make some simplifications. On
the one hand, we assume that the thickness of the FM do-
main �L0 is rather small as compared to the characteristic
length scale of the spatial variation in the spin density, �,
which is implied to be comparable to �or lesser than� the
length scale of the smearing of the � layer L. On the other
hand, we assume that the exchange stiffness within the FM
region �i.e., the exchange stiffness of the core� is by order of
magnitude larger than the stiffness within the AFM periph-
ery. We neglect the occurrence of perpendicular domain
walls in the FM core region �which could appear, for in-
stance, due to dipole-dipole interaction�. Then, we restrict
the core magnetization and the peripheral spin-polarization
density to lay parallel to the plane of the � layer and be
uniform along this plane. Making these assumptions, we can
now study the magnetic ordering of the � layer by means of
an effective one-dimensional model which includes an infini-
tesimally thin and exchange hard FM layer inserted into an
exchange soft AFM bulk.

The total free-energy functional per unit area of this sys-
tem is written as a sum of the free energy of the AFM region,
fA

�ex�, the fourfold anisotropy contribution, fan, and the free
energy of the interface between the FM layer and the AFM
bulk, f int,

f = fA
�ex� + fan + f int.

In the absence of the FM layer, every lattice plane of impu-
rity magnetic atoms in the bulk of the assumed two-
sublattice antiferromagnet is regarded as fully compensated
which is quite natural in the situation of the random alloy in
the periphery. Therefore, far from the FM layer, the impurity
local moments align along one of the easy axes of aniso-
tropy, but approaching the FM plane defect, the magnetiza-
tions of the AFM sublattices deviate from this axis under the
influence of the exchange anisotropy field at the interface.

The first step to describe the magnetic configuration is to
go from a discrete array of impurity magnetic-moment vec-
tors to a continuous magnetization field. This is done in the
usual way by replacing the moment vector Si at the site i by
the continuous variable S�z�. As stated above, for simplicity,
we neglect variations in the magnetizations parallel to the
plane of the � layer so that the field S�z� depends only on the
argument z. The interaction terms between moments at
neighboring impurity sites in Eq. �45� are dealt with by as-
suming that S�z� changes slowly over length scales on the
order of the lattice spacing. The sublattice magnetizations are
identified by unit vectors ��z� and ��z�. The energy in the
AFM bulk is

fA
�ex� =	 dz����d�

dz
�2

+ �d�

dz
�2� + �� · �� , �50�

where �=dIS2n̄. The exchange energy terms are constructed
by expanding the magnetization fields about neighboring im-
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purity sites. The exchange stiffness constant in the AFM bulk
has been defined as �=dIS2n̄1/3 to include the material pa-
rameters, such as the coordination number and the impurity
concentration. The interface exchange energy per unit area is
then written as

f int = − jSM · �� + �� .

The exchange integral j can be defined as an average mea-
sure of the coupling between the spin density of the FM core
and the moments of the AFM sublattices in the periphery.
The vector M is directed along one of the easy axes, for
definiteness, say the x axis. Using an angular representation
for the sublattice magnetizations

� = �sin�� +  �,cos�� +  �,0� ,

� = �sin�� −  �,cos�� −  �,0� ,

the total energy can be written as the functional

f��, � =	 dz�2���d�

dz
�2

+ �d 

dz
�2� + � cos�2 �

+ 2K�sin2�2��cos2�2 � + cos2�2��sin2�2 ��

− 2jSM��z�cos� �sin���� , �51�

where K=K0n̄ is the fourfold anisotropy constant.
The extrema of the energy are found by varying the func-

tional f�� , � with respect to each angle. However, we re-
strict ourselves to configurations symmetric with respect to
the x axis, i.e., �=
 /2=const and  ����=
 /2, and
d 
dz ����=0. The impurity moment density is determined only
by the angle  , which measures the deviation of the orienta-
tion of the AFM sublattice magnetization from the direction
of the core magnetization M �see Fig. 4�. The minimum
deviation is reached at z=0. The variation �f

� =0 results in
the differential equation

�
d2 

dz2 +
�

2
sin�2 � − K sin�4 � = 0 �52�

with the associated boundary condition

d 

dz
�0+� −

d 

dz
�0−� =

jSM

2�
sin  �0� . �53�

The existence of the first integral of Eq. �52� allows us to
obtain the exact solution in the form

 �z� = arccos�� 4!

�1 − k2��1 + !2� + 2�1 + k2�!
� , �54�

where

! = !�z� = exp�4

k
�K

�
��z� + zb�� �55�

and

k2 =
4K

4K + �
.

The constant zb is determined by the boundary condition
�53�. Equations �54� and �55� describe the pattern of the do-
main wall of a two-sublattice AFM in a local magnetic field.
In the limit of a strong coupling between the FM and AFM
subsystems, when

!�0� − 1 �
16�K�

jSMk
	 1

the dependence  �z� takes the form of a 90° domain wall,
 �0��0 and  ����=
 /2 �see Fig. 4�: the two magnetiza-
tion are nearly parallel to each other �and to the core mag-
netization M� near the core and become antiparallel �and
perpendicular to the core magnetization M� away from the
core, where the ideal Néel AFM structure is recovered. In the
opposite case

�!�0� �
16�K�

jSMk�1 − k2
� 1

the sublattice magnetizations deviate only slightly from the y
easy axis perpendicular to the vector M

 �z� =



2
−

jSMk

8�K�
exp�−

2

k
�K

�
�z�� ,

i.e., the AFM order in the peripheral region is of a nearly
ideal Néel type even in the proximity of the core. As men-
tioned above, the characteristic length scale of the spatial
variation in the magnetization density  �z� does not exceed
the scale of the smearing of the � layer, �= k

2
��

K 	L.
Substitution of the solutions �54� and �55� into Eq. �51�

yields the energy of the system

ϕ(z)

M

αβ

x

z

y

FIG. 4. �Color online� Schematic pattern of the domain wall
which is formed parallel to the plane of the � layer �the �x ,y� plane
in the figure�, in the case of AFM ordering of the impurity spins in
the peripheral region. The case !�0�−1	1 is illustrated, in which
the two-sublattice magnetizations ��z� and ��z� are both aligned
nearly parallel to the core magnetization M in the proximity of the
core �where  �0��0� and the ideal Néel structure with antiparallel
sublattice magnetizations � �0�� 


2 � is only recovered far off the
core.

MEN’SHOV et al. PHYSICAL REVIEW B 80, 035315 �2009�

035315-12



f = f0 + ���

K� 4k

�1 − k2��1 + !2�0�� + 2�1 + k2�!�0�

�1 −
4!�0�
1 − k2

!�0� + 1

!�0� − 1
� − ln�!�0� + 1−k

1+k

!�0� + 1+k
1−k

�� , �56�

where f0=−L� is the energy of the two-sublattice antiferro-
magnet in the Néel state. As it is seen from Eq. �56�, it is
energetically more favorable to form a parallel domain wall
in the AFM periphery and lower the exchange energy at the
FM/AFM boundary rather than to align the AFM moments
along the easy axis and keep the maximum frustration of the
exchange couplings at this boundary.

VII. SUMMARY AND CONCLUDING REMARKS

The extent and character of the interaction between the
FM � layer and quasiparticles in the semiconductor host are
the key problems in the physics of the delta-doped nano-
structures. The explanation of their properties is directly con-
nected with both the morphology of the � layer and the spin
polarization of carriers over the whole doped region. The
matter is still poorly studied both from the experimental and
the theoretical point of view.

Thereupon, we wish to draw attention to Ref. 18, men-
tioned in Sec. I, in which the spin polarization of carriers in
the epitaxial heterostructure �Mn�0.11 nm�/GaAs� was ex-
plored by hot-electron photoluminescence. It was shown that
holes in the Mn � layers and electrons in the GaAs spacers
experience the strong influence of the FM core layer. The
magnitude of the spin polarization of these carriers is propor-
tional to the magnetization of the � layer. In Ref. 26 a strong
enhancement in electroluminescence intensity and a high de-
gree of its circular polarization �up to 50% at low tempera-
ture, T=1.8 K, and magnetic field B=9 T� are reported in
Schottky diodes with near contact InGaAs/GaAs quantum
well and a Mn � layer. High values of the degree of polar-
ization of electroluminescence are suggested to be due to
effective exchange interaction of holes with magnetic mo-
ments of Mn atoms in the nearby � layer. Using the results of
Sec. III, we can attempt a comparison with experimental data
and estimate the value of the characteristic length of the con-
finement states. Within the assumption that only one confine-
ment subband is occupied �say, the spin-up subband� and that
the degree of polarization of electroluminescence found in
Ref. 26 is proportional to the spin density m0�r� in Eq. �20�,
calculated at the InGaAs/GaAs heterocontact, we obtain for
this length scale the estimate l+�50 Å, which holds within
logarithmic accuracy �see Fig. 5�. We point out that, to better
interpret the data of Ref. 26, the distance from the core
should not be estimated as the thickness ds of the GaAs
spacer, i.e., the distance between the InGaAs channel and the
nominal location of the Mn � layer, but rather as the differ-
ence ds−dc, where dc�2 nm is the characteristic length of
the diffusion smearing of the � layer �i.e., the core half
width�. Of course, a shift by the constant quantity −dc does
not affect the result of the exponential fit of the tail of the
data, i.e., the value of l+.

From the value of l+ we can extract an estimate for the
position of the edge of the lower confinement-state subband,
��+�= �2ml+

2�−1�0.01 eV, where the value m�0.1m0 has
been used. In turn, from the relation �V�=2��+�l+ /a, we ob-
tain for the binding potential of the FM plane defect the
estimate �V��0.25 eV, where the value a�5 Å has been
used. The exchange part of the interaction between the car-
riers and the core can be roughly estimated by order of mag-
nitude, in analogy with DMSs, as �JM /V��0.1–0.2.

As we discussed above, in Sec. I, the field and tempera-
ture dependence of the magnetization of
GaAs /��Mn� /GaAs / InxGa1x

As /GaAs quantum wells with
the ��Mn� layer separated from the well by a 3-nm GaAs
spacer were studied in the temperature range of 3–300 K in a
magnetic field up to 6 T.6 A phase transition to a FM state
induced by an external magnetic field was found to occur at
a temperature below 40 K with a magnetization hysteresis
loop shifted from zero magnetic field. Our model of coexist-
ing FM and AFM regions within the smeared � layer, devel-
oped in Secs. IV and V, provides a microscopic basis for the
exchange-biasing phenomenological scheme adopted in Ref.
6 to interpret the outcomes of the experiments.

In our opinion, nontrivial experimental results showing
how the delta doping exerts influence upon magnetic prop-
erties of a DMS were obtained in Ref. 27. The hysteresis
loops obtained in the �Ga1−xMnx�N thin films with x=0.009
at T=5 K indicated a remarkable �by an order of magnitude�
increase in the magnetization once the Mn � layer had been
inserted into the GaN buffer layer at a distance of 25 nm
from the �Ga1−xMnx�N /GaN interface. Nevertheless, in the
delta-doped GaN film, ferromagnetism was not observed.27

Reference 28 reported on the preparation of delta-doped
amorphous Ge:Mn films, which displayed rather peculiar
magnetic and magnetoresistance features, depending on the
Mn concentration and on the nominal distance between
metal layers. These results were explained under the assump-
tion that there exist FM regions of the secondary phase, with

FIG. 5. �Color online� Comparison between experimental data
�Ref. 26� �boxes� and our theoretical prediction �solid line�. The
experimental data represent the logarithm of the normalized differ-
ence between the degree of polarization of the electroluminescence
signal and the background reference value, as a function of the
distance from the � layer in Schottky diodes with near contact
InGaAs/GaAs quantum well and a Mn � layer �adapted from Ref.
26�. The degree of polarization Pc is taken in correspondence of the
magnetic field B=9 T, where the electroluminescence signal is
nearly saturated.
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high Curie temperature, which appeared to be antiferromag-
netically coupled with each other at low temperature. The
authors of Ref. 29, by means of molecular-beam epitaxy,
succeeded in manufacturing a perfect �Si�20 Å� /Mn�x��
multilayers with the nominal � layer thicknesses x=1, 1.5,
and 2.0 Å. The samples exhibited, on the one hand, FM
ordering above room temperature and, on the other hand, a
Curie temperature decreasing with increasing Mn content.

The up-to-date state of the theoretical achievements does
not still permit to satisfactorily interpret the experimental
data on hybrid nanostructures based on semiconductors with
ultrathin FM metal layers. Above all, it would be necessary
to concentrate the effort on the description of the magnetic
ordering in a structurally inhomogeneous layer. For instance,
the way in which the alloy disorder influences FM ordering
in the metal submonolayer could be accounted for by means
of the coherent potential approximation. It seems that the
question about the magnetic properties of the layer with the
nanosized islandlike or clusterlike morphology is of current
relevance as well. As far as the problem of the magnetic
polaron in the nondegenerated semiconductor materials un-
der consideration is concerned, this remains a greatly contro-
versial topic. The issue is beyond the scope of our paper.
Nonetheless, we would like to point out that, according to
the very concept of magnetic polaron,30 the exchange inter-
action between local impurity spins in the nondegenerated
DMS is mediated by electron jumps through states of the
bulk impurity band. To leave this mechanism of exchange
out of our model, we can formally suppose that the impurity

band �if any� lies far from the confinement bands and the
Fermi level and, hence, does not contribute to the exchange.

Thus, we presented a semi-phenomenological scheme to
describe the spin ordering in the system containing an ultra-
thin FM metal layer embedded into a nondegenerated semi-
conductor host. The diffusion smearing of this layer is mod-
eled by its partitioning into two regions with relatively high
and low content of magnetic ions, i.e., the core and the pe-
riphery, respectively. We analyzed two types of a proximity
effect: �1� the polarization of the local spins of the metal ions
in the periphery induced by the FM core and �2� the indirect
exchange coupling among these spins via the core. Both ef-
fects owe their appearance to the electron confinement states
inside the semiconductor energy gap, which are inherent to
the potential of a FM plane defect in the bulk host. Having
determined the exchange integrals, we constructed the effec-
tive Hamiltonian of the local spins and estimated the ener-
gies of some magnetic configurations of the system.
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