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Hard lessons from Alzheimer’s Disease (AD) drug discovery 

The number of people affected by Alzheimer’s Disease (AD) are estimated to be a staggering 

14 million in the USA alone, and 100 million worldwide by 2050.1 Accordingly, there is an urgent 

need to discover and develop new therapeutic drugs to prevent, delay the onset, halt the 

progression, or improve the symptoms of AD.2 Regrettably, research focused on the development 

of AD therapies is having a very poor success rate.3,4 Up to now, only 5 drugs are approved for 

treatments of the symptoms of AD. No new drugs have been approved since 2003 and there are 

no approved disease-modifying drugs for AD.5 As a comparison, the success rate for the 

development of oncological compounds is approximately 19%, which drives pharma companies 

to invest mainly in areas other than AD. In addition, failures of drugs that created high expectation, 

such as Verubecestat (MK-8931).6-8 Semagacestat, (mAb) Bapineuzumab9 and the passive 

immunity drug Solanezumab (Eli Lilly)10 that reached phase III, are even casting doubts about the 

validity of the amyloid hypothesis11 of AD and driving big pharma such as Pfizer to withdraw from 

dementia research.12-13  

Many explanations for the very low rate of success of drug development for AD have been 

proposed. Lack of predictive validity of animal models, inadequate or incomplete understanding 

of the biology of AD, slowness in recruitment for trials and heterogeneity of patients, testing single 

therapies where combinations may be compulsory, wrong treatment target, incorrect drug doses, 

test therapies applied  in too advanced disease stages, lack of reliable biomarkers for the myriad 

affected biochemical processes, wrong choice of clinical endpoints, lack of efficacy of 

experimental therapies, appearance of unacceptable side effects, lack of new chemical entities 

(NCEs) resulting in few candidates entering Phase I, may be valid reasons.5, 14-17 

New approaches are clearly needed in to overcome this high rate of attrition of compounds 

for AD. Possibilities include the development of hypotheses derived from better disease 

knowledge, candidate lead compounds, repurposed drugs, immunotherapy, physical 

interventions and/or improved clinical trials. Thus, with the aim to contribute new candidate drugs 

that, after preclinical tests, may feed the currently exhausted pipeline of drugs in phase I for AD, 

here we describe a methodological approach to screen for novel and existing chemical entities 

that may stabilize Aβ peptides in solution and facilitate their clearance from brain.  
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Comparison to other assays to study A self-assembly process in the presence of other 

chaperone or non-chaperone proteins. Advantages of our assay. 

 

Several methods, either tracking the amyloid associated toxicity in cell lines or the amyloid 

aggregation in vitro, are used to screen anti-Alzheimer anti-amyloid drugs. Only some of them 

have been extrapolated to study the A self-assembly process in the presence of chaperone or 

non-chaperone proteins. Some examples reported in the literature to study binary protein-

protein interactions, are:  

a) Fluorescence Anisotropy to study the interaction between the retinol-binding protein and 

TTR,1 

b) Surface Plasmon Resonance (SPR) studies using Aβ as a ligand immobilized in the chips 

surface,2 

c) Electrochemical strategies to study the interaction between A peptides and gelsolin.3, 4 

d) Thioflavin-T fluorescence assays to study BSA/A interactions5 and, more recently, the 

interaction between protein tau and A6   

 

Of these described procedures, only a scarce minority have been used to explore ternary 

interactions. Some examples found in the literature are: a) the ThT study of a blocking peptide of 

the ApoE/Aβ interaction;7,8 b) the study of the interference of the Retinol-Binding Protein (RBP) 

in the TTR/Aβ interaction;9 c) the SPR study of the influence of unsaturated fatty acids on 

HSA/Aβ(1-40/1-42) interactions;10 and d) the ThT study of other molecules suppressing the 

HSA/Aβ(1-40) interactions.11 In contrast with SPR based methods, our assay is performed in 

solution and no need for A immobilization is required.  

 

Additionally, our assay has the following advantages:  

a) The entire process is run in a 96-well format, minimizes sample handling and mimics 

physiological conditions such as temperature and pH in vitro. 

b) It makes use of Aβ(12-28) which has analogous properties as Aβ(1-42), but is a less 

expensive more stable peptide, and makes use of recombinant TTR.  

c) By UV monitoring of the turbidity for 6 h in the HTS assay, the chaperoning potency of 

small-molecule compounds can be determined.  



 
S5 

 

d) The assay has been checked for reproducibility by statistical analysis and validated 

against of a small set of previously assayed good TTR ligands that behave as efficient 

small-molecule chaperones of the TTR−Aβ interactions. 

 

The rapid and simple HTS assay developed in this work is robust, reproducible and provides 

quantitative information on the aggregation process and helps at identifying novel chaperones of 

the TTR−Aβ interaction. Furthermore, the assay could be of use and implemented to evaluate 

other Aβ-binding proteins. 
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The Aβ(12−28) peptide 

 

The short Aβ amyloid peptide (VHHQKLVFFAEDVGSNK) has been extensively studied and is 

reported to exhibit essentially identical neurotoxic behavior and fibril formation features as the 

Aβ(1-42) and (1-40) peptides and thus has been used as a short model of the full Aβ 

peptides.[1]Structural studies of this Aβ(12-28) amyloid sequence have shown to contain a domain 

known as the “hydrophobic core” (residues 17-21) and a β-turn (residues 22-28).[2] These peptide 

stretches look essential for the formation of large aggregates and fibrils in the A(1-40) and A(1-

42) longer peptides.[3] Thus, mutations in the hydrophobic core such as Phe19/Pro19 have a large 

influence on the aggregation properties and even prevent fibrillization.[4] Also, the aggregation 

characteristics of Aβ(12−28) have a strong pH dependence.[5] The conformational characteristics 

of the Aβ(12-28) amyloid peptide have been studied extensively.[6]  Molecular dynamic studies[7] 

and investigations on the gas-phase structure of the amyloid peptide Aβ(12–28) have been 

published.[8] 
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Chemical compounds.  

Dimethyl sulfoxide (DMSO); N-(2-hydroxyethyl) piperazine-N′-(2-ethanesulfonic acid) (HEPES); 

glycine; Tris(hydroxymethyl)-aminomethane (Tris); TFA, Trifluoroacetic acid and dimethyl 

sulfoxide (DMSO) were acquired from Sigma Aldrich. All commercially available solvents and 

reagents were used without further purification. N,N´-Dimethylformamide (puriss. p.a., >99.8%) 

(DMF), 1-hydroxybenzotriazol (HOBt) for peptide synthesis, >99.8%) (NMP), dichloromethane 

(reagent grade, >99.5%) (DCM), methanol (reagent grade, >99.5%), trifluoroacetic acid (reagent 

grade, >98%) (TFA), piperidine (reagent grade, >98%), and N,N´-diisopropylcarbodiimide (99%) 

(DIC), Triisopropylsilane (TIS), were purchased from standard sources.  

The small-molecule compound iododiflunisal (IDIF), an iodinated analogue of the NSAID 

diflunisal was synthesized in our lab IQAC-CSIC following our reported procedures.1The NSAIDs 

diflunisal (DIF) and N-(3,5-dichlorophenyl)anthranilic (DCPA) were from Sigma Aldrich. (diflunisal, 

D3281; DCPA, D8942; purity ≥98%). The small-molecule N-(3,5-difluorophenyl)anthranilic (DFPA) 

was prepared in our lab as previously described.2 Purity of all final compounds was proved to be 

≥95% by means of HPLC, HR-MS, and NMR techniques. Stocks of compounds assayed as small 

molecule ligands were dissolved in DMSO (ACS spectrophotometric grade, Sigma 154938) to a 

final 10 mM concentration. Working solutions of ligands were prepared by taking an aliquot of 50 

µl of the DMSO (5%) stock solution and diluting it with 950 µl of buffer A (25 mM HEPES buffer, 

10 mM glycine, pH 7.4 was prepared in the absence of salt), ratio (1:20), equivalent to a 500 µM 

concentration of ligand.  
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Interaction with A-Beta Peptide-Relevance in Alzheimer’s Disease. PloS ONE 2012, 7 (9):e45368. 
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Recombinant wild-type human (wt rhTTR) production and purification 

 
Recombinant wild-type hTTR was produced using a pET expression System. Human wild type 

rhTTR gene was cloned into a pET expression system and transformed into E. coli BL21(DE3) 

Star. The phTTRwt-I/pET-38b(+) plasmid was kindly provided by Prof. Antoni Planas (IQS, URL). 

The expressed protein only contains an additional methionine on the N-terminus if compared to 

the mature natural human protein sequence. wt rhTTR protein was expressed in E. coli BL21-

(DE3) cells harbouring the corresponding plasmid. Expression cultures in 2xYT rich medium 

containing 100 µg/mL kanamycin were grown at 37 °C to an optical density (at 600 nm) of 4 

(OD600≈4), then induced by addition of IPTG (1 mM final concentration), grown at 37 °C for 20 

h, and harvested by centrifugation at 4 ºC, 10000 rpm for 10 min and resuspended in cell lysis 

buffer (0,5 M Tris-HCl, pH 7.6). Cell disruption and lysis were performed by French press followed 

by a sonication step at 4ºC. Cell debris were discarded after centrifugation at 4ºC, 11000 rpm for 

30 min. Intracellular proteins were fractionated by ammonium sulfate precipitation in three steps. 

Each precipitation was followed by centrifugation at 12ºC, 12500 rpm for 30 min. The pellets were 

analysed by SDS-PAGE (14% acrylamide). The TTR-containing fractions were resuspended in 

20 mM Tris-HCl, 0.1 M NaCl, pH 7.6 (buffer A) and dialyzed against the same buffer. It was 

purified by Ion exchange chromatography using a Q-Sepharose High Performance (Amersham 

Biosciences) anion exchange column and eluting with a NaCl linear gradient using 0.1M NaCl in 

20 mM Tris-HCl pH 7.6 buffer A to 0.5 M NaCl 20 mM Tris-HCl pH 7.6 (buffer B). All TTR-enriched 

fractions were dialyzed against deionized water in three steps and were lyophilized. The protein 

was further purified by gel filtration chromatography using a Superdex 75 prep grade resin (GE 

Healthcare Bio-Sciences AB) and eluting with 20 mM Tris pH 7.6, 0.1 M NaCl. Purest fractions 

were combined and dialyzed against deionized water and lyophilized. The purity of protein 

preparations was >95% as judged by SDS-PAGE. Average production yields were 150-200 mg 

of purified protein per liter of culture. Protein concentration was determined 

spectrophotometrically at 280 nm using calculated extinction coefficient value of 17780 M-1.cm-

1 for wtTTR. The protein was stored a -20ºC (See Scheme S1). A full description of this procedure 

will be published elsewhere. 
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Scheme S1. Expression and purification of wild type transthyretin protein (wtTTR).  
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Protein expression and purification 

 

Following the protocol shown in Scheme S1 we obtained 150 mg of wtTTR/L culture. Purity of wt 

rhTTR was checked by SDS-PAGE and mass spectrometry (MS). Our sequence has a molecular 

mass of 13910 Da and contains an additional methionine of 149,21 Da on the N-terminus, 

compared to the mature natural human protein sequence which has an average molecular mass 

of 13762 Da.) (See Figure S1). As shown in the Figure the wt rhTTR obtained has > 98% of purity 

after the last purification by size exclusion chromatography (SEC). 

 

 

 
 

 

Figure S1. SDS-PAGE (14% acrylamide) of wt rhTTR. Selected fractions are shown with arrows 

in red. 
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Characterization of wtTTR by MALDI-TOF MS 

 

Protein solution and sinapinic acid (SA) matrix (saturated solution of SA in 30:70 v/v acetonitrile: 

water at 0.1 % TFA) were mixed at 1:1 ratio. A volume of 0.5 µL of the previous mixture was 

deposited into a polished stainless-steel target (Bruker) and allowed to dry. The deposited sample 

was washed with 0.1 % TFA solution and allowed to dry again. Finally, 0.5 µL of SA matrix were 

deposited into the washed sample and allowed to dry. Same procedure was done for the Protein 

Standard Calibration I solution (Bruker). The target was introduced in a Microflex MALDI-TOF 

(Bruker), spectra was acquired in lineal mode (Flex Control, Bruker) and processed (Flex 

Analysis, Bruker). External calibration with Protein Standard Calibration I (Bruker) was performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. MALDI-ToF MS. Mass spectrum of wtTTR, both unmodified form 13915 Da and Cys-

10 modified form (S-GSH) with 14202 Da. The MS spectrum also shows signal of (M+2H)2+.  
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Turbidity assay 

 

The following stock solutions were used: Buffer A: 25 mM HEPES buffer, 10 mM glycine, pH 7.4 

was prepared in the absence of salt. Protein (TTR) stock: 9,5 mg/mL (170 M) in 25 mM HEPES 

buffer, 10 mM glycine, pH 7.4 and 5% DMSO (final concentration) was prepared in the absence 

of salt (buffer A). For the A peptide stock: 0,4 mg/mL (200 M) in 25 mM HEPES buffer, 10 mM 

glycine, pH 7.4 and 5% DMSO (final concentration). For the small-molecule compound IDIF, a 

first solution of 3,76 mg/mL (10 mM) in DMSO was prepared. The final stock of the small-molecule 

IDIF was prepared by mixing 50 µL of the previous DMSO solution with 950 µL of buffer A (the 

final concentration of 5% DMSO). 

First, the small-molecule compound and TTR complex was formed. To this end, 60 µL of 

TTR stock was dispensed into the wells of a 96-well microplate. 40 µL of small-molecule stock 

was added to give final concentrations of 100 µM. The plate was introduced in the microplate 

reader (SpectraMax M5 Multi-Mode Microplate Readers, Molecular Devices Corporation, 

California, USA) and incubated for 1h at 37 °C with orbital shaking 15 s every 30 min. Then, 100 

L of Aβ solution was added to the well to give a final concentration of 100 M. 

Other wells of the 96-well microplate are filled with: a) Buffer alone: 200 µL of buffer A 

solution was added to the well; b) Negative control of A aggregation: 200 µL of Aβ(1-11) stock 

solution in buffer A was dispensed into the wells; c) Testing TTR aggregation: 60 µL of TTR stock 

were dispensed into the wells of a 96-well microplate and 140  µL of buffer A were added; d) For 

the Aβ(12-28) aggregation: 100 µL of Aβ(12-28) stock solution is dispensed into the wells and 

100 µL of buffer A were added.   

The plate was incubated at 37 °C in a thermostated microplate reader with orbital shaking 

15 s every minute for 30 min. The absorbance at 340 nm was monitored for 6 h at 30 min intervals. 

Data were collected and analyzed using Microsoft Excel software. All assays were done in 

duplicate.  

 

𝑅𝐴(%) = [1 − (
𝐴𝑏𝑠𝑐

𝐴𝑏𝑠Aβ + 𝐴𝑏𝑠𝑐

)] ∗ 100                         (1) 

 

The parameter monitored in this assay was used to calculate the percent reduction of formation 

of aggregates (RA %) according to equation 1, where AbsAβ and Absc are the final absorbance of 

the samples, in the absence or in the presence of the small-molecule compound/TTR complex; 

respectively.  
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Turbidity assay: stock solutions  

 

Other wells of the 96-well microplate are filled with: a) Buffer alone: 200 µL of buffer A solution 

was added to the well; b) Negative control of A aggregation: 200 µL of Aβ(1-11) stock solution 

in buffer A was dispensed into the wells; c) Testing TTR aggregation: 60 µL of TTR stock were 

dispensed into the wells of a 96-well microplate and 140  µL of buffer A were added; d) For the 

Aβ(12-28) aggregation: 100 µL of Aβ(12-28) stock solution is dispensed into the wells and 100 

µL of buffer A were added.   

 

 
 

Scheme S2. Representation of the microplate with different samples before Turbidity assay. 

 

Preliminary experiments 

Turbidity assays: Aggregation kinetics of Aβ(12-28)  

 
Figure S3. Aβ(12-28) aggregation monitored by turbidity assay at 37 °C over 6 h at pH 7.4 in 25 mM HEPES 

buffer, 10 mM glycine and 5% DMSO (final concentration) at 37 ºC. Aggregation kinetics of: Aβ(12-28) alone 

(100 M) (dark blue line); Aβ(12-28) (50 M) in the presence of TTR (50 M) (blue line) (ratio 2:1); and 

Aβ(12-28) (100 M) in the presence of the complex TTR/IDIF (TTR 50 M; IDIF 100 M)  (ratio 2:1:2) (green 

line). Samples were assayed in duplicate and are representative of three different replicates (n=6). Negative 

controls (buffer solutions) are not shown.  
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Design of experiments (DoE)  

Factorial designs are one of the most important DoE because they produce efficient 

experiments that allow observation of responses to one factor at different levels of other factors 

in the same experiment.1,2 They allow the investigation of the main effect of factors but also their 

interactions (when factors do not act independently of others). Factors are types of treatments 

(quantitative or qualitative) which have several levels. The Factorial design consists of all possible 

combinations of the levels of several factors. These combinations (runs) are defined and randomly 

ordered and realized in the laboratory, obtaining therefore the value of the response variable (Y) 

for each factor’s combination. Behind the Factorial design a statistical model is defined: an 

Analysis of Variance (ANOVA) model. Several sums of squares are constructed to estimate the 

effects of factors and their interactions on Y. Tests of hypotheses about factor effects and their 

interactions are also calculated to determine the statistical significance. More than one replicate 

of each combination of the experiment is needed to estimate the variance error. To reduce the 

experimental error variation a method called blocking can achieve more precision. Blocking 

consists of introducing an additional factor called block which is an external variable to the 

treatments and that creates a stratification of the runs into homogeneous groups. The block effect 

can be also introduced into the statistical model and be estimated. The statistical software used 

was JMP 12.1.0 (SAS Institute).3 

 

1. Kuehl, R. O. Design of experiments: statistical principles of research design and analysis. 2nd ed.; 

Duxbury/Thomson Learning Pacific Grove: CA, 2000. 

2. Box, G. E. P.; Stuart Hunter, J.; Hunter, W.G. Statistics for Experimenters: Design, Innovation, and 

Discovery. 2nd ed.; Wiley-Interscience: New Jersey, 2005. 

3. JMP ®, Version 12.1.0. SAS Institute Inc., Cary, NC, USA. 

 

Method development and optimization 

The variable to be maximized has been the absorbance. Preliminary investigations were carried 

out to select initial analysis conditions, taking into account that temperature and ionic strength 

may have a nonlinear effect on the fibril formation, we have considered these two factors in a 

two–level design, the temperature at 37 ºC and 40 °C and the ionic strength ([NaCl]) at 0 and 100 

mM. The concentration was considered at three levels 50, 100 and 200 µM, because we wish 

identified the sensitivity for our method. The UV absorption maxima for Aβ-peptide fibril formation 

is achieved at 340, 360 and 405 nm. The flow layout of a Design of Experiments for method 

development and data analysis is illustrated in Scheme S3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme S3. Flow layout in Design of Experiments (DoE). 
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Spectral scanning of Aβ(12-28)  

 
Figure S4. Spectral scanning of a 200 µM solution of Aβ(12-28). The blue trace corresponds to 

the initial clean solution (Si) and the green to the same solution after 6h at 37ºC that became 

turbid (Sf). Three different experiments were conducted with duplicate samples (n=6).*** Studies 

performed at pH 7.4 in 25 mM HEPES buffer, 10 mM glycine and 5% DMSO (final concentration) 

at 37 ºC. 

Factorial design by applying JMP software 

 

A factorial design was applied in our analysis (Table S1). Initial number of experiments was 48, 

creating the matrix design described in Table S2. We modified the initial matrix design adding a 

column to study the effect of different batches of peptide, as a block effect. Randomizing all runs 

we realized the experiments in the laboratory and the measured values of absorbance for each 

run were obtained (Table S2). In some of these combinations (3-+, 3+- and 3++) it was not 

possible to obtain the absorbance. 

The Table S3 shows the initial 48 numbers of experiments, plus 2 replicates that were explored 

for the 2-- combination on the 2nd level of the block (factors’ selected conditions). To confirm 

results at these selected set of conditions, six more runs (n=6) were randomly done and analyzed, 

in order to ensure reproducibility of the previous results. 

Analysis of variance (ANOVA) results of the adjusted model are shown in Table S4. Results 

shown as the model is globally statistically significant (p < 0.0001). Goodness of fit measures as 

R squared values (RSq), the root mean square error (RMSE) and graphs between the original 

absorbance and predicted absorbance were analyzed. The significance of the parameters in the 

model is shown in Table S2. 

It was found that all the main factors (concentration, ionic strength and temperature) and the 

interactions between concentration and the other two factors were statistically significant but not 

the temperature versus ionic strength interaction. As expected, the block factor was not 

statistically significant (Table S5). 

Table S1. Design levels of factors. 

Factor1 Low level High level Midpoint 

Concentration (µM) 50 200 100 

Temperature (°C) 37 40 * 

Ionic strength (mM of NaCl) 0 100 * 
1The initial numbers of experiments were 48. 
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Table S2. Matrix design of the experimental runs.  

Run Concentration Temperature Ionic Strength Block 

1−− 50 37 0 1 

1−+ 50 37 100 1 

1+− 50 40 0 1 

1++ 50 40 100 1 

2−− 100 37 0 1 

2−+ 100 37 100 1 

2+− 100 40 0 1 

2++ 100 40 100 1 

3−− 200 37 0 1 

3−+ 200 37 100 1 

3+− 200 40 0 1 

3++ 200 40 100 1 

1−− 50 37 0 1 

1−+ 50 37 100 1 

1+− 50 40 0 1 

1++ 50 40 100 1 

2−− 100 37 0 1 

2−+ 100 37 100 1 

2+− 100 40 0 1 

2++ 100 40 100 1 

3−− 200 37 0 1 

3−+ 200 37 100 1 

3+− 200 40 0 1 

3++ 200 40 100 1 

1−− 50 37 0 2 

1−+ 50 37 100 2 

1+− 50 40 0 2 

1++ 50 40 100 2 

2−− 100 37 0 2 

2−+ 100 37 100 2 

2+− 100 40 0 2 

2++ 100 40 100 2 

3−− 200 37 0 2 

3−+ 200 37 100 2 

3+− 200 40 0 2 

3++ 200 40 100 2 

1−− 50 37 0 2 

1−+ 50 37 100 2 

1+− 50 40 0 2 

1++ 50 40 100 2 

2−− 100 37 0 2 

2−+ 100 37 100 2 

2+− 100 40 0 2 
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2++ 100 40 100 2 

3−− 200 37 0 2 

3−+ 200 37 100 2 

3+− 200 40 0 2 

3++ 200 40 100 2 

 

Table S3. JMP data table of Complex Factorial Design runs with their corresponding measured 

responses of absorbance.  

Run1 Concentration Temperature Ionic Strength Block Absorbance 

1−− 50 37 0 1 0,0449 

1−+ 50 37 100 1 0,0497 

1+− 50 40 0 1 0,0673 

1++ 50 40 100 1 0,0656 

2−− 100 37 0 1 0,1197 

2−+ 100 37 100 1 0,1206 

2+− 100 40 0 1 0,1152 

2++ 100 40 100 1 0,1239 

3−− 200 37 0 1 0,1617 

3−+ 200 37 100 1 * 

3+− 200 40 0 1 * 

3++ 200 40 100 1 * 

1−− 50 37 0 1 0,0457 

1−+ 50 37 100 1 0,0486 

1+− 50 40 0 1 0,0552 

1++ 50 40 100 1 0,0592 

2−− 100 37 0 1 0,1188 

2−+ 100 37 100 1 0,1193 

2+− 100 40 0 1 0,1134 

2++ 100 40 100 1 0,1208 

3−− 200 37 0 1 0,1692 

3−+ 200 37 100 1 * 

3+− 200 40 0 1 * 

3++ 200 40 100 1 * 

1−− 50 37 0 2 0,0555 

1−+ 50 37 100 2 0,0516 

1+− 50 40 0 2 0,0557 

1++ 50 40 100 2 0,0581 

2−− 100 37 0 2 0,114 

2−+ 100 37 100 2 0,126 

2+− 100 40 0 2 0,1256 

2++ 100 40 100 2 0,1292 

3−− 200 37 0 2 0,1773 

3−+ 200 37 100 2 * 

3+− 200 40 0 2 * 

3++ 200 40 100 2 * 
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1−− 50 37 0 2 0,059 

1−+ 50 37 100 2 0,0548 

1+− 50 40 0 2 0,0565 

1++ 50 40 100 2 0,0591 

2−− 100 37 0 2 0,1132 

2−+ 100 37 100 2 0,1249 

2+− 100 40 0 2 0,1283 

2++ 100 40 100 2 0,1304 

3−− 200 37 0 2 0,1716 

3−+ 200 37 100 2 * 

3+− 200 40 0 2 * 

3++ 200 40 100 2 * 

2−− 100 37 0 2 0,125 

2−− 100 37 0 2 0,1219 

2−− 100 37 0 2 0,1264 

2−− 100 37 0 2 0,1237 

2−− 100 37 0 2 0,126 

2−− 100 37 0 2 0,1278 

1Original runs (48) plus 6 additional replicates. 

 

Table S4. Analysis of Variance (ANOVA) results. 

 

Source of 

variation 

Sum of 

Squares 

Degrees of 

Freedom 

Mean  

Square 

F Ratio Prob > F 

Model 0,057 7 0,0082 67,8353 < 0,0001* 
Error 0,0044 30 0,00012   
Total 0,061 37    

 

 

 

 

 

Figure S5. Prediction profile and desirability plot in the complex factorial design. 
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In the prediction profile JMP software automatically adjusts the graph to display the optimal 

settings at which the best response of the absorbance is obtained. The factors temperature and 

ionic strength did have a significant but poor effect on the absorbance response. Block factor was 

not statistically significant.  

Table S5. Analysis of variance results for the different factors and their interactions in the 

turbidimetric assay.  

 

Source of variation Log Utility 
p-value1 

Concentration 16,444 0,000 

Concentration*Ionic strength 2,917 0,001 

Ionic Strength 1,713 0,019 

Temperature 1,698 0,020 

Concentration*Temperature 1,368 0,043 

Block effect 0,974 0,106 

Temperature*Ionic strength 0,018 0,959 
1 Statistically significant factors and interactions are those whose p-value < 0.05. 
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Turbidity assays: Aggregation kinetics of Aβ(12-28) and Aβ(1-42) peptides up to 

18 h: 

a) in the presence and absence of IDIF; b) in the presence of TTR; and c) in the 
presence of TTR + IDIF 

 

 

Figure S6:   

A) Inhibition of Aβ(12-28) aggregation monitored by turbidity assay at 37 °C over 18 h. 

Aggregation kinetics of: Aβ(12-28) alone (dark violet line); Aβ(12-28) in the presence of IDIF (red 

line); Aβ(12-28) in the presence of TTR (blue line); and Aβ(12-28) in the presence of the complex 
TTR/IDIF (green line).  

B) Inhibition of Aβ(1-42) aggregation monitored by turbidity assay at 37 °C over 18 h. Aggregation 
kinetics of: Aβ(1-42) alone (dark violet line); Aβ(1-42) in the presence of IDIF (red line); Aβ(1-42) 
in the presence of TTR (blue line); and Aβ(1-42) in the presence of the complex TTR/IDIF (green 
line). Samples were assayed in duplicate and are representative of three different replicates 
(n=6). Negative controls (buffer solutions) are not shown. (Fig. S6B was included in the 
Supporting Information from Cotrina et al. J. Med. Chem. 2020, 63, 3205-3214). 
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Turbidity assays: aggregation kinetics of A(1-42) with A(12-28) at two different 

concentrations followed by Turbidity assays. 

 

 

Figure S7: Aggregation kinetics of A peptides by Turbidity assay at 37 °C over 10 h.: Aβ(1-42) 

alone (dark blue line); Aβ(12-28) (100 M) (light blue line); Aβ(12-28) (50 M) (bright blue line); 
and Aβ(1-42) and Aβ(12-28) in the presence of the complex TTR/IDIF (green lines). Samples 
were assayed in duplicate and are representative of three different replicates (n=6). Negative 
controls (buffer solutions) are not shown 

A similar comparison of the aggregation kinetics of different A peptides, including 

A(12-28), was reported using ThT assays with A(1-40), A(1-42), and A(12-28) at 

100 M (Sadowski et al. 2004, page 941). 

M. Sadowski, J. Pankiewicz, H. Scholtzova, J. A. Ripellino, Y. Li, S. D. Schmidt, P. M. Mathews, J. 

D. Fryer, D. M. Holtzman, E. M. Sigurdsson, T. Wisniewski. A synthetic peptide blocking the 

apolipoprotein E/beta-amyloid binding mitigates beta-amyloid toxicity and fibril formation in vitro and 

reduces beta-amyloid plaques in transgenic mice. Am. J. Pathol. 2004, 165, 937-948. 

  



 
S22 

 

 

Thioflavin-T (ThT) fluorescence assays 

The robustness of our turbidimetry-based method was further validated on the basis of 

comparative by Thioflavin-T (ThT) fluorescence assays on the same system. The ThT 

fluorescence was monitored at 37 °C using Gemini XPS plate reader (Molecular Devices) at an 

excitation wavelength of 440 nm and an emission wavelength of 490 nm. Thioflavin-T (ThT) was 

dissolved in 25 mM HEPES buffer, 10 mM glycine, pH 7.4 and 5 % DMSO to a final concentration 

of 10M. Aggregation of Aβ(1-42) 20 μM was performed in the presence of 10 μM ThT. All 

solutions were dissolved in the same buffer. TTR was added to a final concentration of 10 μM. 

IDIF was added to a final concentration of 20 μM. For the ternary complex, TTR was incubated 

first with IDIF for 1h, then Aβ(12-28) was added. The final volume was 200 μL for all samples. 

Fluorescence intensity at 490 nm of each sample was monitored after each 2h for 8h, and then 

at 21h. Measurements were performed as independent triplicates. Recorded values were 

averaged and background measurements (buffer containing 25 M ThT) were subtracted. 

Measurements were performed as independent triplicates. Recorded values were averaged and 

background measurements (buffer containing 25 M ThT) were subtracted. 

 

Thioflavin T studies: Aggregation kinetics of A(12-28) and A(1-42) 

Aggregation kinetics of Aβ(12-28) (Figure S8A) and Aβ(1-42) peptide (Figure S8B):  

alone; in the presence of TTR or in the presence of TTR stabilized with different small-

molecule compounds. 

 

Figure S8A: ThT assays of the aggregation of Aβ(12-28) alone (50 M), in complex with TTR 

(25 M), or in complex with TTR stabilized with different small compounds (50 M),  (TTR/IDIF, 
TTR/DCPA and TTR/DFPA). ThT fluorescence was measured at 37 ºC each 10 min for 3h, then 
each 20 min from 3 h to 6 h, and then at 8 h. Samples were assayed in duplicate and are 
representative of three different replicates (n=6). Negative controls (buffer solutions) are not 
shown.  
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Figure S8B: ThT assays of the aggregation of Aβ(1-42) alone (20 M), in complex with TTR (10 

M), or in complex with TTR stabilized with different small compounds (20 M),  (TTR/IDIF, 
TTR/DIF,  TTR/Tafamidis, TTR/DCPA and TTR/DFPA). ThT fluorescence was measured at 37 
ºC each 10 min for 3h, then each 20 min from 3 h to 6 h, and then at 8 h. Samples were assayed 
in duplicate and are representative of three different replicates (n=6). Negative controls (buffer 
solutions) are not shown.  

Transmission Electron Microscopy (TEM) 

Aβ(12-28) peptide (100 μM), alone or with TTR (20 M) (alone or pre-incubated with IDIF for 

1 hour at 37 °C) was incubated at 37 °C for 48 h. For visualization by TEM, 5 µl sample aliquots 

were absorbed to carbon-coated collodion film supported on 200-mesh copper grids, for 5 

minutes, and negatively stained with 1% uranyl acetate. Grids were exhaustively examined with 

a JEOL JEM-1400 transmission electron microscope equipped with an Orious Sc1000 digital 

camera.  

 

Morphological analysis of aggregates and of their cell toxicity: TEM studies 

It is well established that Aβ peptide, in particular its oligomeric form, is toxic to cells 

leading to apoptosis and cellular death. Previous work has demonstrated that TTR 

protects against this neurotoxicity.1-3 

1.  R. Costa, A. Gonçalves, M. J. Saraiva, I. Cardoso, Transthyretin binding to A-Beta peptide--

impact on A-Beta fibrillogenesis and toxicity. FEBS Lett., 2008, 582, 936-942. 

2.  L. Nilsson, A. Pamrén, T. Islam, K. Brännström, S. A. Golchin, N. Pettersson, I. Iakovleva, L. 

Sandblad, A. L. Gharibyan, A. Olofsson, Transthyretin Interferes with Aβ Amyloid Formation by 

Redirecting Oligomeric Nuclei into Non-Amyloid Aggregates. J. Mol. Biol. 2018, 430, 2722-2733. 

3.  S. A. Ghadami, S. Chia, F. S. Ruggeri, G. Meisl, F. Bemporad, J. Habchi, R. Cascella, C. M. 

Dobson, M. Vendruscolo, T. P. J. Knowles, F. Chiti, Transthyretin inhibits primary and secondary 

nucleation of amyloid-β peptide aggregation and reduces the toxicity of its oligomers. 

Biomacromolecules, 2020, 21, 1112-1125.  
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TEM studies: Aβ(12-28) in the presence of TTR and of the TTR/IDIF complex.  

(reported in Cotrina et al. J. Med. Chem. 63, 6, 3205-3214 (2020). 

To assess the structure of the Aβ(12-28) species generated in the presence of TTR and of the 

TTR/IDIF complex, we performed a morphological analysis by transmission electron microscopy 

(TEM). The ultrastructural examination confirmed the known facts [perhaps reference needed] 

that after 48 h of incubation at 37 °C, Aβ(12-28) formed highly ordered and structured fibrils. In 

Figure S9A, it is possible to appreciate that fibrils are formed by several protofilaments, laterally 

assembled (arrow) or twisted over each other (arrowhead). In the presence of TTR only round 

particles and thin and shorter fibrils were detected (Figure S9B, arrow and arrowhead, 

respectively). When TTR was previously incubated with IDIF the inhibitory effect was more 

pronounced and only round and small particles were observed (Figure S9C). 

 
  

Figure S9. Morphologic assessment by TEM of the influence of TTR on Aβ(12-28) fibrillization. 

A)  Aβ(12-28) after 48 h of incubation at 37 °C; B) Aβ(12-28) in the presence of TTR; and C) 

Aβ(12-28) in association of TTR/IDIF complex. Scale bar = 200 nm.  
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Toxicity studies: Aβ(1-42) in the presence of TTR and of the TTR/IDIF complex  

 
Cell culture and caspase-3 assay  

SH-SY5Y cells (human neuroblastoma cell line; European Collection of Cell Cultures) were 

propagated in 25-cm2 flasks and maintained at 37 °C in a 95% humidified atmosphere and 5% 

CO2. Cells were grown in Dulbecco’s minimal essential medium supplemented with 10% fetal 

bovine serum (Gibco BRL). Activation of caspase-3 was measured using the CaspACE 

fluorimetric 96-well plate assay system (Sigma), following the manufacturer’s instructions. Briefly, 

10 μM Aβ(1-42) (Genscript) pre-incubated for 48 h at 4 °C with shaking, in F12 media (Gibco 

BRL) with or without 2 μM TTR (alone or previously incubated with IDIF (20 μM) for 1 h at 37 °C), 

were added to 80% confluent cells, cultured in 6-well plates, in Dulbecco’s minimal essential 

medium with 1% fetal bovine serum, and further incubated for 24 h, at 37 °C. Subsequently, each 

well was trypsinized and the cell pellet was lysed in 100 μl of hypotonic lysis buffer (Sigma). Forty 

μL of each cell lysate were used in duplicates for determination of caspase-3 activation. The 

remaining cell lysate was used to measure total cellular protein concentration with the Bio-Rad 

protein assay kit (Bio-Rad), using BSA as standard. Values shown are the mean of duplicates 

and the experiment was performed twice. Comparison between groups was made using the 

Student’s t-test. A P value of less than 0.05 was considered statistically significant. 

 

As depicted in Figure S10, we confirmed that TTR prevented the noxious effect of the Aβ(1-

42) peptide, reducing in about 45% the levels of caspase-3 activation, as compared to the levels 

produced by the oligomers, although the reduction was not enough to reach the values obtained 

in the control with media alone. Importantly, TTR stabilized by IDIF was even more potent and 

caspase-3 levels were reduced in over 60%, as compared to the oligomers. Again, the caspase-

3 levels were not as low as the control but were significantly lower than those of measured in cells 

incubated with Aβ co-incubated with TTR (without IDIF).  

 

Altogether, these results confirm that TTR is a neuroprotective protein, preventing Aβ 

fibrillogenesis and toxicity, and that TTR performance can be enhanced by small-molecule 

chaperones of the TTR/A interaction, thus validating our high-throughput assay, and prompting 

TTR stabilization as a promising therapeutic strategy in AD. 

 

 

Figure S10. Caspase-3 activation in cell culture. Aβ(1-42) oligomers (10 μM), TTR (2 μM), or 

Aβ(1-42) co-incubated at 4 °C for 48 h with TTR alone or TTR complexed with IDIF (20 μM) for 1 

h at 37 °C, were then added to SH-5YSY cultured cells and further incubated for 24 h at 37 °C. *, 

# and & denote significance as compared to control, to Aβ(1-42) oligomers and to Aβ(1-42) + 

TTR, respectively. && p < 0.01; **** or #### P < 0.0001. 
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Statistical analysis 

The quality of an assay for HTS can be evaluated based on the Z’-factor which reflects the 

separation in mean values for the high and low controls while taking into consideration the 

variability within each group.1 A Z’ factor below zero indicates poor quality assay with no 

separation between the high and low controls. A Z’ factor value between 0.5 and 1 indicate an 

excellent quality assay with large separation between the high and low controls. Preferably, 

optimized assays have a Z’ value above 0.5. The statistical Z’-factor can be calculated using 

equation 2: 

 

𝑍′ = 1 −  
3𝑆𝐷 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒+3𝑆𝐷 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

|𝑚𝑒𝑎𝑛 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒−𝑚𝑒𝑎𝑛 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙|
       (2) 

where sample is the highest RA% for Aβ(12-28) in presence of the binary complex (TTR+IDIF) or 

TTR alone, and the control is the Aβ(12-28) aggregation. “Mean” is the mean value of the 

aggregation after 6 h, and SD is the standard deviation. 

 

1. J. H. Zhang, T. D. Chung and K. R. A. Oldenburg, Simple Statistical Parameter for Use in Evaluation 

and Validation of High Throughput Screening Assays. J. Biomol. Screen., 1999, 4, 67-73. 

 

Amyloid peptides.  

 

Aβ(1-42) peptide  

In order to prevent the spontaneous formation of aggregates in solution, we have used the depsi-

Aβ(1-42) peptide (Genscript,  RP10017-1), a chemically-modified β-amyloid (1-42) precursor. 

This depsipeptide precursor is converted into the corresponding native Aβ(1-42) peptide by a 

change in pH (1, 2). 

References: 

1. Y. Sohma, M. Sasaki, Y. Hayashi, T. Kimura, Y. Kiso, Design synthesis of a novel water-soluble 
Aβ1-42 isopeptide: an efficient strategy for the preparation of Alzheimer’s disease-related peptide 
Aβ1–42 via O–N intramolecular acyl migration reaction. Tetrahedron Lett. 2004, 45, 5965-5968. 

 
2. M. Beeg, M. Stravalaci, A. Bastone, M. Salmona, M. Gobbi, A modified protocol to prepare seed-

free starting solutions of amyloid-β (Aβ) 1-40 and Aβ 1-42 from the corresponding depsipeptides. 

Anal. Biochem. 2011, 411, 297-299. 

Other amyloid sequences 

The amyloid peptide sequences Aβ(1-11) and Aβ(12-28) were purchased from Bachem AG 

(Switzerland) as trifluoroacetate salts (ref. H-2956 and H-7910, respectively). The Aβ(12-28) 

peptide was also synthesized by microwave solid-phase peptide synthesis (MW-SPPS) using 

Fmoc chemistry using the corresponding Fmoc protected amino acids. Cleavage from resin was 

performed using TFA/H20/TIS (95:2,5:2,5) (V:V:V) and the peptide was precipitated with tert-butyl 

methyl ether. The peptide was purified by RP-HPLC using a VersaFlash® system and 

characterized by analytical RP-HPLC and MALDI-TOF-MS and compared to the commercial 

sample acquired from Bachem (H-7910). 
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Synthesis of Abeta (12-28)  

 

The peptide was synthesized both by conventional SPPS and by microwave MW-SPPS 

conditions. 

General procedure for conventional manual Solid-Phase Peptide Synthesis (SPPS). Amino 

acids, building blocks, coupling reagents and prederivatized Fmoc-Lys(Boc)-Wang resin  (0.7 

mmol/g) were purchased from Novabiochem AG. All reagents used for synthesis were from 

analytical grade.  

The peptide was synthesized manually following standard solid phase methods and Fmoc 

protocols on Fmoc-Lys(Boc)-Wang prederivatized resin using amino acids with orthogonal 

protections on lateral chains. Amide couplings were performed manually in a peptide synthesis 

column using DIC/HOBt in DMF under reciprocal oscillating agitation. Coupling efficiencies were 

monitored by Kaiser ninhydrin test. Fmoc groups were removed with a 20% piperidine in DMF 

solution.  

Peptides were cleaved from the resin by shaking with a cleavage cocktail consisting of 

TFA:H2O:TIS (95:2.5:2.5) for 2 h. The filtrate was evaporated, washed several times with ice-cold 

tert-butyl methyl ether and concentrated under reduced pressure. The crude peptide was 

precipitated with ice-cold tert-butyl methyl ether, filtered, redissolved in water and lyophilized. 

Crude peptide was purified by C-18 RP-HPLC (VersaFlashTM Flash Chromatography system) 

using a water-acetonitrile gradient and followed by lyophilization. The final pure peptide was 

characterized by MALDI-ToF MS and UPLC-ToF MS. Analytical RP-HPLC were performed using 

the following solvents A (0.1% TFA in H2O) and B (0.1% TFA in acetonitrile) and the Nucleosil 

100 RP-18 (5µm) C18 column (4x 250 mm). The retention time was compared to a commercially 

available sample from Novabiochem. 

General procedure for Microwave Solid Phase Peptide Synthesis (MW-SPPS). 

We followed similar procedures as describe in the literature:  

B. Bacsa S. Bosze C. O. Kappe Direct solid-phase synthesis of the beta-amyloid (1-42) 

peptide using controlled microwave heating. J. Org. Chem. 2010, 75, 2103-2106.  

Equipment: CEM Liberty Blue system on a 0.1 mmol scale using Fmoc-Lys(Boc)Wang resin   (0.7 

mmol/g) and a 5-fold excess of reagents [0.2 M amino acid solution (in DMF) with 0.5 M DIC (in 

DMF) and 1.0 M Oxyma (in DMF) or 0.45 M HBTU (in DMF) and 2.0 M DIEA (in NMP with 10 fold 

excess)]. 

Using CEM for the synthesis of Abeta (12-28) two coupling procedures were used:  

a) The “single coupling” procedure for all amino acids except Histidines at 75ºC; and 

 

b) the “Double 50 c coupling” was used for Histidine. The sensitive FmocHis(Trt)-OH 

residues were built to into the sequence switching from 75ºC  to room temperature  in 

order to minimize racemization using an extended reaction time of 60 min and applying 

a double coupling strategy. 

H-VHHQKLVFFAEDVGSNK-OH 

H-Val-His-His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Asn-Lys-OH 
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Common steps to all the couplings: 
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Characterization of Abeta (12-28): HPLC and MS.  

HPLC analysis  

Analytical RP-HPLC with a Nucleosil 100 RP-18 (5µm) C18 column (4x 250 mm). Flow rate: 

1mL/min. Solvents used: A: 0.1% TFA in H2O; B: 0.1% TFA in acetonitrile 

Gradient: From A:B (80:20) to A:B (20:80) in 25 min.  

RT (BACHEM SAMPLE, REF 4014778) = 9.19 min 

 

Figure S11: Analytical HPLC of Abeta(12-28) from Bachem. 

After VersaFlashTM RP-HPLC purification 

From A:B (80:20) to A:B (20:80) in 25 min.  RT  = 9.1 min 

 

Figure S12: HPLC of purified Abeta(12-28) obtained by SPPS. 

  

HPLC Aβ (12-28) BACHEM
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UPLC-ToF MS  

 

 

 

 

 

 

 

 

 

 

 

Figure S13: UPLC-ToF-MS of Abeta(12-28) obtained by SPPS. 

  

For Aβ(12-28) C89H135N25O25

Calculated:

- (M+3H)+3 = 652,3432

- (M+2H)+2 = 978,0109

- (M+1H)+1 = 1955,0139
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Isothermal Titration Calorimetry (ITC) studies:  

thermodynamic parameters for the Aβ(12-28)/TTR/DCPA interaction 

 

 
 

Figure S14: ITC analysis of the interactions: A) the binary complex TTR + Aβ(12-28); B) the 

ternary complex of [TTR + DCPA)] and Aβ(12-28). All these ITC studies were performed at pH 

7.4 in 25 mM HEPES buffer, 10 mM glycine and 5% DMSO (final concentration) at 25 ºC. 

 

Table S6: Thermodynamic parameters for the Aβ(12-28) / TTR interaction and the 

ternary interaction (TTR + DCPA)  + Aβ(12-28) . 

Assay n 
Kd  

(µM) 
ΔH 

(Kcal/mol) 
TΔS 

(Kcal/mol) 
ΔG 

(Kcal/mol) 

TTR + Aβ(12-28) 1 3,1 -4,52 3,23 -7,76 

(TTR + DCPA) + Aβ(12-28) 1 1,1 -2,25 5,84 -8,09 

     

 

  

(cell)

(syringe)

(TTR + DCPA) 

+ Aβ(12-28) 

A B

DCPA

(cell)

(syringe)

TTR +  Aβ(12-28) 

N 1

Kd 3.0 µM

ΔG -7.76 Kcal/mol

ΔH -4.52 Kcal/mol

TΔS 3.23 Kcal/mol

N 0.91

Kd 1.14 µM

ΔG -8.09 Kcal/mol

ΔH -2.25 Kcal/mol

TΔS 5.84 Kcal/mol
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Isothermal Titration Calorimetry (ITC) studies:  

thermodynamic parameters for the Aβ(12-28)/TTR/DFPA interaction 

 

 
 
 

Figure S15: ITC analysis of the interactions: A) the binary complex TTR + Aβ(12-28); B) the 

ternary complex of [TTR + DFPA)] and Aβ(12-28). All these ITC studies were performed at pH 

7.4 in 25 mM HEPES buffer, 10 mM glycine and 5% DMSO (final concentration) at 25 ºC. 

 

Table S7: Thermodynamic parameters for the Aβ(12-28) / TTR interaction and the ternary 

interaction (TTR + DFPA) + Aβ(12-28). 

Assay n 
Kd  

(µM) 
ΔH 

(Kcal/mol) 
TΔS 

(Kcal/mol) 
ΔG 

(Kcal/mol) 

TTR + Aβ(12-28) 1 3,1 -4,52 3,23 -7,76 

(TTR + DFPA) + Aβ(12-28) 1 0,6 -2,24 6,07 -8,30 

     

 

  

A B

N 1

Kd 3.0 µM

ΔG -7.76 Kcal/mol

ΔH -4.52 Kcal/mol

TΔS 3.23 Kcal/mol

N 1.01

Kd 0.56 µM

ΔG -8.30 Kcal/mol

ΔH -2.24 Kcal/mol

TΔS 6.07 Kcal/mol

(cell)

(syringe)

(TTR + DFPA) 

+ Aβ(12-28) 

A B

DFPA

(cell)

(syringe)

TTR +  Aβ(12-28) 
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Preliminary data for additional compounds using the HTS system:  

 

Triiodophenol, Epigallocatechin gallate (EGCG), Resveratrol (RESV) and the 

repurposed drug tolcapone. 

 

 

Triodophenol 

 

 

Figure S16. Aggregation kinetics of Aβ(12-28) measured by the turbidity assay at 37 °C over 6 

h. A) Aggregation of A(12-28): in the presence of TTR (binary complex) and in the presence of  

TTR + IDIF (ternary complex) and in the presence of  TTR + TIP (ternary complex)  . Studies were 

performed at pH 7.4 in 25 mM HEPES buffer, 10 mM glycine and 5% DMSO (final concentration) 

at 37 ºC. B) Aggregation kinetics of Aβ(12-28) measured by the turbidity assay at 37 °C over 6 h 

in the presence of TTR, in the presence of IDIF and in the presence of TIP. 

Miroy GJ, Lai Z, Lashuel HA, Peterson SA, Strang C, Kelly JW. Inhibiting transthyretin 

amyloid fibril formation via protein stabilization. Proc Natl Acad Sci U S A. 1996, 

93(26):15051-6. doi: 10.1073/pnas.93.26.15051.  

Dolado, I.; Nieto, J.; Saraiva, M. J. M.; Arsequell, G.; Valencia, G.; Planas, A. Kinetic assay 
for high-throughput screening of in vitro transthyretin amyloid fibrillogenesis inhibitors. J. 
Comb. Chem. 2005, 7, 246−252. 
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Resveratrol (RESV) (3,5,4′-trihydroxy-trans-stilbene) 

 

 
 

Figure S17. Aggregation kinetics of Aβ(12-28) measured by the turbidity assay at 37 °C over 6 

h. A) Aggregation of A(12-28): in the presence of TTR (binary complex) and in the presence of  

TTR + IDIF (ternary complex) and in the presence of  TTR + RESV (ternary complex) . Studies 

were performed at pH 7.4 in 25 mM HEPES buffer, 10 mM glycine and 5% DMSO (final 

concentration) at 37 ºC. B) Aggregation kinetics of Aβ(12-28) measured by the turbidity assay at 

37 °C over 6 h in the presence of TTR, in the presence of IDIF and in the presence of RESV. 

Klabunde T, Petrassi HM, Oza VB, Raman P, Kelly JW, Sacchettini JC. Rational design of 

potent human transthyretin amyloid disease inhibitors [published correction appears in Nat 

Struct Biol 2000 May;7(5):431]. Nat Struct Biol. 2000, 7312-321. doi:10.1038/74082. 

 

Ladiwala AR, Lin JC, Bale SS, Marcelino-Cruz AM, Bhattacharya M, Dordick JS, Tessier 

PM. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Abeta into 

off-pathway conformers. J Biol Chem. 2010, 285, 24228-24237. 

doi:10.1074/jbc.M110.133108 
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Epigallocatechin gallate (EGCG)  

 

 

Figure S18. Aggregation kinetics of Aβ(12-28) measured by the turbidity assay at 37 °C over 6 

h. A) Aggregation of A(12-28): in the presence of TTR (binary complex) and in the presence of  

TTR + IDIF (ternary complex) and in the presence of  TTR + EGCG (ternary complex)  . Studies 

were performed at pH 7.4 in 25 mM HEPES buffer, 10 mM glycine and 5% DMSO (final 

concentration) at 37 ºC. B) Aggregation kinetics of Aβ(12-28) measured by the turbidity assay at 

37 °C over 6 h in the presence of TTR, in the presence of IDIF and in the presence of EGCG. 

Miyata M., Sato T., Kugimiya M., Sho M., Nakamura T., Ikemizu S., Chirifu M., Mizuguchi 

M., Nabeshima Y., Suwa Y., et al. The crystal structure of the green tea polyphenol (-)-

epigallocatechin gallate-transthyretin complex reveals a novel binding site distinct from the 

thyroxine binding site. Biochemistry. 2010; 49, 6104–6114. doi: 10.1021/bi1004409. 

 

Ferreira N, Saraiva MJ, Almeida MR. Natural polyphenols inhibit different steps of the 

process of transthyretin (TTR) amyloid fibril formation. FEBS Lett. 2011, 585, 2424-30. 

 

Gimeno, A., Santos, L.M.; Alemi, M.; Rivas, J.; Blasi, D.;  Cotrina, E.Y.; Llop, J.; Valencia, 

G.; Cardoso, I.; Quintana, J.; Arsequell, G.; Jiménez-Barbero, J. Insights on the Interaction 

between Transthyretin and Aβ in Solution. A Saturation Transfer Difference (STD) NMR 

Analysis of the Role of Iododiflunisal. J. Med. Chem. 2017, 60, 5749-5758. 

doi:10.1021/acs.jmedchem.7b00428. 
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Tolcapone 

 

Figure S19: ThT assays of the aggregation of Aβ(1-42) alone (20 M), in complex with TTR (10 M), or in 

complex with TTR stabilized with different small compounds (20 M)  (TTR/Tolcapone, and  TTR/Tafamidis). 
ThT fluorescence was measured at 37 ºC each 10 min for 3h, then each 20 min from 3 h to 6 h, and then at 
8 h. Samples were assayed in duplicate and are representative of three different replicates (n=6). Negative 
controls (buffer solutions) are not shown.  

The following ITC study on the repurposed drug tolcapone is included at the Supporting 

Information in a recent paper that will be published in Journal of Alzheimer's Disease (JAD). 

(https://www.j-alz.com/vol77-1): Oral Treatment with Iododiflunisal Delays Hippocampal 

Amyloid-β Formation in a Transgenic Mouse Model of Alzheimer’s Disease: A Longitudinal 

in vivo Molecular Imaging Study. Luka Rejc, Vanessa Gómez-Vallejo, Xabier Rios, Unai 

Cossío, Zuriñe Baz, Edurne Mujica, Tiago Gião, Ellen Y. Cotrina, Jesús Jiménez-Barbero, Jordi 

Quintana, Gemma Arsequell, Isabel Cardoso, Jordi Llop. J. Alzheimer’s Disease (2020). (In 

press). 

 

TOLCAPONE

https://www.j-alz.com/vol77-1
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Figure S20: ITC analysis of the interactions: A) the binary complex TTR + Aβ(12-28); B) the ternary complex 

of [TTR + TOLCAPONE)] and Aβ(12-28); and C) the ternary complex of [TTR + IDIF)] and Aβ(12-28).. All 

these ITC studies were performed at pH 7.4 in 25 mM HEPES buffer, 10 mM glycine and 5% DMSO (final 

concentration) at 25 ºC. 
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