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Route to calculate the length scale for the glass transition in polymers
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The occurrence of glass transition is believed to be associated to cooperative motion with a growing length
scale with decreasing temperature. We provide a route to calculate the size of cooperatively rearranging regions
(CRR) of glass-forming polymers combining the Adam-Gibbs theory of the glass transition with the self-
concentration concept. To do so we explore the dynamics of glass-forming polymers in different environments.
The material specific parameter « connecting the size of the CRR to the configurational entropy is obtained in
this way. Thereby, the size of CRR can be precisely quantified in absolute values. This size results to be in the
range 1-3 nm at the glass transition temperature depending on the glass-forming polymer.

DOI: 10.1103/PhysRevE.76.011514

I. INTRODUCTION

The nature of the glass transition is one of the most im-
portant unsolved problems in condensed matter physics and
research in this field has enormously intensified in the last
decades due to its strong fundamental as well as applicative
implications. Among the peculiar phenomena displayed by
glass-forming liquids, the super-Arrhenius temperature de-
pendence of the viscosity and the structural correlation time
is certainly one of the most intriguing. In this framework,
more than 40 years ago Adam and Gibbs [1] theorized that
such a pronounced temperature dependence of the structural
correlation time is due to a cooperative process involving
several basic structural units forming cooperatively rearrang-
ing regions (CRR), which size increases with decreasing
temperature. Since then a great deal of theoretical ap-
proaches [2,3] as well as simulation studies [4] and very
recently experimental studies employing multipoint dynami-
cal susceptibilities [5] have been devoted in the search of
good candidates for CRR as well as their size and tempera-
ture dependence. All of these studies suggest that a growing
correlation length with decreasing temperature of the order
of several nanometers exists. According to the Adam-Gibbs
(AG) theory of the glass transition, the increase of the struc-
tural relaxation time with decreasing temperature, accompa-
nied by the growth of the cooperative length scale, is due to
the decrease of the number of configurations the glass former
can access, namely the configurational entropy (S.) of the
system. The connection between the structural relaxation
time and S. is expressed by [1]

=15 exp[C/(TS,)], (1)

where C is a glass former specific temperature independent
parameter and 7 is the pre-exponential factor. The dynamics
of a large number of glass-forming systems have been suc-
cessfully described through the AG equation in both experi-
ments for low molecular weight glass formers [6] and poly-
mers [7], as well as simulations [8]. Recent studies on
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polymerizing systems also provide a successful application
of the AG equation [9]. Apart from the relation between the
relaxation time and the configurational entropy, the AG
theory provides a connection between the number of basic
structural units belonging to the CRR and the configurational
entropy, N %Sgl. Several recent simulation studies, where
the cooperative length scale and the configurational entropy
were obtained within the framework of the stringlike motion
and the potential energy landscape of the glass former, re-
spectively, successfully tested the validity of this correlation
[10]. Being the number of particles proportional to the vol-
ume of the CRR, the characteristic length scale £ can be
related to the configurational entropy by

&=r.=as;'", (2)

where r,. is the equivalent radius of the CRR and « is a
material specific parameter. Here, the exponent —1/3 implies
that the fractal dimension for the growth of CRR equals 3.
This value means that CRR possess a compact shape grow-
ing in three directions. This hypothesis has been rationalized
within the framework of the random first-order transition
theory [11]. Very recent molecular dynamics simulations in a
Lennard-Jones liquid, performed taking into account the mo-
tion of all particles [12], also suggest that the structural re-
arrangement involves the motion of compact regions. De-
spite the ability to describe the temperature dependence of
the structural relaxation and predict an increasing length
scale with decreasing temperature, the glass-former specific
parameter « is not reliably obtained from the AG theory as
highlighted by several authors [3,13]. Hence, the size of the
CRR cannot be estimated a priori from the AG theory alone.
In this work we apply the AG theory to polymer blends and
polymer-mixture systems in order to provide a new route to
precisely determine the parameter o and hence the size of
CRR. To do this, we incorporate in the AG theory the con-
cept of self-concentration first proposed by Chung and Ko-
rnfield [14] and later developed by Lodge and McLeish [15]
to describe the segmental dynamics of miscible polymer
blends. This approach has been recently exploited by us to
describe the dynamics of miscible polymer blends and con-

©2007 The American Physical Society


https://core.ac.uk/display/372713321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevE.76.011514

CANGIALOSI, ALEGRIA, AND COLMENERO

FIG. 1. (Color online) Schematic illustration of the self-
concentration concept.

centrated polymer solutions and provided an accurate de-
scription of the component segmental dynamics (the « relax-
ation) of these systems [16]. The essential features of the
concept of self-concentration are explained in Fig. 1 and can
be summarized as follows: when a volume is centered on the
basic structural unit of one of the polymers of a given mix-
ture, the effective concentration (o) will be in general dif-
ferent from the macroscopic one. Two extreme cases are pos-
sible: (i) if this volume equals the volume of the basic
structural unit, then ¢.=1; (ii) if, on the other hand, this
volume is large enough, ¢.¢ will be equal to the macroscopic
concentration, ¢.g=¢. The effective concentration is related
to the self-concentration (¢,) and to the macroscopic concen-
tration through [15], @g=d+(1—¢p,)p. The self-
concentration, namely the volume fraction occupied by the
isolated chain containing the unit of reference, can be related
to the radius of the volume through simple geometric con-
siderations involving the Kuhn and the packing lengths [17].
It is worth remarking that, as the volume of CRR is expected
to be neither large enough to make the concentration equal to
the macroscopic one nor equal to that of the monomer (¢
< py<1) [15-17], the component dynamics will be inter-
mediate between that of the pure polymer and the average
structural dynamics of the mixture. This means that the self-
concentration concept constitutes an extremely sensitive tool
when exploring length scales of the order of those expected
for CRR. Furthermore, the prominent role of self-
concentration is in agreement with the hypothesis of a char-
acteristic length scale for the glass transition.

In order to apply the AG theory to mixtures, S., C, and 7,
in Egs. (1) and (2) must be evaluated in the cooperative
volume. This means that these quantities are functions of the
effective concentration of the polymer under examination. In
our previous works, we found that a linear combination of
the parameters of the pure components of the mixture
through the effective concentration allows a good description
of dynamics data [16],

X = egr aXa + (1 = egr ) Xp, (3)

where X is either S., C or In 7. Due to the experimental
inaccessibility of the configurational entropy, we have ex-
ploited the proportionality of this quantity with the excess
entropy, namely the entropy of the liquid in excess to that of
the corresponding crystal. However, it is worth noticing that
the proportionality constant between the two magnitudes is
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unlikely to be the same for both components of the mixtures.
This means that this proportionality constant will be depen-
dent on the effective concentration in most of the cases and
the straightforward employment of the excess entropy in-
stead of the configurational entropy is not rigorously correct.
However, it was found that the effective concentration only
varies with temperature by less than 0.1 for all investigated
mixtures at fixed macroscopic concentration. In this range of
variation, the change of the proportionality constant between
excess and configurational entropy can always be substan-
tially neglected and, therefore, the excess entropy can still be
used to fit data. An alternative approach would be that fol-
lowed by us in some recent papers [18], where the configu-
rational entropy was directly obtained for all components of
the mixtures employing the approach of Di Marzio and Dow-
ell [19] or using available literature data [20].

Equations (1), (2), and (3) can be fitted to experimental
data having « as the only unknown parameter. As this is a
glass-former specific parameter, the presence of the other
component in CRR can in principle affect the value of a.
This has been found to be the case especially for polymer-
solvent systems [16,18]. We have overcome this problem by
studying the dynamics of polymer-polymer and polymer-
solvent mixtures at elevated concentration of the polymer for
which « is being calculated. This allows a straightforward
extrapolation of the « parameter to the pure polymer. Fur-
thermore, it is noteworthy that for concentrated polymer
mixtures both concentrations fluctuations, which might affect
the dynamics, and deviations from ideality, which would in-
duce the failure of Eq. (3), are minimized. We have thus
obtained values of « for polystyrene (PS), poly(vinyl acetate)
(PVAc) and used those already obtained for poly(o-
chlorostyrene) (PoClS) [16], poly(vinyl methyl ether)
(PVME) [16], polyisoprene (PI) [18], and poly(vinylethyl-
ene) (PVE) [18]. In such a way we have investigated six
typical glass-forming polymers with different rigidity. We
have found that a single polymer specific value of a is ob-
tained when extrapolating to 100% concentration indepen-
dently on the environment surrounding the polymer under
consideration. The achievement of a temperature indepen-
dent « parameter results, via Eq. (3), in an increasing length
scale for structural relaxation with decreasing temperature of
the order of nanometers. In particular, the resulting size of
CRR was between 1 and 3 nm depending on the character-
istics of the polymer. For a given polymer in the accessible
temperature range the diameter of CRR only varies by about
20%.

II. EXPERIMENT

PVAc, poly(2,6-dimethyl-1,4-phenylene oxide) (PPhO),
ortho-terphenyl (OTP), and toluene were purchased by
Sigma-Aldrich. The molecular weight of the two polymers
were, respectively, M, =83000 g/mol (M, /M,=42)
and M,=23000 g/mol (M,/M,=2.3). PS was purchased
from Polymer Source Inc. The molecular weight was
M,=70400 g/mol (M,,/M,=1.04). Bis-phenol-C-
dimethylether (BCDE) was synthesized as describe else-
where [21]. Highly concentrated PS and PVAc in different
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TABLE I. Relevant parameters for investigated polymers. Data for the C parameter of the AG relation, the
parameters a and b of the excess specific heat and « are referred to on a per mole of monomer basis.

PVME PVAc PS PoCIS PI PVE
T,(K) 249 304 373 402 213 263
Tx(K) 203.5 256 322 340 167 228
log;o 7o -13.0 -13.8 -124 -12.9 -13 -10.6
C(J mol™' K1) 21900 41450 26400 61800 20400 6400
a(J mol™ K1) 68.3 105.3 99.0 98.4 60.2 28.3
b(I mol' K1) -0.16 -0.21 -0.17 -0.17 -0.14 -0.02
I(A) 13 17 18 17.3 8.2 14
1,(A) 2.7 3.7 3.9 3.9 32 2.8
(73 mol~'3 K-173) 10.7+0.5 17+0.5 19.5+0.5 24+2 17.5+0.5 11+0.5

environments were investigated by means of broadband di-
electric spectroscopy (BDS). PVAc and PS dynamics were
investigated, respectively, in toluene and BCDE, and OTP
and PPhO. Dielectric measurements were carried out using a
high precision dielectric analyzer (ALPHA, Novocontrol
GmbH) and a Novocontrol Quatro cryosystem for tempera-
ture control with a precision of 0.1 K. Measurements were
performed over a wide frequency (1072—10° Hz) and tem-
perature range in isothermal steps starting for the highest
temperature. As a general rule the relevant relaxation time at
any temperature was obtained from dielectric relaxation
spectra as the reciprocal of the angular frequency at the
maximum of the permittivity loss. Structural relaxation data
for toluene [22], BCDE [23], OTP [24], and PPhO [25] were
taken from the literature. Calorimetric measurements were
carried out on pure PVAc, PS, and BCDE by means of the
differential scanning calorimeter (DSC-Q1000) from TA-
Instruments. Measurements were performed in a temperature
modulated mode with average heating rate of 0.1 K/min and
amplitude of 0.3 K. Different oscillation frequencies were
investigated and the so-obtained specific heats were extrapo-
lated to zero frequency in order to obtain quasistatic values
of the specific heat itself. Specific heats of toluene and OTP
[26], and PPhO [27] were taken from the literature. Since the
configurational entropy cannot be determined experimen-
tally, the entropy of the liquid in excess to the corresponding
crystal was used exploiting the proportionality between the
two magnitudes [7]. This only scales the value of C in Eq.
(1) and « in Eq. (3). A linear form of the excess specific heat,
ACP=C;,“°h—C;W“al, where a and b are material specific con-
stants, was employed to obtain the excess entropy [28]. This
was obtained integrating the relation [ ;K[AC,,(T)/T daT;
where T is the Kauzmann temperature, namely the tempera-
ture where the entropy of the liquid equals that of the crystal.
Due to the lack of crystalline specific heat data for glass-
forming polymers, the latter quantity was determined identi-
fying it with the temperature where the dielectric relaxation
time of the a process tends to diverge [6]. Hence, the knowl-
edge of the parameters a and b allows fitting pure compo-
nents dynamics data through the AG equation (dashed line in
Fig. 3 for pure PVAc) to obtain C, In 7y, and Tg. The values
of the parameters ¢ and b together with T,, Tx, C, and
logyy 7o are summarized in Table I for the pure polymers.

Literature values of the packing (/,) and Kuhn (/) length,
relating the size of CRR to the self-concentration [17], are
also included. In addition, previously obtained BDS and
calorimetric data for PVAc in poly(ethylene oxide) [29], for
PoCIS in PVME and low molecular weight PS [16] and
PVME in toluene, PoCIS and PS with various molecular
weight [16] were employed.

III. RESULTS AND DISCUSSION

In this section, we present the results obtained for mix-
tures at high concentration of PVAc as a showcase and illus-
trate the methodology followed to evaluate the parameter «
for this polymer. Figure 2 shows the dielectric loss versus
frequency for PVAc at various concentrations of toluene and
fixed temperature. The increase in toluene concentration
clearly provokes a speed-up of PVAc dynamics. Similar re-
sults were obtained for PVAc in PEO and BCDE. The aver-
age relaxation time of PVAc in mixtures with toluene as well
as that of pure PVAc as a function of the inverse temperature
is displayed in Fig. 3. The continuous lines represent the best
fits of the proposed model to experimental data. The quality
of the fits is excellent. Furthermore, the hypothesis of a di-
mensionality for the growth of CRR lower than 3, as e.g., in
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FIG. 2. Permittivity loss vs logarithm of the frequency for
PVAc/toluene system at 308 K and the following weight percent-
ages of PVAc, 60% (filled circles), 63% (empty circles), 71% (filled
triangles), and 86% (empty triangles).
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FIG. 3. Logarithm of the relaxation time vs temperature for
PVAc segmental dynamics in PVAc/toluene systems with the fol-
lowing PVAc weight percentages, 60% (filled circles), 63% (empty
circles), 71% (filled down triangles), 86% (empty down triangles),
and 95% (filled square). Pure PVAc segmental dynamics data are
also shown (empty up triangles). The solid lines are the fits of the
model to PVAc segmental dynamics in toluene solutions and the
dashed line is the fit through the AG equation to pure PVAc dynam-
ics data. The inset of the figure represents the variation of the «
parameter with the average effective concentration of PVAc in tolu-
ene (filled circles), BCDE (empty triangles), and PEO (empty
circles). The solid lines are a linear fit of experimental data, which,
extrapolating to pure PVAc, allow the evaluation of the & parameter
for pure PVAc.

stringlike motion [4], would result in a poorer quality of the
fits. This would suggest that CRR actually grow in three
dimensions at temperature close to T,. Analogously, the fits
performed for the dynamics of PVAc in mixture with PEO
and BCDE resulted in a successful description of the data.
The parameter a obtained from the best fits of our data is
plotted in the inset of Fig. 3 as a function of the average
effective concentration. Strikingly the extrapolation to pure
PVAc leads to a single value of « independently of the en-
vironment surrounding PVAc chains. This can be regarded as
the intrinsic a connecting PVAc configurational entropy with
its size of CRR. The same procedure was applied to evaluate
the parameter a for PS investigating its dynamics in OTP
and PPhO and similarly to PVAc, a single « was obtained.
Furthermore, a single value of @ was obtained for PoCIS
[16], PVME [16], PI [18], and PVE [18] studying their dy-
namics in various environments. The so-obtained values of «
are tabulated in Table I.

The availability of the polymer specific parameter « al-
lows determining via Eq. (3) the size of CRR and its tem-
perature variation, starting from the knowledge of the excess
entropy determined from calorimetric measurements. The so-
obtained diameter of CRR is displayed in Fig. 4 as a function
of temperature for the investigated polymers. Though the
size of CRR clearly depends on temperature, its variation is
rather smooth (=20% for the diameter). However, we note
that this can translate in a dramatic change of the number of
particles involved in the cooperative rearrangement. Further-
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FIG. 4. Size of CRR vs the temperature normalized at the T, for
all investigated polymers.

more, a clear relation with the rigidity of the chemical struc-
ture can be observed, being the size of CRR larger for the
most rigid polymer, namely PoCIS, and smaller for the most
flexible, namely PVME. The only exception to this correla-
tion seems to be PI, which presents relatively large sizes of
CRR despite its flexibility. Remarkably the addition of one
bulky chlorine atom in the phenyl ring of PS results in a
substantial increase in the size of CRR for the resulting poly-
mer, namely PoCIS. These results provide a positive indica-
tion of the reliability of the approach followed. The depen-
dence of the size of CRR on the rigidity of the polymer
suggests a positive correlation between the size itself and the
Kuhn segment, shown in Table I. The assessment of the size
of CRR allows performing a rough estimation of the number
of particles involved in the cooperative rearrangement. This
can be done considering the interchain distance for the in-
vestigated glass-forming polymers, which can be obtained
from the static structure factor S(Q). Values for this distance
can be calculated from the available measurements of the
static structure factor of PS [30,31], PVAc [29], PVME [32],
PI [33], and PVE [34], being the resulting values, dpg=9 A,
dpyac=84 A, dpyyp=6.3 A, dp=4.8 A, and dpyp=6.6 A. It
is noteworthy that, except for PI, the diameters of CRR
found at 7, for these polymers are almost quantitatively 2
times the corresponding intermolecular distance, suggesting
that the cooperative rearrangement only involves the first
shell around a basic structural unit. This would imply that the
number of particles involved in each CRR at T, is of the
order of tens. The possible connection between the size of
CRR and the intermolecular distance opens interesting sce-
narios in the rationalization of the length scale involved in
the structural relaxation of glass formers, which needs to be
further explored.

Finally, it is worth comparing the sizes of CRR obtained
here with the AG approach with those previously estimated
employing different approaches. The size of CRR obtained
for PVAc at T,, £~ 1.7 nm agrees almost quantitatively with
the characteristic length scale obtained by Berthier er al. [5]
by means of multipoint dynamical susceptibility (§=2 nm).
The size of CRR obtained by us for PS is also in qualitative
agreement with that estimated by Hempel ef al. [35] in the
framework of Donth approach [2] (§=~2.2 nm vs é=3 nm)
and in excellent agreement with that estimated by Sills et al.
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[36] by means of nanoscale sliding friction (é=~2.1 nm). Our
results are also compatible with the absence of finite size
effects in confinement down to 5 nm [37].

IV. CONCLUSIONS

To summarize, we have taken advantage of the concept of
self-concentration in combination with the AG theory of the
glass transition to open a new route to obtain the size of CRR
and its temperature dependence for several glass-forming
polymers. The approach proposed allows the unambiguous
derivation of the polymer specific parameter « connecting
the size of CRR to the configurational entropy. Once « is
obtained for each polymer, the size of CRR in a wide tem-
perature range can be determined from the knowledge of the
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configurational entropy of the pure polymer. The temperature
variation of the diameter of CRR for a given glass-forming
polymer results to be of only about 20% in the accessible
temperature range. Remarkably, the values of the diameter of
CRR at T, for the investigated polymers closely correlate
with both the Kuhn length and the interchain distance.
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